
Flexible Birth-Death MCMC Sampler

for Changepoint Models

vorgelegt von

Diplom-Informatiker
Florian Stimberg

geb. in Berlin

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Dr. rer. nat

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Olaf Hellwich
Gutachter: Prof. Dr. Manfred Opper
Gutachter: Prof. Dr. Guido Sanguinetti
Gutachter: Prof. Dr. Klaus Obermayer

Tag der wissenschaftlichen Aussprache: 9. November 2015

Berlin 2016

Acknowledgements

First, I want to thank my supervisor Manfred Opper for managing to always have time for

discussions, helpful advices and interesting conversations over the last 5 years.

Andreas Ruttor was always there when I had questions and had the patience to answer

them all. I don’t know how I would have coped without his help.

Many thanks to Klaus Obermayer for agreeing to be part of my reviewing committee.

I was always happy to meet Andrea Ocone and Botond Cseke. Working together with

them was a blast and the time together off work was even better. The same is true for Guido

Sanguinetti, who I also like to thank for joining my reviewing committee.

I would also like to thank Ludovica Bachschmid Romana, Philipp Batz, Gina Grünhage,

Cordula Lippke, Alex Susemihl, Sebastian Thiel and Fritz Wysotzki for the talks over lunch

and between work which made dealing with the stressful times that much easier.

I’d like to thank the FWE group for letting me waste precious hours, which I could

probably have used more efficiently.

I can’t thank my parents enough for all their support over the years. I would certainly not

have gotten to this point without them. My brothers Till and Marcel always helped me with

their 6 and 4 years of experience they have ahead of me (at least).

Finally, I want to thank my wife Anja for always being there for me and making the

tough times easier and the good times even better.

Zusammenfassung

Diese Arbeit beschreibt eine flexible Architektur eines Markov Chain Monte Carlo Samplers,

der Bayessche Inferenz für eine Vielzahl von Changepoint-Modellen erlaubt. Die Struktur

dieser Klasse von Modellen besteht aus zwei stochastischen Prozessen. Der erste Prozess wird

entweder direkt beobachtet oder indirekt durch, möglicherweise verrauschte, Beobachtungen.

Der zweite Prozess ist unbeobachtet und bestimmt die Parameter des beobachteten Prozesses.

Die Hauptannahme unserer Modellklasse ist, dass der versteckte Prozess stückweise konstant

ist, d.h. er springt zwischen diskreten Zuständen.

Als beobachteter Prozess diskutieren wir hauptsächlich den Ornstein-Uhlenbeck und

Poisson Prozess. Der versteckte Prozess kann eine feste Anzahl von Zuständen haben oder

eine unbekannte Anzahl. Im zweiten Fall basiert das Modell auf einem versteckten Chinese

Restaurant Prozess und ermöglicht so Bayessche Inferenz über die Anzahl der Zustände des

versteckten Parameterprozesses. Der Sampler wendet einen Metropolis-Hastings Random

Walk auf den versteckten Prozess an indem Birth-Death Schritte vorgeschlagen werden. Die

Arbeit präsentiert unterschiedliche Modifikationen des Pfades des versteckten Prozesses. Die

Struktur des Samplers ist sehr flexibel und lässt sich, im Vergleich zu anderen Algorithmen,

die für ein spezifisches Modell maßgeschneidert sind, einfach an verschiedene Kombinationen

von beobachteten und versteckten Prozessen anpassen.

Angewandt auf Genexpressionsdaten ermöglicht der Sampler Bayessche Inferenz für

komplexere Modelle als vorherige Methoden. Der berechnete Bayes Faktor deutet an, dass

unser Modell, welches es erlaubt die Stärke des intrinsischen Rauschens zu variieren, die

Daten besser erklärt als das vorherige Modell. Der Sampler wird für Genexpressionsdaten

von Hefezellen benutzt und die Ergebnisse mit denen einer variationellen Näherung ver-

glichen. Der Posterior scheint genauer in der Vorhersage der Aktivierungszeitpunkte der

Transkriptionsfaktoren zu sein als es die Näherung zeigt. Die Ergebnisse des Chinese Restau-

rant Prozess Samplers auf den gleichen Messungen von Hefezellen unterstützt die vorherige

Annahme über die Anzahl der Transkriptionsfaktoren, die in die Kontrolle der untersuchten

Gene involviert sind.

Die Anpassung des Samplers an Markov modulierte Poisson Prozesse beschleunigt die

Inferenz und dies wird gezeigt, indem die Zeit zur Berechnung eines unkorrelierten Samples

mit einem exakten Gibbs Sampler verglichen wird. Ein Modell, welches einen beobachteten

Poisson Prozess mit dem Chinese Restaurant Prozess verbindet wird anschließend benutzt

um versteckte Zustände in der Rate von neuronalen Spike-Daten zu finden und sie mit dem

Stimulus zu verbinden. Die Vorteile des Modells beim finden und bestimmen von neuronalen

Bursts wird diskutiert und mit Modellen verglichen, die eine kontinuierliche Poisson Rate

annehmen.

Abstract

This thesis describes a flexible architecture for a Markov chain Monte Carlo sampler which

allows Bayesian posterior inference for a variety of changepoint models. The structure

of this class of models consists of two stochastic processes. The first process is either

observed directly or indirectly through, possibly noisy, observations. The second process is

not observed and governs the parameters of the observed process. The main assumption for

our class of models is that the hidden process is piecewise constant, i.e. it jumps between

discrete states.

As the observed process, we discuss mainly the Ornstein-Uhlenbeck and Poisson process.

The hidden process can have a fixed number of states, or an unknown number of states. The

latter model is based on a hidden Chinese restaurant process and allows Bayesian inference

over the number of states of the hidden parameters. The sampler applies a Metropolis-

Hastings random walk on the hidden jump process through proposed birth-death moves.

Different kinds of proposal moves on the path of the hidden process are presented. The

structure of the sampler makes it very flexible and easy to modify to other combinations of

observed and hidden processes compared to other inference methods which are tailor-made

for a specific model.

Applied to gene expression data the sampler allows Bayesian posterior inference on a

more complex model than in previous work. We compute the Bayes factor which indicates

that our model, which allows the strength of the system noise to switch, is better in explaining

the data. The sampler is used on gene expression data from yeast cells and the results are

compared to a variational approximation. The posterior is more confident about the times

of transcriptional activity than the approximation suggests. The results from the Chinese

restaurant process sampler on the same yeast dataset support the initial assumption about the

number of transcription factors involved in the control of the examined genes.

When the sampler is used on financial data, changepoints are revealed which can be

connected to historic events. This is shown both for the Ornstein-Uhlenbeck model as well

as a Cox-Ingersoll-Ross model used in a different thesis.

Modifying the sampler to work on Markov modulated Poisson processes allows for very

fast posterior inference and this is shown when the time to get an uncorrelated sample is

compared to an exact Gibbs sampler for the model. A model combining an observed Poisson

process with the Chinese restaurant process is then utilized to find hidden states in the rate

of neuronal spike trains and linked to the stimulus. The model’s advantages in finding and

estimating bursting of neurons is discussed and compared to a model which assumes a

continuous Poisson rate.

Table of contents

List of figures ix

List of tables xiii

1 Introduction 1

1.1 Organization of the Thesis . 2

1.2 Notation . 4

2 Background 7

2.1 Methods . 7

2.2 Applications . 22

3 General Model & Sampler 27

3.1 General Model Description . 27

3.2 General Sampler Architecture . 32

3.3 Label-Switching . 35

4 Applications using the Ornstein-Uhlenbeck Process 37

4.1 Fixed Number of States . 37

4.2 Multiple Switching Processes . 53

4.3 Changepoint Process . 57

4.4 Chinese Restaurant Process . 62

5 Applications using the Poisson Process 75

5.1 Switching Process . 76

5.2 Chinese Restaurant Process . 82

6 Applications with Other Processes 101

6.1 Cox-Ingersoll-Ross Process . 101

viii Table of contents

6.2 Multivariate Ornstein-Uhlenbeck Process 105

6.3 Modifying the Sampler to Other Processes 108

7 Conclusion 111

7.1 Related Work . 112

7.2 Discussion & Outlook . 115

Bibliography 119

Appendix A Detailed Calculations 133

A.1 Exact sampling of the Ornstein-Uhlenbeck-Process 133

A.2 Posterior Transition Rates of the Telegraph process 135

A.3 Sampling A and b Directly . 136

A.4 Computing Bayes Factors for the Switching Model 137

A.5 Multivariate Ornstein-Uhlenbeck Process Likelihood 139

Appendix B Details of the sampler 143

B.1 Poisson CRP Sampler: Assigning a λ value to a segment 143

B.2 Poisson Likelihood Calculation . 144

Appendix C Further Results 147

C.1 Toy Switching Data . 147

C.2 ComS Gene Expression . 148

C.3 V1 Neuron Spiking Data . 148

List of figures

2.1 Example of the path drawn from an Ornstein-Uhlenbeck process. 12

2.2 Example of a multivariate Ornstein-Uhlenbeck process path 13

2.3 Example of the path drawn from an Cox-Ingersoll-Ross process. 15

2.4 Example of the path drawn from a Poisson process. The top shows the path

as a counting process while in the bottom each event is drawn as a vertical line. 17

2.5 Schematic of the process of transcriptional regulation. 23

2.6 Shematic of the change of membrane potential during an action potential. . 24

3.1 The three types of hidden processes used in this thesis. 29

3.2 The two steps of our Metropolis-within-Gibbs sampler. 33

4.1 Generating a proposal path by modifying the current path for the switching

model. 43

4.2 Comparison of the MCMC sampler results with the numerical exact solution

for synthetic OU data from the switching model. 46

4.3 Results of the inference for the ComS Protein expression data. 47

4.4 Parameter posteriors for the ComS Protein expression data. 48

4.5 Bayes factor estimation between models with and without switching system

noise. 50

4.6 Posterior density over f (A,b,σ0,σ1) defined by (4.36). 51

4.7 Four-dimensional Ornstein-Uhlenbeck process with two telegraph processes

controlling A. 54

4.8 Posterior over the telegraph processes’ activation and the A parameter for the

four-dimensional OU synthetic dataset. 55

4.9 Comparison of the posterior profile of TF activity obtained through our

MCMC algorithm and the variational approximation. 56

4.10 The generative model of the Ornstein-Uhlenbeck process driven by a hidden

changepoint process. 57

x List of figures

4.11 Synthetic changepoint data and jump posterior. 60

4.12 Parameter posteriors for synthetic changepoint data. 61

4.13 German stock index (DAX) data and jump probability. 62

4.14 Posterior of the parameters over time for the German stock index (DAX) data. 63

4.15 The generative model of the Ornstein-Uhlenbeck process driven by a hidden

Chinese restaurant process. 64

4.16 The 4 actions to modify the hidden path in the CRP OU model. 66

4.17 True paths and posterior densities over X(t) and A(t) for a synthetic two-

dimensional OU model driven by a hidden Chinese restaurant process with 5

states. 69

4.18 Posterior over the number of states and the reuse of states. 70

4.19 Comparison of the CRP sampler and the changepoint sampler on the synthetic

CRP-OU dataset. 70

4.20 Robustness of the yeast cell data results for different values of α 72

4.21 Same-state-heatmaps for the full yeast dataset (10 genes). 73

5.1 Data and posterior results for 3 Poisson switching toy datasets. 79

5.2 Comparison of the time per iteration between the exact Gibbs sampler and

our random walk algorithm. 80

5.3 Autocorrelation of the posterior samples for the four parameters from a

synthetic Poisson dataset. 80

5.4 Comparison of time to compute one uncorrelated sample between exact

Gibbs and random walk sampler. 82

5.5 The generative model of the Poisson process driven by a hidden Chinese

restaurant process. 83

5.6 The new actions of joining two states and dividing a state into two new states.

The old path is drawn in blue, while the modified part is drawn in green. . . 85

5.7 Results for Poisson toydata with a hidden Chinese restaurant process. . . . 89

5.8 Posterior mean number of states for 4 Poisson toy datasets with varying α

parameters. 90

5.9 Stimulus and spiking data for a part of the recordings from the first neuron. 91

5.10 Posterior mean number of states and jumps for all 10 neurons. 91

5.11 Example of the moving bar stimulus . 92

5.12 Detail of the posterior states for one of the neurons. 94

5.13 Posterior mean firing rates λi at the MAP number of states for 4 of the neurons. 94

5.14 Probability distribution over the orientation of the stimulus while a state is

active for all 10 neurons. 95

List of figures xi

5.15 Tuning curve for all 10 neurons from the data and the posterior mean. . . . 97

5.16 Results of the SGCP Sampler on a small part of the data of one neuron. . . 98

6.1 Results of the CIR sampler on EUR/USD exchange rate data 104

6.2 Results for synthetic data from a multivariate OU process 107

B.1 Nearest observations grid data structure for fast calculation of the likelihood

for Poisson data. 144

C.1 Further results for synthetic data from the one-dimensional switching model. 147

C.2 Posterior and prior densities of b and λ parameter for the ComS expression

data. 148

C.3 Posterior mean number of jumps and states for two different parameter sets

for the neuronal spiking data. 148

List of tables

2.1 Interpretation for the value of the Bayes factor defined by (2.3). 9

4.1 Probability distribution over the 5 possible actions. 44

4.2 Parameters and prior distributions for the ComS dataset. 49

4.3 Parameters and prior distributions for the DAX dataset. 61

4.4 Comparison of results for Changepoint and CRP model on Toy OU data. . . 71

5.1 Integrated autocorrelation time for our random walk sampler and exact Gibbs

sampler for toy Poisson data. 81

6.1 Posterior mean and true number of jumps and states for the synthetic multi-

variate OU datsets. 108

Chapter 1

Introduction

When forecasting tomorrow’s weather, the simplest approach is to assume persistence: The

weather tomorrow is going to be the same as today. While this method can often be very

accurate, there usually comes a time when the conditions change. Finding such changepoints

is of high interest to a myriad of different scientific fields, among them network traffic

analysis (Blazek et al., 2001), climate science (Reeves et al., 2007), ecological modeling

(Qian et al., 2003), finance (Preis et al., 2011) or the often cited coal-mining disaster dataset

of Jarrett (1979). Therefore changepoint detection has been an active field of research for a

long time with Page (1954) being an early example1.

In contrast to many other approaches (e.g. Fearnhead and Liu, 2011; Giordani and Kohn,

2008; Wyse et al., 2011) our class of models assumes that the observations come from a

stochastic process with jumping parameters, instead of assuming that the observations are

i.i.d from a changing distribution. Additionally, we are not resorting to discretizing schemes

and fully work in continuous time.

We are interested in a Bayesian approach to the problem and this usually makes it

impossible to get analytical results for models of non-trivial complexity. Markov chain

Monte Carlo (MCMC) methods have made Bayesian inference possible for models where

analytical methods are unfeasible and have been applied successfully in a wide range of

fields, such as physics (von Toussaint, 2011), finance (Glasserman, 2003) and biology (Manly,

2006).

This thesis presents a general MCMC sampler architecture which allows efficient

Bayesian inference for a class of changepoint models consisting of two stochastic pro-

cesses, one observed and one hidden. The hidden process is piecewise constant and jumps

between different levels thereby controlling the parameters of the observed process. We

investigate in detail models where the observed process is of the Ornstein-Uhlenbeck type and

1For a good overview of previous work in the field see Chen and Gupta (2011).

2 Introduction

where it is a Poisson process. Three different types of hidden jump processes are formulated:

A Markov jump process (MJP) with a fixed number of states, a MJP where the parameters of

each segment are i.i.d. from a common probability distribution and a jump process whose

parameters are drawn from a Chinese restaurant process, which means that the parameter

jump between an unknown number of reusable states. Our sampler applies a Gibbs sampling

approach to the inference task, alternating between sampling from the conditional posteriors

of the parameters and the jump process. For the latter part, birth-death steps, i.e. adding,

removing or shifting times of jumps, are used to modify the current path of the hidden jump

process and serve as a proposal in a Metropolis-Hastings setting. This approach resembles the

reversible jump algorithm of Green (1995) but in contrast to them, we formulate our model

in a way that birth-death moves stay inside the model and therefore makes the approach more

flexible. The overall structure of our sampler does not depend on the processes used in a

specific model, making it uncomplicated to adapt it to different model combinations. We

focus on gene expression and neuronal spiking data for applications of our method, as well

as demonstrating its usefulness for the analysis of financial data series.

To summarize, the contributions of this thesis are as follows: 1) it describes a class of

changepoint models where a stochastic process is driven by hidden jumps of its parameters,

including a model where the number of states is unknown beforehand, 2) it presents a

general MCMC sampler structure for Bayesian inference in these models and 3) it applies

the sampler to datasets from systems biology, neurobiology and finance and compares the

results to different approaches to the task.

1.1 Organization of the Thesis

A short introduction to the concepts and models used in this thesis is given in chapter 2.

Bayesian inference, Stochastic processes and MCMC sampling are explained and the chapter

concludes with a very brief description of the main applications in this thesis: transcriptional

regulation and neuronal spiking.

Before diving into details about the individual model combinations we present a non-

formal overview of the different model components and the general structure of the sampler

in chapter 3. The aim of this chapter is to clarify the class of models we are looking at and

to preview which processes we will use. The following chapters 4 and 5 deal with specific

observed processes combined with the different hidden processes.

In chapter 4 models where the observed process is of the Ornstein-Uhlenbeck form are

discussed. The chapter is divided into sections for the different kinds of hidden processes

which are combined with the Ornstein-Uhlenbeck process, starting from a simple binary

1.1 Organization of the Thesis 3

telegraph process in section 4.1 and ending with the flexible Chinese restaurant process in

section 4.4. The main application in this part of the thesis are gene expression datasets but in

section 4.3 the sampler is applied on stock index data. Much of this chapter is based on work

previously published in Stimberg et al. (2011b), Stimberg et al. (2011a) and Stimberg et al.

(2012).

The observed process is switched to a Poisson process for chapter 5. For a hidden MJP

with fixed dimensionality the model becomes the well studied Markov modulated Poisson

process (MMPP). Our sampler is compared to the exact Gibbs sampler and found to improve

its results under certain conditions. The Poisson process is then combined with the Chinese

restaurant process to find discrete states in neuronal spiking data from the primary visual

cortex. This part of the chapter is based on Stimberg et al. (2014).

Two more model combinations are investigated in chapter 6. The application of our

sampler to a Cox-Ingersoll-Ross model with changing parameters is summarized from

Herrmann (2014) and a small experiment with a multivariate Ornstein-Uhlenbeck process is

presented. To conclude the main part of the thesis section 6.3 gives a brief guideline how to

extend the sampler to work with other model combinations not considered in this thesis.

We summarize and discuss the results of the thesis in chapter 7 and compare it to related

work. Finally, the thesis ends by highlighting possible directions of further research.

4 Introduction

1.2 Notation

1.2.1 Variables

X(t) Observed process.

X0:T Path of the process from time 0 to T .

D Dataset of the observations.

ti Times of observations.

µ(t) Hidden jump process whose value is either binary or a non-negative integer.

τi Times of jumps in the hidden process.

θ(t) Process of the parameters.

c Number of jumps in the hidden process.

n Number of data points.

N Dimensionality of the observed process.

f , f+, f− Jump rates of the hidden process.

α Concentration parameters of the Chinese restaurant process.

A,b Parameters of the Ornstein-Uhlenbeck process’ drift.

λ Parameter of the OU process’ drift or rate of a Poisson process.

σ2 Strength of the system noise.

σ2
obs Variance of the Gaussian observation noise.

1.2.2 Abbreviations

MC Monte Carlo

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

OU Ornstein-Uhlenbeck

CIR Cox-Ingersoll-Ross

MJP Markov jump process

MMPP Markov modulated Poisson process

ODE Ordinary differential equation

SDE Stochastic differential equation

CP Changepoint process

CRP Chinese restaurant process

1.2 Notation 5

1.2.3 Probability Distributions

N (x; µ,σ2) =
1√

2σ2π
exp
(

−(x−µ)2

2σ2

)

Exp(x;λ) = λ exp(−λx)

Gamma(x;a,b) =
1

Γ(a)ba
xa−1 exp

(

−x

b

)

Poisson(k;λ) =
λ k

k!
exp(−λ)

Chapter 2

Background

This chapter gives an introduction to the methods and applications used in this thesis. It is

intended to give readers not familiar with the topics a short overview to understand the later

chapters. For in-depth information about the subjects the reader is referred to the references

given in the relevant sections.

2.1 Methods

As this thesis deals with Bayesian inference for stochastic processes using Markov chain

Monte Carlo methods, these three topics are explained first.

2.1.1 Bayesian Inference

While a detailed and thorough discussion on Bayesian inference is far beyond the scope of

this thesis, a very short introduction about the approach is given for readers not familiar with

it. The Bayesian approach differs from the so-called frequentist one not in the mathematical

foundation of probability theory, but in the way probabilities are interpreted. While in a

frequentist view a probability is defined as a "limiting frequency in independent repetitions

of a random experiment" (Jaynes and Bretthorst, 2003, p. 270), Bayesians use probabilities

to describe "degrees of belief" (Barber, 2012, p. 5) and the mathematical laws of probability

theory allow us to calculate how these beliefs should behave. Or as Bernardo and Smith

(2009, p. 4) write: "Bayesian Statistics offers a rationalist theory of personalistic beliefs in

contexts of uncertainty, [...]".

From a Bayesian perspective inference starts with the prior belief about the subject before

any data is observed. We have a belief about what model M describes the process which we

want to observe and given the model we have a belief about the parameters θ in that model.

8 Background

These beliefs are represented by probability distributions P(M) and P(θ |M), respectively. If

we are very sure a model or parameter value is correct the distributions would be very narrow,

if we are unsure the distributions would be flat, i.e. have a high variance.

The "Bayesian" aspect comes from Bayes rule1, which can be used to describe how a

prior belief will change when we observe data D:

P(θ |D,M) =
P(D|θ ,M)P(θ |M)

P(D|M)
. (2.1)

P(θ |M) is called the prior (belief about the parameters), P(D|θ ,M) the likelihood (of the

data given the parameters) and P(θ |D,M) the posterior (belief about the parameters). The

denominator P(D|M) in (2.1) is called the evidence or marginal likelihood and can be

rewritten as

P(D|M) =
∫

P(D|θ ,M)P(θ |M)dθ (2.2)

by marginalizing out the parameters (Kruschke, 2011, p. 58). Usually the evidence only

interests us if we want to do model comparison, at least in the context of this thesis because

it gets canceled out of all our calculations otherwise2.

If we are not comparing different models but are interested in parameter inference for

a specific one, we usually suppress M for the sake of clarity. In these cases what interests

us is the posterior over the parameters P(θ |D) which describes how our belief has been

updated by observing the data. This means instead of a point estimate of the most likely

set of parameter values which generated the data, we get a probability distribution. We can

still look at the point which maximizes it (the maximum-a-posteriori or MAP estimate) but

having a full distribution gives us an estimate of how sure we should be that the parameter

values were in a specified region. Because of this the results in this thesis are usually given

either as plots of the posterior distribution over parameters or the distribution is described by

expected values over it such as the mean and variance.

Bayesian Model Comparison

Founded on the work of Jeffreys (1935) the Bayesian framework allows us to compare how

well different models explain a dataset. One advantage over classical hypothesis testing

is that Bayesian model comparison automatically prevents overfitting by penalizing too

complicated models (Kass and Raftery, 1995). The central unit in this framework is the

1Named after Thomas Bayes who most likely lived from 1702 to 1761 according to Dale (1991) and whose
work on the theorem was posthumously published in Bayes and Price (1763).

2See section 2.1.3 for an explanation.

2.1 Methods 9

BF1,2 < 1 Evidence against M1.
1 < BF1,2 < 10

1
2 Evidence supports M1 but not worth more than a bare mention.

10
1
2 < BF1,2 < 10 Evidence supporting M1 substantial.

10 < BF1,2 < 10
3
2 Evidence supporting M1 strong.

10
3
2 < BF1,2 < 102 Evidence supporting M1 very strong.

102 < BF1,2 Evidence supporting M1 decisive.

Table 2.1 Interpretation for the value of the Bayes factor defined by (2.3).

Bayes factor:

BF1,2 =
P(D|M1)

P(D|M2)
, (2.3)

which compares the likelihood of the data being generated by model M1 and M2. As we

know from (2.2) the marginal likelihoods are computed by marginalizing over all possible

parameter values and are therefore independent of the parameters. If we have prior belief

about how likely the models are, these can be incorporated to get the posterior odds of the

models

PO1,2 =
P(D|M1)

P(D|M2)

P(M1)

P(M2)
. (2.4)

As we indicated above, the marginal likelihoods normally don’t need to be computed when

posterior inference is done and, as Calderhead and Girolami (2009) highlighted, some

methods to compute this quantity can be treacherous. If BF1,2 is larger than 1 then the data

favors the model M1. Furthermore (Jeffreys, 1998, p. 432) provided a guideline to interpret

the results which can be seen in table 2.1.

2.1.2 Stochastic Processes

Stochastic processes can be seen as a generalization of vectors of random variables. Instead

of a finite number of random variables X = (x1, . . . ,xn) a random process is a collection of

random variables X(t) with t ∈ T and T ⊆ R (Stirzaker, 2005, pp. 45 ff.) 3.

Usually t will be the time which makes the stochastic process describe the evolution of

a random variable (or a vector of random variables) over time. A specific value of X(t) is

called the state of the process at time t and the space of possible values that can be assigned

to X(t) (e.g. Rn for a n-dimensional continuous state process) is referred to as the state space.

3Sometimes this definition is broadened to include random fields where the "time" can be a multidimensional
vector in R.

10 Background

A realization of a stochastic process is called a (sample) path. Both the time and the state can

be discrete or continuous.

Markov Processes

An important subclass of stochastic processes are the Markov processes. Almost all the

processes in this thesis are Markov processes and this holds true in many other applications

as well (Stirzaker, 2005; Van Kampen, 2011). A Markov process is a process which satisfies

the Markov property i.e. for any set of times t1, . . . , tk with t1 < · · ·< tk the process fulfills

P(tk,X(tk)|tk−1,X(tk−1); . . . ; t1,X(t1)) = P(tk,X(tk)|tk−1,X(tk−1)) (2.5)

(Van Kampen, 2011, p. 73).

Informally this means that given a history of exact observations, the future evolution of a

process only depends on the last observation. Markov processes are uniquely defined through

P(t1,X(t1)) and the transition probability P(tk,X(tk)|tk−1,X(tk−1)) (Honerkamp, 1994) and

this allows us to rewrite the joint density over observations X(t1), X(t2), . . . , X(tn−1), X(tn)

as
P(t,1 ,X(t1); t2,X(t2); . . . ; tn−1,X(tn−1); tn,X(tn))

=P(t1,X(t1))P(t2,X(t2)|t1,X(t1)) . . .P(tn,X(tn)|tn−1,X(tn−1))
(2.6)

An important property of all Markov processes is that the transition density fulfills the

Chapman-Kolmogorov equation

P(tk,X(tk)|tk−1,X(tk−1)) =
∫ ∞

−∞
P(t j,X(t j)|tk−1,P(X(tk−1))P(tk,X(tk)|t j,P(X(t j))dX(t j),

(2.7)

which means that the transition probability from one state to another can be written as a

product of two transition densities with the unknown state in the middle marginalized out

(Kloeden and Platen, 1992, p. 35).

Diffusion processes

Diffusion processes are special cases of Markov processes with a continuous state space. The

simplest diffusion process and the basis for all the others is the Wiener process (or Brownian

motion). A Wiener process W (t) is a continuous stochastic process with the property that

all its increments are independent and normally distributed with zero mean and variance

proportional to the time difference, i.e.

W (t + s)−W (s)∼N (0,σ2t), (2.8)

2.1 Methods 11

for some 0 < σ2 < ∞ (Stirzaker, 2005, pp. 219 ff.).

A diffusion process X(t) can be defined by stochastic differential equations (SDEs) of

the form

dX = a(t,X)dt +(b(t,X))1/2dW, (2.9)

where dW is the increment of the standard Wiener process, a(t,X) is called the drift function

and b(t,X) the diffusion function.

Depending on the drift and diffusion function a closed form solution for X(t) might be

obtainable (Kloeden and Platen, 1992, p. 104-105). If this is not the case a diffusion process

can always be approximately simulated using the Euler-Maruyama approximation, which is

a generalization of Euler’s method for ordinary differential equations. It discretizes the time

and iteratively draws the next values of the process from

X(tk)∼N (X(tk−1)+a(tk−1,X(tk−1))∆t,b(tk−1,X(tk−1))∆t) , (2.10)

where ∆t = tk − tk−1 is the time step and the approximation becomes exact for ∆t → 0

(Kloeden and Platen, 1992, pp. 305 ff.).

The time evolution of the transition distribution P(X(t) = y|X(s) = x) = Pt,y,s,x of a

diffusion process can be described by the Fokker-Planck or Kolmogorov forward equation

∂Pt,y,s,x

∂ t
=− ∂

∂y
[a(t,y)Pt,y,s,x]+

1
2

∂ 2

∂y2 [b(t,y)Pt,y,s,x], (2.11)

this can also be formulated backward in time

∂Pt,y,s,x

∂ s
=−a(s,x)

∂Pt,y,s,x

∂x
− 1

2
b(s,x)

∂ 2Pt,y,s,x

∂x2 , (2.12)

which is the Kolmogorov backward equation (Kloeden and Platen, 1992, p. 37).

Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck (OU) Process is a mean reverting Markov process with a linear

drift and constant diffusion function and was first introduced by Uhlenbeck and Ornstein

(1930) as a model for the dynamics of gas molecules. Besides their initial application OU

processes haven been used in many fields such as neurobiology (Ricciardi and Sacerdote,

1979), finance (Marsh and Rosenfeld, 1983) or genetics (Dunlop et al., 2008).

In its one dimensional form the OU process is defined by a stochastic differential equation

of the form

dX = (b−λX)dt +σdW, (2.13)

12 Background

b = 0.01

λ = 0.01

σ
2

= 0.01

1.0

1.2

1.4

0 250 500 750 1000

time

x

Fig. 2.1 Example of the path drawn from an Ornstein-Uhlenbeck process. The mean is at
b/λ = 1.

with parameters b, λ > 0 and σ > 0 and where dW models a Wiener process. In this

parametrization the mean of the process will converge to b/λ , λ is the rate of convergence

and σ the strength of the noise4.

The SDE (2.13) is solved by

X(tk) = X(tk−1)exp(−λ t)+
b

λ
(1− exp(−λ t))+σ

∫ tk

tk−1

exp(−λ (tk− s))dWs, (2.14)

and because this is an integral of a deterministic function with respect to a Wiener process

we know this is a Gaussian process with transition density

P(tk,X(tk)|tk−1,X(tk−1)) = N (X(tk);m(∆t,X(tk−1)),v(∆,X(tk−1))), (2.15)

with mean and variance

m(∆t,X(tk−1)) = X(tk−1)exp(−λ∆t)+
b

λ
(1− exp(−λ∆t)) (2.16)

v(∆t,X(tk−1)) =
σ2

2λ
(1− exp(−2λ∆t)) (2.17)

4Often a different parametrization is used: dx = a(b−x)dt+σdW , where the mean of the process converges
to b.

2.1 Methods 13

−4

0

4

8

0 250 500 750 1000

time

x

Fig. 2.2 Example of the path drawn from an multivariate Ornstein-Uhlenbeck process. The

first dimension is in red, the second in blue. The parameters used were B =

[

0.01
0.05

]

,

Λ =

[

0 −0.05
0.04 0.02

]

and Σ =

[

0.1 0
0 0.5

]

.

and where ∆t = tk− tk−1 (Steele, 2001, pp. 138 ff.)5.

The Ornstein-Uhlenbeck process can be extended to multiple dimensions. If we assume

the dimensions are independent then it is just a set of stochastic differential equations like

(2.13) with (possibly) different parameters for each dimension. But it is also possible to

define a multidimensional Ornstein-Uhlenbeck process where the different dimensions are

coupled. The stochastic differential equation then becomes

dX = (B−ΛX)dt +ΣdW, (2.18)

where X and B are m-dimensional row vectors while Λ and Σ are m×m matrices.

The transition density then becomes

P(tk,X(tk)|tk−1,X(tk−1)) = N (X(tk);M(∆t,X(tk−1)),V(∆t,X(tk−1))), (2.19)

with mean

M(t,X(tk−1)) = exp(−∆tΛ)X(tk−1)+(Im×m− exp(−∆tΛ))Λ−1B, (2.20)

5We generalized the solution because Steele (2001) use an SDE with b = 0.

14 Background

where Im×m is the m×m identity matrix, exp(·) is the matrix exponential.

The variance is

V(t,X(tk−1)) = UD−1 (2.21)

U = R(1 : m,1 : m) (2.22)

D = R(m+1 : 2∗m,1 : m) (2.23)

R = exp(∆tΨ)

[

0m×m

Im×m

]

(2.24)

Ψ =

[

−Λ ΣΣ′

0m×m Λ′

]

, (2.25)

with and R(rb : re,cb : ce) being a sub-matrix of R ranging from row rb to re and column cb

to ce.

For a derivation of this see section A.5 of the appendix.

Cox-Ingersoll-Ross Process

The Cox-Ingersoll-Ross (CIR) model was introduced by Cox et al. (1985) to describe the

time evolution of interest rates. It is similar to the Ornstein-Uhlenbeck process with the

difference, that the diffusion depends on the value of the process in such a way that the

process can never become negative for positive values of b and λ .

dX = (b−λX)dt +σ
√

XdW, (2.26)

The transition density P(tk,X(tk)|tk−1,X(tk−1) of the CIR process has mean and variance

m(∆t,X(tk−1)) = X(tk)exp−λ∆t +
B

λ
(1− exp(−λ∆t)) (2.27)

v(∆t,X(tk−1)) = X(tk)
σ2

λ
(exp(−λ∆t)− exp(−2λ∆t))+

Bσ2

2λ
(1− exp(−λ∆t))2. (2.28)

While, like an OU process, the CIR process is driven by a Wiener process it is not a Gaussian

process. The transition density has the form

P(tk,X(tk)|tk−1,X(tk−1)) = cexp(−u− cX(tk))

(

cX(tk)

u

)q/2

Iq(2
√

ucX(tk)), (2.29)

2.1 Methods 15

b = 2e−04

λ = 1e−04

σ
2

= 1e−04

0.00

0.05

0.10

0.15

0 250 500 750 1000

time

x

Fig. 2.3 Example of the path drawn from an Cox-Ingersoll-Ross process.

where

c =
2λ

σ2(1− exp(−λ∆t))
(2.30)

u = cX(tk−1)exp(−λ∆t) (2.31)

q =
2b

σ2 −1, (2.32)

and with Iq(·) being the modified Bessel function of the first kind of order q (Cox et al., 1985).

This is equivalent to a noncentral chi-square distribution with 2q+2 degrees of freedom and

noncentrality parameter 2u:

P(X(tk)|X(tk−1)) = χ2 (2cX(tk);2q+2,2uX(tk−1)) . (2.33)

Markov Jump Processes

A jump process is defined over a finite or countable set of states, therefore the main difference

between diffusion and jump processes is that the former have continuous and the latter

discrete states. The process starts in some state x0 and stays in it until after some positive

time τ1 it jumps to a new state x1 and stays in it until some positive time τ2 > τ1, then it

jumps to state x2 and so on. This means the process is piecewise constant and its state can be

16 Background

defined by (Hoel et al., 1972, p. 84)

X(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x0, 0≥ t > τ1

x1, τ1 ≥ t > τ2

x2, τ2 ≥ t > τ3
...

. (2.34)

If a process is non-explosive, i.e. if

lim
n→∞

τn = ∞, (2.35)

then X(t) is defined for all t ≥ 0 (Hoel et al., 1972, p. 86).

A Markov jump process (MJP) is a jump process which fulfills the Markov property.

This means that the distribution over the time to the next jump, may depend at most on the

last state of the process. When a jump happens the process chooses a new state according

to its transition distribution P(xi|xi−1). As for diffusion processes we can formulate the

Chapman-Kolmogorov equation for Markov jump processes as well:

P(tk,X(tk)|tk−1,X(tk−1)) = ∑
X(t j)

P(t j,X(t j)|tk−1,P(X(tk−1))P(tk,X(tk)|t j,P(X(t j)), (2.36)

with 0≤ tk−1 ≤ t j ≤ tk.

A special case of the Markov jump process is the telegraph process. It only has 2 states

and switches between them at each jump.

Poisson Process

The Poisson process is a counting process, i.e. a jump process whose state starts at 0 and

grows by 1 at each jump. For a Poisson process the waiting times between jumps are

exponentially distributed with rate parameter λ and this leads to the state X(t) being Poisson

distributed with parameter λ t (Hoel et al., 1972, p. 95). A generalization of a Poisson process

where the time between jumps is not necessarily exponentially distributed is called a renewal

process. In some applications the state values are ignored because we are only interested in

the times of the jumps.

In order to simulate the path of a Poisson process it is only necessary to draw the time

until the next jump from an exponential distribution until the time is past the end time T .

Poisson processes have a very broad range of applications from modeling the scoring of

goals in soccer (Heuer et al., 2010) to network access data (Balachandran et al., 2002).

2.1 Methods 17

λ = 0.1

0

25

50

75

100

x

0 250 500 750 1000

time

Fig. 2.4 Example of the path drawn from a Poisson process. The top shows the path as a
counting process while in the bottom each event is drawn as a vertical line.

2.1.3 Markov Chain Monte Carlo Sampling

Many problems in areas such as statistical physics, Bayesian inference or computational

biology, involve having to solve multi-dimensional integrals, which most of the time are

analytically intractable (Kalos and Whitlock, 2008; von Toussaint, 2011; Wakefield, 2007).

There are a number of numerical approximations for one-dimensional integrals which can

be extended to the multi-dimensional settings but they suffer from the so called curse

of dimensionality which leads to the computational costs growing exponentially with the

dimensionality (see e.g. Gamerman and Lopes, 2006; Liu, 2008).

The Monte Carlo Method of Metropolis and Ulam (1949) overcomes this problem because

the error rate of Monte Carlo methods is independent of the dimensionality and shrinks

proportional to the square root of the number of samples (Kalos and Whitlock, 2008, pp.

77-79).

The Monte Carlo method is based on the idea that an integral over a probability distribu-

tion P(x)

E (f (x)) =
∫

P(x) f (x)dx (2.37)

18 Background

can be approximated by

E (f (x))≈ 1
m

m

∑
i=1

f (xi) (2.38)

where X = (x1, . . . ,xm) is a sequence of random numbers distributed according to P(x).

If P(x) is a simple distribution, e.g. Gaussian or gamma, then there are direct methods to

get independent identical distributed (i.i.d.) samples from it (Gamerman and Lopes, 2006,

pp. 12-13) but for more complicated cases i.d.d samples are seldom obtainable directly.

Rejection and Importance Sampling

One method to obtain i.i.d. samples from a distribution P(x) when direct sampling is

not possible, is called rejection sampling. Rejection sampling needs a so called proposal

distribution Q(x) for which i.i.d. samples can be generated. This proposal distribution must

fulfill the property that there exists a finite constant c > 1 for which

cQ(x)≥ P(x),∀x. (2.39)

For each sample generated from the proposal distribution we draw a random number u

uniformly distributed between 0 and 1 and accept the sample if

u < P(x)/cQ(x) (2.40)

is true (Liu, 2008, p. 24). The average acceptance rate of rejection sampling is 1/c and this

means that we might be drawing a large number of proposals from Q(x) to get one sample

from P(x) if c is large.

Importance sampling (Liu, 2008, pp. 31 ff.) on the other hand doesn’t reject samples

but draws them from Q(x) and assigns a weight w = P(x)/Q(x) to them, basically weighting

samples in regions where Q(x) underestimates P(x) higher and vice versa. If Q(x) isn’t

chosen carefully the estimator can be dominated by few samples with large weights and in

the worst case it can have a small empirical variance while still being far from the true value

(Bishop, 2007, p. 534).

Markov Chain Monte Carlo Sampling

While both rejection and importance sampling have been shown to work well for many appli-

cations they tend to loose efficiency fast when the dimensionality of the target distribution

grows (MacKay, 2002, p. 363-365). For problems such as this, a special class of Monte

2.1 Methods 19

Carlo algorithms, called Markov chain Monte Carlo (MCMC) methods, tends to be more

effective. They are based on creating a Markov chain of random samples whose stationary (or

invariant) distribution is the target distribution P(x). The first MCMC method was introduced

by Metropolis et al. (1953) for problems in statistical physics and henceforward called the

Metropolis algorithm (Kendall et al., 2005, p. ix). This approach is based on drawing a

sample x∗ from a proposal distribution Q(x∗|xi) depending on the last sample xi. Metropolis

et al. (1953) required that Q has to be symmetric, i.e. it must fulfill Q(x∗|xi) = Q(xi|x∗).

The next sample in the Markov chain then becomes

xi+1 =

⎧

⎨

⎩

x∗ if u < min
(

P(x∗)
P(xi)

,1
)

xi otherwise,
(2.41)

where u∼U(0,1) is a uniformly distributed random number6.

This means that a proposal is drawn from Q(x∗|xi) and accepted with probability

min(P(x∗)/P(xi),1) but in contrast to rejection sampling a rejection means that the last

sample is reused instead of drawing samples until one is accepted.

A very important advantage of the Metropolis algorithm is that only ratios of the target

distribution P(x) have to be computed and therefore any normalization factors can be ignored.

Hastings (1970) generalized the Metropolis algorithm by no longer requiring Q to be

symmetric, leading to the next sample being

xi+1 =

⎧

⎨

⎩

x∗ if u < min
(

Q(xi|x∗)
Q(x∗|xi)

P(x∗)
P(xi)

),1
)

xi otherwise.
(2.42)

The algorithm is called the Metropolis-Hastings algorithm and because of its very wide

applicability has been called one of the most important algorithms for science and engineering

in the 20th century (Dongarra and Sullivan, 2000).

The proof that P(x) is in fact the stationary distribution of the Markov chain has two steps:

First it must be shown that a stationary distribution exists and secondly it must be shown that

there exists only one stationary distribution, i.e. that it is unique (Bishop, 2007, p. 540). The

existence of a stationary distribution can be shown using a property called detailed balance

6The minimization is not necessary if the method is implemented, instead it only needs to be checked if u is
smaller than P(x∗)/P(xi).

20 Background

(Rubinstein and Kroese, 2008, p. 168), which means that the chain’s transition probabilities

T (xi+1|xi) satisfy

P(xi)T (xi+1|xi) = P(xi+1)T (xi|xi+1), (2.43)

with respect to the distribution P(x) (Bishop, 2007, p. 540).

A Markov chain which fulfills detailed balance is said to be reversible and while the

Metropolis-Hastings algorithm fulfills detailed balance with respect to the target distribution

this is not a necessary condition to ensure the existence of a stationary distribution (MacKay,

2002, p. 374) and some approaches have used non-reversible chains to reduce the random

walk behavior of the sampler (see e.g. Fernandes and Weigel, 2011).

The uniqueness of the stationary distribution can be guaranteed by showing that the

Markov chain is ergodic, i.e. that

Pt(x)→ P(x) as t→ ∞, for any P0(x), (2.44)

where P(x) is the stationary distribution and Pt(x) is the distribution over the state of the

Markov chain at time t. (MacKay, 2002, p. 373) lists two possible cases how ergodicity

might not be respected by the Markov chain: Either certain areas of the probability space

are not reachable from all starting positions, i.e. there exist two or more subspaces that are

not reachable from each other, or that there are starting positions which lead to periodic

limit-cycles. When choosing the proposal distribution one has to make sure that both these

cases do not occur. When P(x) is the Markov chain’s stationary distribution and ergodicity

is satisfied P(x) is called the equilibrium distribution of the Markov chain (Bishop, 2007, p.

540).

Gibbs Sampler

A special case of the MH algorithm, called Gibbs Sampler, was introduced by Geman and

Geman (1984). A Gibbs sampler allows to draw samples from complicated joint distributions

P(X) = P(X1, . . . ,Xn) by drawing one dimension from the conditional distribution P(X j|X− j)

and holding the rest fixed. This is then repeated for all dimensions, either deterministically

or in random order (Rubinstein and Kroese, 2008, p. 177).

In order to prove that the Gibbs sampler samples from the desired distribution, it first

has to be shown that the target distribution is a stationary distribution of the Markov chain.

In each step of the Gibbs sampler the marginal distribution over all the dimensions which

remain fixed (P(X− j)) is clearly invariant. The transition distribution in each step is given

2.1 Methods 21

by the conditional distribution P(X j|X− j) and combined with P(X− j) this gives the joint

distribution P(X) and therefore leaves it invariant (Bishop, 2007, p. 544).

Ergodicity is satisfied when the conditional distributions are positive over all possible

values of X j but this is not a necessary condition.

If the next dimension to sample from is drawn randomly the Gibbs sampler can be

interpreted as a MH algorithm. The proposal first draws the dimension and then samples

from its conditional distribution. If we insert this into the acceptance probability (2.42) the

acceptance will always be 1 (Bishop, 2007, p. 544).

The Gibbs sampler described so far only samples one dimension in each step. This is

often called a single-site Gibbs sampler. Jensen and Kong (1995) introduced the blocking-

Gibbs sampler which separates the dimensions into, possibly overlapping, sets. One sampling

step takes one of these sets and samples all the dimensions in it conditioned on the current

value of all the other dimensions. In one full pass of the sampler, each set has been used at

least once and because the union of all the sets has to contain all dimensions each dimension

has been resampled. Obviously, the advantage of this approach over a single-site Gibbs

sampler is that the samples will be less correlated because more than one dimension changes

in each step. The downside is that it is usually easier to sample from a one-dimensional

conditional density than sampling multiple dimensions at once.

Often (as in this work) Metropolis-Hastings and Gibbs samplers are combined, so that

in each step only a subset of the variables is sampled using a Metropolis-Hastings step

instead of directly from the conditional distribution. This is sometimes called a Metropolis-

within-Gibbs sampler but the validity of that name is disputed (Brooks et al., 2011, pp.

105-106).

Convergence and Correlation

While the MH and Gibbs sampler algorithms guarantee that with a suitable proposal distribu-

tion the Markov chain’s stationary distribution is the target distribution, they may need some

time to converge from the (possibly random) starting position. Because of this, using all the

samples to compute expectations could lead to the arbitrary first sample to have a, possibly

large, effect on the results, which is not desired. In order to avoid this effect it is advisable to

drop a certain number of samples in the beginning (called the burn-in) and not use them for

any calculations.

There are a multitude of methods to analyze if the chain has converged, but Cowles and

Carlin (1996) showed that all of them still can fail and there is no guarantee that the chain

really has converged. The recommendation of Cowles and Carlin (1996) is to not rely on

automated methods or a single measure to assure convergence. In this work we manually

22 Background

decided on the size of burn-in by inspecting the trace plots of the parameters and let the

sampler run with multiple random starting values for a short time before the main sampling

run to see that they all lead to the same region of high probability. While this method may

circumvent some problems, it should be clear that, as Geyer (1992) writes, it is always

possible to construct an example where this method fails.

One problem for many of the methods to assess convergence is that they are ill-equipped

to deal with samples which change in dimensionality or are paths of variables over time, as

is the case in this work. Many of the methods are only meant for univariate samples (Cowles

and Carlin, 1996).

Besides the problem of convergence it should be clear that MCMC methods don’t generate

i.i.d. samples because a sample always depends on its predecessor7. If the samples are highly

correlated the sampler is said to have a slow mixing rate. The choice of the proposal

distribution is especially important here. Normally one would assume that a high acceptance

ratio should be desirable but there is a trade-off to consider: The acceptance probability

usually becomes very high when the proposal only makes small steps in the state space

leading to many different but highly correlated samples. If very large steps are made the

accepted samples are less correlated but more samples are rejected, leading to many identical

samples and an overall high sample correlation (Bishop, 2007, pp. 541-542). Roberts et al.

(1997) e.g. concluded that for a multidimensional Gaussian proposal density with a diagonal

covariance matrix the asymptotically optimal acceptance probability is ≈ 0.234.

In this work, in order to asses the quality of the mixing, we compute the integrated

autocorrelation time

τiat = 1+2
∞

∑
i=1

Corri[X], (2.45)

with Corri[X] being the (normalized) autocorrelation of the samples at lag i:

Corri[X] =
∞

∑
j=1

Cov[X j,X j+i]

Var[X]
. (2.46)

When we divide the total number of samples by the integrated autocorrelation time, sometimes

also referred to as the inefficiency factor, we get the effective number of samples (Berg and

Billoire, 2008). One approach to obtain i.i.d samples would be to run multiple randomly

initialized chains in parallel until convergence and then only use one sample per chain

(Tierney, 1994). Obviously this will give very few samples compared to the invested

computational costs. A less extreme approach is to thin the data by using only every n-th

sample, where n is larger than the integrated autocorrelation time. While this might be

7Even if the proposal doesn’t!

2.2 Applications 23

desirable for some applications in most cases thinning is not necessary (Geyer, 1992) and

even counterproductive if we want to get as much information as possible (Link and Eaton,

2012). Even if n highly correlated samples don’t carry much more information than each

of them on their own, they can’t contain less. It is just important to remember that the

effective information in the samples is smaller than their number suggests. In this work we

sometimes use thinning in order to avoid memory and computation time problems because the

dimensionality and number of samples can become very large. This shouldn’t be understood

as claiming that the thinned samples can be seen as i.i.d samples from the posterior.

2.2 Applications

The model described in this thesis is very flexible and allows for different types of stochastic

processes to be put in with minimal modification necessary. This means that it can be applied

to a large variety of applications where we have time course data and want to know when the

parameters of the model switch and what states the system has. In this section the two main

applications demonstrated in this work are briefly explained.

2.2.1 Transcriptional Regulation

Genes are sequences of bases in the DNA or RNA. Crick et al. (1961) discovered that genes

start and end with a specific triple of bases, called a start and end codon, respectively. In

between these every triple of bases codes for an amino acid and thus genes can be seen as

the codes for proteins. The process of generating an equivalent mRNA copy of a gene in a

DNA sequence is called transcription and it is performed by the enzyme RNA polymerase

(Kleinsmith and Kish, 1995, p. 81). The mRNA copy is then used by a ribosome for

synthesizing the coded protein, this process is called translation (Alberts, 1989, p. 104).

Transcription factors are proteins which have a DNA binding domain which allows them

to bind to specific DNA sequences next to genes, including the promoter region, which

is needed for the transcription process to start. By binding to these parts of the DNA the

transcription factors can up- or down-regulate the transcription rate of the corresponding

gene (Latchman, 1997). Transcription factors can only bind to specific binding sites and this

allows the gene expression to be controlled in reaction to outside stimuli, e.g. temperature, by

producing specific transcription factors, which then change the transcription rate of genes to

respond to the changed surroundings (Sorger, 1991). Usually, multiple transcription factors

are involved in determining the expression level of a gene allowing for a highly complex

regulation (Alberts, 1989, pp. 554 ff.).

24 Background

Fig. 2.5 Schematic of the process of transcriptional regulation based on figure 1.1 in Ocone
(2013).

A simplified version of the process of transcriptional regulation is shown in figure 2.5.

2.2.2 Neuronal Spiking

Neuronal spikes, often called action potentials in the neurobiology literature, are all-or-none

electrical signals triggered in the origin of a neuron’s axon (Kandel et al., 2000, p. 21).

Spikes are sudden changes in the membrane potential of a neuron and are initialized when

the membrane potential surpasses a certain threshold. For the giant squid’s axon (from which

Hodgkin and Huxley (1939) made the first published intracellular recording) this threshold

is 15mV above the membrane’s resting potential (Dowling, 1992, p. 80), which is usually

between -60mv and -70mv (Kandel et al., 2000, p. 126). When the membrane potential

is below this threshold, the cell can be described by a passive electrical circuit but when it

is surpassed voltage-gated ion channels open. This allows Na+ ions to rapidly move into

the cell and starts a cascading effect because the influx of Na+ ions raises the membrane

potential further, opening more ion channels which speeds up the influx of Na+ (Kandel et al.,

2000, pp. 150 ff.). After about a millisecond of rising membrane potential the Na+ channels

start to inactivate and K+ channels open to let K+ ions move out of the cell and lower the

membrane potential. This process leads to the membrane potential being lowered past the

resting potential and the period it takes for the membrane to reach the resting potential again

is called the relative refractory period. While during the absolute refractory period, directly

after the action potential, stimulation of the neuron will never lead to another spike, the

relative refractory period needs a higher stimulation to start the process again (Kandel et al.,

2000, p. 157). Figure 2.6 shows how the membrane potential changes during a neuronal

spike.

As all-or-none signals, the information a spike transfers is not in its form but in the

pathway it is traveling along and in its time (Kandel et al., 2000, p. 22). Therefore it makes

2.2 Applications 25

threshold

resting potential

absolute relativeand

refractory period

Na+ in K+ out

−100

−50

0

50

0 1 2 3 4 5

time in ms

m
e
m

b
ra

n
e
 v

o
lt
a
g
e
 i
n
 m

V

Fig. 2.6 Shematic of the change of membrane potential during an action potential. Based on
figure from Dowling (1992, p. 80).

sense to model spikes as point processes, e.g. as a Poisson process. But Poisson processes

are not an ideal model for neural spiking times (Barbieri et al., 2001) and one reason for this

is the refractory period, in which they are less likely to fire than the exponentially distributed

waiting times of a Poisson process would suggest (Kass and Ventura, 2001). Despite this,

Poisson processes have been used extensively to analyze spiking data (e.g. Nawrot et al.,

1999; Perkel et al., 1967).

Chapter 3

General Model & Sampler

This thesis deals with models where the parameters of a stochastic process change over time.

These changes are sudden, i.e. the parameters jump between discrete values, and they are not

directly observed. Our goal is to infer the path of the parameters over time from the, often

noisy, observations of the observed process. Neither the number of jumps nor their times are

known beforehand, and in the most recent model even the dimensionality of the hidden state

space is not known beforehand.

3.1 General Model Description

The observable process X(t) is based on a set of parameters θ which change over time.

We write θ0:T for the path of the parameters from time t = 0 to t = T . θ0:T is piecewise

constant and has c jumps at times τ1, . . . ,τc which partition it into c+1 segments. For better

readability we define τ0 = 0 and τc+1 = T .

Given observations D = (d1, . . . ,dn) at times t = (t1, . . . , tn), we are interested in the

posterior

P(θ0:T |D) =
P(D|θ0:T)P(θ0:T)

P(D)
, (3.1)

where P(D|θ0:T) is the likelihood of the data giving the current path of the parameters

and P(θ0:T) is the prior probability over the parameter path. Computing the evidence

P(D) =
∫

P(D|θ0:T)P(θ0:T)dθ0:T (3.2)

28 General Model & Sampler

is a non-trivial task. Luckily, we are using MCMC methods and the evidence cancels out in

the acceptance probability. Therefore the computationally demanding part is calculating the

likelihood of the data, conditioned on the current set of parameters P(D|θ0:T).

Our model is build around two stochastic processes: X(t) is the observable process which

defines how the data is generated given the parameter values at a time and θ(t) is the hidden

jump process of the parameters. The model is very flexible because different processes can

be chosen both for the observable and the hidden process without the need to change the

overall structure of the algorithm. We first present the different types of processes used in

this work, then explain the general structure of the sampler before going into the details

for different combinations of hidden and observed processes and their applications in the

following chapters.

3.1.1 Types of Jump Process

We described that θ(t) is piecewise constant but there are several ways to specify what values

the parameters can take after a jump. In this thesis three variants are described and examined.

In all versions we assumed that the time until a new jump is exponentially distributed with

parameter f (θ) which might depend on the last state of θ , i.e.

P(τi|τi−1) = f (θ(τi−1))exp(− f (θ(τi−1))(τi− τi−1)) , ∀i ∈ {1, . . . ,c}. (3.3)

This is the same as to assume that the jump times are drawn from a Poisson process with rate

f (θ). Additionally, in all our models we have a prior distribution over the parameters Pθ (·)
from which we assume the parameters for each state are drawn.

Fixed Number of States

In this case, it is known beforehand how many states the parameters can have. The probability

distribution of the waiting time until the next jump depends on the current state, as does the

probability distribution over the new state after a jump. This means that the process is a

Markov jump process with a finite number of states.

This model was used in Stimberg et al. (2011a) and Stimberg et al. (2011b) for describing

the dynamics of gene expression data and in that context the model had m independent

telegraph processes µ(t). A telegraph process has only two states: 0 and 1. It switches from

0 to 1 with rate f+ and from 1 to 0 with f−.

3.1 General Model Description 29

Fixed Number of States

Changepoint Process

Chinese Restaurant Process

Fig. 3.1 The three types of hidden processes used in this thesis. The blue line is the path
of the parameters θ0:T while the dashed vertical line represents the parameter values at the
different states. The process in the top with a fixed number of states is the only model where
a state can exist while not being used, as it is the case for θ4 in the example. The changepoint
process in the middle creates a new state after every jump and the Chinese restaurant process
in the bottom has an unknown number of states beforehand but after they are created they
can be reused.

Changepoint Process

In this model, after each jump a new value for the parameters is drawn from a continuous

probability distribution, therefore no parameter value is used for more than one segment.

The number of changepoints until time t is counted by a Poisson process µ(t) and in our

case its jump rate is independent of the state, i.e. it is always f . At every jump we draw

a new parameter value from Pθ (·) therefore the parameter values of the segments are all

independent. This means that if there are c jumps, c+1 distinct parameter vectors are drawn

from Pθ (·) and we define θ(t) = θµ(t). In Stimberg et al. (2011a) this model was used to

model stock index data. In many cases when talking about changepoint processes a model

similar to the following is assumed (e.g. Chib, 1998; Fearnhead, 2006). Because of this we

will refer to this model as the changepoint model in the remainder of this thesis, despite all

the other models having changepoints as well.

30 General Model & Sampler

Chinese Restaurant Process

Our last model can be seen as a combination of the former two. At each jump a new value

is drawn from a Chinese Restaurant process. This means either a completely new value

is drawn, similar to the changepoint process, or a value is selected from the set of values

already assigned to former segments. Therefore a finite number of states exist, but the exact

number is unknown beforehand and in contrast to the changepoint process model, the states

are reusable. This is the same model as in Stimberg et al. (2012) and Stimberg et al. (2014)

where it was used on gene expression and neuronal spiking data, respectively.

A priori we have an unknown number of discrete states θ1, . . . ,θk and let π be the proba-

bility of a state being visited after a jump. We assume that π is drawn from a Dirichlet process.

A Dirichlet process is described by a concentration parameter α and a base distribution Pθ (·)
which is the prior distribution over the parameters in our case. If we integrate π out we get a

Chinese restaurant process (CRP) with the same parameters as the Dirichlet process (Teh,

2010).

In contrast to the other models the CRP is not a Markov process because the probability

over the next state depends on the complete history of the process.

Figure 3.1 shows exemplary paths for the three types of hidden processes.

3.1.2 Types of Observed Process

X(t) can be one of many types of stochastic processes but in this thesis we focus on Poisson

and Ornstein-Uhlenbeck processes. Additionally, we summarize the results of Herrmann

(2014), which modified the Ornstein-Uhlenbeck model to use a Cox-Ingersoll-Ross process

as the observable process X(t). A short explanation of how to customize the model to

different processes, both hidden and observed, is given in section 6.3.

Poisson Process

Poisson processes are often used to model event data (Scargle, 1998; Wang et al., 2001)

because they produce points in time without any information1 attached to them. For an

introduction to Poisson processes see section 2.1.2. In this thesis we assume that we get

complete and exact data from the Poisson process, i.e. that for every event we have the

exact time of its occurrence, without any noise. There are alternative models where the

1There is extensive literature on marked point processes (Jacobsen, 2006; Last and Brandt, 1995; Quick
et al., 2014), including the marked Poisson process, which are point processes where a random element is
associated with each event time. They are not used in this thesis but applying the sampler to work on models
where the parameters of marked point processes change over time could be an interesting direction for the
future.

3.1 General Model Description 31

data is binned and the observations are either binary (events in a bin or not) or the number

of events in a bin is observed. Our sampler also works with these kind of models because

the likelihood of the data given the hidden parameter process is still easily calculated as

described in Sherlock (2006).

A Poisson process is completely defined by its rate parameter λ therefore this is the only

parameter which is governed by the hidden process. A Poisson process where the rate is a

stochastic process itself is called a Cox process and was first introduced by Cox (1955). The

special case where the rate follows a Markov jump process is called a Markov modulated

Poisson process (MMPP) and is widely used (see e.g. Rydén, 1996; Salvador et al., 2003;

Yoshihara et al., 2001).

In Stimberg et al. (2014) a model where the rate λ (t) is coming from a Chinese restaurant

process is introduced and applied to neural spiking data. See chapter 5 for a detailed

description of the models with Poisson data.

Ornstein-Uhlenbeck Process

In many applications we do not only have timed events but measurements of a process at

discrete times. Often we cannot assume that the process is observed without error. This means

that compared to the Poisson process model we have another layer of abstraction. Instead of

knowing X(t) directly we have observations D = (d1, . . . ,dn) at discrete times t1, . . . , tn. A

popular model for dynamic systems is the Ornstein-Uhlenbeck model. If the observations

were exact we could directly calculate the likelihood using the transition probability of the

OU process

P(D|θ0:T) = P(d1|θ0:T)
n

∏
i=2

P(di|di−1,θ0:T)

= P(X(t1|θ0:T))
n

∏
i=2

P(X(ti)|X(ti−1,θ0:T)).

(3.4)

If we are not able to get exact observations, we assume the observations are corrupted, e.g.

by i.i.d. Gaussian noise with variance σ2
o

P(di|X(ti)) = N (di;X(ti),σ
2
o). (3.5)

We now need to compute the likelihood of the data giving a path of the hidden jump process

of the parameters P(D|θ0:T). Without any information about X(t) this likelihood does not

factorize over the observations. There are two approaches in computing it: Either we sample

a path X0:T from P(X0:T |D,θ0:T), thereby introducing another Monte Carlo-step, and then

32 General Model & Sampler

compute

P(D|X0:T ,θ0:T) =
n

∏
i=1

P(di|X(ti),θ0:T), (3.6)

or we marginalize out X0:T directly

P(D|θ0:T) =
∫

P(D|X0:T ,θ0:T)P(X0:T |θ0:T)dX0:T . (3.7)

In Stimberg et al. (2011b) the first version was used but luckily all transition densities

are Gaussian and together with the Gaussian observation model we can integrate out X0:T

analytically.

If X(t) has multiple dimensions we distinguish between two cases: Either the individual

dimensions are independent and the likelihood over all dimensions is the product of the

individual likelihoods or the dimensions depend on each other and all probabilities are

multivariate Gaussians.

Stimberg et al. (2011a,b) and Stimberg et al. (2012) use an Ornstein-Uhlenbeck process

whose dimensions are independent and apply it to gene expression data as well as stock

index data. In chapter 4 inference for models with OU data will be explained in detail and

section 6.2 presents a small example of the sampler used on a model using a multivariate OU

process.

Cox-Ingersoll-Ross Process

In Herrmann (2014) our model was modified to include a Cox-Ingersoll-Ross process. As

described in section 2.1.2, the difference between the Ornstein-Uhlenbeck and the Cox-

Ingersoll-Ross model is that the latter’s diffusion depends on the value of the process

itself. This complicates inference because the transition density is no longer Gaussian. For

simplicity Herrmann (2014) assumed that the observations were exact. Thus the likelihood

can be calculated from the transition density as in (3.4). While the transition density is

available in close form it is a non-central chi-square distribution whose evaluation has

very high computational costs. Therefore a Gaussian approximation was used and showed

promising results. The model and algorithm was then applied on the EUR/USD-exchange

rate to find changepoints corresponding to decisions made by the Federal Reserve of the

United States during the subprime mortgage crisis in 2008.

3.2 General Sampler Architecture 33

3.2 General Sampler Architecture

Our aim is to sample from the posterior P(θ0:T |D), i.e. we want to estimate the posterior

distribution over the path of the parameters θ0:T given a set of observations D. We assume

that the parameters are piecewise constant but in contrast to a lot of other changepoint models

(e.g. Chib, 1998; Ko et al., 2015; Wang et al., 2004) we do not assume that changepoints

only can happen at discrete times, e.g. the observation times. This means that θ0:T is

an infinite dimensional object and we cannot use classical methods for hidden Markov

models. A possible approach would be to discretize time but this would introduce another

source of approximation and the need to choose the level of discretization. Large time steps

lead to high errors while small steps can become computationally demanding. Instead we

stay in continuous time and note that a path of the hidden process is fully defined by the

number and position of the jumps and the parameter values for each segment. We apply a

Metropolis-within Gibbs approach as following:

Algorithm 1 General structure of the sampler algorithm.
θ0:T ← random initialization
for 1 to s do

1. Sample parameter values θ , given the jump times τ and data D

2. Sample jump times τ and the parameter values θ , given the data D

end for

The algorithm generates n samples by alternating between sampling the parameter values

θ 2 conditioned on the jump times τ and the data D, and sampling the jump times and the

parameter values θ given the data D. These steps are overlapping for some of the models but

this is not a problem for a Gibbs sampler (see section 2.1.3).

3.2.1 Sampling the Parameters

The first step is usually performed as a Gibbs sampler as well, by cycling through all the

parameters and sampling them from the conditional distribution given all the other parameters,

the jump times and the data. If the parameters are all conditionally independent of each

other, given the jump times and the data, this procedure is equivalent to sampling from the

combined conditional distribution over all parameters. In some cases the parameters can be

directly sampled from the true conditional densities because they have a simple form, e.g.

are Gaussian or gamma distributed. If that is not the case a Metropolis-Hastings sampler is

2These include parameters which are constant, i.e. are not affected by the hidden jump process.

34 General Model & Sampler

θi θi+1Step 1:

Random ActionStep 2:

shift

add remove

Fig. 3.2 The two steps of the Metropolis-within-Gibbs sampler. In the first step the parameter
values are sampled either directly from the conditional densities or by a Metropolis-Hastings
update. This includes parameters which remain constant over time. The second step changes
the number of times of the jumps in the parameters by randomly applying one of multiple
actions. The three actions shown here are common to all models but additional actions are
introduced for some of the models to accelerate convergence times.

used either doing a random walk or a random walk on the logarithm if the parameters have

to be positive.

3.2.2 Sampling the Jump Times

The more complicated and more interesting step in algorithm 1 is the second one. Here we

perform a Metropolis-Hastings random walk on the path θ0:T by proposing small changes

through a number of possible actions. These actions depend on the type of the hidden process

but always include

1. Shifting a jump in time

2. Adding a jump

3. Removing a jump

which is similar to the birth-death approach of Rotondi (2002) but is put in a more general

framework and expanded to more complicated models in this thesis. The proposed path is

then accepted with the Metropolis-Hastings acceptance ratio. Figure 3.2 illustrates the two

steps on an example. While this approach might seem simple and not practical it is fast

to compute, very flexible and easy to adjust to a number of different models, and able to

3.3 Label-Switching 35

swiftly reach regions of high probability in the space of all possible hidden paths θ0:T even

for complicated models. It can outperform exact Gibbs sampling approaches which sample a

complete new path every time and have to be completely tailored to the specific model3.

As discussed in section 2.1.3, a requisite for the Metropolis-Hastings algorithm to work

is that the proposal distribution is able to reach every point in the sample space in a finite

number of steps. This is clearly satisfied by the algorithm because through adding and

removing jumps at random times all possible paths of θ0:T can be reached.

3.3 Label-Switching

One problem for models such as this is label switching, i.e. the possibility to switch the

state indices and corresponding parameter values without actually changing the path of the

parameters θ0:T . This is only a problem for a fixed number of states, because in this model

the state index can have a meaning. In the case of the changepoint and CRP process the

indices are always numbered in ascending order by the time of their appearance. If the model

is one-dimensional, the state indices can be sorted by the value of the parameters. When the

random actions invalidate this sorting it is automatically restored.

For the fixed number of states model, where we have multiple telegraph processes, as

described in section 3.1.1, the problem is that they can be exchanged together with their

parameters without changing the likelihood of the data. One method to avoid this is to use

prior information and have different prior densities over the parameters’ values associated

with the different telegraph processes. This leads to different posterior probabilities for the

switched paths. Another way is to include knowledge that certain dimensions of the observed

process are only influenced by one of the telegraph processes, i.e. setting certain parameters

to 0 and not sampling them.

3See section 6.3 for a short explanation on this.

Chapter 4

Applications using the

Ornstein-Uhlenbeck Process

Most of this chapter is based on Stimberg et al. (2011b), Stimberg et al. (2011a) and Stimberg

et al. (2012) and therefore represents work done in collaboration with Manfred Opper,

Andreas Ruttor and Guido Sanguinetti.

4.1 Fixed Number of States

The first model uses an Ornstein-Uhlenbeck process whose parameters are controlled by a

telegraph process. This is a special case of models with a fixed state space dimensionality,

i.e. where the exact number of states are known beforehand.

4.1.1 Switching Model

Our model is based on Sanguinetti et al. (2009), who modified the ODE model of tran-

scriptional regulation of Barenco et al. (2006) to have telegraph processes represent the

transcription factor activity. The model was then further expanded in Opper et al. (2010)

to include system noise. Our model consists of an Ornstein-Uhlenbeck process whose drift

and diffusion depend on a shared telegraph process µ(t). The telegraph process has two

parameters f+ and f− representing the transition rates from 0 to 1 and 1 to 0, respectively.

The OU process is defined through the following stochastic differential equation

dX = (b+Aµ(t)−λX)dt +σµ(t)dW. (4.1)

38 Applications using the Ornstein-Uhlenbeck Process

In Opper et al. (2010) σ , the strength of the system noise, was constant but our sampler

allows us to do inference even if σ switches between different values.

This model can be easily extended to have multiple dimensions X = (X1, . . . ,XN), each

with their own set of parameters, which are independent conditioned on the path of the

telegraph process µ0:T . As our first application is on single-dimensional data and to avoid

cluttered notation we start by describing only the single dimensional model and expand on it

in section 4.2.

If we want to view (4.1) in the form of the general formulation of our models in section 3.1

θ(t) is a telegraph process which jumps between states (b,λ ,σ2
0 , f+) and (b+A,λ ,σ2

1 , f−).

For state and parameter inference purposes, X(t) is observed at discrete points t =

t1, . . . , tn in time and the observations D = (d1, . . . ,dn) are corrupted by i.i.d Gaussian noise

with variance σ2
obs. The µ(t)-process on the other hand is unobserved and can only be

inferred from the observations of X(t).

We assume Gaussian priors over b and A For the system noise parameters σ2
0 and σ2

1 we

used a Gaussian prior which was truncated to be non-negative or a Gamma prior. On the

other hand λ , f+ and f− are assumed to be gamma distributed a-priori. While it is possible to

specify a prior over the observation noise σ2
obs and infer its value, as was done for the other

parameters, we decided to let σ2
obs remain fixed.

If we set θ = (b,A,λ ,σ0,σ1, f+, f−) then the joint probability becomes

P(D,X0:T ,µ0:T ,θ) = P(θ)P(µ0:T |θ)P(X0:T |µ0:T ,θ)P(D|X0:T). (4.2)

We will go into details on the different parts which make up the joint probability in the

following.

Prior Probability

The prior probability is made up from the prior probability over the path of the telegraph

process µ0:T and the the prior probabilities over the values of the parameters1.

P(θ)P(µ0:T |θ) = P(µ0:T | f+, f−)P(b)P(A)P(λ)P(σ
2
0)P(σ

2
1)P(f+)P(f−). (4.3)

1To simplify the notation here we write P(b), P(µ0:T | f+, f−) etc. instead of Pb(b) and Pµ(µ0:T | f+, f−).

4.1 Fixed Number of States 39

The prior over a µ path in the time interval [τ0 = 0,τc+1 = T] with jumps at times τ1 < · · ·< τc

is given by (Wilkinson, 2006, p. 221)

P(µ| f+, f−) = P(µτ0) f
⌈ c

2 ⌉
1 f

⌊ c
2 ⌋

2 exp(−
⌈ c

2 ⌉

∑
i=1

f1∆τ2i−1−
⌊ c

2 ⌋

∑
i=1

f2∆τ2i− f3∆τc+1), (4.4)

with

∆τi = τi− τi−1,

f1 =

⎧

⎨

⎩

f+, if µ(0) = 0

f−, if µ(0) = 1
, f2 =

⎧

⎨

⎩

f−, if µ(0) = 0

f+, if µ(0) = 1
, f3 =

⎧

⎨

⎩

f+, if µ(T) = 0

f−, if µ(T) = 1
.

This can be easily shown by constructing the process from the exponential waiting time

with rates f+ and f−. The prior probability over a path µ0:T just becomes a product over

exponential distributions and the probability that there is no jump between the last jump time

and T .

Likelihood

We are interested in the likelihood function, conditioned on a path of the switching process

and a set of parameters

P(D|µ0:T ,θ) =
∫

P(X0:T |µ0:T ,θ)P(D|X0:T)dX0:T

=
∫

P(X(t1))
n

∏
i=2

P(X(ti)|X(ti−1,µ0:T ,θ)P(di|X(ti))dX0:T .
(4.5)

If µ(t) is constant between ti−1 and ti then from the solution of the Ornstein-Uhlenbeck

process (Gardiner, 2009, p. 73) we obtain its transition probability

P(X(ti)|X(ti−1),µ0:T ,θ) = N (X(ti)|m(ti−1, ti),v(ti−1, ti))

m(ti−1, ti) = X(ti−1)exp(−λ∆ti)+
b+Aµ(ti−1)

λ
(1− exp(−λ∆ti))

v(ti−1, ti) =
σ2

µ(ti−1)

2λ
(1− exp(−2λ∆ti))

where ∆ti = ti− ti−1.

With (4.6) we can write (4.5) as

40 Applications using the Ornstein-Uhlenbeck Process

P(D|µ0:T ,θ) =
∫

N (d1|X(t1),σ
2
obs)

n

∏
i=2

N (X(ti)|αiX(ti−1)+βi,ξi)N (di|X(ti),σ
2
obs)dX0:T ,

(4.6)

with

αi = exp(−λ∆ti) (4.7)

βi =
b+Aµ(ti−1)

λ
(1−αi) (4.8)

ξi =
σ2

µ(ti−1)

2λ
(1−α2

i), (4.9)

if there are no jumps between ti and ti−1. Otherwise if there are jumps at ti,1, . . . , ti,k−1

then βi and ξi can be computed iteratively by

βi, j = βi, j−1αi, j +
b+Aµ(ti, j−1)

λ
(1−αi, j) (4.10)

ξi, j = ξi, j−1α2
i, j +

σ2
µ(ti, j−1)

2λ
(1−α2

i, j), (4.11)

where αi, j = exp(−λ (ti, j− ti, j−1)), βi,0 = ξi,0 = 0, βi,k = βi, ξi,k = ξi, ti,0 = ti−1 and

ti,k = ti.

This enables us to solve the integral in (4.6) by setting Zn = P(D|µ0:T ,θ) and computing

it recursively through

Zi = Zi−1N (di|mZi
−di,vZi

+σ2
obs) (4.12)

mZi
= mi−1αi +βi (4.13)

vZi
= ξi + vi−1α2

i (4.14)

mi =
σ2

obsmZi
+divZi

σ2
obs + vZi

(4.15)

vi =
σ2

obsvZi

σ2
obs + vZi

, (4.16)

with the start values m1 and v1 being the first observation and the observation noise

variance, respectively.

4.1 Fixed Number of States 41

4.1.2 Sampler

As discussed in section 3.2, we use a Gibbs sampler which switches between two different

steps: sampling the jump process and sampling the parameter values. As initialization we set

the starting parameters either by hand or use the means of the priors, while µ(t) is drawn

from the prior conditioned on the starting parameters.

Sampling the Parameters

The parameters to sample are b, A, λ , σ0, σ1, f+ and f−.

Sampling the Transition rates f+ and f− Given the path µ0:T the posterior distributions

over f+ and f− are independent of the data D, therefore

P(f+|µ0:T) ∝ P(f+)P(µ0:T | f+, f−) (4.17)

P(f−|µ0:T) ∝ P(f−)P(µ0:T | f+, f−). (4.18)

From (4.4) we get

P(f+|µ0:T)∝ P(f+)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
⌈ c

2 ⌉
+ exp

(

−∑
⌈ c

2 ⌉
i=1 f+∆τ2i−1− f+∆τc+1

)

, if µ(0) = 0 & µ(T) = 0,

f
⌈ c

2 ⌉
+ exp

(

−∑
⌈ c

2 ⌉
i=1 f+∆τ2i−1

)

, if µ(0) = 0 & µ(T) = 1,

f
⌊ c

2 ⌋
+ exp

(

−∑
⌊ c

2 ⌋
i=1 f+∆τ2i−1− f+∆τc+1

)

, if µ(0) = 1 & µ(T) = 0,

f
⌊ c

2 ⌋
+ exp

(

−∑
⌊ c

2 ⌋
i=1 f+∆τ2i−1

)

, if µ(0) = 1 & µ(T) = 1,
(4.19)

and

P(f−|µ0:T)∝ P(f−)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
⌊ c

2 ⌋
− exp

(

−∑
⌊ c

2 ⌋
i=1 f−∆τ2i−1

)

, if µ(0) = 0 & µ(T) = 0,

f
⌊ c

2 ⌋
− exp

(

−∑
⌊ c

2 ⌋
i=1 f−∆τ2i−1− f−∆τc+1

)

, if µ(0) = 0 & µ(T) = 1,

f
⌈ c

2 ⌉
− exp

(

−∑
⌈ c

2 ⌉
i=1 f−∆τ2i−1

)

, if µ(0) = 1 & µ(T) = 0,

f
⌈ c

2 ⌉
− exp

(

−∑
⌈ c

2 ⌉
i=1 f−∆τ2i−1− f−∆τc+1

)

, if µ(0) = 1 & µ(T) = 1.
(4.20)

This has the form of a gamma distribution and if we choose gamma priors over f+ and

f− then the posterior will be gamma distributed as well (George et al., 1993).

Sampling b and A If we look at the calculation of the likelihood in section 4.1.1, b and

A are linear in βi, j which is linear in mi which is linear in mZi
. This means that b and A

42 Applications using the Ornstein-Uhlenbeck Process

appear linear in the log-likelihood and we can use the same iterative approach which is used

to compute the likelihood to propagate the mean and variance depending on b or A forward.

For the detailed calculations see section A.3 of the appendix.

Sampling σ2 and λ For both σ2 parameters and λ the likelihood (4.5) does not have

a simple form we can directly sample from, instead we apply a random walk Metropolis-

Hastings algorithm.

Because σ2
0 ,σ

2
1 and λ all have to be positive we use a random walk on the logarithm, i.e.

we draw a proposal from a log-normal density with the current parameter value as its mode

Q(λ ∗|λ) = 1

λ ∗σlrw

√
2π

exp
(

−(log(λ ∗)− log(λ))2)

2σ2
lrw

)

, (4.21)

and accordingly for σ0 and σ1. In contrast to the normal random walk this proposal is not

symmetric and the acceptance probability becomes

min
(

1,
P(D|µ0:T ,θ

∗)
P(D|µ0:T ,θ

P(λ ∗)
P(λ)

Q(λ |λ ∗)
Q(λ ∗|λ)

)

, (4.22)

where
Q(λ |λ ∗)
Q(λ ∗|λ) =

λ ∗

λ
. (4.23)

One advantage of the log random walk is that it scales automatically because the stepsize

is determined by σlrw which is the standard deviation of the Gaussian in log-space. If not

otherwise specified σlrw = 0.1 was chosen in this thesis.

Sampling the Jump Process

We sample from the posterior of the jump process given the parameter values and the data by

applying a Metropolis-Hastings random walk. The sampler proposes a small modification

of the current jump process and then accepts it with the MH acceptance probability. The

modification is done by randomly choosing one of five actions. We first describe exactly

what each of the actions do and then formulate their acceptance probabilities.

Shifting the time of a jump One of the jumps is chosen with equal probability and the

new time of the jump is drawn from a Gaussian distribution with standard deviation σt ,

centered around the current time of the jump and truncated at the neighboring jumps. στ was

chosen by hand in our case and should be in the same order of magnitude that is is expected

as the time between jumps. If we are unsure about what value to set στ to, a higher value is

4.1 Fixed Number of States 43

Remove 2

R
em

o
v
e

Add

M
o
v
e

Add 2

Fig. 4.1 Generating a proposal path by modifying the current path of the telegraph process
with one out of five possible actions. The part of the path which was left unchanged is drawn
in dark blue, the modified part is red, while the old path which differs from the proposal is in
light blue.

preferable, because in the limit this will let the truncated Gaussian density become a uniform

one. We could from the start draw the jump times from a uniform distribution between the

neighboring jumps but this approach can lead to long convergence times, especially when

there are long time periods without jumps.

Adding a jump When we add a new jump its time is drawn uniformly from the interval

[0,T]. In the case of the telegraph process a new jump means either the whole path after it or

before it will be inverted. We choose one of both options with probability 0.5.

Removing a jump One of the jumps is chosen at random with probability 1/c and removed.

The path is inverted before or after the removed jump with equal probability. This action can

only be chosen if there is at least one jump in the current path.

These three actions are enough to explore the space of all possible paths but the acceptance

rates for adding or removing only one jump will be low most of the time, because a large part

of the process will be inverted. To get faster convergence two more actions are introduced.

Adding two jumps We add two neighboring jumps by adding the first one uniformly over

the whole time span, as is done for the action of adding a single jump. The time of the second

jump is then drawn uniformly from the interval between the first added jump and the time of

the next jump (or T if the jump was added at the end).

44 Applications using the Ornstein-Uhlenbeck Process

action probability
shift jump time qsh = 0.5

add single jump qa = 0.05
remove single jump qr = 0.05

shift jump time qa2 = 0.2
shift jump time qr2 = 0.2

Table 4.1 Probability distribution over the 5 possible actions.

Removing two jumps One of the jumps (except the last one) is randomly chosen with

equal probability 1/(c−1) and is removed together with the following jump. This action

can only be chosen if there are at least two jumps in the current path.

Because the telegraph process is only changed between the two added or removed jumps

both these actions normally have a higher acceptance rate than the corresponding actions,

which only add or remove a single jump.

All 5 possible actions and their effects on the path are shown in figure 4.1. The probability

distribution from which the next action is drawn was set manually. Table 4.1 shows the

distribution we used if not specified otherwise. As shifting the time of a jump and removing

a jump is only possible when there is at least one jump and removing two jumps can only be

chosen when there are two or more jumps the distribution is normalized to include only the

possible actions.

Acceptance Probabilities

After manipulating the µ0:T path to generate a proposal µ∗0:T we accept it with probability

pMH = min
(

1,
P(D|µ∗0:T ,θ)

P(D|µ0:T ,θ)

P(µ∗0:T | f+, f−)
P(µ0:T | f+, f−)

Q(µ0:T |µ∗0:T)

Q(µ∗0:T |µ0:T)

)

. (4.24)

The likelihood ratio doesn’t depend on the action chosen but both the prior and the

proposal ratio do. We set

Ψ =
P(µ∗0:T | f+, f−)
P(µ0:T | f+, f−)

Q(µ0:T |µ∗0:T)

Q(µ∗0:T |µ0:T)
, (4.25)

as the part of the acceptance probability which depends on the action. The equations in the

following arise from the description of the proposal process and the prior likelihood over a

path (4.4).

4.1 Fixed Number of States 45

Shifting the time of a jump For simplicity we assume that the switching rates are sym-

metrical, but this is not a requirement. This means that moving the position of a jump does

not change the prior, thus it cancels out in Ψ but the proposal density is not symmetrical

because it is truncated at the neighboring changepoints. If we move a changepoint from time

τ to τ∗ and the proposal density is truncated by τmin and τmax, then we get

Ψ =
Φ((τmax− τ)/στ)−Φ((τmin− τ)/στ)

Φ((τmax− τ∗)/στ)−Φ((τmin− τ∗)/στ)
, (4.26)

where στ is the standard deviation of the Gaussian and Φ(·) is the cumulative distribution

function of the standard normal distribution.

Adding a jump When adding a jump the ratio becomes

Ψ =
qrT

qa(c+1)
f

1
, (4.27)

where f is either f+ or f− depending on weather a jump from 0 to 1 or 1 to 0 was added and

qr and qa are the probabilities to remove and add a jump, respectively.

Removing a jump The ratio for removing a jump is the inverse of the ratio for adding a

jump but with c instead of c+1:

Ψ =
qa(c)

qrT

1
f
, (4.28)

where f is f+ if the jump we removed went from 0 to 1 and f− if it was from 1 to 0.

Adding two jumps When adding two jumps we draw twice from different uniform densi-

ties and this leads to

Ψ =
qr2T ∆tnext

qa2(c+1)
f+ f−

1
, (4.29)

where ∆tnext is the time between the first added jump and the next jump (or T) and qa2 and

qr2 are the probabilities to add two jumps and remove two jumps, respectively.

Removing two jumps Removing two jumps chooses one out of the c−1 pairs of neigh-

boring jumps and the ratio becomes

Ψ =
qa2(c−1)
qr2T ∆tnext

1
f+ f−

. (4.30)

46 Applications using the Ornstein-Uhlenbeck Process

Samples from the OU Posterior

As described in section 4.1.1 we integrate out the path X0:T in our computation of the

likelihood. While this improves the convergence of the sampler2 we no longer get samples

from the posterior over the observed process X(t). But we might still be interesting in

looking at the estimates at the time of the noisy observations or in seeing how the process

behaves between the observations. Conditioned on a particular sample of the parameters

θ and the jump process µ(t), we are able to generate exact samples from X(t) without any

discretization error (see Archambeau et al., 2008). For more details on this see the appendix

A.1. Depending on the time resolution we are interested in, this can be computationally very

demanding therefore it makes sense to only use thinned out samples from the parameter and

jump process posterior.

4.1.3 Results

We first verify our sampler on synthetic data and then apply it to real gene expression data

and analyze the benefits of letting the amplitude of the system noise switch.

One-Dimensional Synthetic Data

We generate synthetic data from the model. Because there is only a single telegraph process

controlling the parameters of a one dimensional OU process we have the possibility to

compare the sampler’s results to a numerically computed exact solution.As described in

Stimberg et al. (2011a) exact inference can be done by a smoothing algorithm similar to the

forward-backward approach (Baum et al., 1970) used for state inference in hidden Markov

models. Because the method involves numerically solving partial differential equations by

integrating on a grid it is only feasible for low-dimensional systems and only for the specific

model of the hidden process with a fixed number of states. Nevertheless it allows us to check

that the sampler truly converges towards the exact solution for these models.

We use one-dimensional data with one switching process which only affected the system

noise (i.e. A = 0). This makes inferring the hidden jump process especially hard because

only the variance of the OU process is influenced by the jumps. For synthetic results on data

where A was inferred as well see section C.1 of the appendix. To make our comparison to the

exact solution be solely based on the sampling of the jump process we fixed all parameters to

their true values (b = 0.02,λ = 0.02, σ2
0 = 0.01, σ2

1 = 0.09, f+ = f− = 0.005, σ2
obs = 0.05).

In figure 4.2a the data is shown together with the results of the posterior inference for the µ

2This technique of analytically integrating out variables to improve the convergence is called Rao-
Blackwellization (Casella and Robert, 1996).

4.1 Fixed Number of States 47

0

2

4

t

X

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

t

µ

(a) Data and posterior results, both from the
sampler and the numerical exact solution, for
a model where only the strength of the sys-
tem noise is controlled by the switching pro-
cess. (top) Noisy observations as red crosses,
true X(t) process as black line. (bottom) True
µ(t) process as black line, exact µ(t) poste-
rior mean as a green line and sampled µ(t)
posterior mean as a blue line.

x x x
x

x x
x
x
x
x

x
x

x x xxxxx x
x

x x xxxxx
x

x

x x
x

x
xx

x

x x x x
xx

xxx

x

10
−2

10
−1.5

10
−1

10
−0.5

10
0

10
1

10
2

10
3

10
4

10
5

number of samples

m
e

a
n

 d
if
fe

re
n

c
e

x

x

y = 2.8359x
−0.48585

MCMC sampler

(b) Convergence of the MCMC sampler’s re-
sults towards the exact solution. A power law
model of the form y = axb was fitted to the
difference after the initial 100 samples and
shows that the sampler’s results converge to-
wards the numerically estimated exact solu-
tion, as described by Stimberg et al. (2011a).

Fig. 4.2 Comparison of the MCMC sampler results with the numerical exact solution for
synthetic OU data from the switching model.

process. After 200,000 samples the results of the exact inference and the sampler are almost

indistinguishable and figure 4.2b shows that the convergence is roughly proportional to the

square root of the number of samples which is what is expected for Monte Carlo methods

(see Kalos and Whitlock, 2008, pp. 77-79). These results indicate that our MCMC sampler

manages to create samples from the desired posterior distribution after an initial burn-in

period and converges there reasonably fast.

ComS Protein Expression Data

According to recent studies, made possible by the progress in microscopy technology,

stochasticity plays an important role in biochemical networks (Shahrezaei and Swain, 2008).

An important distinction in this context is made between intrinsic and extrinsic noise (Elowitz

et al., 2002). The former results from fluctuations due to the low number of molecules in the

system, while the latter is a consequence of the system being influenced from external events.

There is still no consensus how to characterize the difference between intrinsic and extrinsic

noise formally. A widely shared belief is that the different types of noise either differ in their

amplitude or in their spectral characteristics (Eldar and Elowitz, 2010). We use our model

on real gene expression data subject to extrinsic noise in Bacillus subtilis (Suël et al., 2006)

48 Applications using the Ornstein-Uhlenbeck Process

0

100

200

0 10 20 30

t

X

(a) Measurements of the fluorescence intensity
for the ComS protein over 36 hours.

0.00

0.25

0.50

0.75

1.00

0 10 20 30

t

µ

(b) Posterior probability of ComK activation
over time for the model with fixed σ2 (blue)
and the model with switching σ2 (red).

Fig. 4.3 Results of the inference for the ComS Protein expression data.

to investigate these questions. The data consists of fluorescence levels of the protein ComS

taken from a single cell using time-lapse microscopy over 36 hours. The protein’s production

rate was influenced by extrinsic noise through the competence transcription factor ComK,

which plays an important role in controlling ComS’ expression (Turgay et al., 1997). When

the expression level of the ComS protein is up-regulated the cell undergoes competence, a

state in which the cell is able to take up extracellular DNA (Solomon and Grossman, 1996).

Figure 4.3a shows the observations of the ComS fluorescence.

If we model ComS gene expression data by an OU process defined by (4.1) the parameters

have biological interpretations. The base transcription rate of the ComS gene is represented

by b. When the ComK transcription factor activates the transcription rate becomes A+b,

therefore A represents the effect of the transcription factor: A negative value of A means it is

down-regulating the gene ComS gene, a positive value of A means it is up-regulating. The

degradation rate of the ComS protein is represented by λ and σ0 and σ1 model the strength

of the intrinsic noise level in the transcription process without and with ComK being active,

respectively. The rate of ComK activation is described by f+ and the rate to inactivate by f−.

Compared to previous models, e.g. the one used in Opper et al. (2010), our model is

able to have the strength of the system noise depend on the unobserved ComK activity3.

Using this advantage we want to compare two different models: The first model allows

both A and σ2 to depend on the state of µ , i.e. both the strength and the noise level of the

gene expression depend on the ComK activity. In the second model the noise level remains

3The mean field approximation used in Opper et al. (2010) assumes that the Gaussian process approximating
the true posterior has the same variance as the original process.

4.1 Fixed Number of States 49

0.00

0.01

0.02

0.03

25 50 75 100 125 150

A

P
(A

|D
)

(a) Prior (black) and posterior density over A

for the model without switching system noise
(blue) and with switching system noise (red).

0.000

0.003

0.006

0.009

0 200 400 600 800

σ
2

P
(σ

2
|D

)

(b) Prior (black) and posterior density over σ

for the model with fixed system noise (blue)
and with switching system noise (orange: σ2

0 ,
magenta: σ2

1).

Fig. 4.4 Parameter posteriors for the ComS Protein expression data.

parameters prior hyper-parameters
f+ fixed f+ = 0.05
f− fixed f− = 0.05
b Gaussian mean = 0, std. = 50
A Gaussian mean = 100, std. = 50

σ2
0 Gamma shape = 1, scale = 100

σ2
1 Gamma shape = 1, scale = 100
λ Gamma shape = 1, scale = 100

Table 4.2 Parameters and prior distributions for the ComS dataset.

constant and only A switches with ComK4. For both models we let our sampler generate

510,000 samples and discarded the first 10,000 as burn-in. This took about 1 minute on a

Intel Xeon CPU with 2.40 GHz. For the parameter values and priors for this simulation see

table 4.2.

The posterior probability over time that ComK is active is shown in figure 4.3b and it is

evident that both models predict that ComK is activated around 5 hrs and deactivated around

23 hrs into the experiment. The posteriors over A are very similar as well, as can be seen

in figure 4.4a. Our first model produces two well separated posteriors for σ2
0 and σ2

1 (see

figure 4.4b) which supports the belief that it better explains the data by allowing the noise to

switch together with the activation profile of ComK. For the posterior densities of the b and

λ parameters see appendix C.2.

4This model is identical to the one used by Opper et al. (2010).

50 Applications using the Ornstein-Uhlenbeck Process

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

f

E
[c

(f
)/

f]

(a) Expected value of c/ f over f on a log-log
scale for the model with switching σ2 (red)
and the model with fixed σ2 (blue).

1

2

3

4

5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

f

B
a
y
e

s
 f
a

c
to

r
fo

r
s
w

it
c
h

in
g

 m
o

d
e

l

(b) Bayes factor between the model with
switching σ2 and the model with fixed σ2

over f .

Fig. 4.5 Bayes factor estimation between models with and without switching system noise.
The vertical dashed line is at f = 0.0538 where the prior mean number of jumps would be
exactly 2.

To further look into this we want to compute the Bayes factor between both models we

investigated. Our sampler produces samples from the posterior over the parameters given the

data and one could think that these samples could be used to compute the evidence of the

models and thus the Bayes factor. One approach to this is called the harmonic mean estimator

(Raftery et al., 2007). Unfortunately, even for simple models, the harmonic mean estimator

can give biased results, and even worse the estimator can have a low variance, suggesting

that the computed Bayes factor is very accurately approximated by the samples (Calderhead

and Girolami, 2009; Vyshemirsky and Girolami, 2008)5. A better method to compute Bayes

factors is the thermodynamic integrator as described by Calderhead and Girolami (2009)

which has been successfully used for Bayesian model selection (Goggans and Chi, 2004).

Thermodynamic integration defines the power posterior

Pt(θ |D) ∝ P(D|θ)tP(θ) (4.31)

which interpolates between the prior (t = 0) and the posterior (t = 1). The evidence P(D) can

then be estimated by sampling from the power posterior for different temperatures t. We take

a similar approach but instead of integrating over the temperature we can integrate over the

jump rate. If, as we have done in our simulations, we fix f+ and f− to a fixed value f = F

5Another method using samples from the parameter prior doesn’t have that problem but for a high-
dimensional parameter space it becomes infeasible.

4.1 Fixed Number of States 51

we can express the log evidence as

logP(D| f = F) =
∫ F

0

(

EP(µ0:T ,θ |D, f= f ′)

[

c

f ′

])

d f ′−T F + logP(D| f = 0). (4.32)

where c(f ′) is the expected number of posterior jumps with the jump rate set to f ′. For a

derivation of this result see section A.4 of the appendix. To compute this we ran the sampler

for 100 values from f = 1.5 ·10−8 to f = 1 for both models and then computed the expected

value of c(f |D)/ f . In Figure 4.5b the results are plotted on a log-log scale showing that for

small f the switching model seems to be above the non-switching, while for higher values

the opposite is true. To get the log-evidence logP(D) we need to integrate this over f . Figure

4.5b shows the Bayes factor over f , we see that after the first jumps appear the switching

model is clearly favored but for values over f > 0.3 it starts to drop. This is not surprising

because a high jump rate allows to explain the different levels of system noise by jumping

between the states more often. For f = 1, the highest value we used, the prior mean number

of jumps is almost 40 while we saw only 2 clear jumps in figure 4.3b. Even for this value the

Bayes factor in favor of the switching of σ2 is ≈ 4.3 which according to table 2.1 represents

substantial evidence that the model with switching system noise is a better model for the

data.

While the OU model seems to be a good fit to the biological system of transcription

it should not be forgotten that it is only an approximation of the true process. One major

approximation is that we assume the fluorescence level is continuous, but it is a measure of

the number of molecules, which is clearly a discrete variable. The models of Barenco et al.

(2006) and Sanguinetti et al. (2009) approximate this by applying the system size expansion

of Van Kampen (2011), which assumes that the number of molecules is large. In bacteria

transcription and translation are tightly coupled (Gowrishankar and Harinarayanan, 2004)

therefore it is feasible to assume the production of protein molecules as events coming from

a Poisson process.

In our model the birth rate of ComS molecules would be b while ComK is inactive and

switch to A+b when ComK activates. The death rate is assumed to be λ in both cases. This

birth-death model suggests that the steady state protein levels would be Poisson distributed

with parameter

ρ0 =
b

λ
(4.33)

when ComK is inactive and parameter

ρ1 =
A+b

λ
(4.34)

52 Applications using the Ornstein-Uhlenbeck Process

0.00

0.05

0.10

0.15

0.20

0.25

−5 0 5 10 15

f(A, b, σ0, σ1)

p
o

s
te

ri
o

r
d

e
n

s
it
y

Fig. 4.6 Posterior density over f (A,b,σ0,σ1) defined by (4.36). The probability mass
is clearly not centered around 0, which would be expected according to the birth-death
assumption the model is based on.

when it is active(Lafuerza and Toral, 2011). The observations are only proportional to

the actual molecule count because they are measured in arbitrary units of fluorescence which

doesn’t allow us to test if the mean and variance are equal as a Poisson distribution would

suggest. Instead we look at a quantity which is independent of the fluorescence units

mean(X1)
stdev(X1)

mean(X0)
stdev(X0)

=

√

ρ1

ρ0
=

√

A+b

b
, (4.35)

where X0, and X1 are the fluorescence levels when ComK is inactive and active, respectively.

This is the ratio of the signal to noise ratio in both states and while it should emerge from the

underlying birth-death model it is not enforced by our Ornstein-Uhlenbeck model.

In order to test if the simple birth-death assumption is true for the data we plot the

difference between the posterior estimate of the ratio of the signal to noise ratios in both

states and the prediction of this quantity from the birth-death model. This is a function of

A,b,σ0 and σ1:

f (A,b,σ0,σ1) =

A+b
σ1
b

σ0

−
√

A+b

b
. (4.36)

If the birth-death model is correct the samples of f (A,b,σ0,σ1) should be clustered around

zero, meaning that the posterior estimate fits the model’s prediction. As we can see in

figure 4.6 this is not the case, instead almost all the samples are positive indicating that the

predictions of the steady state birth-death models are not supported by the data.

One explanation for this difference could be that the continuous approximation of the

chemical master equation is very inaccurate because the number of molecules is low. This

4.2 Multiple Switching Processes 53

would be very surprising because SDEs have been widely recommended for this purpose

(Wilkinson, 2006). Another explanation would be that in contrast to our model’s assumption

not only the expression rate and amplitude of the noise are affected by the activation of

ComK but the degradation rate λ as well. If corresponding to the system noise the protein

degradation rates would be λ0 and λ1 in the case of ComK being inactive and active,

respectively, then equation (4.36) would be

f (A,b,σ0,σ1) =

A+b
λ1σ1

b
λ0σ0

−







√

A+b
λ1
b
λ0

. (4.37)

This would suggest that ComK regulates the ComS expression both transcriptionally and

post-transcriptionally. Our sampler works with such a model and it would be an interesting

future direction but for the moment we are more interested in models with a more complex

structure of the hidden process and decide to head in that direction instead.

4.2 Multiple Switching Processes

So far our model has been one-dimensional and has had one latent binary state telegraph

process. We now extend it to have a higher dimensional state space and a multidimensional

OU process as the observed process.

4.2.1 Model

It would be straightforward to extend this model to more states but for our application in

systems biology a different strategy is more promising. Instead of a single telegraph process,

we have multiple ones each with their own jump rates f+, f−. In the setting of transcriptional

regulation each of these switching processes represents the binary (active / inactive) state of

a transcription factor. The observed process has multiple dimensions which are independent

conditioned on the hidden telegraph processes. When there are multiple telegraph processes

there can be combinatorial effects, i.e. if two telegraph processes are active the effects are

not just added but there might be a non-linear or multiplicative effect.

Formally, we assume N SDEs of the OU type:

dXi = (µ(t)⊤Aiµ(t)+bi−λiXi)dt +σidWi, for i = 1, . . . ,N (4.38)

where µ(t) ∈ {0,1}k and Ai is a k-by-k matrix with (Ai) j,l fixed to zero for l > j to avoid

ambiguity. To illustrate this on an example: If k = 3 and the first and the third of the switching

54 Applications using the Ornstein-Uhlenbeck Process

processes are active at the current time we get

µ(t)⊤Aiµ(t) =
(

1 0 1
)

⎛

⎜

⎝

(Ai)1,1 0 0

(Ai)2,1 (Ai)2,2 0

(Ai)3,1 (Ai)3,2 (Ai)3,3

⎞

⎟

⎠

⎛

⎜

⎝

1

0

1

⎞

⎟

⎠

= (Ai)1,1 +(Ai)3,3 +(Ai)3,1,

(4.39)

which is the sum of the effects from the first and third switching process being active on

their own ((Ai)1,1 and (Ai)3,3) and the combinatorial effect of both of them being active at

the same time ((Ai)3,1). This is a generalization of the model used in Opper and Sanguinetti

(2010) which was only formulated for exactly two switching processes.

We could extend the effects of the switching processes to the λi and σi parameters like we

did in the previous section but we restrict the model here to the switching of the production

rate Ai because we are mainly interested in seeing how the sampler’s results compare to the

variational approximation of Opper and Sanguinetti (2010).

Likelihood

The calculation of the likelihood P(D|µ0:T ,θ) remains the same as described in section

4.1.1 with the only difference that Aµ(t) has to be replaced by µ(t)⊤Aiµ(t) everywhere.

As described before, conditioned on µ0:T the individual dimensions of the OU process are

independent in this model, which means the likelihood factorizes over the dimensions.

4.2.2 Sampler

The sampling of the parameters follows the same pattern as in section 4.1.2 because condi-

tioned on the hidden jump process, the different dimensions of the OU process are indepen-

dent. The entries of the Ai matrices all are linear in (4.38) and therefore the likelihood is

Gaussian with respect to them and they can be each sampled in a Gibbs step similar to the

single A parameter in the one-dimensional model.

Sampling of the multiple switching processes is performed in Gibbs steps. For each

switching process a separate proposal is generated by applying one of the five proposal

actions and rejected or accepted with acceptance probabilities as specified in section 4.1.2.

4.2 Multiple Switching Processes 55

x

x
x x

x
x

x x

x

x x
x x

x

x
x x x x

x

x

5

10

15

X
1

x
x

x
x x

x
x

x
x

x

x

x x x x
x

x x

x
x

x

5.0

7.5

10.0

12.5

15.0

17.5

0 500 1000 1500 2000

t

X
2

x x x x

x

x

x
x

x

x

x
x

x
x

x
x

x x
x

x

x
10

14

18

22

X
3

x
x x

x
x

x

x

x

x
x

x
x x

x

x
x x x

x

x

x

5

10

15

20

0 500 1000 1500 2000

t

X
4

Fig. 4.7 Four-dimensional Ornstein-Uhlenbeck process with two telegraph processes control-
ling A. Observations are plotted as crosses. The black line is the true X(t) process, while the
colored lines are the posterior mean with two times the standard deviation as a confidence
interval around it.

4.2.3 Results

With multiple switching processes and a multidimensional observed process

X(t) = (X1(t), . . . ,XN(t)) (4.40)

the exact solution from Stimberg et al. (2011a) we used to verify our sampler’s results

in section 4.1.3 is no longer feasible. We would need to numerically integrate on a high-

dimensional grid. Instead we use the results on synthetic data to verify that our posterior

estimates fit the true hidden process and parameters. After this the sampler is used on gene

expression data from yeast cells which was used by Opper and Sanguinetti (2010) as well to

see how it compares to the variational approximation when applied to real data.

Multi-Dimensional Synthetic Data

We generated a four-dimensional dataset controlled by two telegraph processes. The sampler

knew that the first and second dimension of the OU process were only affected by the first and

second telegraph process, respectively, i.e. all other entries of A1 and A2 were fixed to 0. The

observations are plotted in figure 4.7 while the posterior probability of the telegraph processes

being in state 1 over time is shown in figure 4.8a and compared to the true process. The

posterior almost perfectly matches the true process. The results of the parameter inference for

A are shown in figure 4.8b. The posterior estimates match the true values and the parameter

(Ai)2,1, which is only used when both telegraph processes are active at the same time, has the

highest variance. This is not surprising as it depends on the state of both switching processes.

56 Applications using the Ornstein-Uhlenbeck Process

0.00

0.25

0.50

0.75

1.00

µ
1

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000

t

µ
2

(a) Posterior probability for both telegraph
processes to be switched on as the red and
green line respectively. The true path of the
telegraph processes is drawn in black.

−0.05

0.00

0.05

0.10

1 2 3 4

X

A1,1

A2,2

A2,1

(b) Posterior probabilities over A. The bars
with a black outline are the posterior mean,
with two times the standard deviation as error
bars. The white outlined bars are the true
values.

Fig. 4.8 Posterior over the telegraph processes’ activation and the A parameter for the
four-dimensional OU synthetic dataset.

Yeast Cell Gene Expression Data

The data is a subset of the data from Tu et al. (2005) who measured the gene expression of

yeast cells going through metabolic cycles using microarrays. Three cycles were induced by

alternating between forced starvation and providing glucose to the yeast. We chose the same

set of 10 genes as Opper and Sanguinetti (2010), who used the ChIP-on-chip6 experiments

of Harbison et al. (2004) and Lee et al. (2002) to select the genes which are influenced by the

two transcription factors FHL1 and RAP1. FHL1 and RAP1 are known to play important

roles in the control of ribosomal protein production (Schawalder et al., 2004).

The knowledge that three of the genes are solely regulated by FHL1 and two only by

RAP1 was included in the model to avoid identifiability problems. We did not sample

the parameters for this data but used the maximum-likelihood results of the variational

approximation of Opper and Sanguinetti (2010). This was done because we are mostly

interested in the inference of the transcription factors’ activity and using the same parameters

allows us only to focus on the quality of that part of the approximation.

As can be seen in figure 4.9, the posterior over µ(t) from our sampler is more confident

about when predicting the activation of the transcription factors, especially for FHL1 besides

the short segments of transition the posterior is always near 0 or 1. The activation profile

of FHL1, especially fits very well to the experimental setup consisting of 3 phases with and

6ChIP-on-chip combines the methods of chromatin immunoprecipitation and DNA microarrays for in vivo
experiments of protein-DNA interaction. For more information see Aparicio et al. (2001).

4.3 Changepoint Process 57

0.00

0.25

0.50

0.75

1.00

F
H

L
1

0.00

0.25

0.50

0.75

1.00

0 200 400 600

t

R
A

P
1

Fig. 4.9 Comparison of the posterior profile of TF activity obtained through our MCMC
algorithm (green line) and the variational approximation of Opper and Sanguinetti (2010)
(red line). The sampler used the maximum likelihood parameters from the variational
approximation to make the comparison solely based on inference of the TF’s profiles.

without the supply of glucose each. The longer phases of RAP1 activation in all 3 cases start

just about or a little bit before FHL1 is deactivated.

4.3 Changepoint Process

There are many applications where the number of hidden states affecting the observed

variables is not known beforehand. Furthermore, the assumption that we might revisit a

former state might not be fulfilled because there are an enormous number of latent factors

responsible for the outcome and even if an important parameter is reset to a former value it is

almost impossible that the whole environment is in the same state as well.

Stock market data or in general financial data certainly fulfills these properties. Besides

very rare events, e.g. the fake news story which let the stock markets tumble instantly in

2013, just to revert back minutes later when it was exposed (Moore and Roberts, 2013), the

stock markets don’t switch between a fixed set of states. We make minor changes to our

model to get a general changepoint hidden process.

4.3.1 Model

In our previous switching model µ(t) was a continuous time process consisting of, possibly

multiple, telegraph processes switching between two states. At each time t µ(t) was a binary

vector which lead to a specific drift and diffusion term of the OU-process. Instead of a binary

vector, in the general changepoint model µ(t) is a non-negative integer representing a specific

set of parameters. This enables us to have an unlimited and variable number of possible

58 Applications using the Ornstein-Uhlenbeck Process

Fig. 4.10 The generative model of the Ornstein-Uhlenbeck process driven by a hidden
changepoint process.

states. As we are changing the general concept of the hidden process, we reformulate the

entire model.

We assume that c, the number of jumps of µ(t) in the time interval [0 : T], is Poisson

distributed with parameter f

c∼ Poisson(f T), (4.41)

with mean value f T . If we condition on the number of changepoints c their positions

τ1, . . . ,τc ∈ [0 : T] are independently and uniformly distributed random variables (Gelenbe,

1979):

τi|c∼U(0,T). (4.42)

The model is visualized in figure 4.10.

We assume τi are sorted in ascending order so that they divide [0 : T] into c+1 segments

with [τi−1 : τi] being the i-th segment, where we have defined τ0 = 0 and τc+1 = T to simplify

the notation. Altogether this is equivalent as defining the jump times τ1, . . . ,τc to come from

a Poisson process with constant rate f in the time interval [0 : T] (Ross, 1983). The index of

the Poisson process determines which parameter set is active at that time. That means for c

jumps there have to be c+1 different parameter sets which we assume are all drawn from

4.3 Changepoint Process 59

the same prior distribution P(θ). As before, we choose λ to be constant over time, therefore

the OU process is defined by N SDEs of the form

dX = (Aµ(t)−λX)dt +σµ(t)dW, (4.43)

where we omitted the indices for the N dimensions for the sake of clarity.

Another way to view the model is to describe A and σ as a multidimensional jump process

θ(t) where at each jump a new parameter vector is drawn from P(θ).

In this model we no longer have the possibility to have different priors for the different

states, instead there is one overall prior for all the parameters. One disadvantage over the

switching model is that we can no longer specify that a jump only has an effect on a subset

of the dimensions of the OU process but the model can emulate this behavior by choosing

parameter values similar to the ones before the jump for these dimensions.

Likelihood

The change of the hidden process has only a very minor effect on the likelihood P(D|µ0:T ,θ).

The calculation remains the same as described in section 4.1.1, but with Aµ(t) substituted for

Aµ(t)+b everywhere.

4.3.2 Sampler

The overall sampling algorithm stays the same as for the switching process (see section 4.1.2)

but some changes in the details of the proposal actions need to be addressed.

Proposal Actions

For the changepoint model it is no longer necessary to allow for adding or removing two

jumps at a time. For the switching case this was necessary because adding or removing only

one jump changes a large part of the process and thus will result in low acceptance rates.

When adding a jump to the changepoint process it is only changed between the added or

removed jump time and the next or last jump time7. Our algorithm therefore only has three

different actions remaining.

Shifting the time of a jump No changes are necessary for this action, the only difference

is the new likelihood ratio as described in section 4.3.1.
7If we are representing the µ(t) process as a Poisson process all state indices after the added or removed

jump would be changed to keep the state indices in ascending order but this does not change the parameter
values after the affected segment, which influence the likelihood and therefore the acceptance probability.

60 Applications using the Ornstein-Uhlenbeck Process

Adding a jump A key difference to the switching process model is that adding a jump

will generate a new set of parameters for the new segment. This means we need to sample a

new parameter set for the segment from a proposal distribution and change the acceptance

probability accordingly. The proposal distribution’s support has to be at least the parameter

prior’s otherwise the action of adding a jump could not reverse all possible action of removing

a jump.

An obvious choice would be to sample the parameters from the prior but this can only be

effective if the prior is very narrow. Instead for A we draw the new value from the posterior of

the parameters in the segment similar to what is done when resampling all the A parameters.

For σ2 we make a log random walk on the current value to get a new proposed one. We

decide randomly if the new segment starts or ends with the added jump and get

P(µ∗|Θ)∗

P(µ|Θ)

Q(µ|µ∗)
Q(µ∗|µ) =

f P(Ak+1,σ
2
k+1)

1
qrT

Q(Ak+1,σ
2
k+1)(c+1)qa

, (4.44)

with Q(Ak+1,σ
2
k+1) being the proposal distribution we draw the parameters from and Θ =

(A,σ2,λ , f).

Removing a jump When removing a jump we decide randomly to either use the next

segment’s or the last segment’s parameter values for the whole segment. The acceptance

probability has to be changed to reflect the change in the action of adding a jump in order to

guarantee reversibility:

P(µ∗|Θ)

P(µ|Θ)

Q(µ|µ∗)
Q(µ∗|µ) =

1
f P(Ai,σ2

i)

Q(Ai,σ
2
i)cqaqn

qrT
. (4.45)

4.3.3 Results

Before we apply the changepoint model to stock index data we first test it on a synthetic

dataset.

Synthetic Data

We generated data from a four-dimensional OU process whose A and σ2 parameters were

controlled by a changepoint process µ(t). In figure 4.11a the observations are plotted for

all four dimensions together with the true process X(t). Figure 4.11b shows that the 3 most

likely jump times fit the real jumps. As µ(t) now only represents a state index it is hard

to interpret the posterior over its path as we did for the switching model. Instead we plot

4.3 Changepoint Process 61

x
xxx
xx
xxxxx

xx
xx
xxxxxxxxxxx

xxx
xxxx

xxxxxxxx
x
x
xxxxxxxx

0.0

2.5

5.0

7.5

10.0

12.5

X x
xx
xxxxxx

x
xx
xx
x
xxxxxxxxxx

xx
xxxxx

xxxx
x
x
xx

x
x
xxxxxxxxx

xxxxxx
x
x
x
xxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxx
x
xxxxxxxxx

0.0

2.5

5.0

7.5

10.0

12.5

0 500 1000 1500 2000

t

X

xxxxx
xxxxxxxxx

xx
xx
xxx

xxxxx
x
xxxxxxx

xxxxxx
x
x
x
xx
xx
x
xxx

0 500 1000 1500 2000

t

(a) Four-dimensional Ornstein-Uhlenbeck pro-
cess with A and σ2 controlled by a change-
point process. The true X(t) process is drawn
in black while the noisy observations are rep-
resented by colored crosses.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 500 1000 1500 2000

t

ju
m

p
 p

ro
b

a
b

ili
ty

(b) Posterior probability of a jump happening
in the time interval (here ∆t = 1) vs. time
drawn as a red line with the true jumps times
represented by the vertical black lines.

Fig. 4.11 Synthetic changepoint data and jump posterior.

0.000

0.025

0.050

0.075

0.100

0.125

A

0.000

0.025

0.050

0.075

0.100

0.125

0 500 1000 1500 2000

t

A

0 500 1000 1500 2000

t

(a) Posterior of A over time for all four dimen-
sions. The black line is the actual path of A.
The colored line is the posterior mean with a
95% confidence interval around it.

0.00

0.01

0.02

0.03

0.04

σ
2

0.00

0.01

0.02

0.03

0.04

0 500 1000 1500 2000

t

σ
2

0 500 1000 1500 2000

t

(b) Posterior of σ2 over time for all four di-
mensions. The black line is the actual path
of σ2. The colored line is the posterior mean
with a 95% confidence interval around it.

Fig. 4.12 Parameter posteriors for synthetic changepoint data.

62 Applications using the Ornstein-Uhlenbeck Process

parameters prior hyper-parameters
f fixed f = 0.1
A Gaussian mean = 4,300, std. = 5,000

σ2 Gaussian mean = 250,000, std. = 40,000
λ Gamma shape = 1.2, scale = 1.0

Table 4.3 Parameters and prior distributions for the DAX dataset.

the posterior over the path of the parameters which are controlled by µ(t), namely A(t) and

σ2(t). The posteriors are plotted in figure 4.12 and while the posterior mean over A(t) fits

the true path very closely, inference for the system noise parameter σ2 seems to be harder.

Stock Index Data

We use data taken from the German stock index (DAX) which is comprised of the 30 biggest

publicly traded German companies. While the Ornstein-Uhlenbeck model with linear noise

is usually not used to model stock prices directly 8 the addition of jumping parameters makes

it very flexible and stock prices do exhibit mean reverting properties (Chiang et al., 1995; Lo

and MacKinlay, 1988).

Figure 4.13a shows the data we used. While stock prices are available for a very high

time resolution we only used quarterly from 1988 to 2011 for two reasons. Firstly, the lower

number of observations allows faster inference and secondly we show that the algorithm is

able to find changepoints even for low resolution data. We generated 510,000 Monte Carlo

samples from which the first 10,000 were dropped as burn-in. For the parameters and priors

we used see table 4.3.

On average 9.7 jumps were found. The probability of a jump occurring over time is

plotted in figure 4.13b and it is visible that some jumps are very clearly timed. When we look

at the posterior of the parameters over time (figure 4.14) we again see it is very distinct for A

and a lot less informative for σ2. Most interestingly, we can find historic events happening

around the time A jumps, like the introduction of the German version of the NASDAQ index

(Neuer Markt) in 1997, the bursting of the dot-com bubble in 2000 or the recent global

financial crisis.

8OU processes whose diffusion is driven by a Levy process have been used (Jongbloed et al., 2005; Onalan,
2009) to model financial data and OU processes have been used to model the volatility of other stochastic
process (Chronopoulou and Viens, 2012; Fouque et al., 2000).

4.3 Changepoint Process 63

xxxxx
xxxxxx

xxxxxx
x

xx

x
xx

x
x
x

x

x

x

x

x
xx

x
x

xx

x

x

x
x

x

xx
x

x

0

2000

4000

6000

8000

1990 1995 2000 2005 2010

t

D
A

X

(a) Data points taken from the German stock
index (DAX) from 1988 to 2011. The closing
value of the stock index for every month is
in black and the quarterly data used in the
sampler is drawn as red crosses.

0.0

0.1

0.2

0.3

0.4

1990 1995 2000 2005 2010

t

ju
m

p
 p

ro
b

a
b

ili
ty

(b) Posterior probability of a jump over time
for the German stock index (DAX) data.

Fig. 4.13 German stock index (DAX) data and jump probability.

German NASDAQ

dot−com bubble

early 2000s recession

global financial crisis

−5000

0

5000

10000

1990 1995 2000 2005 2010

t

A

(a) Posterior mean probability of A over time
with two times the standard deviation as a
confidence interval. Notable economic events
are correlated with jumps in A are highlighted.

1e+05

2e+05

3e+05

4e+05

1990 1995 2000 2005 2010

t

σ
2

(b) Posterior mean probability of σ2 over time
with two times the standard deviation as a
confidence interval.

Fig. 4.14 Posterior of the parameters over time for the German stock index (DAX) data.

64 Applications using the Ornstein-Uhlenbeck Process

Fig. 4.15 The generative model of the Ornstein-Uhlenbeck process driven by a hidden
Chinese restaurant process.

4.4 Chinese Restaurant Process

When changing our model from a fixed number of sets to a more flexible changepoint

model, we lost the ability to have the hidden process revisit already used states. This made

sense considering our application on financial data but in other fields it would be better if

former states can be reused. Besides being a better model for some applications, like the

gene expression data we examined in section 4.1.3 and 4.2.3, there are other benefits. With

reusable states our model will have less parameters allowing faster inference. Additionally,

less states mean we have more data per state, resulting in better estimates of the parameters.

We had these advantages in the original switching model but more often than not we do

not know the exact number of hidden states beforehand but still want to have the benefits of

reusable states. For these cases we formulated a model which combines both the switching

and the changepoint model’s advantages using a process usually called the Chinese restaurant

process (Pitman and Picard, 2006, pp. 54 ff.).

4.4.1 Model

Our model still is described by a set of Ornstein-Uhlenbeck type SDEs. As in section 4.2 we

let only the production rate A depend on time, therefore our system has the form

dX = ((A(t))i−Λ)dt +ΣdW, (4.46)

4.4 Chinese Restaurant Process 65

with fixed decay and diffusion parameters

Λ = diag(λ1, . . . ,λN)
⊤, (4.47)

Σ = diag(σ1, . . . ,σN)
⊤, (4.48)

and time-dependent function

A(t) = (A1(t), . . . ,AN(t))
⊤. (4.49)

The times of the changepoints are still coming from a Poisson process with constant rate

f but instead of drawing the parameter sets for each segment from the prior over the time

dependent parameters PA(·) itself they are now drawn from an unknown distribution π . We

assume π comes from a Dirichlet process

π ∼ DP(α,PA), (4.50)

with concentration parameter α and the prior PA(·) as its base distribution.

If we integrate out the unknown distribution π we get a Chinese restaurant process

with the same parameters as the Dirichlet process (Teh, 2010) from which we can sample

sequentially. Conditioned on the previous segments, the value of the i+1-th segment

Ai+1|A1, . . . ,Ai ∼
1

α + i

(

αPA +
i

∑
l=1

δAl

)

(4.51)

is either sampled from the base distribution PA(·) with probability α/(α + i) or a parameter

set which was already used in a previous segment is reused. In the latter case the parameter

set to use is selected with equal probability from all the segments which means the Chinese

restaurant process leads to a "rich-get-richer" effect (Ghahramani, 2005). Altogether, this

leads to the following prior probability over a path A0:T

P(A(0:T)| f ,α,PA) ∝ f ce− f T αs
∏

s
j=1

(

PA(A j)(# j−1)!
)

∏
c
i=0(α + i)

, (4.52)

where j is the number of times state j has been assigned to a segment.

See figure 4.15 for a graphical representation of the complete model.

While until now our hidden processes have fulfilled the Markov property it is important

to note that the Chinese restaurant process is not a Markov process because the parameter

value of a segment depends on the complete history of the process up to that point. The

66 Applications using the Ornstein-Uhlenbeck Process

model also allows that a jump does not change the state. This has to be kept in mind when

looking at the number of jumps in the posterior but in our experience such jumps are usually

very rare unless a very high jump rate is chosen.

4.4.2 Sampler

As for the changepoint model our general sampling strategy does not need to be adjusted.

The only part of the sampler we need to modify is the sampling of the time and type of

jumps. By changing the existing proposal actions and introducing a new one we are able to

get samples for the new model.

Sampling The Parameters

If a Gaussian is chosen as PA(·) the posterior over the individual values of A is Gaussian

as well and we directly sample from it, as described in section 4.1.2. For the λ and σ2

parameters we again apply a Gaussian random walk on their log values.

Proposal Actions

In the changepoint model of section 4.3 it was clear that when a jump occurs a new set

of parameters was drawn, which was completely independent of the former sets. The

Chinese restaurant process provides the possibility that a new time interval reuses an existing

parameter set. Therefore when adding or removing changepoints it is now important to

distinguish between different cases. In order to get faster convergence we introduce the

possibility to switch the state of an existing interval with either a new parameter set or an

existing one.

Adding a jump When adding a jump it is now randomly decided if the new segment gets

an already existing state assigned to it or if a new state is introduced. We could incorporate

the α parameter in the probability of a new parameter set to be created but we decided to

use a fixed probability qn = 0.1 in our experiments if not otherwise specified. This has the

reason that a prior based probability might be very small and it may take a long time until a

new parameter set is proposed even though the data might be very well explained by it. The

trade-off in this case is that a new set might be proposed and rejected very often but even if

all these proposals are rejected they make up only 10% of the proposals which add a jump.

If a new parameter set is proposed we use the posterior over A for this segment to draw a

suitable parameter set. As before we decide with equal probability if we want to change the

parameter value of the segment directly after or before the new jump.

4.4 Chinese Restaurant Process 67

Add Remove

Shift Switch

Fig. 4.16 The 4 actions to modify the hidden path. The old path is drawn in blue, while the
modified part is drawn in green.

Removing a jump When a jump is removed we have to distinguish between the case that

the number of states stays the same and the case that the last instance of an state has been

removed. In contrast to the switching model this has an effect on the acceptance probability of

the proposal because the dimensionality of the parameters change. As for the other models it

is randomly decided if the process after or before the removed jump defines what parameters

will be used in the joint segment.

Switching a state In theory, this action is not necessary to be able to reach all possible

hidden process paths, because the same effect can be achieved by removing a jump and

adding a new one. Unfortunately, this would only happen very rarely and lead to very slow

convergence times. Instead we introduce a new action which randomly selects one of the

jump process’ segments with equal probability and changes what state it is associated with.

We decide either to set the segment to an already existing state (with equal probability) or to

draw a new state in the same way as we do when adding a jump.

Figure 4.16 shows the 4 actions’ effects on a path.

Acceptance Probabilities

The acceptance probabilities resemble the changepoint process‘ but now the effects of the

Chinese restaurant process have to be incorporated and we need to distinguish between

different cases for all actions besides the shifting of jump times.

68 Applications using the Ornstein-Uhlenbeck Process

As before, the acceptance probability is

PMH = min
(

1,
P(D|A0:T∗,Θ)

P(D|A0:T ,Θ)

Q(A0:T |A∗0:T)

Q(A∗0:T |A0:T)

P(A∗0:T |Θ)

P(A0:T |Θ)

)

, (4.53)

with Θ = (Λ,Σ,σobs, f) and where P(D|A0:T ,Θ) and P(D|A∗0:T ,Θ) remain as described in

section 4.1.1 just with A(t) instead of Aµ(t)+b everywhere. The prior over A0:T and the

proposal probabilities Q are again different for the actions and we again define

Ψ =
Q(A0:T |A∗0:T)

Q(A∗0:T |A0:T)

P(A∗0:T |Θ)

P(A0:T |Θ)
. (4.54)

Shifting the time of a jump The acceptance probability for shifting a jump stays the same

as in (4.26).

Adding a jump When adding a jump point we have to distinguish between adding a new

and an existing set of parameters. In the first case the acceptance ratio becomes

Ψ =
qrT

qaqn(c+1)Q(Ak+1)

f αPA(Ak+1)

α + c+1
, (4.55)

where k is the number of parameter sets and c the number of jumps before the action was

applied. qa and qr are the probabilities to choose the action to add and remove a jump,

respectively.

If on the other hand the parameter set for the new interval already exists the ratio is

Ψ =
qrT k

qa(1−qn)(c+1)
f #i

α + c+1
, (4.56)

where #i is the number of times the parameter set Ai is used before applying the action.

Removing a jump Removing a changepoint whose state was the last instance of its kind

(#i = 1) leads to

Ψ =
qaqncQ(Ai)

qrT

α + c

f αPA(Ai)
. (4.57)

When θi still occurs after removing the changepoint (#i > 1) the ratio becomes

Ψ =
qa(1−qn)c

qrT k

αc

f (#i−1)
. (4.58)

4.4 Chinese Restaurant Process 69

Switching a state If we switch the current parameter set Ai of a segment to A j there are

four different cases to consider:

1. The old parameter set is still used (#i > 1) and the new parameter set is already active

in another interval (# j > 0)

Ψ =
j

#i−1
. (4.59)

2. The old parameter set is still used (#i > 1) and the new parameter set has not been in

use (# j = 0)

Ψ =
(1−qn)

qnQ(A j)(k+1)
αPA(A j)

#i−1
. (4.60)

3. The old parameter set vanishes (#i = 1) while the new parameter is already used

(# j > 0)

Ψ =
qnQ(A j)k

(1−qn)

j

αPA(Ai)
. (4.61)

4. The old parameter set vanishes (#i = 1) and the new parameter set has not been in use

(# j = 0)

Ψ =
Q(Ai)

Q(A j)

PA(A j)

PA(Ai)
. (4.62)

After an action the the parameter sets Ai are renumbered in ascending order from start so that

we again have a legitimate path from our model.

4.4.3 Results

We first again have a look at the performance of our sampler on synthetic data to see that the

estimated posterior distributions are reasonable in relation to the true hidden process. After

this the yeast gene expression data which was used in section 4.2.3 is revisited to see if the

more general CRP model can confirm the assumption about the number of states which had

to be made for the switching model.

Synthetic Data

We generated a synthetic dataset of a two-dimensional OU process with a hidden CRP

process defining the value of A over time. The CRP process has 10 segments which are

assigned to 5 different states. As the base distribution PA we used a Gaussian with mean

and standard derivation 0.5. In figure 4.17a the observations along with the posterior over

the X(t) process are compared to the true X(t) process. The sampler is able to restore the

70 Applications using the Ornstein-Uhlenbeck Process

xx
xxx

x

x
xx
x
xxx

x
xx
x
x
x
x
xx
xx
x

xxx
xxxx

xxx

xx

x

xx
xxxx

x
x

x
xx
x
xx

x
x
xxxx

x
x
x
x
x

x
xxx

xxxxx

xxx
x
xxxx

x
xx

x

x
xxx

x
x
xxx

x

x
x
xx
xxx

0.0

2.5

5.0

7.5

10.0

X
1

xxx
xxx

xxx

x
x
x
x
x

xx
xxxxxx

x
x

x
xx
x
x
xx
x
xxx

x
x

x
xx
x
xx
xxx

x
xxxxxxxx

x
x
xx
xx
x
xx
xx

x
x
xx
xx

x

xx
x
xxxx

xxx

xx
x
x
xx
xx
xxxx

xxxxxx0.0

2.5

5.0

7.5

10.0

0 250 500 750 1000

t

X
2

(a) Noisy observations and posterior over X(t).
The actual path of X(t) is drawn as a black line
with colored crosses representing the noisy ob-
servations. The posterior mean over X(t) is
plotted as a colored line with a 95% confi-
dence interval around it.

0.0

0.5

1.0

1.5

A
1

−0.5

0.0

0.5

1.0

1.5

2.0

0 250 500 750 1000

t

A
2

(b) Posterior over A(t) for the synthetic CRP
data. The true paths are the black lines, while
the colored lines are the posterior mean with
a 95% confidence interval around them.

Fig. 4.17 True paths and posterior densities over X(t) and A(t) for a synthetic two-
dimensional OU model driven by a hidden Chinese restaurant process with 5 states.

original path of X accurately and ignores outliers resulting from the observation noise. The

path of A can be seen in figure 4.17b and the posterior fits the true path well. The rise of the

confidence interval near the jumps follows from the sampler switching between allocating

that region to the state before and after the jump. We are most interested if inference on the

number of distinct states works well. Figure 4.18a shows that for all three values of α the

sampler assumes that at least 5 states are necessary to explain the data. For the smaller two

α values the correct number has the highest posterior probability while for α = 2.0 6 states

are a little bit more likely. For 9 jumps the prior mean number states are 2.9, 3.5 and 4 for α

equal to 1, 1.5 and 2, respectively.

The index of a state is not necessarily meaningful between samples with a different

number of states but we can visualize how likely two points in time will be associated with

the same state. This is shown as a heatmap in figure 4.18b and compared with the areas where

the states are equal in the true hidden process. While the posterior mostly fits the true process

here for the segment between 70 < t < 120 and 450 < t < 570 the posterior probability to

be in the same state is only around 65% but this can be explained by the few and very noisy

observations during these segments. These segments are also the primary reason for getting

more than the true number of states in some of the posterior samples because each segment

is assigned its own state when they are not assigned a shared one.

One of the advantages of the CRP model compared to a simple changepoint model as in

section 4.3 should be that the parameter inference is improved, especially for small segments,

4.4 Chinese Restaurant Process 71

0.0

0.2

0.4

0.6

5 6 7 8 9

number of distinct A values

p
o

s
te

ri
o

r
p

ro
b

a
b

ili
ty

α = 1.0

α = 1.5

α = 2.0

(a) Posterior probability over the number of
states for the synthetic CRP dataset with 3
different values of α . The true number of
states was 5.

(b) Heatmap for the synthetic CRP dataset.
The color represents the posterior probability
that the state of the CRP is the same at both
times. The perfect heatmap would have prob-
ability 1.0 (red) inside the black dashed lines
and probability 0 (blue) everywhere else.

Fig. 4.18 Posterior over the number of states and the reuse of states.

0.0

0.2

0.4

A
1

0.0

0.1

0.2

0.3

0.4

0 250 500 750 1000

t

A
2

(a) Difference over time between the true path
of A(t) and the posterior of the changepoint
sampler (red line) and the CRP sampler (blue
area) for the synthetic CRP dataset.

0

25

50

75

100

125

A X D

n
o

rm
a

liz
e

d
 d

if
fe

re
n

c
e

Chinese restaurant process Changepoint process

(b) Difference between the true path of A(t)
and X(t) and the posterior mean integrated
over time for the CRP and the changepoint
sampler. Additionally, the sum of the differ-
ence between the observations and the pos-
terior mean of X(t) at the observation times.
All values are normalized to 100 for the CRP.
For the unnormalized values see table 4.4.

Fig. 4.19 Comparison of the CRP sampler and the changepoint sampler on the synthetic CRP
dataset. For the CRP sampler α = 1.5 was used.

72 Applications using the Ornstein-Uhlenbeck Process

parameter sampler difference

A(t)
CRP 62.7
CP 74.8

X(t)
CRP 710
CP 744

D
CRP 56.3
CP 55.2

Table 4.4 Comparison of the differences to the true values for toy data generated from the
CRP model when using the sampler for the CRP and CP model. The differences are integrated
over time for A(t) and X(t) and calculated as the difference between the observations and
X(t) at the observation times for D.

as it uses the observations from all segments assigned to a state for inference instead of

inferring the parameters for each segment on their own. For this purpose we used the general

changepoint model where the unknown distribution π from our CRP model is replaced by

the base distribution PA and applied our sampler to it. In figure 4.19a the difference between

the posterior mean of the changepoint and the CRP model to the true path of A is shown. As

expected the CRP model gives superior results especially for short segments whose state

is used multiple times, as can be seen between 650 < t < 710. Figure 4.19b and table 4.4

compare the errors for A(t) and X(t) integrated over time and the difference between the

posterior mean and the observations for both models. A is approximated around 15% better

with the CRP model and X about 5%. Not surprisingly the simplified changepoint model has

a slightly better fit to the data because it is able to change its parameters to best fit the data

for every segment on its own.

Besides these results the CRP model has a computational advantage as well. The time

to get half a million samples was roughly half as long compared to the changepoint model.

This is mainly because the CRP model has fewer distinct states which need to be updated in

every run.

The Yeast Gene Expression Revisited

In section 4.2.3 we used gene expression data of yeast cells taken from Tu et al. (2005) and

tried to infer the activity of two transcription factors which are known to control the 10 genes

which were considered. For the switching model we used this knowledge when defining that

two binary telegraph processes, representing the transcription factors FHL1 and RAP1, are

responsible for the changes in the expression levels of the transcription factors over time.

By applying our new Chinese restaurant process model on the same data we hope that the

4.4 Chinese Restaurant Process 73

OOOO
O

OO
O

1

2

3

4

5

0 5 10

number of jumps

n
u

m
b

e
r

o
f

s
ta

te
s

O

O

O

O

O

O

O

O

0.25

0.50

0.75

1.0

1.25

1.5

1.75

2.0

(a) Comparison of the prior and posterior
mean for the yeast data showing the robust-
ness of the results for different values of α .
The colored lines show the prior mean over
the number of jumps while the circles are the
posterior mean number of states over the pos-
terior mean number of jumps. The vertical
line is the prior mean number of jumps result-
ing from f = 0.01 as the exponential jump
rate.

OOOOOOOO

1

2

3

4

5

0 5 10

number of jumps

n
u

m
b

e
r

o
f

s
ta

te
s

O

O

O

O

O

O

O

O

0.25

0.50

0.75

1.0

1.25

1.5

1.75

2.0

(b) Comparison of the prior and posterior
mean for a subset of the yeast data with only 3
genes, which are known to be only regulated
by the FHL1 transcription factor. The lines
are the prior mean number of states over the
number of jumps and the circles represent the
posterior mean number of states over the pos-
terior mean number of jumps. The prior mean
number of jumps resulting from the jump rate
being f = 0.01 is shown as a vertical line.

Fig. 4.20 Robustness of the yeast cell data results for different values of α .

posterior estimate will point to two transcription factors with two states (i.e. 4 states overall)

controlling the 10 genes we examined.

As the data is averaged over multiple cells, we can set the system noise variance to zero

and we use the same values for the degradation rate λi and observation noise variance σ2
obs as

in Opper and Sanguinetti (2010). For the base distribution PA we chose a Gaussian with zero

mean and a standard deviation of 0.25.

We generated 1 million samples for 8 different values of α and this took about half an

hour on an Intel Xeon CPU with 2.40 GHz. In figure 4.20a it can be seen that the results

are very stable over the different values of α . For α = 1.0 the model predicted with ≈ 96%

certainty that there are 3 distinct states in the data while 4 or more states were predicted in the

rest of the samples. If we are assuming binary states for the transcription factors, as we did in

the switching model, this would indicate two transcription factors controlling the expression

levels of the 10 genes in the data. This fits with the biological explanation of Opper and

Sanguinetti (2010) that the 10 genes are controlled by the transcription factors FHL1 and

RAP1. To test our model further we used it on data from 3 of the 10 genes which are known

to be only regulated by FHL1. As can be seen in 4.20b this leads to the posterior mean

number of states now being almost exactly 2 as would be expected for only one transcription

factor being involved.

74 Applications using the Ornstein-Uhlenbeck Process

(a) Same-state heatmap for a low value of α =
1 resulting in fewer distinct states on average.

(b) Same-state heatmap for a high value of
α = 2 resulting in more distinct states on av-
erage.

Fig. 4.21 Heatmaps for the full yeast dataset (10 genes) with the color representing the
probability of the hidden process at the two times (x and y coordinate) being in the same
state.

As for the synthetic data we can visualize how the states are reused over time in a heatmap.

In figure 4.21 this is shown for α = 1.0 and α = 2.0, showing that the higher value of α leads

to a more detailed structure and clear representation of the periodic nature of the experiment9.

9The yeast cells were starved and then given sugar and this process was repeated 3 times over the whole
experiment.

Chapter 5

Applications using the Poisson Process

While homogeneous Poisson processes are very restrictive and seldom useful on complex

data sets, inhomogeneous Poisson processes (i.e. a Poisson process whose rate changes over

time) allow to describe a variety of event-time data. A popular variant of an inhomogeneous

Poisson process is the Markov modulated Poisson process (MMPP). An MMPP is a Poisson

process whose rate depends on a hidden Markov jump process (MJP). Bayesian inference

for MMPPs has been done by an approximate Gibbs sampler (Scott, 1999; Scott and Smyth,

2003), which assumes that the jumps of the Markov process can only happen at event times,

or by a Metropolis-Hastings random walk on the parameters, integrating out the hidden MJP

(Kou et al., 2005). Other approaches for inference of general MJPs include uniformization

(Rao and Teh, 2011). On the other hand, Fearnhead and Sherlock (2006) proposed an exact

Gibbs sampler which alternates between sampling a path for the hidden MJP at the Poisson

event times given the parameters and sampling the parameters given the current path of the

MJP. Advantages of this approach are that it additionally delivers the posterior distribution

over the Markov process and requires no tuning of random walk parameters. Its disadvantage

is that its computational complexity scales linearly with the number of Poisson events, even

if the actual number of jumps in the rate process is small. We assume that after modifying

our sampler to work with Poisson process observations it will cope better with such data

sets because the likelihood computation can be sped up enormously in comparison to the

approach of Fearnhead and Sherlock (2006) and Sherlock (2006). The parameter sampling

step on the other hand remains the same as in their work, i.e. all parameters can be sampled

directly from their conditional posteriors. In section 3.1.2 we already established that we

will only use data where the observations are assumed to be exact. In Sherlock (2006) two

different observation models are described. Both bin the data and either the number of events

in a bin is known or there is a binary indicator if events have happened inside the binned

time. Sherlock (2006) describes the likelihood for these models and our algorithm can be

76 Applications using the Poisson Process

adapted to them easily. The second half of this chapter uses the Chinese restaurant process

from section 4.4 for Poisson data to create a more flexible model than the common MMPP.

This part is largely based on Stimberg et al. (2014) and therefore represents joint work with

Manfred Opper and Andreas Ruttor.

5.1 Switching Process

As for the Ornstein-Uhlenbeck process in section 4.1 we start with a model where the number

of states is fixed. The model described here is a special case of a popular model Markov

modulated Poisson process (MMPP) (Fischer and Meier-Hellstern, 1993; Neuts, 1979). There

have been multiple approaches to Bayesian inference for this model, most similar to ours are

the exact Gibbs sampler of Fearnhead and Sherlock (2006) and Sherlock (2006) as well as

the MCMC algorithm by Rao and Teh (2013) which uses uniformization.

5.1.1 Model

We observe event times d1, . . . ,dn in ascending order which we assume are coming from

a Poisson process. The rate λ (t) of the Poisson process jumps at specific points in time

τ1, . . . ,τc and remains constant between these jumps. In our model we assume that the rate

can only jump between two rates: λ0 and λ1. As before the rate to jump from state 0 to state

1 is f+ and the rate to jump from 1 to 0 is f−. For a detailed formulation of a more general

MMPP with an arbitrary, but fixed, number of states see Sherlock (2006). For the two state

model the rate at time t is defined as

λ (t) = µ(t)λ1 +(1−µ(t))λ0. (5.1)

The prior probability over a path of the switching process is the same as in (4.4) from

section 4.1.1. Introducing ζi as the overall time spent in state i by µ , which is needed to

compute the likelihood as well, we are able to simplify this and write the prior probability as:

P(µ0:T | f0, f1) ∝ P(µ(0)| f0, f1) ∏
i=0,1

f
ci

i e−ζi fi , (5.2)

where ci is the number of jumps from state i to state 1− i and we set f0 = f+ and f1 = f−. To

compare our algorithm to the exact Gibbs sampler of Sherlock (2006) we adopt their choice

of the prior probability over the starting state of µ(t):

P(µ(0)| f0, f1) =
µ(0) f1 +(1−µ(0)) f0

f0 + f1
. (5.3)

5.1 Switching Process 77

Likelihood

As our observed process has changed, the likelihood of the observations given the parameter

jump process needs to be updated. Luckily, a Markov modulated Poisson process leads to a

very simple likelihood term. If we have s states then the likelihood becomes

P(D|λ0:T) =
s

∏
i=1

λ ni

i exp(−ζiλi), (5.4)

where λi is the value of λ0:T when in state i and ni is the number of Poisson events in our

data while λ0:T is in state i. We will describe later how this likelihood can be calculated very

efficiently.

5.1.2 Sampler

The structure of our sampler is very flexible and adjusting it to observations from a Poisson

process instead of an OU does not require any changes of the general algorithm.

Sampling the Parameters

When looking at the likelihood (5.4) we see that with respect to the λi parameters it is

proportional to a gamma distribution with parameters ni +1 and ζi. If we choose a conjugate

gamma prior with hyper-parameters aλi
and bλi

we get

P(λi|D,µ0:T) ∝ Gamma(λi;ni +1,1/ζi)Gamma(λi;aλi
,bλi

)

∝ Gamma(λi;aλi
+ni,bλi

/(1+ζibλi
))

(5.5)

The same would be true for the fi parameters when looking at (5.2), as described in

section 4.1.2, but in contrast to our OU model we now follow Fearnhead and Sherlock (2006)

in choosing the prior probability over the first state (5.3) to depend on the fi parameters.

Even with a gamma prior P(fi) = Gamma(fi;a fi ,b fi) the posterior is not gamma distributed

anymore

P(fi|D,µ0:T) ∝ P(µ(0)| f0, f1)Gamma(fi;ci +1,ζi)Gamma(fi;a fi ,b fi)

∝ P(µ(0)| f0, f1)Gamma(fi;a fi + ci,b fi/(1+ζib fi))
(5.6)

As proposed by Fearnhead and Sherlock (2006) we use a rejection sampler with Gamma(a fi +

ci,b fi +ζi) as a proposal distribution and the new values f ∗0 , f ∗1 are accepted with probability

P(µ(0)| f ∗0 , f ∗1).

78 Applications using the Poisson Process

Sampling the Jump Process

The set of proposal actions we use is the same as for the switching OU model in section 4.1.2,

i.e. shift, add, remove, add two and remove two jumps. After the proposal path is generated it

is accepted with the Metropolis-Hastings acceptance probability

PMH = min
(

1,
P(µ∗0:T |D,Θ)

P(µ0:T |D,Θ)

Q(µ0:T |µ∗0:T)

Q(µ∗0:T |µ0:T)

)

, (5.7)

where the posterior ratio follows from (5.2) and (5.4):

P(µ∗0:T |D,Θ)

P(µ0:T |D,Θ)
=

P(µ∗0:T | f0, f1)P(D|µ∗0:T ,λ0,λ1)

P(µ0:T | f0, f1)P(D|µ0:T ,λ0,λ1)

=
P(µ∗(0))
P(µ(0)) ∏

i=0,1
f

c∗i−ci

i λ
n∗i−ni

i e−(fi+λi)(τ
∗
i −τi)

and with Θ = { f0, f1,λ0,λ1}.
The posterior ratio can be calculated very efficiently because we only need to know how

many Poisson events occur during the segments of µ0:T∗ and µ0:T , how often the process

changes state and how much time it spends in each state. In order to avoid iterating over all

the data for each proposal, we compute the index of the next event in the data for a fine time

grid before the sampler starts. This ensures that the computational time is most likely linear

in the number of jumps while the one-time costs for calculating the grid are neglectable.

Additionally, we only need to compute the likelihood ratio over segments which changed in

the proposal because the unchanged parts cancel each other out. For details about how the

calculation of the likelihood is implemented see section B.2 of the appendix.

5.1.3 Comparison to exact Gibbs sampler

In Sherlock (2006) the exact Gibbs sampler of Fearnhead and Sherlock (2006) was compared

to a number of Metropolis-Hastings random walk algorithms which work directly on the

parameters (as e.g. Kou et al., 2005, does). The exact Gibbs sampler performed better

or comparable for a range of data sets, therefore we use it as the only comparison for our

algorithm’s performance. As mentioned before, our sampler is very fast even for a large

dataset when the number of jumps in the Poisson rate is comparable small. We expect our

sampler to outperform the exact Gibbs sampler for datasets with these properties and will

verify this claim using synthetic datasets. Our work was done in parallel to Rao and Teh

(2013) who did a similar comparison showing that the exact Gibbs sampler looses efficiency

5.1 Switching Process 79

0.00

0.25

0.50

0.75

1.00

µ

0

300

600

900

1200

0 250 500 750 1000

t

n
u

m
b

e
r

o
f

e
v
e

n
ts

0.00

0.25

0.50

0.75

1.00

µ

0

500

1000

0 250 500 750 1000

t

n
u

m
b

e
r

o
f

e
v
e

n
ts

0.00

0.25

0.50

0.75

1.00

µ

0

300

600

900

1200

0 250 500 750 1000

t

n
u

m
b

e
r

o
f

e
v
e

n
ts

Fig. 5.1 Poisson event data (black line, bottom), true MJP path (black line, top) and MJP
posterior (solid red) for 3 data sets with fi = 0.005 (left), 0.01 (middle) and 0.02 (right). The
Poisson rates of the observed process were λ0 = 1.0 and λ0 = 1.5 for all 3 sets.

when the number of data points grows compared to the number of jumps in the hidden

process.

Fearnhead and Sherlock (2006) sample from the true posterior P(µ0:T |D,Λ) by applying

the forward-backward algorithm of Baum et al. (1970) in continuous time. They start by

sampling the state of the MJP at each of the Poisson events. Then for each interval between

the events, the hidden process is sampled given the start and the end state. Naturally, this

approach leads to high computational costs linear in the number of events. As described in

section 5.1.2 the computational costs of our algorithm are linear in the number of jumps of

the MJP. This would suggest that our algorithm performs especially well for n≫ c, where

n = n0 +n1 is the number of total Poisson events and c = c0 + c1 is the number of jumps in

the MJP.

To test this we generated 45 synthetic datasets. We used 3 different sets for the Poisson

rates of the observed process (λ0 = 0.5,λ1 = 0.75, λ0 = 1.0,λ1 = 1.5 and λ0 = 2.0,λ1 = 3.0)

and 3 different sets for the jump rates of the hidden process (f0 = f1 = 0.005, f0 = f1 = 0.01,

f0 = f1 = 0.02). For each of the 9 possible parameter combinations the hidden MJP and the

MMPPs were then sampled from the prior. Figure 5.1 shows the data, the hidden MJP and

the posterior over the MJP for three of these data sets.

To achieve identifiably we ensured that λ1 ≥ λ0 by switching the parameters and the

jump process if necessary. For our sampler this was done during the simulation while for the

exact Gibbs sampler the parameters where switched, if necessary, after the simulation.

For the exact Gibbs sampler we used the program written by Chris Sherlock which is

implemented in C. Our random walk sampler was written in C++ and for all simulations

both programs were run on an Intel Xeon CPU with 2.40 GHz. Figure 5.2a shows that, as

expected, the computational costs of our algorithm are linear in the number of jumps in the

posterior over the path of the MJP. For the exact Gibbs sampler such a correlation cannot be

80 Applications using the Poisson Process

x

x

xx
x

xx

x

x

xx

xx
x

x

x

x

x
xx

xx

x

x

x

xx

x

x

x

x

x

x

xx

x

xx

x

x
x

x

x

x

x

xx xxx xx xx x xxx xx

x
x

xxx
x

x
xx xx

x xxx

xxxxx xxxx xx xxxx

0.01

0.03

0.05

5 10 15
2.0e−05

2.5e−05

3.0e−05

3.5e−05

4.0e−05

5 10 15

number of jumps

ti
m

e
r

p
e

r
it
e

ra
ti
o

n

(a) Time per iteration over posterior mean
jumps in the hidden Markov process, for the
exact Gibbs sampler (red crosses) and the ran-
dom walk sampler (blue crosses).

xxxxx
x

xx
xxx

x
xxx

x

x

x

x

x x

x

xx
xx

x
x

x
x

x
x

x
xxxx

xx
xxx xxx

x
x

xxx

xx
x
x

xx

xxx

x

x

x
xxx
xx
xx
x
xx
x

x

x

x
x

x
xx

x
xx
x

xx
x

x
x

x

2e−05

3e−05

4e−05

1000 2000

0.01

0.02

0.03

0.04

0.05

500 1000 1500 2000 2500

number of events

ti
m

e
r

p
e

r
it
e

ra
ti
o

n

(b) Time per iteration over the number of Pois-
son events in the data, for the exact Gibbs
sampler (red crosses) and the random walk
sampler (blue crosses).

Fig. 5.2 Comparison of the time per iteration between the exact Gibbs sampler and our
random walk algorithm.

observed. The number of Poisson events seems to have a similar effect on the exact Gibbs

sampler, but not the random walk sampler (see figure 5.2b).

It is clear that our sampler is significantly faster per iteration (≈ 1020 times faster for

fi = 0.005, ≈ 860 times faster for fi = 0.01 and ≈ 700 times faster for fi = 0.02, averaged

over 5 datasets), because a complete Gibbs update is slower than computing a random-walk

proposal and the Metropolis-Hastings acceptance ratio. However, the samples produced by

our method are more highly correlated than those of the exact Gibbs sampler. To assess

this we computed the integrated autocorrelation time, as described in section 2.1.3, for the

samples of each of the 4 parameters. The integrated autocorrelation time is a measure of

inefficiency for Monte Carlo samples and can be interpreted as the number of correlated

samples that correspond to one uncorrelated sample.

The autocorrelation functions of the four parameters for one of the datasets are depicted

in figure 5.3. As predicted, the random walk sampler generates considerably more correlated

samples than the exact Gibbs sampler. This impression is confirmed when we compare the

integrated autocorrelation times in table 5.1. For the exact Gibbs sampler the integrated

autocorrelation times are 8 to 135 times lower than for our sampler. We follow Sherlock

(2006) and multiply the integrated autocorrelation time with the time it takes to compute

one sample as a performance measure. The product can be considered as the time it takes to

produce one uncorrelated sample.

The comparison for this value are shown in figure 5.4. For fi = 0.005 our sampler

performed around 33 times better than the exact Gibbs sample when averaged over all 4

5.1 Switching Process 81

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

lag

a
u

to
c
o

rr
e

la
ti
o

n

λ0

λ1

f+

f−

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

lag

a
u

to
c
o

rr
e

la
ti
o

n

λ0

λ1

f+

f−

Fig. 5.3 Autocorrelation of the posterior samples for the four parameters from one of the data
sets with fi = 0.005, λ0 = 1.0 and λ1 = 1.5 . The exact Gibbs sampler’s results are on the
left and the random walk sampler’s results are on the right.

Parameter values IAT RW IAT GI
f+ f− λ0 λ1 f+ f− λ0 λ1 f+ f− λ0 λ1

0.005 0.005 0.5 0.75 50.0 40.5 47.5 39.0 2.34 2.47 4.05 4.81
0.005 0.005 1.0 1.5 92.8 76.6 99.0 103 1.84 3.31 6.91 3.70
0.005 0.005 2.0 2.0 44.7 40.6 95.0 90.7 1.37 1.33 1.71 1.37
0.01 0.01 0.5 0.75 169 168 228 169 4.35 4.10 7.88 5.69
0.01 0.01 1.0 1.5 153 153 247 182 2.92 2.53 5.01 4.30
0.01 0.01 2.0 2.0 207 241 262 199 1.92 1.79 2.30 2.01
0.02 0.02 0.5 0.75 754 717 837 774 8.55 8.80 12.7 14.7
0.02 0.02 1.0 1.5 417 408 405 340 5.67 4.75 5.99 6.12
0.02 0.02 2.0 2.0 439 297 499 335 3.88 3.40 4.20 4.36

Table 5.1 Integrated autocorrelation time (IAT) for the samples from our random walk sampler
(RW) and the exact Gibbs sampler of Fearnhead and Sherlock (2006) (GI). The values were
averaged over 5 datasets for each parameter combination.

λ0 = 0.5 λ1 = 0.75 λ0 = 1.0 λ1 = 1.5 λ0 = 2.0 λ1 = 3.0

0

50

100

150

200

λ0 λ1f+f− λ0 λ1f+f− λ0 λ1f+f−

Parameter

S
p

e
e

d
 u

p

f = 0.05

f = 0.10

f = 0.20

Fig. 5.4 The time needed to compute one uncorrelated sample of the parameters with the
exact Gibbs sampler divided by the same value for the random walk Sampler. The bars are
average values over 5 datasets for each parameter configuration.

82 Applications using the Poisson Process

Fig. 5.5 The generative model of the Poisson process driven by a hidden Chinese restaurant
process.

parameters. The advantage declines for higher values of fi but at fi = 0.02 it is still 11 times

better.

Although we apply a random walk sampler the need for tuning is minimal. The only

parameters affecting the sampler are the distribution over the possible actions to generate a

new proposal path and the variance of the Gaussian used to shift the time of a jump. The

former should be fairly independent of the data and the latter can be chosen by looking at

the time span of the data and a rough estimate of the number of jumps in the MJP. We chose

both values by hand but combining our algorithm with an adaptive MCMC approach might

further enhance the efficiency of our sampler.

5.2 Chinese Restaurant Process

As for the Ornstein-Uhlenbeck process in section 4.4, we now change the model of the hidden

process from a Markov jump process with a fixed number of states to a Chinese restaurant

process where the number of states is estimated as part of the Bayesian inference.

5.2.1 Model

The model is very similar to the one in section 4.4, with the differences that we only have

one parameter for the observed process (the Poisson rate λ) and the observations are without

noise. The model is visualized in figure 5.5 and we quickly recap it here: The hidden process

is constructed from drawing c jump times from a Poisson process with constant rate f . The

5.2 Chinese Restaurant Process 83

rate of the observed process, λ0:T , is separated into c+1 parts by this and during each of

these segments it stays constant in one state λi. The unknown probability π from which

we draw the λi value for each segment comes from a Dirichlet process with concentration

parameter α and base distribution Pλ . Integrating out π gives a Chinese restaurant process

with the same parameters. This means that after each jump the value of λ to be used in the

following segment is either drawn from the base distribution (with probability α/(α + i),

where i is the number of segments until the jump) or it is drawn from the λ values of the

previous segments with equal probability.

The prior probability over a path λ0:T therefore is

P(λ(0:T)| f ,α,Pλ) ∝ f ce− f T αs
∏

s
j=1

(

Pλ (λ j)(# j−1)!
)

∏
c
i=0(α + i)

, (5.8)

and the likelihood of the data given a path of λ0:T remains as in (5.4):

P(D|λ0:T) =
s

∏
i=1

λ ni

i exp(−ζiλi), (5.9)

but now the number of states s varies between samples.

5.2.2 Sampler

The sampler for this model is a mixture of the sampler applied to the Ornstein-Uhlenbeck

model with a hidden Chinese restaurant process, described in section 4.4.2, and the sampler

used for the MMPP model from section 5.1.2.

Sampling the Parameters

The parameter sampling follows the same strategy as for the MMPP model: We assume

Gamma priors over the λi with shape parameter aλ and scale parameter bλ and this leads to

gamma posteriors similar to (5.5)

P(λi|D,µ0:T) ∝ Gamma(λi;ni +1,1/ζi)Gamma(λi;aλ ,bλ)

∝ Gamma(λi;aλ +ni,bλ/(1+ζibλ))
(5.10)

from which we can directly sample. In contrast to the MMPP model, the state of the first

segment does not depend on the jump rate f . Because of this if we assume a conjugate

gamma prior over the jump rate

P(f) = Gamma(f ,a f ,b f), (5.11)

84 Applications using the Poisson Process

the posterior is again gamma distributed, as was the case for the OU models:

P(f |D,λ0:T) ∝ Gamma(fi;ci +1,ζi)Gamma(fi;a f ,b f)

∝ Gamma(fi;a f + ci,b f /(1+ζib f)).
(5.12)

Sampling the Jump Times

As in section 4.4.2 we use the 4 actions to shift the time of a jump, add a jump, remove a

jump and switch the state of a segment. As our model is built around single-dimensional data,

i.e. there is only one Poisson process with rate λ (t) which generates the data, we can always

order our states by ascending λ values. This ordering allows us to introduce two new actions:

Joining two neighboring states and the reverse action of dividing a state into two. As was the

case for the actions of adding and removing two jumps for the switching models, these new

actions are not necessary for a valid sampler but they improve the mixing. In this case they

allow the sampler to change the number of states more easily. With only the previous actions

reducing the dimensionality of the state space could take a lot of steps if the states were used

in many segments, because the state in each of these segments would need to be changed

through individual actions. The data we studied in section 4.4 did not have states who were

used as often as the data we will be looking at here, so the problem did not arise before. In

the following all the proposal actions are described.

Shifting the time of a jump This action remains the same as before, we still draw from a

truncated Gaussian with standard deviation σt .

Adding a jump The time of the new jump is still drawn uniformly from the observed time

period and with probability qn a new value of λ is added, otherwise one of the already used

values is reused for the new segment.

Removing a jump One of the jumps is chosen with equal probability and removed.

Switching a state One of the segments is chosen at random and its state is either switched

to an already used one or a new value of λ is drawn. As when adding a jump the latter option

is chosen with probability qn.

5.2 Chinese Restaurant Process 85

If adding a jump or switching the state of a segment creates a new state and a correspond-

ing new value of λ , then it is drawn from the conditional density

P(λ ∗s+1|Y,λ(0:T)) ∝ Gamma(λ ∗s+1;a,b)Gamma(λ ∗s+1;ns+1 +1,1/ζs+1)

∝ Gamma
(

λ ∗s+1;a+ns+1,b/(1+ zetas+1b)
)

.
(5.13)

When the segment uses an already existing value of λ , the state to use is drawn from a

discrete distribution whose probabilities are proportional to (5.13), but with ns+1 and ζs+1

being the number of Poisson events and the time in the modified segment, respectively.

Join Divide

Fig. 5.6 The new actions of joining two states and dividing a state into two new states. The
old path is drawn in blue, while the modified part is drawn in green.

Joining two states We draw two neighboring states (with respect to their λ values) at

random and join them into a new state. All the segments which were assigned to the two

states are assigned to the new state and the λ value of the joined state is the geometrical

mean of the two states’ λ values:

λ ∗j =
√

λi1λi2 . (5.14)

Dividing a state We randomly choose one of the states with at least two segments assigned

to it. Then a small factor ε > 1 is drawn from a shifted exponential distribution and is used

to create the new λ -values by multiplying and dividing the λ value of the chosen state with

86 Applications using the Poisson Process

it. This leads to two new states with

λ ∗j1 = λi ε (5.15)

λ ∗j2 =
λi

ε
(5.16)

as their Poisson rates. The distribution ε is drawn from is truncated to assure that λ j1 and λ j2

are between the neighboring values of λ 1. As a last step the segments used by the old state

are randomly assigned to the new states with probability proportional to (5.13). If it happens,

that by the last segment all other segments are assigned to only one of the new states then the

last segment is assigned to the other state. It is important to note that this approach allows

every possible assignment which uses both new states to be drawn and that there is exactly

one way for each possible assignment to be drawn. This makes the Metropolis-Hastings

acceptance probabilities for both the join and the divide action simple to calculate.

The first 4 actions remain the same as in figure 4.16 and the new join and divide actions

are demonstrated in figure 5.6.

Acceptance Probabilities

After an action is chosen and the path λ0:T is modified to create the proposal λ ∗0:T we accept

it with probability

PMH = min

(

1,
P(D|λ ∗(0:T))

P(D|λ
(0:T))

Q(λ(0:T)|λ ∗(0:T))

Q(λ ∗
(0:T)|λ(0:T))

P(λ ∗(0:T)| f ,α,Pλ)

P(λ
(0:T)| f ,α,Pλ)

)

. (5.17)

As before, the likelihood ratio is computed the same way independent of the action chosen to

create the proposal path but the proposal and prior ratios

Ψ =
Q(λ(0:T)|λ ∗(0:T))

Q(λ ∗
(0:T)|λ(0:T))

P(λ ∗(0:T)| f ,α,Pλ)

P(λ
(0:T)| f ,α,Pλ)

(5.18)

depend on the chosen proposal action.

Shifting the time of a jump The acceptance ratio stays as in (4.26).

Adding a jump As for the CRP model with an OU process we need to distinguish two

cases when adding a jump: Either we add a new value λs+1 or we reuse an existing one. In

1If this was not assured, the join action could not reverse all possible outcomes of the divide action.

5.2 Chinese Restaurant Process 87

the first case the ratio is

Ψ =
qrT

qaqn(c+1)γ∗(λs+1)

f α

(α + c+1)
, (5.19)

with qn as the probability to add a new value λs+1 and γ∗(λi) being the gamma density at

λi with shape n∗i +1 and inverse scale τ∗i . This is proportional to the likelihood of the data

given the parameter λi and the new path λ ∗(0:T).

When we instead reuse an old state λi, we get

Ψ =
qrT

qa(1−qn)(c+1)p∗seg(i)

f (#∗i −1)
(α + c+1)

, (5.20)

where #i is the number of segments which use λi in the old path and p∗seg(i) denotes the

probability to choose λi for the segment (see section B.1 for details).

Removing a jump When removing a jump, we either remove the last instance of a state i

(#∗i = 0):

Ψ =
qaqncγ(λi)

qrT

(α + c)

f α
, (5.21)

or the state of the removed segment still exists in the proposed path: (#∗i > 0):

Ψ =
qa(1−qn)cpseg(i)

qrT

(α + c)

f (#i−1)
. (5.22)

Switching the state of a segment The state assigned to a segment is switched from λi to

λ j and we differentiate between four cases:

1. λi is still used in the proposal (#∗i > 0) and λ j is already assigned to another segment

(# j > 0):

Ψ =
pseg(i)

p∗seg(j)

(#∗j −1)

(#i−1)
. (5.23)

2. λi is still used in the proposal (#∗i > 0) and we introduce a new value λ j (# j = 0):

Ψ =
(1−qn)pseg(i)

qnγ∗(λ j)

α

(#i−1)
. (5.24)

88 Applications using the Poisson Process

3. λi is no longer used in the proposal (#∗i = 0) and λ j is already used in another segment

(# j > 0):

Ψ =
qnγ∗(λi)

(1−qn)p∗seg(j)

(#∗j −1)

α
. (5.25)

4. λi is no longer used in the proposal (#∗i = 0) and we introduce a new value λ j (# j = 0):

Ψ = γ(λi)/γ∗(λ j). (5.26)

Joining two states Joining two neighboring states i1 and i2 into a new state j leads to

Ψ =
qd ppar pε(ε)(s−1)

q js
∗
>1

ε

2λ j

pλ (λ
∗
j)(#

∗
j −1)!

α pλ (λi1)pλ (λi2)(#i1−1)!(#i2−1)!
, (5.27)

where qd and q j are the probabilities to choose the divide and join action, respectively, pε

is the density from which the factor ε > 1 is drawn and ppar is the probability to assign

the segments between states i1 and i2 like they are in the original path (see section B.1 for

details). s∗>1 is the number of states in the proposal with more than one segment assigned.

ε/(2λ j) is a Jacobian factor resulting from using the distribution over ε rather than that of

the λ -values when applying the join and divide actions.

Dividing a state For dividing state i into the new states j1 and j2 we get

Ψ =
q js>1

qd ppar pε(ε)s

2λi

ε

α pλ (λ
∗
j1
)pλ (λ

∗
j2
)(#∗j1−1)!(#∗j2−1)!

pλ (λi)(#i−1)!
. (5.28)

5.2.3 Results

Before applying the sampler on neuronal spiking data from the primary visual cortex, we

evaluate the sampler’s performance on toy datasets.

Synthetic Data

We are especially interested in how good the Chinese restaurant process model is able to

estimate the number of distinct states in the data. To investigate this we sampled 100 datasets

from the prior with the jump rate and concentration parameter fixed to f = 0.02 and α = 3.0,

respectively. For each dataset 1.1 million samples were generated from which the first

100,000 were dropped as burn-in. For each dataset this took around 25 seconds on average

using an Intel Xeon CPU with 2.40 GHz without any parallelization.

5.2 Chinese Restaurant Process 89

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

true number of states

p
o

s
te

ri
o

r
m

e
a

n
 n

u
m

b
e

r
o

f
s
ta

te
s

0

10

20

30

0 10 20 30

true number of jumps

p
o

s
te

ri
o

r
m

e
a

n
 n

u
m

b
e

r
o

f
ju

m
p

s

(a) Posterior mean vs. true number of states
(left) and jumps (right) for 100 data sets drawn
from the prior. The red line shows the identity
function which would represent the posterior
mean perfectly predicting the true number of
jumps and states in the data.

0

10

20

30

0 250 500 750 1000

t

λ

10

20

30

0 250 500 750 1000

t

λ

5

10

15

20

0 250 500 750 1000

t

λ

10

14

18

0 250 500 750 1000

t

λ

(b) Posterior of λ (t) vs. t for the first 4 out of
100 toy data sets. The true path of λ (t) is plot-
ted as a black line, while the posterior mean
is drawn as a dashed green lined surrounded
by a 95% confidence interval.

Fig. 5.7 Results for Poisson toydata with a hidden Chinese restaurant process.

As we can see in figure 5.7a the true number of jumps and states in the data seems to be

captured well by our posterior results, but when the number of distinct states becomes large

the posterior mean underestimate the true value. This is not surprising, because the more

jumps and states there are the more likely it is that the states are only active for a short time

or that states have very similar λ values associated with them. The values chosen for f and

α make the algorithm expect a smaller number of jumps and states and if there is not enough

(or even none) data to support a larger number of states then the posterior will not represent

it. For a diffusion process like the OU process, we would expect to still find these states

when we have denser observations. For point processes this would only be possible if we

observe the system over a longer time period and the state is revisited because the number of

observations is based on the rate of the process.

To show that the posterior is able to reconstruct the hidden path λ0:T figure 5.7b compares

it with the true path for 4 of the 100 datasets.

For the experiments the sampler used the true value of α = 3 but for real datasets α has

to be set manually and we often might only have a general idea of how many states we will

be expecting. To ensure that the posterior results are robust we let the sampler run with 100

different α values (from 0.1 to 10 in steps of 0.1) for the first 4 datasets. As can be seen in

figure 5.8 the model predicts a similar number of states even when the α parameter is very

different from the true value. For all 4 datasets and over the whole range of α values the

absolute difference between the posterior mean number of states and the true number is only

larger than 1 for the first dataset and only for very low values of α . These results indicate

90 Applications using the Poisson Process

2

4

6

8

0.0 2.5 5.0 7.5 10.0
α

n
u

m
b

e
r

o
f

s
ta

te
s

posterior mean

prior mean

true value

dataset 1

1

2

3

4

5

6

0.0 2.5 5.0 7.5 10.0

α

n
u

m
b

e
r

o
f

s
ta

te
s

dataset 2

2

3

4

0.0 2.5 5.0 7.5 10.0

α

n
u

m
b

e
r

o
f

s
ta

te
s

dataset 3

2

3

4

5

0.0 2.5 5.0 7.5 10.0

α

n
u

m
b

e
r

o
f

s
ta

te
s

dataset 4

Fig. 5.8 Posterior mean number of states (red line) for the first 4 of the 100 toy datasets with
α varying from 0.1 to 100. The prior mean number of states is plotted as a green line and the
true number of states and the true value of α in the set is indicated by horizontal and vertical
blue lines.

5.2 Chinese Restaurant Process 91

0

30

60

90

ra
te

triangle width = 0.1

triangle width = 1

triangle width = 10

0

50

100

540 550 560

time in s

o
ri

e
n

ta
ti
o

n
 i
n

 °

Fig. 5.9 Stimulus and spiking data for a
part of the recordings from the first neu-
ron. (top) Mean rates computed by using
a moving triangle function with three dif-
ferent parameters. (middle) Spiking data
with every vertical line representing the
time of a spike. (bottom) Orientation of
the moving bar stimulus.

3

4

5

6

0 4000 8000 12000

number of spikes

p
o

s
te

ri
o

r
m

e
a

n
 n

u
m

b
e

r
o

f
s
ta

te
s

0 50 100 150 200

posterior mean number of jumps

Fig. 5.10 Posterior mean number of states
and jumps for all 10 neurons. (left) Poste-
rior mean number of states vs. number of
spikes in the data for all neurons. (right)
Posterior mean number of states vs. the
posterior mean number of jumps.

that it is sufficient if we have a broad idea of the value of α or the number of states we expect

in the data, similar to what we saw when using the CRP model on gene expression data in

section 4.4.3. Another interesting observation is that when we look at dataset 1 and 4 the

number of states in the posterior seems to converge to a value below the prior mean for α

becoming very large. This would implicate that even if we choose a too high value of α the

model will not suffer from overfitting by creating a large number of states unless the data

forces it to.

Application to Neural Spiking Data

While Poisson models have been used extensively to model neuronal data (e.g. Nawrot et al.,

1999; Perkel et al., 1967) it has been established that Poisson processes are not an ideal

model for spike trains from single neurons (Barbieri et al., 2001). One of the reasons, which

has been explained in section 2.2.2, is the refractory period of neurons. In a Poisson process

the waiting time to the next event is exponentially distributed. This means that in a Poisson

model spikes can be generated directly after one another whereas neurons cannot create

another action potential for a brief period after they have fired. This should not be a problem

in our case, because we do not use our model to simulate neuronal spiking but as an inference

tool. A second reason why the Poisson model is seen as flawed is bursting (Kass et al., 2005),

i.e. rapid firing of neurons during a short period of time. This would be a problem if we

92 Applications using the Poisson Process

Fig. 5.11 Example of the moving bar stimulus utilized in the neuronal measurements. The
green arrow represents the movement direction.

modeled a neuron by a Poisson process with a constant rate but bursting is essentially what

our model is made for: sudden changes in the spiking rate of a neuron.

The dataset examined in the following was obtained from multi-site silicon electrodes

in the primary visual cortex (V1) of an anesthetized cat. For further information on the

experimental setup see Blanche et al. (2005). The data consists of spike trains from 10

different neurons while bars of varying orientation moved through the visual field of the cat

(see figure 5.11 for an example of the stimulus). The orientation of the bars ranged from 0◦

to 340◦ in steps of 20◦. While the order of the orientation was randomized every orientation

was shown 8 times for 5 seconds each. Over the whole experiment this results in 720 seconds

of total recording time. As the stimulus is discrete in its orientation, we expect to find discrete

states in the response of the neurons. A section of the spiking times from one neuron together

with the orientation of the stimulus is shown in figure 5.9.

A very simple approach for estimating the spiking rate of neurons is sliding a triangle

function over the data and counting the number of spikes under it, weighted by the value of

the function at their time (applied by e.g. Nelson et al., 2009; Wang et al., 2005). A problem

of this approach is that the width of the window has to be chosen very carefully. As can be

seen in figure 5.9, a small window makes it possible to find short periods of high spiking

activity (the bursting behavior mentioned previously) but also leads to the estimated rate

jumping even when a single spike occurs. A wider window, on the other hand, will not

be strongly influenced by spontaneous spiking, but will smooth out bursts and therefore

underestimate their rate or even make it hard to recognize them. Our model is able to find

bursting periods and cluster them by their spiking rate, but at the same time the spikes

between bursts are explained by ground states with lower rates, but longer durations.

5.2 Chinese Restaurant Process 93

We ran our sampler separately for all 10 neurons with an exponential prior over f with

10−4 as the mean jump rate2 and the concentration parameter α = 0.1. We chose a low value

for α because we expect a large number of jumps (overall the orientation of the stimulus

changes 143 times) but expect a lot of the segments to have similar states. Another reason

for our choice of α is that our model is very flexible and a too high value of α can lead

to overfitting by creating a large number of states to explain random variations and the

approximations made by the model. To rule out that this has a strong effect on the results

we ran a second simulation with a ten times higher prior mean for f (10−3) and α = 0.5.

This lead to almost the same posterior number of states and only a slightly higher number of

jumps, of which a large fraction had no impact because the state was left unchanged. For

more information about this second run see the appendix C.3. For the base distribution over

the firing rate Pλ we chose an exponential distribution with a prior mean of 106 which makes

it a fairly uninformative prior, because the duration of a single spike is in the order of 1ms

(Huttenlocher, 1967) which gives an upper bound for the firing rate at around 1000/s. For

each neuron we generated 110 million samples and dropped the first 10 million as burn-in.

Per neuron this took between 80 and 325 minutes on an Intel Xeon CPU with 2.4 GHz. The

posterior estimate had converged after a tenth of that time at the latest.

While this may seem like a long time it has to be remembered that to obtain similar

results with methods which assume a fixed number of states, Bayes factors would need to be

computed for different dimensionalities of the state space. This is a much more complicated

task than just estimating the posterior for a range of dimensionalities and would require more

computationally demanding approaches, e.g. a bridge sampler (Meng and Wong, 1996), in

order to get appropriate results. On top of that the range has to be decided beforehand making

it necessary to at least know the minimum and maximum number of states to investigate. In

contrast to this, our sampler typically gave a good estimate of the number of states just a few

seconds into the simulation. We only need to run the simulation longer if we are interested in

a very accurate estimate of the posterior distribution over the number of states.

Despite the number of spikes differing widely between the recordings of the 10 neurons

(from 725 to 13244) the posterior mean number of states in the results are very similar,

ranging from 3 to 6 states but mostly clustered around 4, as can be seen in figure 5.10. In our

model the mean number of states grows with the number of jumps3 and this behavior seems

to be replicated in the data, but it is clear that the posterior differs strongly from the prior—a

priori the expected number of states is under 2—which indicates that the posterior results are

dominated by the likelihood and not the prior.

2All rates for this experiment are in jumps per seconds.
3See the prior mean curve in figure 4.20 for how the prior behaves relative to the number of jumps.

94 Applications using the Poisson Process

0.00

0.25

0.50

0.75

1.00

p
ro

b
a

b
ili

ty

state 1 2 3 4 5

260 270 280 290

time in s

Fig. 5.12 Detail of the posterior states for
one of the neurons. In the bottom the spik-
ing times are depicted as vertical black
lines. The colored areas in the top repre-
sent the state with the highest posterior
probability. The probability of that state
is plotted as the height of the area. The
states are ordered by their firing rate λ in
ascending order.

0

25

50

75

1 2 3 4 5

states

p
o

s
te

ri
o

r
m

e
a

n
 f

ir
e

 r
a

te

1 2 3 4 5

states
1 2 3 4 5

states
1 2 3 4 5

states

Fig. 5.13 Posterior mean firing rates λi

at the MAP number of states for 4 of the
neurons.

Figure 5.12 shows a small time frame of the spiking data from one of the neurons together

with the MAP state over time and its posterior probability. While the states with low firing

rates persist over multiple seconds, the bursting states are only active during very short time

periods. The value of the firing rates in similar position seems to be similar over the different

neurons, i.e. the rates of low firing base states and high firing burst states are in similar orders

of magnitude. This is shown in figure 5.13 but it has to be remembered that the orientation is

not the only feature of the stimulus that determines the neurons’ reaction. The position of the

stimulus in the visual field and phenomenons such as synaptic short-term plasticity (Varela

et al., 1997) also influence the firing rate which could explain, why only some of the neurons

reach the highest bursting rate.

The high-firing bursting states are only active for short periods of times and as figure

5.14 shows they are clearly orientation dependent. This is not surprising as it is widely

known that neuron’s in mammals primary visual cortex are orientation dependent (Hubel and

Wiesel, 1959; Priebe and Ferster, 2008) but it is interesting that our model is able to pick up

discrete states corresponding to the orientation of the stimulus. The state with the highest

firing rate seems to be concentrated on a range of about 60◦ while the lower bursting states

cover neighboring orientations. The lower bursting states (and with a lower probability the

higher ones) are also active for the preferred stimulus rotated by 180◦ which is a bar of the

same orientation moving in the opposite direction. The base state with the lowest firing rate

5.2 Chinese Restaurant Process 95

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty state 1

state 2

state 3

state 4

state 5

state 6

Neuron 0

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 2

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 4

0.0

0.2

0.4

0.6

0 100 200 300

orientation
s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 8

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 10

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 18

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 23

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 25

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 26

0.0

0.2

0.4

0.6

0 100 200 300

orientation

s
ta

te
 p

ro
b

a
b

ili
ty

Neuron 27

Fig. 5.14 Probability distribution over the orientation of the stimulus while a state is active
for all 10 neurons. A probability p at orientation o for state i means that the probability of the
stimulus having the orientation o while being in state i is p. States are ordered by the firing
rate λ in ascending order. All results are calculated conditioned on the maximum-a-posteriori
number of states.

96 Applications using the Poisson Process

might indicate inhibition, because it is mostly active between the favored orientation and the

reversed one.

To test if our assumption of discrete firing rates conserves important properties of the

data, we computed the tuning curves for all 10 neurons. This was achieved by counting the

number of spikes which were observed while an orientation was presented and dividing it by

the 40 seconds each orientation was shown over the experiment. Additionally, we computed

the tuning curves obtained from our posterior results, by calculating the average posterior

mean rate for each orientation of the stimulus. Both tuning curves are compared for all 10

neurons in figure 5.15 and are found to be mostly overlapping. This result suggests that our

assumption does retain the important aspects of the data, instead of forcing suboptimal firing

rates on specific time segments because only a limited set of states is available.

While finding bursts of neuronal activity may seem like a simple task, naive approaches,

like smoothing the data to get a mean firing rate over time, can fail easily, if the time

resolution is not chosen carefully. Even then there is always a trade-off between a good

estimate of the bursting rates and a too sensitive method whose results are influenced by

single spikes (as seen in figure 5.9). Because of these challenges there has been extensive

work on the strategies to identify and measure neuronal bursts (e.g. Chiappalone et al., 2005;

Kaneoke and Vitek, 1996). The most widely used model seems to be the Poisson surprise

model of Legéndy and Salcman (1985). For this model the surprise value S is computed,

which describes how unlikely it is for a number of spikes to occur in a time frame, when

assuming that they are generated from a homogeneous Poisson process. Gourévitch and

Eggermont (2007) dropped the Poisson assumption in their rank surprise model but both

models only looked at clusters of spikes and decided if the cluster represented a burst or not.

This binary assumption is also maintained in the model of Tokdar et al. (2010), who use a

Gibbs sampler similar to Fearnhead and Sherlock (2006) for posterior inference. In contrast

to these approaches our model is not only able to distinguish between burst and non-burst

phases, but can find different levels of bursting and non-bursting states and therefore allows

better estimation of the firing rates associated to a specific stimulus.

The data from all 10 neurons was used separately to be able to order the states by their λ

firing rates. Using all the data combined as a 10 dimensional Poisson process modified by

a shared Chinese restaurant process would have been possible as well4 but this would lead

to a large number of states because there are 18 different stimuli and they are in different

parts of the visual field. Looking at single neurons this would mean that despite a very large

number of states and therefore different spiking rates only a handful of them would represent

4Albeit, only with some changes to the join and divide action because the notion of neighboring states
would have to be defined differently.

5.2 Chinese Restaurant Process 97

2.5

5.0

7.5

10.0

12.5

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 0

5

10

15

20

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 2

5

10

15

20

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 4

3

6

9

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 8

5

10

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 10

0

5

10

15

20

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 18

16

20

24

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 23

0

1

2

3

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 25

1

2

3

4

5

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 26

10

20

30

40

0 100 200 300

orientation in °

fi
ri

n
g

 r
a

te

Neuron 27

Fig. 5.15 Tuning curve for all 10 neurons from the data and the posterior mean. The red line
denotes the tuning cure calculated from the data by counting the number of spikes while an
orientation is shown and dividing by the duration the orientation was shown. The red line
represents the average posterior mean firing rate from our sampler’s results vs. the orientation
of the stimulus.

98 Applications using the Poisson Process

0

20

40

60

time in s

λ

prior mean lengthscale=0.25

prior mean lengthscale=0.50

prior mean lengthscale=0.75

prior mean lengthscale=1.00

260 270 280 290 300

time in s

Fig. 5.16 Results of the SGCP Sampler on a small part of the data of one neuron. The black
dashed line shows the posterior mean from our random walk sampler while the colored lines
are results from the SGCP sampler with different hyper-parameters The spiking times are
plotted as vertical black lines in the bottom.

different behavior for each neuron. The rest of the states would just be needed to explain the

state of other neurons in the population. The large number of states would slow down the

inference process, and even worse, lead to lower quality estimates of the base firing rates of

the neurons because they would be spread out over multiple states. Inference in a model with

multiple neuronal spike trains would make sense, if we had a large number of neurons and

subsets of them shared very similar orientation tuning curves. This was not the case for the

data used in this chapter.

Comparison with a Model Assuming a Continuous Rate

A major assumption of our model is that the Poisson rates are discrete values therefore it

is interesting to compare our method’s results to models which assume a continuous rate.

There have been multiple methods for inference on inhomogeneous Poisson processes driven

by a continuous rate (Arkin and Leemis, 2000; Zhao and Xie, 1996). One of the more recent

ones was proposed by Adams et al. (2009). Their model assumes Gaussian process prior

over a transformation of the intensity function λ (t) and they describe a MCMC sampler for

posterior inference. When applying the sampler to the neural data used in this thesis the

computational costs are extremely demanding. To cope with this we restricted the inference

task to a small time window of the spike train from only one of the neurons.

The results of the Sigmoidal Gaussian Cox Process (SGCP) model of Adams et al. (2009)

are shown in figure 5.16 for 4 different values of the length scale hyper-parameters and

compared to the results from our model. The results from the SGCP model have similar

problems to the moving average approach described earlier and shown in figure 5.9: Either

5.2 Chinese Restaurant Process 99

the bursts are smoothed out or the method becomes so sensitive that even single spikes

strongly influence the estimated firing rate.

The format of the neural data seems to be especially bad for the performance of the

SGCP algorithm because of its structure. SGCP uses uniformization, a principle introduced

by Grassmann (1977), which allows to sample from inhomogeneous Poisson processes by

first sampling from a homogeneous one. The rate of the homogeneous Poisson process is

required to be an upper bound to the inhomogeneous rate. A sample from the latter can be

generated by thinning the Poisson events with a certain probability, which depends on the

rate of both the inhomogeneous and the homogeneous process. The SGCP sampler uses

uniformization by creating an extension of the original dataset from a homogeneous Poisson

process, with the rate being an estimate of the overall maximum rate over the whole time

period, and the added data points being thinned out afterwards. In the case of the neural data

the maximum rate has to be the spiking rate during the strongest bursts, but this leads to a

very large number of (later thinned out) data points in the times between bursts.

We started by using a flat prior over the maximum rate, but this led to a very low value

compared to the bursting rates we observe in the data (see figure 5.16). When we tried to fix

the maximum rate around our inferred highest bursting rate the algorithm became extremely

slow, taking hours to even generate 100 samples on a standard computer, while only being

applied to less than a tenth of the data for a single neuron.

Acknowledgements

The Neural data used in section 5.2.3 was recorded by Tim Blanche in the laboratory of

Nicholas Swindale, University of British Columbia, and downloaded from the NSF-funded

CRCNS Data Sharing website.

Chapter 6

Applications with Other Processes

This chapter consists of short descriptions of the sampler being applied to models which

use the Cox-Ingersoll-Ross process or the multivariate Ornstein-Uhlenbeck process as the

observed processes. The last section gives a brief guide how the samplers needs to be adapted

to model combinations, which were not part of this thesis.

6.1 Cox-Ingersoll-Ross Process

This section summarizes the work of Herrmann (2014) who modified our sampler to work

with data generated by a Cox-Ingersoll-Ross (CIR) (Cox et al., 1985) process with the

parameters jumping according to the changepoint model of section 4.3.

6.1.1 Model

As described in section 2.1.2 the CIR process resembles the Ornstein-Uhlenbeck process

with the important difference that the strength of the diffusion depends on the value of the

process. We here use the form of the SDE from Herrmann (2014)

dX = λ (A−X)dt +σ
√

XdW (6.1)

which is the same as in (2.26) but with A = b/λ .

The small difference to the OU process complicates inference because instead of an

easy to calculate Gaussian density, the transition density of the CIR process is a noncentral

chi-square distribution which is computationally very expensive to evaluate (L’Ecuyer and

Owen, 2010, p. 301). Additionally, when assuming noisy observations the unobserved values

of the process at the time of the observations cannot be marginalized out analytically as has

102 Applications with Other Processes

been done for the OU process in section 4.1.1. Therefore an additional Gibbs step to sample

the unobserved process would be necessary (Stramer et al., 2010).

Because of these restrictions there have been numerous attempts to approximate the

transition density and likelihood (Malham and Wiese, 2013; Sahai and Ojeda, 2003) to enable

efficient Bayesian inference of the CIR model. In Herrmann (2014) all the observations were

assumed to be exact and the transition density was approximated by a Gaussian distribution

with the same mean and variance as the noncentral chi-square distribution. This allows to

calculate the likelihood without problems when there are no jumps in the parameters between

observations:

P(D|θ0:T) = P(d1|θ(t1))
n

∏
i=2

P(di|di−1,θ(ti−1))

= P(X(t1)|θ(t1))
n

∏
i=2

P(X(ti)|X(ti−1),θ(ti−1)).

(6.2)

If there are jumps between the observations, the unknown state of the CIR process X(τ j)

at the point of the jump has to be marginalized out:

P(X(ti)|X(ti−1)) =
∫ ∞

0
P(X(ti)|X(τ j))P(X(τ j)|X(ti−1))dX(τ j) (6.3)

For the OU process this was possible as we have shown in section 4.1.1. When using the

moment matching approximation for the CIR process on the other hand, the variance of the

Gaussian transition density depends on the value of the process:

v(∆t,X(tk−1)) = X(tk)
σ2

λ
(exp(−λ∆t)− exp(−2λ∆t))+

Bσ2

2λ
(1− exp(−λ∆t))2. (6.4)

This means that the integral in (6.3) is no longer solvable analytically. Herrmann (2014)

decided to numerically approximate the integral by the Gauss-Kronrod approach (Dahlquist

and Björck, 2008, p. 573).

6.1.2 Sampler

The sampler is very similar to the sampler for the hidden changepoint process from section

4.3. The Gibbs step of sampling the jump times uses the same 3 actions of adding, removing

and shifting a jump. Naturally the acceptance probability has to be computed using the

approximation of the CIR process’ likelihood. According to Herrmann (2014) using the

6.1 Cox-Ingersoll-Ross Process 103

moment matching approximation instead of the exact transition density gives accurate results

for Aλ ≫ σ2.

Sampling the parameters

While for the OU process A had a Gaussian posterior density if the prior was chosen

accordingly, this is no longer the case for the CIR process. A, λ and σ are all restricted

to non-negative values and therefore they are all updated by doing a random walk on their

logarithm, i.e. drawing proposals from the log-normal distribution

Q(A∗|A,σA) =
1

A∗
√

2πσ2
A

exp
(

− log(A∗)− log(A)
2σ2

A

)

, (6.5)

and accordingly for λ and σ .

Sampling f again can be done by directly sampling from the gamma posterior because a

conjugate gamma prior was chosen.

6.1.3 Application to Exchange Rate Data

One advantage of the CIR over the OU model is that the system noise automatically scales

with the value of the process. This behavior is expected for many applications and we can let

the system noise strength σ2 be unaffected by the hidden jump process without losing its

ability to scale. CIR processes have been used to model currency exchange rates (Ewald and

Wang, 2010) and therefore Herrmann (2014) applied them to the EUR/USD exchange rates

from the beginning of 2007, before the global financial crisis, until the beginning of 2013.

4 different datasets were compiled from the raw data, each spanning a different time

period and time scale (6 years, 1 year, 5 month and 3 days). For the sampler the times were

then scaled to 0 < t < 1000 for all 4 datasets. The Gaussian prior over A was chosen as

P(A) = N (A;mA,vA)mA =
max(D)+min(D)

2
vA = (mA +1.5max(D))2, (6.6)

where D represents the whole raw dataset.

Figure 6.1 shows the posterior results from the sampler for all 4 datasets. On all but the

smallest time scale a jump was found prior to two important events during that crisis1: On

the 16th of December 2008 the Federal Reserve of the United States (FED) set the overnight

federal funds rate to between zero and 0.25%. Roughly 3 months later, on the 18th of March

1The 3 day period in figure 6.1g and 6.1h did not include the second event.

104 Applications with Other Processes

1.3

1.4

1.5

1.1.2007 1.1.2009 1.1.2011 1.1.2013

date

E
U

R
/U

S
D

(a)

0.75

1.00

1.25

1.50

1.75

A

0

2

4

6

1.1.2007 1.1.2009 1.1.2011 1.1.2013

date

ju
m

p
 p

ro
b

a
b

ili
ty

(b)

1.3

1.4

1.5

1.6

1.7.2008 15.9.2008 1.12.2008 15.2.2009 1.5.2009

date

E
U

R
/U

S
D

(c)

1.2

1.3

1.4

1.5

1.6

A

0

5

10

15

1.7.2008 15.9.2008 1.12.2008 15.2.2009 1.5.2009

date

ju
m

p
 p

ro
b

a
b

ili
ty

(d)

1.25

1.30

1.35

1.40

1.45

3.11.2008 18.12.2008 3.2.2009 18.3.2009

date

E
U

R
/U

S
D

(e)

1.2

1.3

1.4

A

0

10

20

3.11.2008 18.12.2008 3.2.2009 18.3.2009

date

ju
m

p
 p

ro
b

a
b

ili
ty

(f)

1.34

1.36

1.38

1.40

1.42

1.44

15.12.2008 16.12.2008 17.12.2008

date

E
U

R
/U

S
D

(g)

1.30

1.35

1.40

1.45

A

0

10

20

30

40

15.12.2008 16.12.2008 17.12.2008

date

ju
m

p
 p

ro
b

a
b

ili
ty

(h)

Fig. 6.1 Results from the 4 datasets of different time periods. The data is plotted on the left
as a red line. On the top right the posterior mean of A vs. t is plotted in red with a 95%
confidence interval surrounding it. On the bottom right the probability of a jump over t is
drawn as a red line. The green shaded areas denote the time span of the next dataset and the
blue vertical lines are the launch of the Federal Reserve’s quantitative ease program on the
16th December 2008 and its expansion on the 18th March 2009. The figures were reproduced
with the data from Herrmann (2014).

6.2 Multivariate Ornstein-Uhlenbeck Process 105

2009, the FED announced an expansion of the quantitative easing program (Gance, 2014).

The jumps are always found prior to the events because they were either known beforehand

or similar actions were expected.

6.2 Multivariate Ornstein-Uhlenbeck Process

While in chapter 4 we already talked extensively about models using a multidimensional

Ornstein-Uhlenbeck process as its observed process, in all these cases the different dimen-

sions of the OU process were independent, conditioned on the path of the hidden parameter

process. This works well for the application to systems biology and the joint hidden jump

process allows for coupling between the dimensions but there are other models in which this

form of coupling is integrated in the stochastic differential equations of the non-changepoint

model. One example are dynamical systems where the dimensions can represent e.g. the

velocity and position of an object.

6.2.1 Model

Our model is a linear mass-spring-damper system, because they play an important role in

modeling robot motion (Morita and Sugano, 1995; Xu et al., 2011) and other fields like

computer graphics (Irving, 2007).

If x(t) represents the displacement and v(t) the velocity, then the state-space description

of the system becomes
dx(t) = v(t)dt

dv(t) = (−λx(t)− γv(t)+b)dt,
(6.7)

where γ represents the damping, λ the stiffness2 and b an external force (Williams and

Lawrence, 2007, pp. 5-7).

To modify this to our model class we let both λ and γ switch and account for noise in the

dynamics of the velocity by including a Wiener process dW :

dx(t) = v(t)dt

dv(t) = (−λ (t)x(t)− γ(t)v(t)+b)dt +σdW,
(6.8)

If we define X(t) = (x(t),v(t))⊤ we can write the SDEs in matrix form

dX(t) = (B−Λ(t)X(t))dt +ΣΣΣdW (6.9)

2We set the mass to m = 1 for simplicity.

106 Applications with Other Processes

with

Λ(t) =

(

0 −1

λ (t) γ(t)

)

,B =

(

0

b

)

and ΣΣΣ =

(

0 0

0 σ

)

. (6.10)

We choose a Chinese restaurant process to draw new parameters after each jump, as it is

our most flexible model and we are interested in using it on data where we don’t know the

exact dimensionality of the hidden state space.

6.2.2 Sampler

We can reuse our sampler for the independent Ornstein-Uhlenbeck processes in section 4.4

without making many changes.

Sampling of the Jump Times

The sampling of the jump times is exactly as described in section 4.4, since we have multiple

dimension we cannot have a linear ordering of the states and therefore do not use the join

and divide action used for the Chinese restaurant process driven Poisson process in section

5.2. The only change to the acceptance probabilities of the proposal actions is that we use the

likelihood ratio for the multivariate OU process. The calculation of the likelihood function

by integrating out the unknown state of the process X(t) at the time of the observations is

very similar to the univariate OU process. For a derivation see section A.5 in the appendix.

An important point to remember is that calculating the likelihood for a multivariate OU

process is slower than for a comparable OU process with conditional independent dimensions

because it includes the calculation of matrix exponentials which are computationally costly.

Sampling the parameters

While we fix all parameters besides Λ in our example, we will discuss how the other

parameters can be sampled as well.

The elements of B are linear in the log-likelihood and can be sampled directly from a

multivariate Gaussian similar to the A and b parameters in chapter 4. The derivation is not

part of this sampler but should be fairly easy to obtain from the calculation of the multivariate

OU likelihood in section A.5 and the description of sampling A and b directly in section A.3.

The values of Λ and ΣΣΣ can be sampled by doing a Metropolis random walk update on

their components. If the parameters need to be positive we can sample from a log-normal

distribution with its mode at the current value. If this is not required we use a simple Gaussian

random walk.

6.2 Multivariate Ornstein-Uhlenbeck Process 107

Dataset Number of Jumps Number of States
True Posterior Mean True Posterior Mean

1 3 3.4 2 2.0
2 4 5.6 3 3.0
3 8 8.8 4 3.9

Table 6.1 Posterior mean and true number of jumps and states for the synthetic multivariate
OU datsets.

As for the previous models, the jumping rate of the hidden process f can be directly

sampled from its posterior gamma distribution (5.12) if we assume conjugate gamma priors.

6.2.3 Results & Possible Applications

We generated 3 datasets with 2, 3 and 4 states. Besides the jumping parameters λ (t) and

γ(t) all parameters were the same for all 3 datasets and left fixed to their true values for the

simulation. The simulation parameters were b = 1.0, σ = 0.04 and σobs = 0.1. As the jumps

processes were generated by hand there were no true values for f and α but we fixed them to

f = 0.05 and α = 2.0 for all 3 datasets. The base distribution over the values of λ (t) and

γ(t) were set to Gaussian distributions with zero mean and variance 10.

In figure 6.2 the datasets as well as the posterior results are shown. We generated 2.1

million samples for each dataset and dropped the first 100,000 samples as burn-in. Running

on an Intel Xeon CPU with 2.40 GHz this took roughly 5.5, 8.5 and 12 hours for the dataset

with 2, 3 and 4 states, respectively. The path of λ (t) is almost perfectly matched. γ(t) on the

other hand, is not as accurately predicted. The broader posterior over γ(t) can be explained

by the fact that v(t) oscillates around zero which makes it hard to predict the value of γ

because its influence goes to zero as v(t) goes to zero. This can be especially seen when

looking at the middle segment of the second dataset in figure 6.2d which has a very high

variance. When we look at the corresponding observations in figure 6.2c we can see that

they are clustered around zero for v(t). The posterior mean number of jumps and states is

compared to the true values in table 6.1 and besides a tendency to overestimate the number

of jumps they are very close.

While this is only a short experiment on synthetic data, it looks very promising and

could be further expanded on. We motivated the multivariate OU process by the use of

mass-spring-damper systems in robotics and that field would certainly be an interesting

application in the future.

108 Applications with Other Processes

x

x

x
x
x

xx

x
x

x

x
x
x

x
x
x

x
x
x
x

x

x

x
x

x

x

x
x

x

x

x

x

x
x
x

x

x

x

x

x

x

x

x

x

x

x
x

x
x

x
x

xx
x

x
x
x

x

x
x

x

x

x
x

x

x

xx

x

x
x
x
x
x

x

x

x

x
x

x

x

x

x

x

xxx

x

x

x

x

x
xx

x

xx

x
x

x
x

x

x

x

x

x

x

x
x
x

x
x
x

xx

xxx
x
x

xx

x

x

x
x
x
x

x

xx

x
x

xx
x

x

x

x

x

x

x
x

x

x
xxx

x

x

x

x

x

x
xx

x

x

x
x

x

x
x

x

xxx

x

x
xxx

x

x

x

x

x

x

x

x

x
x

x

x

xx

x

x
x
x
xx

x
x

x

x

x

xx

x
x
x0.0

2.5

5.0

0 25 50 75 100

t

X

(a)

0.0

0.2

0.4

0.6

t

λ

0.0

0.1

0.2

0.3

0 25 50 75 100

t

γ

(b)

x

x

x
x

x

x

x
x

x

x

x
x

xx

xx
x

x
x

xx

x

x

x

x

x

xx

xx

x

x

xx

xx

xx
xx

x

x

x

x
x

x

x

x
x
xx

xx

x
xx

x
xx

xx
x

x
x

x

x

x
x
x

x
x

x

xx

x

x

x
x

xx

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x
x

x
x
xx

x
x
x

x

x
x

x

x
x

xx

xx

x

x

x

x

x

x

xx
x
x

x

x
x

x

xx

xx
x
x

x

x

x

x

x
x

xx

xx
x

x
x
x

x

xxxxx
x

x

x
x
xx

xx

xx
x
x

xx
x

x

x
x

xx
x

x

x
x

x

x

x

x

x

x

x

x

x

x

xx

x

xx

xx
x
x

x

x

x

xx

−2.5

0.0

2.5

5.0

7.5

0 25 50 75 100

t

X

(c)

0.0

0.2

0.4

0.6

t

λ

0.0

0.2

0.4

0.6

0 25 50 75 100

t

γ

(d)

x

x

x
x
x

x

x
x

xx

x

x
x

x

x

x
x

x
xx

x

x

x

x
x

x

x

xx
xx

x
x

x

x

x
x

x

x

x

x

xx

x

xx

x

x

x

x
xx

x

x
xx

x
xx

x

x

x

xx
x

x

x
x

x

x
x

x
xx

x
xx

xx

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x
x

xx

x

xx

x

x

x

x
x

x

x

x
x

x
xx

x
x

x

x
x

x

x

x
xx

x

xx

x

x
xx

xx

x

x

xx

x

x
xx

x

x

x

x

x

x

x

x

xx

x

x

x

x

xxx
x
x

x

x

x
x
xx

xxx
xx

x
x

xx

x

x
x

xx

x

x

x

x

x

x

x

x
xx

x

x

x

x

x

x

x

x

−2.5

0.0

2.5

5.0

0 25 50 75 100

t

X

(e)

0.0

0.2

0.4

0.6

0.8

t

λ

0.0

0.2

0.4

0.6

0 25 50 75 100

t

γ

(f)

Fig. 6.2 Results for synthetic data from a multivariate OU process. On the left the true path
of X(t) is plotted as a solid line and the noisy observations are plotted as crosses. Red always
represents x(t) and blue v(t). On the right we show the path of λ (t) (top) and γ(t) (bottom).
The true path is drawn as a solid black line while the posterior mean is a colored line with a
95% confidence interval surrounding it.

6.3 Modifying the Sampler to Other Processes 109

6.3 Modifying the Sampler to Other Processes

The structure of our sampling algorithm makes it easy to adapt it to different combinations

of observed and hidden processes. This section aims to be a brief guide about how to modify

the sampler to work with process combinations which were not discussed in this thesis.

6.3.1 The Likelihood

Most of the sampler’s computation time is needed for calculating the likelihood for the

Metropolis-Hastings acceptance rate. If the parameters can be sampled directly, their condi-

tional distribution arises from the form of the likelihood as well. For all models in chapter

4 and 5, we could analytically compute the likelihood given a set of observations D by

marginalizing over the path of the observed X0:T
3

P(D|θ0:T) =
∫

P(D|X0:T ,θ0:T)P(X0:T |θ0:T)dX0:T . (6.11)

If the model is modified to another observed process, for which the integral can not be solved

analytically, we suggest two possibilities: Either the likelihood is approximated, as proposed

for the CIR process in section 6.1, or another Gibbs step is implemented, during which a path

X0:T is sampled from P(X0:T |D,θ0:T). Instead of the likelihood P(D|θ0:T), the acceptance

probability would then include P(X0:T |θ0:T).

Another important factor is the actual implementation of the likelihood calculation. In

the case of an observed Poisson process in chapter 5, large parts of the likelihood canceled

each other out when the acceptance probability of a proposal was calculated. Because

the computation of the likelihood function usually makes up a large part of the overall

computation time, optimization schemes, like e.g. preprocessing the data or saving partial

results for later reuse, can speed up the sampler enormously.

6.3.2 Sampling the Jump Process

What ever kind of jump process is chosen, the three proposal actions of adding, removing or

shifting a jump are always necessary. If adding a single jump often leads to low acceptance

rates because it changes a large part of the path, as was observed for the switching model in

section 4.1, proposal actions which add jumps but leave most of the hidden process’ path

intact should be introduced. For models using the Chinese restaurant process the action of

switching the state of a segment is important to speed up the convergence of the sampler. If

3For the Poisson model the observations contained complete information over the path, therefore this was
not necessary.

110 Applications with Other Processes

the number of segments is high, joining and dividing states allows the sampler to more often

change the dimensionality of the hidden process.

It would certainly be interesting to implement different forms of the hidden process,

e.g. have non-exponential waiting times for the jumps or a different prior distribution over

the number of states than the CRP implies. Such changes would only affect one part of

our sampler: the acceptance probabilities of the proposal actions when sampling the jump

process. All the other parts of the sampler are conditioned on a particular path of the jump

process and therefore independent from its prior distribution. Similar to the likelihood, it is

beneficial to look for any parts of the prior probability over the hidden process which cancel

out in the acceptance probability.

For some choice of observed or hidden process there might be proposal actions not

discussed in this thesis, which accelerate the convergence of the sampler. When creating a

new proposal action one has to be very careful to not invalidate the sampler. If the action

cannot reverse itself, an inverse action has to be introduced, similar to the add-remove and

join-divide pairs. When defining how these actions work on the path it is important to check

that every possible outcome of the proposal action can be reverted by its inverse action and

vice versa. If this is not the case the sampler will no longer have the target distribution as its

equilibrium distribution.

6.3.3 Sampling the Parameters

If it is possible to directly sample from the conditional posterior of the parameters, conditioned

on the current jump process and the observations, then this should be the preferred approach.

The only exception would be if there is evidence that using an indirect sampling method is

able to produce samples of the same quality faster.

For parameters where the conditional posterior does not have a simple form we applied

a Metropolis-Hastings random walk. When the parameters were defined on the real line

we chose a Gaussian random walk, when they had to be positive a random walk on their

logarithm was implemented, i.e. the proposal was a log-normal distribution with its mode on

the last value. More complex sampling strategies like adaptive MCMC (Andrieu and Thoms,

2008) or Hybrid Monte Carlo (Duane et al., 1987) could be employed as well if they promise

to improve the quality of the samples.

Chapter 7

Conclusion

This thesis introduced a framework for a MCMC sampler which is able to sample from the

posterior distribution of a range of changepoint models. We introduced the class of models

we are interested in, which consists of an observed stochastic process whose parameters

undergo sudden changes at random times. We introduced different forms of the hidden

jump process including a form based on a Chinese restaurant process (CRP) which allows

inference over the number of states.

Our sampler was demonstrated to be very flexible and to work well on many different

combinations of observed and hidden process. We showed that the sampler’s results improve

on previous approximative approaches and open up possibilities for complex models of gene

expression to be investigated which were not tractable before. Additionally, the CRP model

allowed us to verify assumptions about the number of transcription factors involved in gene

expression data from yeast cells. Besides the application to gene expression data, our sampler

was able to correctly capture known historic events for two different finance datasets.

After modifying our sampler to Poisson process observations, it proved to outperform

other sampling algorithms on datasets generated by a Markov modulated Poisson process.

The Poisson process observation model was combined with the CRP prior and applied to

neuronal spiking data. The posterior results produced by the sampler managed to find discrete

bursting states in the spiking data and connect them to the stimulus in the experiment. Our

sampler was proven to enable efficient Bayesian inference for a broad range of changepoint

models and we gave a brief explanation how to modify it to combinations of stochastic

processes not covered in this thesis.

112 Conclusion

7.1 Related Work

Changepoint analysis is a very active field and other approaches to it have been mentioned

throughout this thesis. Before we draw our conclusions we want to discuss and compare

recent work in the field which has not been, or only briefly, mentioned.

7.1.1 General Changepoint Models

While birth-death moves have been used for changepoint estimation since the well known

reversible jump sampler of Green (1995), our model is different in several aspects. In the

reversible jump setting a change in the number of jumps was treated as switching to a

different model. In contrast, our model formulation allows both the number of changepoints

and the number of states (in the CRP model) to vary inside the model, because we treat the

hidden jump process as a infinite dimensional path object. Furthermore, we introduce more

complex proposal actions than Green (1995) and broaden the scope of its application by

allowing diffusion processes to be modified by the hidden jump process.

Fearnhead (2006) also works with an unknown number of changepoint but these change-

points can only happen at discrete points in time. Conditioned on the number and position

of changepoints, as well as the parameters in each segment, the observations in our class

of models come from a Markov process. However, in the model of Fearnhead (2006) the

observations are i.i.d., conditioned on the hidden process. They describes a method to directly

sample from the posterior of their model based on the forward-backward algorithm. This

approach was extended in Fearnhead and Liu (2011) to allow dependencies across segments

but the observations inside a segment remain i.i.d. and therefore cannot be produced by a

stochastic process, as is the case in our OU model.

Fixing the number of changepoints beforehand leads to undesired effects according to

Koop and Potter (2009). Their solution is to allow changepoints to be able to occur outside

of the scope of the data. This seems less elegant than our approach of directly sampling the

number of changepoints inside the model.

A model where Gaussian processes describe latent forces in robot movements was

proposed by Alvarez et al. (2010). The latent forces can switch between different latent

functions but in contrast to our model the number of jumps is fixed beforehand and states

cannot be reused.

An approach for changepoint inference by using a nested Laplace approximation instead

of MCMC sampling was described by Wyse et al. (2011). As expected, the approximation is

faster than MCMC methods and it allows for dependencies between observations from the

7.1 Related Work 113

same segment. However, the algorithm requires time discretization and only delivers results

conditioned on the (approximated) maximum-a-posteriori number of jumps.

One example of an online changepoint algorithm is presented by Grande (2014). Their

algorithm describes the data stream by switching Gaussian processes and decides online if a

changepoint improves the likelihood significantly. As an online method, the approach is very

fast but does not perform Bayesian inference. The results from our sampler were used by

Grande (2014) to measure the quality of their algorithm.

7.1.2 Methods Based On The Dirichlet Process

All the models described so far only work with either a fixed number of states or non-reusable

states. In the following we discuss work, which tries to estimate the number of states as well,

similar to our CRP model.

The infinite HMM, an extension of a HMM with a countably infinite number of states,

was proposed by Beal et al. (2001). It enables HMMs to have a flexible number of states by

utilizing a Dirichlet process to integrate out the infinite number of parameters. In contrast to

our model, it is based on discrete time and there is no observed process on top of the hidden

state, just an emission distribution with parameters depending on the hidden state.

The concept of the infinite HMM was generalized by Teh et al. (2006), who proposed a

hierarchical Dirichlet process (HDP). The HDP is used to model groups of data by a set of

Dirichlet processes which are coupled through their base distribution which itself is drawn

from a Dirichlet process. In Teh et al. (2006) it was shown that the infinite HMM of Beal

et al. (2001) is a special case of the HDP.

Fox et al. (2011) extend the HDP to a so-called sticky HDP, which has a hyper-parameter

controlling the probability of self-transitions. They combine the sticky HDP with dynamical

linear systems similar to what we did in section 6.2. However, the important difference to

our model is that their model is still defined in discrete time and therefore has the form of

an HMM, while our model is defined in continuous time, which e.g. does not require us to

choose the grain size of the time discretization while we can still benefit from a high time

resolution when necessary.

Another difference is the flexibility of our model: Plugging in different observed or

hidden processes would in many cases only require modifications of the prior or likelihood

ratios in the acceptance probabilities. The sampler of Fox et al. (2011) could not be as easily

adapted. Additionally, the algorithm of Fox et al. (2011) samples a complete path in every

iteration. Especially for a very fine time discretization this can be computationally very

expensive. If the posterior is very specific, each iteration will only result in small differences

114 Conclusion

of the hidden path, similar to our random walk approach, but with higher computational

costs.

Our sampler framework aims to be very easily modified to work on a large variety of

models. Naturally, there are many algorithms which are made specifically for a particular

problem. We give an overview over recent methods which focus on applications which are

also part of this thesis.

7.1.3 Markov Modulated Poisson Processes

Scott (1999) applied a two-state MMPP to fraud detection in network traffic data. Inference

was done by a Gibbs sampler after approximating the MMPP as a discrete time HMM.

A different approach was taken by Kou et al. (2005) who integrate out the hidden MJP

completely. It is not possible to directly sample from the resulting posterior probabilities over

the parameters. Therefore, their approach is an adaptive random walk sampler directly on

the parameters. Fearnhead and Sherlock (2006) demonstrated that their exact Gibbs sampler

provides better samples than the algorithm of Kou et al. (2005). However, the downside of

the exact Gibbs sampler in contrast to our approach is that its computation costs grow linearly

with the number of Poisson events, as shown in section 5.1.3. The same point was made by

Rao and Teh (2013). Their algorithm uses uniformization to get samples from the posterior

MJP without the computation time scaling with the number of observations. In contrast to

our approach, their algorithm has not been shown to work with an observed diffusion process

or a different hidden process than the classical MJP.

7.1.4 Systems Biology

The model of transcriptional regulation in chapter 4 is based on Sanguinetti et al. (2009) and

Opper et al. (2010) who derived it by extending the model of Barenco et al. (2006) to include

a binary telegraph process which represents the on and off switching of a transcription factor.

Opper et al. (2010) present an exact solution as well as a mean field approximation and

demonstrate its use both on synthetic and real data, including the ComS protein data.

In Opper and Sanguinetti (2010) multiple telegraph processes with combinatorial effects

were introduced and a variational approximation derived. In contrast to our model, they did

not include a system noise term.

For the switching model a very similar approach to ours was developed in parallel by

Jenkins et al. (2013). However, they formulate their model in a reversible jump setting and

do not introduce any further proposal actions than Green (1995) did.

7.1 Related Work 115

Ocone and Sanguinetti (2011) and Ocone and Sanguinetti (2013) augment the previous

models to hierarchical models representing feed-forward loop motifs in gene expression, i.e.

a master transcription factor controls a slave transcription factor, which controls a number

of target genes. The master transcription factor is a binary telegraph process as in the

previous models but the slave transcription factor has a continuous concentration value and

only influences the target genes if the concentration rises above a threshold. Variational

approximations are derived for these models. To our knowledge our sampling algorithm can

not be extended to these kinds of models without using an approximation of the likelihood

as we can never exactly predict if the continuous value surpasses the threshold between

observations.

7.1.5 Finance

Many changepoint models with financial applications assume that the observations in a

segment are i.i.d. from a distribution whose parameters change over time. Examples for

this approach are Giordani and Kohn (2008) and Allen et al. (2013). The latter apply a

non-parametric approach to model the unknown densities and find the maximum likelihood

changepoint positions. Applied to daily data from multiple stock indices from 2003 to 2013,

Allen et al. (2013) find changepoints and connect them to events during the global financial

crisis similar to our results for the DAX dataset in section 4.3.

A switching model with observations being produced by a CIR process was introduced

by Dahlquist and Gray (2000). In contrast to the work summarized in section 6.1, their model

was only described in discrete time for a fixed number of states. Additionally, they performed

maximum-likelihood estimation instead of Bayesian inference.

7.1.6 Neuron Spiking

The aim of Pillow et al. (2011) is inferring the position of changepoints in a stimulus, given a

neuron population’s spiking response. The stimulus is assumed to come from a multivariate

distribution whose parameters undergo sudden changes. The paper proposes a maximization

approach to obtain the maximum-a-posteriori estimate and a Gaussian approximation to

infer the full posterior distribution. Their model shares with Putzky et al. (2014) that the

spiking data is not assumed to be generated by a Poisson process. Instead the generalized

linear model of Nelder and Wedderburn (1972) is applied, which has been used extensively

in the analysis of spiking data. Putzky et al. (2014) combine a Markov decision tree with

binary splits with the generalized linear model to represent the hidden states of neurons.

They employ a variational expectation maximization algorithm for inference and apply it

116 Conclusion

to spiking data from the primary visual cortex of an anesthetized macaque with a drifting

grating stimulus.

7.2 Discussion & Outlook

The overview of other approaches of changepoint estimation should emphasize that the

choice of continuous time and observations which are not i.i.d distinguishes our work from

most models in the field. While our birth-death approach might appear very simple and

inefficient we showed that it can outperform exact Gibbs sampling and is easily adapted to

different models. Before the current algorithm we tried out a sampler which drew a complete

new path by using the posterior transition rates derived in section A.2 of the appendix. This

was only an approximation to drawing from the correct conditional probability because the

transition rates were assumed to be piecewise constant. The proposal worked well most of

the time, but sometimes little details in the posterior got lost in the approximation. When

despite of the approximation, a path including these details was proposed, it was immediately

accepted and the sampler got stuck with it for thousands of iterations. This was the result

of the proposal ratio in the Metropolis-Hastings acceptance probability being extremely

low. This observation should caution against applying too complex and not well understood

proposal mechanisms.

Regarding the CRP model, α is the parameter which controls the dimensionality of the

jump process. Its choice can be interpreted not only as a prior estimate of the number of

states but as the perspective from which we want to look at the data. Lower values of α

represent an interest in large scale changes, ignoring the small details. However, this does not

work if there is a lot of data which suggests otherwise. As an example we used our Poisson

CRP sampler on access log data of the TU Berlin’s website. The dataset consists of over 9

million timed accesses over the period of a week. When looking at the empirical rate, it is

obvious that the changes are continuous and not sudden. Even for extremely low values of α

the CRP did not stop adding states until we stopped the algorithm. The preliminary results

showed that the process was fitting a step function to the continuous rate.

Although our prior over the CRP jump process does not induce state-dependent transition

rates1, this does not hold for the posterior. If needed, we can compute the posterior transition

matrix with state-dependent jump rates from the samples.

An interesting approach for further research could be to look at different prior distributions

over the parameters, e.g. to have a formulation which allows an unknown number of

1This is only true if we treat jumps which end up in the same state as state transitions. Since these kind of
jumps are rarely seen in the posterior this should not change the statetment.

7.2 Discussion & Outlook 117

reusable states but does not facilitate the "rich-get-richer" effect of the CRP. Additionally,

the assumption of exponential waiting times is not necessary for our sampler to work. If we

would assume that the time to the next jump is e.g. gamma distributed, the only change in

the sampling algorithm would be in the acceptance probabilities.

Considering further applications on neural data it might be interesting to change the

observation model to come from a more complex model than a Poisson process. The model

could be more closely based on neurobiology, e.g. the generalized linear or an integrate and

fire model. The major disadvantage of such an approach is that we would lose the ability to

calculate the likelihood as quickly as for the Poisson model.

A more general improvement of the sampler could be to apply adaptive MCMC methods

to sample the parameters whose conditional posteriors are not of a simple form we can

directly sample from. This could also reduce the necessary effort when applying the sampler

to new datasets.

As far as further applications to real world data go, the task of segmenting robot motion

data we suggested in section 6.2 looks very promising. This would be the same task as in

Alvarez et al. (2010) but their model did not allow for the number of states to be unknown.

The results could be used to learn motion primitives for a framework similar to that of

Paraschos et al. (2013). The same model could further be applied to motion data from other

fields, e.g. motion capturing or the analysis of the bee waggle dance.

Bibliography

Adams, R. P., Murray, I., and MacKay, D. J. C. (2009). Tractable Nonparametric Bayesian
Inference in Poisson Processes with Gaussian Process Intensities. In Proceedings of the
26th Annual International Conference on Machine Learning, ICML ’09, pages 9–16, New
York, NY, USA. ACM.

Alberts, B. (1989). Molecular Biology of the Cell. Garland Pub., 2 edition.

Allen, D. E., McAleer, M., Powell, R. J., and Kumar-Singh, A. (2013). Nonparametric
Multiple Change Point Analysis of the Global Financial Crisis. Available at SSRN 2270029.

Alvarez, M., Peters, J. R., Lawrence, N. D., and Schölkopf, B. (2010). Switched Latent
Force Models for Movement Segmentation. In Advances in Neural Information Processing
Systems, pages 55–63.

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and Computing,
18(4):343–373.

Aparicio, O., Geisberg, J. V., and Struhl, K. (2001). Chromatin Immunoprecipitation
for Determining the Association of Proteins with Specific Genomic Sequences In Vivo,
chapter 17. John Wiley & Sons, Inc.

Archambeau, C., Opper, M., Shen, Y., Cornford, D., and Shawe-Taylor, J. S. (2008). Varia-
tional Inference for Diffusion Processes. In Platt, J., Koller, D., Singer, Y., and Roweis,
S., editors, Advances in Neural Information Processing Systems 20, pages 17–24. Curran
Associates, Inc.

Arkin, B. L. and Leemis, L. M. (2000). Nonparametric Estimation of the Cumulative
Intensity Function for a Nonhomogeneous Poisson Process from Overlapping Realizations.
Management Science, 46(7):989–998.

Balachandran, A., Voelker, G. M., Bahl, P., and Rangan, P. V. (2002). Characterizing User
Behavior and Network Performance in a Public Wireless LAN. SIGMETRICS Perform.
Eval. Rev., 30(1):195–205.

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press.

Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., and Brown, E. N. (2001). Construc-
tion and analysis of non-Poisson stimulus-response models of neural spiking activity. J.
Neurosci. Methods, 105(1):25–37.

120 Bibliography

Barenco, M., Tomescu, D., Brewer, D., Callard, R., Stark, J., and Hubank, M. (2006).
Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome
biology, 7(3):R25.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The
Annals of Mathematical Statistics, 41(1):164–171.

Bayes, T. and Price, R. (1763). An Essay towards Solving a Problem in the Doctrine of
Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to
John Canton, A. M. F. R. S. Philosophical Transactions, 53:370–418.

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2001). The Infinite Hidden Markov
Model. In Advances in neural information processing systems, pages 577–584.

Berg, B. A. and Billoire, A. (2008). Markov Chain Monte Carlo Simulations. Wiley
Encyclopedia of Computer Science and Engineering.

Bernardo, J. and Smith, A. (2009). Bayesian Theory. Wiley Series in Probability and
Statistics. Wiley.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning. Springer-Verlag, New
York, Inc., New York, USA, 1st edition.

Blanche, T. J., Spacek, M. A., Hetke, J. F., and Swindale, N. V. (2005). Polytrodes: High-
Density Silicon Electrode Arrays for Large-Scale Multiunit Recording. Journal of Neuro-
physiology, 93(5):2987–3000.

Blazek, R. B., Kim, H., Rozovskii, B., and Tartakovsky, A. (2001). A novel approach
to detection of denial-of-service attacks via adaptive sequential and batch-sequential
change-point detection methods. In Proceedings of IEEE systems, man and cybernetics
information assurance workshop, pages 220–226. Citeseer.

Brooks, S., Gelman, A., Jones, G., and Meng, X. (2011). Handbook of Markov Chain Monte
Carlo. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press.

Calderhead, B. and Girolami, M. (2009). Estimating Bayes factors via thermodynamic inte-
gration and population {MCMC} . Computational Statistics & Data Analysis, 53(12):4028
– 4045.

Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika,
83(1):81–94.

Chen, J. and Gupta, A. (2011). Parametric Statistical Change Point Analysis: With Applica-
tions to Genetics, Medicine, and Finance. SpringerLink : Bücher. Birkhäuser Boston.

Chiang, R., Liu, P., and Okunev, J. (1995). Modelling mean reversion of asset prices towards
their fundamental value. Journal of Banking & Finance, 19(8):1327–1340.

Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., and van Pelt, J. (2005).
Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks
of neurons . Neurocomputing, 65–66(0):653–662.

Bibliography 121

Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of
Econometrics, 86(2):221 – 241.

Chronopoulou, A. and Viens, F. (2012). Estimation and pricing under long-memory stochastic
volatility. Annals of Finance, 8(2-3):379–403.

Cowles, M. K. and Carlin, B. P. (1996). Markov Chain Monte Carlo Convergence Diagnostics:
A Comparative Review. Journal of the American Statistical Association, 91:883–904.

Cox, D. R. (1955). Some Statistical Methods Connected with Series of Events. Journal of
the Royal Statistical Society. Series B, 17(2):129–164.

Cox, J. C., Ingersoll, Jonathan E., J., and Ross, S. A. (1985). A Theory of the Term Structure
of Interest Rates. Econometrica, 53(2):385–407.

Crick, F. H. C., Barnett, L., Brenner, S., and Watts-Tobin, R. J. (1961). General Nature of the
Genetic Code for Proteins. Nature, 192:1227–1232.

Dahlquist, G. and Björck, Å. (2008). Numerical Methods in Scientific Computing: Volume
1. SIAM e-books. Society for Industrial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104).

Dahlquist, M. and Gray, S. F. (2000). Regime-switching and interest rates in the European
monetary system . Journal of International Economics, 50(2):399 – 419.

Dale, A. (1991). Thomas Bayes: a biographical sketch. In A History of Inverse Probability,
volume 16 of Studies in the History of Mathematics and Physical Sciences, pages 1–15.
Springer US.

Dongarra, J. and Sullivan, F. (2000). Guest Editors’ Introduction: The Top 10 Algorithms.
Computing in Science & Engineering, 2(1):22–23.

Dowling, J. E. (1992). Neurons and Networks: An Introduction to Neuroscience. Belknap
Press of Harvard University Press.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo.
Physics letters B, 195(2):216–222.

Dunlop, M., Cox, R., Levine, J., Murray, R., and Elowitz, M. (2008). Regulatory activity
revealed by dynamic correlations in gene expression noise. Nature Genetics, 40:1493–
1498.

Eldar, A. and Elowitz, M. B. (2010). Functional roles for noise in genetic circuits. Nature,
467(7312):167–173.

Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002). Stochastic gene
expression in a single cell. Science, 297(5584):1129–1131.

Ewald, C.-O. and Wang, W.-K. (2010). Irreversible investment with Cox–Ingersoll–Ross
type mean reversion . Mathematical Social Sciences, 59(3):314 – 318.

Fearnhead, P. (2006). Exact and efficient Bayesian inference for multiple changepoint
problems. Statistics and Computing, 16(2):203–213.

122 Bibliography

Fearnhead, P. and Liu, Z. (2011). Efficient Bayesian analysis of multiple changepoint models
with dependence across segments. Statistics and Computing, 21(2):217–229.

Fearnhead, P. and Sherlock, C. (2006). An exact Gibbs sampler for the Markov-modulated
Poisson process. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 68(5):767–784.

Fernandes, H. C. and Weigel, M. (2011). Non-reversible Monte Carlo simulations of spin
models. Computer Physics Communications, 182(9):1856–1859. Computer Physics
Communications Special Edition for Conference on Computational Physics Trondheim,
Norway, June 23-26, 2010.

Fischer, W. and Meier-Hellstern, K. (1993). The Markov-modulated Poisson process (MMPP)
cookbook . Performance Evaluation, 18(2):149–171.

Fouque, J.-P., Papanicolaou, G., and Sircar, K. R. (2000). Mean-reverting stochastic volatility.
International Journal of theoretical and applied finance, 3(01):101–142.

Fox, E., Sudderth, E., Jordan, M., and Willsky, A. (2011). Bayesian nonparametric inference
of switching dynamic linear models. Signal Processing, IEEE Transactions on, 59(4):1569–
1585.

Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation
for Bayesian Inference. Chapman and Hall/CRC, 2nd edition.

Gance, P. (2014). Timeline: Fed’s Bernanke saw U.S. economy through turbulent times.
Reuters, 30rd January 2014. Available: http://www.reuters.com/article/2014/01/30/us-usa-
fed-bernanke-timeline-idUSBREA0T0AL20140130 [Last accessed: 26th June 2015].

Gardiner, C. (2009). Stochastic Methods: A Handbook for the Natural and Social Sciences.
Springer Series in Synergetics. Springer Berlin Heidelberg, 4 edition.

Gelenbe, E. (1979). On the Optimum Checkpoint Interval. J. ACM, 26(2):259–270.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–741.

George, E. I., Makov, U. E., and Smith, A. F. M. (1993). Conjugate Likelihood Distributions.
Scandinavian Journal of Statistics, 20(2):147–156.

Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4):473–483.

Ghahramani, Z. (2005). Nonparametric Bayesian methods. Tutorial presentation at the UAI
Conference in Edinburgh, Scotland [Last accessed: 13th May 2015].

Gillespie, D. T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. The
Journal of Physical Chemistry, 81(25):2340–2361.

Giordani, P. and Kohn, R. (2008). Efficient Bayesian inference for multiple change-point
and mixture innovation models. Journal of Business & Economic Statistics, 26(1).

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Applications of
mathematics. Springer.

Bibliography 123

Goggans, P. M. and Chi, Y. (2004). Using thermodynamic integration to calculate the posterior
probability in Bayesian model selection problems. In AIP Conference Proceedings, volume
707, pages 59–66. IOP INSTITUTE OF PHYSICS PUBLISHING LTD.

Gourévitch, B. and Eggermont, J. J. (2007). A nonparametric approach for detection of
bursts in spike trains. Journal of Neuroscience Methods, 160(2):349–358.

Gowrishankar, J. and Harinarayanan, R. (2004). Why is transcription coupled to translation
in bacteria? Molecular Microbiology, 54(3):598–603.

Grande, R. C. (2014). Computationally efficient Gaussian Process changepoint detection
and regression. PhD thesis, Massachusetts Institute of Technology.

Grassmann, W. (1977). Transient solutions in Markovian queueing systems. Computers &
Operations Research, 4(1):47–53.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4):711–732.

Grewal, M. and Andrews, A. (2011). Kalman Filtering: Theory and Practice Using MATLAB.
Wiley.

Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford, T. W.,
Hannett, N. M., Tagne, J.-B., Reynolds, D. B., Yoo, J., et al. (2004). Transcriptional
regulatory code of a eukaryotic genome. Nature, 431(7004):99–104.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109.

Herrmann, J. (2014). Bayesian Inference for a Cox-Ingersoll-Ross Model with changing
Parameters and Application to Finance Data. Master thesis, TU Berlin.

Heuer, A., Müller, C., and Rubner, O. (2010). Soccer: Is scoring goals a predictable
Poissonian process? EPL (Europhysics Letters), 89(3):38007.

Hodgkin, A. L. and Huxley, A. F. (1939). Action potentials recorded from inside a nerve
fibre. Nature, 144(3651):710–711.

Hoel, P., Port, S., and Stone, C. (1972). Introduction to Stochastic Processes. The Houghton
Mifflin Series in Statistics. Houghton Mifflin Comp.

Honerkamp, J. (1994). Stochastic dynamical systems: concepts, numerical methods, data
analysis. VCH.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148(3):574–591.

Huttenlocher, P. R. (1967). Development of cortical neuronal activity in the neonatal cat.
Experimental Neurology, 17(3):247–262.

Irving, G. (2007). Methods for the physically based simulation of solids and fluids. PhD
thesis, Stanford University.

124 Bibliography

Jacobsen, M. (2006). Point Process Theory and Applications: Marked Point and Piecewise
Deterministic Processes. Probability and Its Applications. Birkhäuser Boston.

Jarrett, R. (1979). A note on the intervals between coal-mining disasters. Biometrika,
66(1):191–193.

Jaynes, E. and Bretthorst, G. (2003). Probability Theory: The Logic of Science. Cambridge
University Press.

Jeffreys, H. (1935). Some Tests of Significance, Treated by the Theory of Probability.
Mathematical Proceedings of the Cambridge Philosophical Society, 31:203–222.

Jeffreys, H. (1998). The Theory of Probability. OUP Oxford.

Jenkins, D. J., Finkenstädt, B., and Rand, D. A. (2013). A temporal switch model for
estimating transcriptional activity in gene expression. Bioinformatics, 29(9):1158–1165.

Jensen, C. S. and Kong, A. (1995). Blocking Gibbs Sampling in Very Large Probabilistic
Expert Systems. Internat. J. Human–Computer Studies, 42:647–666.

Jongbloed, G., Van Der Meulen, F. H., Van Der Vaart, A. W., et al. (2005). Nonparametric
inference for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli, 11(5):759–791.

Kalos, M. and Whitlock, P. (2008). Monte Carlo Methods. Wiley.

Kandel, E., Schwartz, J., and Jessell, T. (2000). Principles of neural science. McGraw-Hill,
Health Professions Division, fourth edition.

Kaneoke, Y. and Vitek, J. (1996). Burst and oscillation as disparate neuronal properties.
Journal of Neuroscience Methods, 68(2):211–223.

Kass, R. E. and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical
Association, 90(430):773–795.

Kass, R. E. and Ventura, V. (2001). A Spike-Train Probability Model. Neural Computation,
13(8):1713–1720.

Kass, R. E., Ventura, V., and Brown, E. N. (2005). Statistical Issues in the Analysis of
Neuronal Data. J Neurophysiol, 94(1):8–25.

Kendall, W., Liang, F., and Wang, J. (2005). Markov Chain Monte Carlo: Innovations and
Applications. Institute for Mathematical Sciences lecture notes series. World Scientific.

Kleinsmith, L. and Kish, V. (1995). Principles of cell and molecular biology. HarperCollins,
2 edition.

Kloeden, P. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations.
Applications of mathematics : stochastic modelling and applied probability. Springer.

Ko, S. I. M., Chong, T. T. L., and Ghosh, P. (2015). Dirichlet Process Hidden Markov
Multiple Change-point Model. Bayesian Anal., 10(2):275–296.

Bibliography 125

Koop, G. and Potter, S. M. (2009). Prior Elicitation In Multiple Change-Point Models.
International Economic Review, 50(3):751–772.

Kou, S. C., Sunney Xie, X., and Liu, J. S. (2005). Bayesian analysis of single-molecule
experimental data. Journal of the Royal Statistical Society: Series C (Applied Statistics),
54(3):469–506.

Kruschke, J. (2011). Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic
Press.

Lafuerza, L. F. and Toral, R. (2011). Exact solution of a stochastic protein dynamics model
with delayed degradation. Phys. Rev. E, 84:051121.

Last, G. and Brandt, A. (1995). Marked Point Processes on the Real Line: The Dynamical
Approach. Graduate Texts in Mathematics. Springer.

Latchman, D. S. (1997). Transcription factors: An overview. The International Journal of
Biochemistry & Cell Biology, 29(12):1305 – 1312.

L’Ecuyer, P. and Owen, A. B. (2010). Monte Carlo and Quasi-Monte Carlo Methods 2008.
Mathematics and Statistics. Springer Berlin Heidelberg.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett,
N. M., Harbison, C. T., Thompson, C. M., Simon, I., Zeitlinger, J., Jennings, E. G.,
Murray, H. L., Gordon, D. B., Ren, B., Wyrick, J. J., Tagne, J.-B., Volkert, T. L., Fraenkel,
E., Gifford, D. K., and Young, R. A. (2002). Transcriptional Regulatory Networks in
Saccharomyces cerevisiae. Science, 298(5594):799–804.

Legéndy, C. R. and Salcman, M. (1985). Bursts and recurrences of bursts in the spike trains of
spontaneously active striate cortex neurons. Journal of Neurophysiology, 53(4):926–939.

Link, W. A. and Eaton, M. J. (2012). On thinning of chains in MCMC. Methods in Ecology
and Evolution, 3(1):112–115.

Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer.

Lo, A. W. and MacKinlay, A. C. (1988). Stock Market Prices Do Not Follow Random Walks:
Evidence from a Simple Specification Test. Review of Financial Studies, 1(1):41–66.

MacKay, D. J. C. (2002). Information Theory, Inference & Learning Algorithms. Cambridge
University Press, New York, NY, USA.

Malham, S. J. A. and Wiese, A. (2013). Chi-Square Simulation of the CIR Process and the
Heston Model. International Journal of Theoretical and Applied Finance, 16(03):1350014.

Manly, B. F. (2006). Randomization, Bootstrap and Monte Carlo Methods in Biology, Third
Edition. Chapman & Hall texts in statistical science series. Taylor & Francis.

Marsh, T. A. and Rosenfeld, E. R. (1983). Stochastic Processes for Interest Rates and
Equilibrium Bond Prices. The Journal of Finance, 38(2):635–646.

Meng, X.-L. and Wong, W. H. (1996). Simulating Ratios of Normalizing Constants via a
Simple Identity: a Theoretical Exploration. Statistica Sinica, pages 831–860.

126 Bibliography

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics, 21(6):1087–1092.

Metropolis, N. and Ulam, S. M. (1949). The Monte Carlo Method. Journal of the American
Statistical Association, 44(247):335–341.

Moore, H. and Roberts, D. (2013). AP Twitter hack causes panic on Wall
Street and sends Dow plunging. The Guardian, 23rd April 2013. Available:
http://www.theguardian.com/business/2013/apr/23/ap-tweet-hack-wall-street-freefall [Last
accessed: 11th May 2015].

Morita, T. and Sugano, S. (1995). Design and development of a new robot joint using a
mechanical impedance adjuster. In Robotics and Automation, 1995. Proceedings., 1995
IEEE International Conference on, volume 3, pages 2469–2475. IEEE.

Nawrot, M., Aertsen, A., and Rotter, S. (1999). Single-trial estimation of neuronal firing
rates: From single-neuron spike trains to population activity. Journal of Neuroscience
Methods, 94:81–92.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the
Royal Statistical Society. Series A (General), 135(3):370–384.

Nelson, P. C., Smith, Z. M., and Young, E. D. (2009). Wide-Dynamic-Range Forward
Suppression in Marmoset Inferior Colliculus Neurons Is Generated Centrally and Accounts
for Perceptual Masking. J. Neurosci., 29(8):2553–2562.

Neuts, M. F. (1979). A versatile Markovian point process. Journal of Applied Probability,
pages 764–779.

Ocone, A. (2013). Variational inference for Gaussian-jump processes with application in
gene regulation. PhD thesis, The University of Edinburgh.

Ocone, A. and Sanguinetti, G. (2011). Reconstructing transcription factor activities in
hierarchical transcription network motifs. Bioinformatics, 27(20):2873–2879.

Ocone, A. and Sanguinetti, G. (2013). A stochastic hybrid model of a biological filter. arXiv
preprint arXiv:1308.5338.

Onalan, O. (2009). Financial modelling with Ornstein-Uhlenbeck processes driven by Lévy
process. In Proceedings of the World Congress on Engineering, volume 2, pages 1–3.

Opper, M., Ruttor, A., and Sanguinetti, G. (2010). Approximate inference in continuous
time Gaussian-Jump processes. In Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.,
and Culotta, A., editors, Advances in Neural Information Processing Systems 23, pages
1831–1839. Curran Associates, Inc.

Opper, M. and Sanguinetti, G. (2010). Learning combinatorial transcriptional dynamics from
gene expression data. Bioinformatics, 26(13):1623–1629.

Page, E. (1954). Continuous Inspection Schemes. Biometrika, pages 100–115.

Bibliography 127

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2013). Probabilistic movement
primitives. In Advances in Neural Information Processing Systems, pages 2616–2624.

Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967). Neuronal spike trains and stochastic
point processes. I. The single spike train. Biophysical Journal, 7(4):391–418.

Petersen, K. B. and Pedersen, M. S. (2012). The Matrix Cookbook. Version 20121115.

Pillow, J. W., Ahmadian, Y., and Paninski, L. (2011). Model-based decoding, information
estimation, and change-point detection techniques for multineuron spike trains. Neural
Computation, 23(1):1–45.

Pitman, J. and Picard, J. (2006). Combinatorial Stochastic Processes. Combinatorial
Stochastic Processes: École D’Été de Probabilités de Saint-Flour XXXII - 2002. Springer.

Preis, T., Schneider, J. J., and Stanley, H. E. (2011). Switching processes in financial markets.
Proceedings of the National Academy of Sciences, 108(19):7674–7678.

Priebe, N. J. and Ferster, D. (2008). Inhibition, spike threshold, and stimulus selectivity in
primary visual cortex. Neuron, 57(4):482–497.

Putzky, P., Franzen, F., Bassetto, G., and Macke, J. H. (2014). A Bayesian model for
identifying hierarchically organised states in neural population activity. In Advances in
Neural Information Processing Systems, pages 3095–3103.

Qian, S. S., King, R. S., and Richardson, C. J. (2003). Two statistical methods for the
detection of environmental thresholds. Ecological Modelling, 166(1):87–97.

Quick, H., Holan, S. H., Wikle, C. K., and Reiter, J. P. (2014). Bayesian Marked Point
Process Modeling for Generating Fully Synthetic Public Use Data with Point-Referenced
Geography. arXiv preprint arXiv:1407.7795.

Raftery, A. E., Newton, M. A., Satagopan, J. M., and Krivitsky, P. N. (2007). Estimating the
integrated likelihood via posterior simulation using the harmonic mean identity. Bayesian
Statistics, 8:1–45.

Rao, V. and Teh, Y. W. (2011). Fast MCMC sampling for Markov jump processes and
continuous time Bayesian networks. In Proceedings of the International Conference on
Uncertainty in Artificial Intelligence.

Rao, V. and Teh, Y. W. (2013). Fast MCMC Sampling for Markov Jump Processes and
Extensions. J. Mach. Learn. Res., 14(1):3295–3320.

Reeves, J., Chen, J., Wang, X. L., Lund, R., and Lu, Q. Q. (2007). A review and comparison
of changepoint detection techniques for climate data. Journal of Applied Meteorology and
Climatology, 46(6):900–915.

Ricciardi, L. M. and Sacerdote, L. (1979). The Ornstein-Uhlenbeck process as a model for
neuronal activity. Biological Cybernetics, 35(1):1–9.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and optimal scaling
of random walk Metropolis algorithms. Ann. Appl. Probab., 7(1):110–120.

128 Bibliography

Ross, S. M. (1983). Stochastic Processes. John Wiley & Sons.

Rotondi, R. (2002). On the influence of the proposal distributions on a reversible jump
MCMC algorithm applied to the detection of multiple change-points. Computational
Statistics & Data Analysis, 40(3):633–653.

Rubinstein, R. Y. and Kroese, D. P. (2008). Simulation and the Monte Carlo Method. Wiley
Series in Probability and Statistics. Wiley.

Ruttor, A., Sanguinetti, G., and Opper, M. (2009). Approximate inference for stochastic
reaction processes. In Learning and Inference in Computational Systems Biology, pages
189–205. MIT Press.

Rydén, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson processes.
Computational Statistics & Data Analysis, 21(4):431 – 447.

Sahai, H. and Ojeda, M. M. (2003). A comparison of approximations to percentiles of the
noncentral chi2-distribution. Revista de Matemática: Teoría y Aplicaciones, 10(1-2):57–
76.

Salvador, P., Valadas, R., and Pacheco, A. (2003). Multiscale Fitting Procedure Using
Markov Modulated Poisson Processes. Telecommunication Systems, 23(1-2):123–148.

Sanguinetti, G., Ruttor, A., Opper, M., and Archambeau, C. (2009). Switching regulatory
models of cellular stress response. Bioinformatics, 25(10):1280–1286.

Scargle, J. D. (1998). Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, a
New Method to Analyze Structure in Photon Counting Data. The Astrophysical Journal,
504(1):405.

Schawalder, S. B., Kabani, M., Howald, I., Choudhury, U., Werner, M., and Shore, D. (2004).
Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1.
Nature, 432(7020):1058–1061.

Scott, S. L. (1999). Bayesian Analysis of a Two-State Markov Modulated Poisson Process.
Journal of Computational and Graphical Statistics, 8(3):662–670.

Scott, S. L. and Smyth, P. (2003). The Markov modulated Poisson process and Markov
Poisson cascade with applications to web traffic data. In Bayarri, M. J., Berger, J. O.,
Bernardo, J. M., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M., editors,
Bayesian Statistics 7, Proceedings of the Seventh Valencia International Meeting, pages
671–680. Oxford University Press.

Shahrezaei, V. and Swain, P. (2008). The stochastic nature of biochemical networks. Curr.
Opin. in Biotech., 19(4):369–374.

Sherlock, C. (2006). Methodology for inference on the Markov modulated Poisson process
and theory for optimal scaling of the random walk Metropolis. PhD thesis, Lancaster
University.

Solomon, J. M. and Grossman, A. D. (1996). Who’s competent and when: regulation of
natural genetic competence in bacteria. Trends in Genetics, 12(4):150 – 155.

Bibliography 129

Sorger, P. K. (1991). Heat shock factor and the heat shock response. Cell, 65(3):363–366.

Steele, J. (2001). Stochastic Calculus and Financial Applications. Applications of mathe-
matics : stochastic modelling and applied probability. Springer.

Stimberg, F., Opper, M., Sanguinetti, G., and Ruttor, A. (2011a). Inference in continuous-
time change-point models. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and
Weinberger, K., editors, Advances in Neural Information Processing Systems 24, pages
2717–2725. Curran Associates, Inc.

Stimberg, F., Ruttor, A., and Opper, M. (2011b). Bayesian Inference for Models of Transcrip-
tional Regulation Using Markov Chain Monte Carlo Sampling. In Koeppl, H., Aćimović,
J., Kesseli, J., Mäki-Marttunen, T., Larjo, A., and Yli-Harja, O., editors, Proceedings of
the 8th International Workshop on Computational Systems Biology (WCSB), TICSP series
57, pages 169—-172, Zürich, Switzerland. Tampere University of Technology, Tampere,
Finland.

Stimberg, F., Ruttor, A., and Opper, M. (2012). Bayesian Inference for Change Points in
Dynamical Systems with Reusable States - a Chinese Restaurant Process Approach. In
Lawrence, N. D. and Girolami, M. A., editors, Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics (AISTATS-12), volume 22, pages 1117–
1124.

Stimberg, F., Ruttor, A., and Opper, M. (2014). Poisson Process Jumping between an
Unknown Number of Rates: Application to Neural Spike Data. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors, Advances in Neural
Information Processing Systems 27, pages 730–738. Curran Associates, Inc.

Stirzaker, D. (2005). Stochastic Processes and Models. Stochastic Processes and Models.
Oxford University Press.

Stramer, O., Bognar, M., and Schneider, P. (2010). Bayesian Inference for Discretely Sam-
pled Markov Processes with Closed-Form Likelihood Expansions. Journal of Financial
Econometrics, 8(4):450–480.

Suël, G. M., Garcia-Ojalvo, J., Liberman, L. M., and Elowitz, M. B. (2006). An excitable gene
regulatory circuit induces transient cellular differentiation. Nature, 440(7083):545–550.

Teh, Y. W. (2010). Dirichlet Processes. In Encyclopedia of Machine Learning. Springer.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical dirichlet processes.
Journal of the american statistical association, 101(476).

Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. The Annals of
Statistics, 22(4):1701–1728.

Tokdar, S., Xi, P., Kelly, R., and Kass, R. (2010). Detection of bursts in extracellular
spike trains using hidden semi-Markov point process models. Journal of Computational
Neuroscience, 29(1-2):203–212.

130 Bibliography

Tu, B. P., Kudlicki, A., Rowicka, M., and McKnight, S. L. (2005). Logic of the yeast
metabolic cycle: temporal compartmentalization of cellular processes. Science (New York,
N.Y.), 310(5751):1152–8.

Turgay, K., Hamoen, L. W., Venema, G., and Dubnau, D. (1997). Biochemical charac-
terization of a molecular switch involving the heat shock protein ClpC, which controls
the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes &
Development, 11(1):119–128.

Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the Theory of the Brownian Motion. Phys.
Rev., 36:823–841.

Van Kampen, N. (2011). Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science.

Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., and Nelson, S. B. (1997). A
Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of
Rat Primary Visual Cortex. The Journal of Neuroscience, 17(20):7926–7940.

von Toussaint, U. (2011). Bayesian inference in physics. Rev. Mod. Phys., 83:943–999.

Vyshemirsky, V. and Girolami, M. A. (2008). Bayesian ranking of biochemical system
models. Bioinformatics, 24(6):833–839.

Wakefield, J. (2007). A Bayesian Measure of the Probability of False Discovery in Genetic
Epidemiology Studies. The American Journal of Human Genetics, 81(2):208–227.

Wang, H., Zhang, D., and Shin, K. (2004). Change-point monitoring for the detection of
DoS attacks. Dependable and Secure Computing, IEEE Transactions on, 1(4):193–208.

Wang, M.-C., Qin, J., and Chiang, C.-T. (2001). Analyzing Recurrent Event Data With
Informative Censoring. Journal of the American Statistical Association, 96(455):1057–
1065.

Wang, X., Lu, T., Snider, R. K., and Liang, L. (2005). Sustained firing in auditory cortex
evoked by preferred stimuli. Nature, 435(7040):341–346.

Wilkinson, D. (2006). Stochastic modelling for systems biology. Chapman and Hall/CRC
mathematical and computational biology series. Chapman and Hall/CRC, Boca Raton,
London, New York.

Williams, R. and Lawrence, D. (2007). Linear State-Space Control Systems. John Wiley &
Sons.

Wyse, J., Friel, N., et al. (2011). Approximate simulation-free Bayesian inference for multiple
changepoint models with dependence within segments. Bayesian Analysis, 6(4):501–528.

Xu, Z., Todorov, E., Dellon, B., and Matsuoka, Y. (2011). Design and analysis of an artificial
finger joint for anthropomorphic robotic hands. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 5096–5102. IEEE.

Bibliography 131

Yoshihara, T., Kasahara, S., and Takahashi, Y. (2001). Practical Time-Scale Fitting of Self-
Similar Traffic with Markov-Modulated Poisson Process. Telecommunication Systems,
17(1-2):185–211.

Zhao, M. and Xie, M. (1996). On Maximum Likelihood Estimation for a General Non-
Homogeneous Poisson Process. Scandinavian Journal of Statistics, 23(4):597–607.

Appendix A

Detailed Calculations

A.1 Exact sampling of the Ornstein-Uhlenbeck-Process

Given the parameters Θ and the µ-process we can draw samples from the posterior distribu-

tion of X directly. The posterior is a Markov process with a time dependent drift Archambeau

et al. (2008). The backward equation is solved to compute the posterior drift, which is then

used to sample a new discrete path for X .

A.1.1 Backward Equation

We define

ψti(X)
∧
= P({Xt>ti}|Xti = X) (A.1)

and use the backward equation adapted to the switching model by Sanguinetti et al. (2009),

which simplifies to

∂ψ

∂ t
=−∂ψ

∂X
(Aµ +b−λX), (A.2)

because we sample X given a path of µ . With the starting condition ψT (X) = N (dk,s
2) this

can be solved backwards in time by

ψti(X) = N (X ;m(ti),v(ti))

m(ti) = m(ti+1)exp(−λ∆t)+
Aµti +b

λ
(1− exp(−λ∆t))

v(ti) = v(ti+1)exp(−2λ∆t)+
σ2

2λ
(1− exp(−2λ∆t)) (A.3)

134 Detailed Calculations

with ∆t = ti− ti+1. Additionally ψt(X) has the following jump conditions at the measure-

ments:

m(t−i) =
v(t−i)

v(t+i)
m(t+i)+

v(t−i)

s2 dti

v(t−i) =
v(t+i)s2

v(t+i)+ s2
, (A.4)

where t−i and t+i are the times before and after the measurement, respectively.

Clearly this only holds if µ is constant between ti and ti+1. If this is not the case, the

variance is not affected, but the mean has to be computed iteratively at all the jump times ti, j,

where µ changes states, by applying

m(ti, j) = m(ti, j+1)exp(−λ∆t)+
Aµti, j +b

λ
(1− exp(−λ∆ti, j)), (A.5)

with ∆ti, j = ti, j− ti, j+1.

A.1.2 Posterior Drift

Ruttor et al. (2009) showed that the posterior drift τ(X , t) can be computed with the solution

to the backwards equation by applying

τ(X , t) = Aµt +b−λX +σ2 d

dX
ln(ψt(X))

= Aµt +b−λX +σ2(
m(t)−X

v(t)
)

The posterior process is now an Ornstein-Uhlenbeck-process with time-dependent drift

τ(X , t) and diffusion σ2. Given a starting condition we can iteratively sample Xti+1 from

Ppost(Xti+1 |Xti ,µ,Θ,D) = N (Xti+1;m f ,v f), (A.6)

where m f and v f are solutions to

dm f

dt
= τ(m f (t), t),m f (ti) = Xti

dv f

dt
= 2v f (t)(−λ − σ2

v(t)
)+σ2,v f (ti) = 0. (A.7)

A.2 Posterior Transition Rates of the Telegraph process 135

This can be done analytically and therefore we can get exact samples from X , independent of

the time step ∆t.

A.2 Posterior Transition Rates of the Telegraph process

As shown by Sanguinetti et al. (2009) the transition rates of the posterior process are given

by

g+(ti) = f+P(Xti+1 |Xti ,µ = 1,Θ)
ψti+1(1)
ψti(0)

g−(ti) = f−P(Xti+1 |Xti ,µ = 0,Θ)
ψti+1(0)
ψti(1)

(A.8)

where the marginal likelihood ψt(µ) is defined as

ψti(u)
∧
= P({Xt>ti}|µ(ti) = u). (A.9)

As in section A.1 we assume that, between two data points, ψ satisfies the backward equation

from Sanguinetti et al. (2009)

∂ψ(u)

∂ t
= ∑

u′ ̸=u

f (u′|u)
(

ψt(u)−ψt(u
′)
)

, (A.10)

which conditioned on a specific path for X is solved backwards in time by

ψti(u) = P(Xti+1 |Xti ,µ(ti) = u,Θ)∑
u′

exp(− f (u′|u)∆t)ψti+1(u
′)) (A.11)

with ∆t = ti+1− ti and P(Xti+1 |Xti ,µ,Θ) as in (4.6) and the starting values ψT (u) = 1∀u.

Because the values of ψ are often extremely small or large it is best to work with the

logarithm of ψ:

ln(ψti(u)) = ln(P(Xti+1 |Xti ,µ = u,Θ))+ ln(ψti+1(u))

+ ln ∑
u′ ̸=u

{

[

1− exp(− f (u′|u)∆t)
]

exp
[

ln(ψti+1(u
′))− ln(ψti+1(u))

]

+ exp
(

− ∑
u′ ̸=u

f (u′|u)∆t
)}

(A.12)

Using ψ we can compute the posterior transition rates according to (A.8) and sample

a new continuous time path for µ using a modified Gillespie algorithm (Gillespie, 1977).

136 Detailed Calculations

Since the posterior transition rates are only piecewise constant, we draw the time for the next

state change using the current transition rate. If that time is outside the time interval of the

current transition rate, nothing happens in this interval and the process is repeated from the

start of the new interval.

A.3 Sampling A and b Directly

We describe the computation for A, the computation for b is analogous.

For the likelihood we iteratively computed the mean and variance of a Gaussian, starting

from the first observations. The mean of the Gaussian had the form m+mAA and therefore

we compute m and mA through the process and update it at the observations.

We initialize our mean and variance to

m = d1 (A.13)

mA = 0 (A.14)

v = σobs. (A.15)

When there are no jumps between observations we compute

α = exp(−λ∆t) (A.16)

β =
b(1−α)

λ
(A.17)

ξ = (1−α2)
σ2

2λ
, (A.18)

where ∆t is the difference between the observations.

Then at the observations we update our temporary variables

mtmp = αm+β (A.19)

mtmpA = αmA +β µ(t) (A.20)

vtmp = ξ +α2v (A.21)

and our mean and variance

A.4 Computing Bayes Factors for the Switching Model 137

m =
σ2

obsmtmp + vtmpdi

σ2
obs + vtmp

(A.22)

mA =
σ2

obsmtmpA

σ2
obs + vtmp

(A.23)

v =
σ2

obsvtmp

σ2
obs + vtmp

(A.24)

and multiply our current Gaussian over A with

N

(

di−mtmp

mtmpA

;
σ2

obs + vtmp

m2
tmpA

)

(A.25)

If we choose a Gaussian prior over b and A then their posterior densities will be Gaussian

as well and we can directly sample from them.

A.4 Computing Bayes Factors for the Switching Model

We want to estimate the Bayes factor for a switching model with a fixed jump rate f = F .

We can fully describe a path µ0:T by the number of jumps and the time of the jumps:

µ0:T = (c,τ1, . . . ,τc). (A.26)

In order to get the Bayes factors we calculate the evidence as a function of f :

P(D| f) =
∫ ∫

P(D|µ0:T ,θ , f)P(µ0:T |, f)P(θ)dµ0:T dθ

=
∫ ∫

P(D|µ0:T ,θ , f) f ce− f T P(θ)dµ0:T dθ ,
(A.27)

where θ = (A,b,λ ,σ2) for the model without switching diffusion and θ = (A,b,λ ,σ2
0 ,σ

2
1)

for the model with switching diffusion. We calculate the derivative of the evidence with

138 Detailed Calculations

respect to the jump rate f

dP(D| f)
d f

=
∫ ∫

P(D|µ0:T ,θ , f)P(µ0:T | f)P(θ)dµ0:T dθ

=
∫ ∫

P(D|µ,θ , f)
d f ce− f T

d f
P(θ)dµ0:T dθ

=
∫ ∫

P(D|µ0:T ,θ , f)(c f c−1e− f T −T f ce− f T)P(θ)dµ0:T dθ

=
∫ ∫

P(D|µ0:T ,θ , f)(f c−1e− f T)(c− f T)P(θ)dµ0:T dθ

=
∫ ∫

P(D|µ0:T ,θ , f)(f ce− f T)(
c

f
−T)P(θ)dµ0:T dθ

=
∫ ∫

P(D|µ0:T ,θ , f)P(µ0:T | f)P(θ)(
c

f
−T)dµ0:T dθ

=
∫ ∫

P(D,µ0:T ,θ | f)(
c

f
−T)dµ0:T dθ

=
∫ ∫

P(D| f)P(µ0:T ,θ |D, f)(
c

f
−T)dµ0:T dθ

= P(D| f)
∫ ∫

P(µ0:T ,θ |D, f)(
c

f
−T)dµ0:T dθ

= P(D| f)EP(µ0:T ,θ |D, f)

[

c

f
−T

]

= P(D| f)
(

EP(µ0:T ,θ |D, f)

[

c

f

]

−T

)

(A.28)

In summary we know that

dP(D| f)
d f

= P(D| f)
(

EP(µ0:T ,θ |D, f)

[

c

f

]

−T

)

⇔ 1
P(D| f)

dP(D| f)
d f

= EP(µ0:T ,θ |D, f)

[

c

f

]

−T

⇔d logP(D| f)
d f

= EP(µ0:T ,θ |D, f)

[

c

f

]

−T

(A.29)

We integrate both sides over f = f ′ from 0 to F

⇔
∫ F

0

d logP(D| f = f ′)
d f ′

d f ′ =
∫ F

0

(

EP(µ0:T ,θ |D, f= f ′)

[

c

f ′

]

−T

)

d f ′

⇔
[

logP(D| f = f ′)
]F

0 =
∫ F

0

(

EP(µ0:T ,θ |D, f= f ′)

[

c

f ′

])

d f ′−T F

⇔ logP(D| f = F)− logP(D| f = 0) =
∫ F

0

(

EP(µ0:T ,θ |D, f= f ′)

[

c

f ′

])

d f ′−T F

(A.30)

A.5 Multivariate Ornstein-Uhlenbeck Process Likelihood 139

and get the following equation to compute the desired log evidence for a fixed jump rate of

f = F :

logP(D| f = F) =
∫ F

0

(

EP(µ0:T ,θ |D, f= f ′)

[

c

f ′

])

d f ′−T F + logP(D| f = 0). (A.31)

If we are calculating Bayes factors we are only looking at differences between log

evidences for different models, therefore −T F can be ignored as it does not depend on the

model. The same is true for logP(D| f = 0) as with f = 0 there will be no jumps and the

models we are comparing only differ when jumps exist.

To approximate the integral on the right side we let the sampler run for different values

of f and from the samples compute EP(µ0:T ,θ |D, f)

[

c
f

]

as the posterior mean number of jumps

divided by f . We do not formally prove that the expection does not diverge for f → 0 but

this is evident when looking at the results in figure 4.5a.

A.5 Multivariate Ornstein-Uhlenbeck Process Likelihood

We have a m-dimensional multivariate Ornstein-Uhlenbeck Process which is defined by the

SDE

dX = (B−ΛX)dt +ΣΣΣdW, (A.32)

with B being a m-dimensional column vector and Λ and ΣΣΣ being m×m matrices.

A.5.1 Transition Density

To compute the likelihood we need the transition density of the process which solves (A.32).

In order to get the mean of the transitional density we first solve the ODE

dX

dt
= (B−ΛX), (A.33)

which is (A.32) with ΣΣΣdW dropped.

140 Detailed Calculations

This is a nonhomogeneous linear system of differential equations which, with initial

condition X(t1) = X1 is solved by

X(t) = e−(t−t1)ΛX1 +
∫ t

t1

e−(t−s)ΛBds

= e−(t−t1)ΛX1 +
∫ t

t1

e−tΛesΛBds

= e−(t−t1)ΛX1 + e−tΛ

∫ t

t1

esΛdsB

= e−(t−t1)ΛX1 + e−tΛ
[

esΛΛ−1
]t

t1
B

= e−(t−t1)ΛX1 + e−tΛ
(

etΛΛ−1− et1ΛΛ−1
)

B

= e−∆tΛX1 +
(

I− e−Λ∆t
)

Λ−1B,

where we defined ∆t = t− t1.

To get the covariance matrix of the transition probability we use the calculation from

Grewal and Andrews (2011) which is done for a general stochastic process with time

dependent drift and diffusion (Grewal and Andrews, 2011, pp. 144 ff.). When we set the drift

and observation noise to zero and use our notation, equation (4.37) in Grewal and Andrews

(2011) becomes
V(t,X(tk−1))

dt
= ΣΣΣWΣΣΣ⊤ (A.34)

and its solution in equation (4.76) of Grewal and Andrews (2011) is the covariance of our

transition density
V(t,X(tk−1)) = UD−1

U = R(1 : m,1 : m)

D = R(m+1 : 2∗m,1 : m)

R = exp(∆tΨ)

[

0m×m

Im×m

]

Ψ =

[

−Λ ΣΣ′

0m×m Λ′

]

,

(A.35)

with and R(rb : re,cb : ce) being a sub-matrix of R ranging from row rb to re and column cb

to ce.

Therefore (A.32) describes a stochastic process with transition density

P(X(t)|X0) = N (X(t)|m,ΣΣΣt), (A.36)

A.5 Multivariate Ornstein-Uhlenbeck Process Likelihood 141

where the mean m is the solution of the corresponding ODE we calculated in (A.34) and

covariance matrix ΣΣΣt as specified in (A.35).

A.5.2 Likelihood function

Assume we have noisy observations D = (d1, · · · ,dn) of the process taken at times t =

(t1, · · · , tn) and corrupted by i.i.d. Gaussian noise with covariance matrix ΣΣΣo.

We are interested in the likelihood of the data conditioned on the parameters Θ =

(B,Λ,ΣΣΣ,ΣΣΣo):

P(D|Θ) =
∫

P(D,X|Θ)dX (A.37)

where X = (X1, · · · ,Xn) are the (unknown) true value of the process at times t.

P(D|Θ) =
∫

P(D,X|Θ)dX (A.38)

=
∫

P(D|X,Θ)P(X|Θ)dX (A.39)

=
∫

P(d1|X1,Θ)
n−1

∏
i=1

P(Xi|Xi−1,Θ)P(di|Xi,Θ)dX, (A.40)

where

P(di|Xi,Θ) = N (di|Xi,ΣΣΣo) (A.41)

P(Xi|Xi−1,Θ) = N (Xi|m,ΣΣΣt). (A.42)

We can compute this iteratively, starting by integrating out X1.

∫

P(d1|X1,Θ)P(Y1|X1,Θ)dX1 =
∫

N (d1|X1,ΣΣΣo)N (Y1|m,ΣΣΣt)dX1 (A.43)

We can rewrite this as a product of two Gaussian densities over X1 multiplied by a factor

which doesn’t depend on X1

∫

N (d1|X1,ΣΣΣo)N (X2|m,ΣΣΣt)dX1 (A.44)

=
∫

N (X1|d1,ΣΣΣo)N (X2|e−∆tΛX1 +
(

I− e−Λ∆t
)

Λ−1B,ΣΣΣt)dX1 (A.45)

=
∫

N (X1|d1,ΣΣΣo)N (e−∆tΛX1|X2−
(

I− e−Λ∆t
)

Λ−1B,ΣΣΣt)dX1 (A.46)

142 Detailed Calculations

The last Gaussian can be rewritten as (Petersen and Pedersen, 2012, 8.1.5.)

=
∫

N (X1|d1,ΣΣΣo)
1

|det(e−∆tΛ)|

N

(

X1|e∆tΛ
[

X2−
(

I− e−Λ∆t
)

Λ−1B
]

,
[

(e−∆tΛ)⊤ΣΣΣ−1
t e−∆tΛ

]−1
)

dX1

(A.47)

and the integral over a product of two Gaussians is easily computed (Petersen and

Pedersen, 2012, 8.1.8.)

=
1

|e− tr(∆tΛ)|N (d1|e∆tΛ
[

X2−
(

I− e−Λ∆t
)

Λ−1B
]

,ΣΣΣo+
[

(e−∆tΛ)⊤ΣΣΣ−1
t e−∆tΛ

]−1
). (A.48)

We now rewrite the Gaussian distribution as a distribution over X2 and multiply it with

P(X2|d1|ΣΣΣo) and P(X3|m,ΣΣΣt) and integrate out X2 and then repeat this iteratively until we are

at the last observation.

Appendix B

Details of the sampler

B.1 Poisson CRP Sampler: Assigning a λ value to a seg-

ment

If we reuse an existing state when adding a jump or switching the state of a segment we

choose the new state i randomly with probability proportional to

P(λi|Y,λ(0:T)) = Gamma
(

λi;a+nseg,
b

τsegb+1

)

, (B.1)

where nseg is the number of Poisson events during the segment, τseg is the width (in time

units) of the segment and a and b come from the base distribution pλ (λ) = Gamma(λ ;a,b).

Therefore the probability to choose state i becomes

pseg(i) =
λ

a+nseg−1
i exp

(

− τsegb+1
b

λi

)

∑
s
j=1 λ

a+nseg−1
j exp

(

− τsegb+1
b

λ j

) . (B.2)

After dividing a state i into two new states j1 and j2 the segments of the original state

must be assigned to the new states. For segment l the probability to be assigned to state j1 is

p′seg(l, j1) =
λ

a+nl−1
j1

exp
(

− τlb+1
b

λ j1

)

λ
a+nl−1
j1

exp
(

− τlb+1
b

λ j1

)

+λ
a+nl−1
j2

exp
(

− τlb+1
b

λ j2

) , (B.3)

144 Details of the sampler

and accordingly for state j2. Let ω1 . . .ω#i
∈ { j1, j2} be the assignments of the #i segments

of state i to the new states then we get

ppar =
#i

∏
l=1

p′seg(l,ωl). (B.4)

If one of the new states is assigned to all segments but the last one, then the last segment is

automatically assigned to the other state thereby setting pseg(#i,ω#i
) = 1.

B.2 Poisson Likelihood Calculation

0 2.6 3.1 4.2 4.6 5.3

0 1 2 3 4 5

t

d

...

...

0 1 2 3 4 5

0 0 0 1 2 4

t

index

...

...

How many Poisson events up until t=4.4?

3

1

4

5

2

Fig. B.1 Nearest observations grid data structure for fast calculation of the likelihood for
Poisson data. The observation data is on the top and the grid data structure on the bottom.

When starting the sampler we generate a data structure which creates a grid over the

whole time span of the data. For the explanation we assume here that the grid is generated

for ∆t = 1 but the level of granularity can be chosen freely. We explain how this works on

the example in figure B.1. If we need the number of Poisson events up until t = 4.4 we look

at the last grid point before that time, which is t = 4 in the example. For each time in the grid

structure the index in the dataset of the last observation before that time is saved (Step 1). In

the example for t = 4 the grid saves the index 2 which is the last observation that happened

before t = 4 (Step 2). We know that the observation the grid is pointing to is prior to the time

we are interested in, therefore we look at the next observations and check if its time is larger

than the time we are interested in (Step 3). This is not the case, so we iterate one observation

further and check again (Step 4). This time we know see that the observation happened after

B.2 Poisson Likelihood Calculation 145

t = 4.4. This means the observation before is the last observation before our time. We get

the number of Poisson events up until t = 4.4 from this observation (Step 5).

Because the grid needs only to be calculated once, we can use a very fine discretization.

The finer the discretization is, the less steps are needed to find the correct observation. In

practice we get the observation after step 3 in the example. This means even for very large

datasets we do not need to iterate over the data but get the number of Poisson events up to a

time at constant computational costs. It has to be noted that this procedure does not induce

a time discretization into the sampler. All calculations still are in continuous time and no

approximation error is added. The time discretization only speeds up the retrieval of the

correct observation.

Appendix C

Further Results

C.1 Toy Switching Data

x x x x xxxxxx

x

x
x

x
xxxxx

x x
x

xxx
x
x
x

x

x
x

x
xx

xxx x x x xxxxxx x

x

x xxxxxx

x x x x xxxxxx x x x xxxxxx
x x x xxxxxx

x x x
x

x
x
xxx

x

x

x
xxx

xxx

x

x x xxxxxx

10
−2.5

10
−2

10
−1.5

10
−1

10
−0.5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

number of samples

m
e

a
n

 d
if
fe

re
n

c
e

xx

xx

xx

xx

without system noise

with system noise

y = 0.57622x
−0.40974

y = 2.4626x
−0.42724

(a) Mean absolute difference between the ex-
act posterior expectation value of µ and the
result of the MCMC sampler as a function of
the number of iterations. The straight lines
are a least squares fit of y = axb to the data.

O
O

O
O

O

O
O O

O

O

O
O O O

O O

O

O
O

O

O

X
X

X

X

X
X

X X X X

X
X X X X

X

X
X X

X
X

0

1

2

3

t

X

XXXX
X

X

X
XXXX

X

X
XXXXXXXXX

X

X

XXXXXXXXXXXX
X

X

X
XXXXXX

X

X
XXXX

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

t

µ

(b) Comparison of the results for the small
toy model with system noise. The exact solu-
tion (green line) and the MCMC results (blue
crosses) are shown for the posterior over X(t)
(top) and µ(t) (bottom). The true values are
represented by black lines and the noisy ob-
servations by red circles.

Fig. C.1 Further results for synthetic data from the one-dimensional switching model.

148 Further Results

C.2 ComS Gene Expression

0.000

0.025

0.050

0.075

0.100

−10 0 10 20 30

b

P
(b

|D
)

0

2

4

6

0.0 0.2 0.4 0.6

λ

P
(λ

|D
)

Fig. C.2 Posterior and prior densities of b and λ parameter for the ComS expression data
in section 4.1.3. For the model with fixed σ2 the posterior density is plotted in blue, for the
model with switching σ2 the posterior density is plotted in red. The prior density is plotted
in black but for λ we used an exponential distribution with mean 100 which is practically a
uniform distribution for the plotted range.

C.3 V1 Neuron Spiking Data

0

100

200

300

400

0 2 4 8 10 18 23 25 26 27

neuron

n
u

m
b

e
r

o
f

ju
m

p
s

0

2

4

6

0 2 4 8 10 18 23 25 26 27

neuron

n
u

m
b

e
r

o
f

s
ta

te
s

low parameters

high parameters

Fig. C.3 Posterior mean number of jumps (left) and states (right) with low parameters (prior
mean of f 10−4, α = 0.1) and high parameters (prior mean of f 10−3, α = 0.5) for the
neuron spiking data from section refsec:CRPPoissonNeuralData. The number of states seems
to be mostly unaffected while the number of jumps is roughly doubled. Many of the new
jumps are jumps between the same state, e.g. for neuron 8 only about 2% of the jumps do
not change the state for the low parameter values. For the high parameters this is the case for
about 16% of the jumps.

	Titlepage
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Organization of the Thesis
	1.2 Notation

	2 Background
	2.1 Methods
	2.2 Applications

	3 General Model & Sampler
	3.1 General Model Description
	3.2 General Sampler Architecture
	3.3 Label-Switching

	4 Applications using the Ornstein-Uhlenbeck Process
	4.1 Fixed Number of States
	4.2 Multiple Switching Processes
	4.3 Changepoint Process
	4.4 Chinese Restaurant Process

	5 Applications using the Poisson Process
	5.1 Switching Process
	5.2 Chinese Restaurant Process

	6 Applications with Other Processes
	6.1 Cox-Ingersoll-Ross Process
	6.2 Multivariate Ornstein-Uhlenbeck Process
	6.3 Modifying the Sampler to Other Processes

	7 Conclusion
	7.1 Related Work
	7.2 Discussion & Outlook

	Bibliography
	Appendix A Detailed Calculations
	A.1 Exact sampling of the Ornstein-Uhlenbeck-Process
	A.2 Posterior Transition Rates of the Telegraph process
	A.3 Sampling A and b Directly
	A.4 Computing Bayes Factors for the Switching Model
	A.5 Multivariate Ornstein-Uhlenbeck Process Likelihood

	Appendix B Details of the sampler
	B.1 Poisson CRP Sampler: Assigning a value to a segment
	B.2 Poisson Likelihood Calculation

	Appendix C Further Results
	C.1 Toy Switching Data
	C.2 ComS Gene Expression
	C.3 V1 Neuron Spiking Data

