
Computing Graph Distances Parameterized by
Treewidth and Diameter∗

Thore Husfeldt

Lund University and IT University of Copenhagen, Lund, Sweden
thore.husfeldt@cs.lth.se

Abstract
We show that the eccentricity of every vertex in an undirected graph on n vertices can be
computed in time n expO(k log d), where k is the treewidth of the graph and d is the diameter.
This means that the diameter and the radius of the graph can be computed in the same time.
In particular, if the diameter is constant, it can be determined in time n expO(k). This result
matches a recent hardness result by Abboud, Vassilevska Williams, and Wang [SODA 2016] that
shows that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane
[J. Comp. Syst. Sc., 2001], for any ε > 0, no algorithm with running time n2−ε exp o(k) can
distinguish between graphs with diameter 2 and 3.

Our algorithm is elementary and self-contained.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph algorithms, diameter, treewidth, Strong Exponential Time Hypo-
thesis

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.16

1 Introduction

In an undirected graph, the eccentricity of a vertex is its largest distance to another vertex.
The graph’s diameter, denoted diamG, is the largest eccentricity of any of its vertices. The
graph’s radius, denote radG, is the smallest eccentricity of any its vertices. The treewidth is a
well-studied sparseness measure of graphs. These are fundamental parameters that permeate
both the design of graph algorithms and the analysis of networks in many scientific domains.

We show the following result:

I Theorem 1. Given an undirected n-vertex graph G with integer weights. If G has diameter
diamG and treewidth k, then we can compute the eccentricity of every vertex, and compute
diamG and radG, in time n expO(k log diamG) .

For constant diamG this matches a recent lower bound by Abboud, Vassilevska Williams,
and Wang [1] under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and
Zane [6]. In particular, it settles the complexity of the very simple question of deciding if a
given undirected, unweighted graph has diameter 2 or 3.

1.1 Related work
It is easy to see that the diameter of an unweighted graph can be computed in time O(nm)
by computing the eccentricity of each node using breadth first search. For sparse graphs with

∗ This work was done at the Simons Institute for the Theory of Computation at UC Berkeley, partially
supported by Grant 2012–4730 from the Swedish Research Council.

© Thore Husfeldt;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 16; pp. 16:1–16:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Computing Graph Distances Parameterized by Treewidth and Diameter

m = O(n) this running time becomes O(n2), a bound that seems difficult to improve. Recent
work by Roditty and Vassilevska Williams [8] has provided an illuminating explanation for
this phenomenon: An algorithm for computing the diameter in time O(m2−ε) would violate
the Strong Exponential Time Hypothesis.

However, it is also clear that for some very sparse graphs, this bound can be broken. In
particularly, the diameter of a tree can be computed in linear time as follows. From any
node find a remotest node u using breadth first search. Then find a remotest node v from u

using breadth first search again. Elementary arguments show that diamG = dist(u, v).
A useful parameter for studying this phenomenon is treewidth. The treewidth of a graph

is a well-studied measure of its sparsity, properly defined in Section 2.4. In the extremes,
every tree has treewidth 1 and the n-clique has treewidth n− 1.

In this framework, we can ask how the complexity of computing the diameter deteriorates
with treewidth. For example, can the problem be solved in time O(n logn) on graphs
of logarithmic treewidth? Very surprisingly, Abboud, Vassilevska Williams, and Wang [1]
showed that not only can the complexity of the parameter be disentangled from the number of
vertices in the sense of parameterised complexity, but this dependency is at least exponential:
They show that under the Strong Exponential Time Hypothesis, it takes time

n2−ε exp Ω(k) for any ε > 0 (1)

to compute the diameter of an n-vertex graph with treewidth k. The same bound holds for
computing the radius, but under a stronger hypothesis called the Hitting Set Conjecture. See
[1] for a thorough presentation and discussion of these results and their underlying hypotheses
and a rich overview of related work.

This result is surprising because the innocuous diameter problem exhibits a similar
dependency on treewidth as several NP-hard problems. For instance, under the same Strong
Exponential Time Hypothesis, it is known that the NP-hard Independent Set problem cannot
be solved in time (2− ε)k polyn for any ε > 0 [7]. Of course, the lower bound (1) does not
imply that the diameter problem is an exponential-time problem. This is because, unlike for
Independent Set, the exponential dependency does not persist throughout all dependencies of
k on n. In this case, it becomes vacuous for k = Ω(logn), where the quadratic-time algorithm
takes over.

The lower bound holds even for very restricted diameter problems, such as deciding if
the diameter is 2 or 3, and (consequently) for approximating the solution. The same authors
provide an algorithm for computing the diameter with running time

O(k2n logk n) = n1+o(1) expO(k log k) . (2)

That algorithm follows a method introduced by Cabello and Knauer [3] for computing the
Wiener index, based on a reduction to a k-dimensional orthogonal range query problem and
its solution by Willard [9]. The authors explain how to extend this idea to provide algorithms
for radius and eccentricities within the same time bound.

Closing the gap between (1) and (2) is viewed as a very interesting open problem [1].
Our contribution is to offer yet another parameter to this analysis, by introducing a

dependency on the diameter to the running time. In particular, we match the lower bound of
Abboud et al. for the regime of constant diameters: If diamG = O(1) then the complexity
of these problems is (under various hypotheses) n exp Θ(k).

Planar graphs of constant diameter have constant treewidth, so for that class of graphs
the diameter can be found in linear time, which is a known result due to Eppstein [5].

T. Husfeldt 16:3

Our algorithm is elementary, in particular compared to data structure results leveraged
to establish (2). Instead of following Cabello and Knauer, we demonstrate that the necessary
information can be built by traversing the tree decomposition a number of times in different
directions. Once the dependency of the problem on the diameter has been realised, the
construction is unsurprising. However, the argument is quite fragile and ultimately relies on
a careful (but entirely combinatorial) analysis of shortest paths.

2 Algorithm

2.1 Preliminaries

A walk is an alternating sequence of vertices and edges, say v0, e1, . . . , el, vr, where ei = vi−1vi
for 1 ≤ i ≤ l. A walk with endvertices u and v is called a u, v-walk. A walk with no repeated
vertices is a path. We denote a u, v-path by symbols like uPv, making the endvertices explicit
for readability. The vertices on uPv except for u and v are called internal. The length of
a walk uPv is the number of edges (with repetitions) and denoted l(uPv). If x is a vertex
on the u, v-path uPv then we write uPx for the u, x-subpath of uPv, and xPv for the
x, v-subpath of uPv. Two paths uPv and vQw can be concatenated into the walk uPvQw
with the obvious interpretation.

Let dist(u, v) denote the distance between u and v in a connected graph G, which is the
length of the shortest u, v-path; with the understanding that dist(u, u) = 0. The eccentricity
of vertex u, denoted e(u), is max{ dist(u, v) | v ∈ V (G) }. The diameter of G, denoted diamG,
is max{ e(u) | u ∈ V (G) }. The radius of G, denoted radG, is min{ e(u) | u ∈ V (G) }.

The treewidth of a graph is the width of an optimal tree decomposition, an auxiliary
structure that maintains the structure of G in a sparse fashion. (See Section 2.4 for a full
definition.) Our algorithm requires a tree decomposition as input, and we note that this is
provided within the time bounds of our own algorithm by a recent result by Bodlaender et
al. [2] that we can state as follows:

I Theorem 2 (Bodlaender et al.). Given a graph G with n vertices and treewidth k, a nice tree
decomposition of G of width O(k) and with O(nk) nodes can be computed in time n expO(k).

We also need the fact that given such a tree decomposition, we can compute pairwise
distances quickly for all vertices in the same piece. For the purposes of exposition, we abstract
this to a more general result due to Chaudhuri and Zariolagis [4] that falls slightly short of
the ambitions on Theorem 1, by a factor logn. We show in Section 3 how to replace this
result with an explicit and self-contained construction with a better bound so as to establish
the bound in Theorem 1.

I Theorem 3 (Chaudhuri and Zariolagis). Let G denote an n-vertex graph given with a tree
decomposition of width k. In time O(k3n logn) we can compute a data structure such that
for any u, v ∈ V (G) we can compute dist(u, v) in time O(k3).

Chaudhuri and Zariolagis [4] present various trade-offs between construction and query time
that need not interest us here; the important part is the subquadratic dependency on n in
the construction time and polynomial dependency on the treewidth, so that the time to
compute the distance between a pair of vertices becomes negligible. We note that in itself,
the above structure brings us no closer to our goal: To compute the diameter, we still need
to evaluate dist(u, v) for all pairs of vertices, in time O(n2k3).

IPEC 2016

16:4 Computing Graph Distances Parameterized by Treewidth and Diameter

2.2 Distance profiles
Let R denote a fixed integer; think of R as the range of distances we want to keep track of,
ideally diamG ≤ R.

We denote by π a partition (U, V,W) of V (G), where V = {v1, . . . , vr} is a separator in
G separating U and W .

(We will arrive at these partitions as induced by neighbouring nodes in a tree decomposi-
tion. We need the next two lemmas when we traverse the decomposition in both directions,
which is why we avoid the terms ‘above’ and ‘below’ in favour of ‘left’ and ‘right’. However,
the reader is encouraged to think of V as a piece in the tree decomposition, with U denoting
the vertices ‘below’ it, and W those ‘above.’ We give a more general framework here in order
to avoid the proliferation of ultimately similar arguments and tedious case analyses.)

We will pay special attention to paths whose internal vertices belong to U . In particular,
for u ∈ U ∪ V and v ∈ V a u, v-path is U-internal if all its internal vertices belong to U .
(As a possible source of confusion, the one-edge path uv is trivially U -internal. In fact,
both u and v may belong to V , so a U -internal path might completely avoid U .) We then
let distπ(u, v) ∈ {0, . . . , R} ∪ {∞} denote the length of the shortest U -internal u, v-path of
length at most R, or ∞ if no such path exists.

For each vertex u ∈ U define the distance profile pπ(u) as the vector of its distances to V :

pπ(u) = (distπ(u, v1), . . . ,distπ(u, vr)) .

We let Dπ denote the set of all such distance profiles,

Dπ =
⋃
u∈U

pπ(u) .

This set contains the information that we will maintain while traversing the tree decomposition
of the input graph; a vector of distances (d1, . . . , dr) is contained in Dπ exactly if there exists
a vertex u ∈ U with that distance profile, but we forget the identity of that vertex, and how
many there are. In particular, |Dπ| ≤ (R+ 2)r, whereas U itself may be much larger.

2.3 Maintaining distance profiles over neighbouring cuts
Consider two partitions π and π′ that differ only in a single vertex.

We consider two different ways in which π and π′ can differ by moving a single vertex
vr ‘one part to the left’ in the partition. Thus, either the vertex vr is moved from W to V ,
‘introducing’ it to V ; or the vertex vr is moved from V to U , ‘forgetting’ it from V .

The next two lemmas handle each case separately.

I Lemma 4 (Introduce). Let π′ = (U, V −{vr},W∪{vr}) be a partition with V = {v1, . . . , vr}
and consider the partition π given by (U, V,W).
1. Dπ = Dπ′ × {∞}.
2. For vi, vj ∈ V with 1 ≤ i < j ≤ r, we have

distπ(vi, vj) =


distπ′(vi, vj) , if j < r ;
l(vivr) , if j = r and vivr ∈ E ;
∞ , otherwise .

Proof. Consider the partition π.
Since V −{vr} is a separator, there are no edges from vr to any vertex in U . In particular,

no path that includes any vertex in U can include vr.

T. Husfeldt 16:5

π′

U V − {vr}W ∪ {vr}

vi

vr

u (no edge)

π

U V W

vi

vr

u

Figure 1 Vertex vr is introduced to V .

V

π′:

U

v

vr

u

x

P

Q

R

V − {vr}

π :

U ∪ {vr}

v

vr

u

Figure 2 Vertex vr is forgotten from V . The part W is not shown.

For the first part, consider the distance vector (distπ(u, v1), . . . ,distπ(u, vr)) ∈ Dπ. The
last coordinate must be ∞ because there is no U -internal path from u ∈ U to vr. Moreover,
there is no path from u to any other vi ∈ V passing through vr either, so the remaining
distances are unchanged.

For the second part, consider a pair of vertices vi, vj ∈ V . If j 6= r then their U -internal
distance does not change. If vj = vr then the only possible U -internal path is the edge vivr
if it exists. J

The other case is more interesting:

I Lemma 5 (Forget). Let π′ = (U, V,W) be a partition with V = {1, . . . , vr} and consider
the partition π given by (U ∪ {vr}, V − {vr},W).
1. Dπ consists of the vector (distπ′(v1, vr), . . . ,distπ′(vr−1, vr)) and for each (d′1, . . . , d′r) ∈

Dπ′ the vectors (d1, . . . , dr−1) given by

dj = min{d′j , d′r + distπ′(vj , vr)} . (3)

2. For each vi, vj ∈ V with 1 ≤ i < j < r, we have

distπ(vi, vj) = min{distπ′(vi, vj), distπ′(vi, vr) + distπ′(vj , vr)} .

Proof. Let u ∈ U ∪ V and v ∈ V − {vr}. Let uSv be a shortest U ∪ {vr}-internal path. Let
uPv, uQvr, and vrRv be shortest U -internal paths, see Fig. 2.

We will show that

l(uSv) = min{l(uPv), l(uQvr) + l(vrRv)} . (4)

There are two cases. If the path uSv does not use vr then it is U -internal. In particular,
it has same length as the shortest U -internal path uPv. Let x be the earliest vertex on uQvr

IPEC 2016

16:6 Computing Graph Distances Parameterized by Treewidth and Diameter

also appearing on vrRv, possibly x = vr. If x 6= vr then uQxRv is a U -internal u, v-path, so
that

l(uSv) = l(uPv) ≤ l(uQxRv) ≤ l(uQvrRv) = l(uQvr) + l(vrRv) ,

establishing (4) in this case. If x = vr then uQvrRv is a path, and therefore no shorter than
uSv. Thus,

l(uQvr) + l(vrRv) = l(uQvrRv) ≥ l(uSv) = l(uPv).

establishing (4) in this case.
If the path uSv does contain vr then it decomposes into uSvr and vrSv, both of which

are shortest U -internal paths. Thus we can write

l(uPv) ≥ l(uSv) = l(uSvrSv) = l(uSvr) + l(vrSv) = l(uQvr) + l(vrRv) ,

where the first inequality merely observes that uPv is a shortest path in a smaller set of
internal vertices than uSv. We have established (4).

To establish the lemma, set v = vj . Provided all lengths are bounded by R, we can give
(4) as

distπ(u, vi) = min{distπ′(u, vi), distπ′(u, vr) + distπ′(vr, vi)} . (5)

For u ∈ U ∪ {vr}, write pπ(u) = (d1, . . . , dr−1). If u = vr then the distances are simply
given by di = distπ′(vi, vr), because no U -internal vi, vr-path can use vr as an internal
node. For every other u ∈ U let pπ′(u) = (d′1, . . . , d′r). Then (5) gives the first part of the
lemma with di = distπ(u, vi) and d′i = distπ′(u, vi). Finally, if u ∈ V with u = vi for some
i ∈ {1, . . . , vr−1} then (5) gives the second part of the lemma.

It remains to verify that (5) holds also if some of the lengths in (4) exceed R. If
l(uSv) > R then distπ(u, vi) =∞. We already observed that l(uSv) is at most l(uPv) (the
length of a shortest u, v-path internal in a subset of vertices) and also at most l(uQvrRv)
(the length of a u, v-walk internal in the same set vertices). Thus, both values on the right
hand side of (5) are also ∞. Conversely, if l(uSv) ≤ R then l(uPv) ≤ R, in which case
distπ′(u, vi) = l(uPv), or l(uQvr) + l(vrRr) ≤ R, in which case both distπ′(u, vr) = l(uQvr)
and distπ′(vr, vi) = l(vrRvi), because lengths are nonnegative. In any case, the minimum
operation will pick the correct value. J

2.4 Tree decompositions
We consider the standard notion of a (nice) tree decomposition. To fix notation, consider a
rooted, binary tree T and associate with each node t ∈ T a set Vt of vertices, called a piece.
Such a tree T is nice if it satisfies the following conditions:
1. if t is a leaf or the root then Vt is a singleton,
2. if t has a single child t′ then there exists a vertex v ∈ V such that either v /∈ Vt′ and

Vt = Vt′ ∪ {v}, in which case we say that t introduces v, or v ∈ Vtt′ and Vt = Vt′ − {v},
in which case we say that t forgets v.

3. if t has two children t′ and t′′ then Vt = Vt′ = Vt′′ .
The tree T forms a tree decomposition of G if the following conditions hold:
1. V (G) =

⋃
t∈T Vt.

2. for each uv ∈ E(G) there exists t ∈ T such that u, v ∈ Vt.
3. for each u ∈ V (G), the set of nodes t ∈ T such that u ∈ Vt are connected.

T. Husfeldt 16:7

The width of a tree decomposition is maxt∈T |Vt|−1. The treewidth of a graph is the minimum
width of any tree decomposition of G.

For each node t, we define a tripartition π(t) as the disjoint partition (U, V,W) of V (G)
given as follows:
1. V is the piece Vt associated with t in the tree decomposition.
2. Intuitively, U are the vertices ‘below’ t. Formally, let T ′ denote the successors of t in T .

Then

U = {Vt′ | t′ ∈ T ′ } − Vt .

3. The remaining vertices belong to W , so W = V (G)− (Vt ∪ U).
We think of W as the vertices ‘above’ the node t, but remember that W includes vertices
that are associated with siblings of t, so ‘above’ is a slightly misleading term.

We are finally ready to define our distance measures. For u ∈ U ∪ V and v ∈ V consider
distπ(t)(u, v). Intuitively, this is the ‘below’-internal distance in the sense that U contains
the vertices ‘below’ the current node in the tree decomposition. The corresponding set of
distance vectors is Dπ(t).

Symmetrically, from π(t) = (U, V,W) we define the ‘reverted’ partition ρ(t) as (W,V,U).
Then, for w ∈ W ∪ V and v ∈ V we consider distρ(t)(w, v). Intuitively, this is the ‘above’-
internal distance in the sense that W are the vertices ‘above’ the current node in the tree
decomposition. The corresponding set of distance profiles is Dρ(t).

We proceed to establish that the two sets Dπ(t) and Dρ(t) can be computed for each node
t ∈ T of the tree decomposition. The ‘below’-values are established bottom-up, after which
the ‘above’-values are established top-down.

I Algorithm D (Distance profiles). Given a graph G, its tree decomposition T , and an integer
R such that R ≥ diamG, this algorithm computes the sets Dπ(t) and Dρ(t) for each t ∈ T .

The algorithm works by traversing the tree decomposition twice, also computing for each
t ∈ T and each pair of vertices u, v ∈ Vt, the distances distπ(t)(u, v) and distρ(t)(u, v).

D1 – Traverse T bottom-up. For each leaf t of T , set Dπ(t) = ∅. Traverse T bottom-up
using Steps D2–D4. Then go to Step D5.

D2 – Introduce. If node t with child t′ introduces vertex vr to Vt′ = {v1, . . . , vr−1} then
compute distπ(t)(di, dj) for i ≤ i < j ≤ r and Dπ(t) from distπ(t′)(di, dj) and Dπ(t′) using
Lemma 4 with π = π(t) and π′ = π(t′).

D3 – Forget. If node t with child t′ forgets vertex vr from Vt′ = {v1, . . . , vr} then compute
distπ(t)(di, dj) for 1 ≤ i < j < r and Dπ(t) from distπ(t′)(vi, vj) and Dπ(t′) using Lemma 5
with π = π(t) and π′ = π(t′).

D4 – Join. If t joins t′ and t′′, with Vt = Vt′ = Vt′′ = {1, . . . , vr} then set

Dπ(t) = Dπ(t′) ∪Dπ(t′′) ,

and for each u, v ∈ Vt set

distπ(t)(u, v) = min{distπ(t′)(u, v), distπ(t′′)(u, v)} .

D5 – Traverse T top-down. At the root t of T , set Dρ(t) = ∅. Traverse T top-down using
Steps D6–D8. Then return.

D6 – Child of introduce. If t is the child of a node t′ introducing vr to Vt = {v1, . . . , vr−1}
then compute distρ(t)(vi, vj) for 1 ≤ i < j < r and Dρ(t) from distρ(t′)(vi, vj) and Dρ(t′)
using Lemma 5 with π = ρ(t) and π′ = ρ(t′).

IPEC 2016

16:8 Computing Graph Distances Parameterized by Treewidth and Diameter

D7 – Child of forget. If t is the child of a node t′ forgetting vr from Vt = {v1, . . . , vr} then
compute distρ(t)(vi, vj) for 1 ≤ i < i ≤ r and Dρ(t) from distρ(t′)(vi, vj) and Dρ(t′) using
Lemma 4 with π = ρ(t) and π′ = ρ(t′).

D8 – Child of join. If t is the child of a join node t′ and the sibling of t′′ then set

Dρ(t) = Dρ(t′) ∪Dπ(t′′) ,

and for each u, v ∈ Vt, set

distρ(t)(u, v) = min{distρ(t′)(u, v),distπ(t′′)(u, v)} .

Note the asymmetry in Steps D4 and D8. On the way up, we join information from ‘below’
the child nodes; on the way down we join information from ‘above’ the parent node and
‘below’ the other sibling. The correctness of the simple minimum operation in those two
steps crucially rests on the fact that distπ′′ records only the distances that are internal to
the first part U of π′′ (and similarly for π′ or ρ′). In particular, no new paths internal to the
first parts of π or ρ (both of which contain many more vertices than U) are introduced at
these join nodes.

We can now compute the eccentricity of each vertex from the following lemma:

I Lemma 6 (Eccentricities). Let v be a vertex in G with e(v) ≤ r. For any piece Vt =
{v1, . . . , vr} such that v ∈ Vt, we have

e(v) = max
(d1,...,dr)

min
1≤i≤r

di + dist(v, vi) , (6)

where the maximum is taken over all distance profiles (d1, . . . , dr) ∈ Dπ(t) ∪Dρ(t).

Proof. Consider a shortest path uPv. Assume u ∈ U , write π for π(t) and let (d1, . . . , dr) =
pπ(u). Let vi denote the first vertex on uPv that belongs to Vt, possibly vi = u. Because
uPvi is a shortest paths and it is U -internal we have l(uPvi) = di. Because viPv is a shortest
path we have l(viPv) = dist(vi, v). Thus, l(uPv) = l(uPviPv) = di + dist(v, vi). To see that
uPv attains the minimum over all i on the right and side of the expression, assume for a
moment that there exits j such that dj + dist(v, vj) < di + dist(v, vi). Choose a shortest
U -avoiding path uQvj of length dj and a shortest path vjRv of length dist(v, vj). Then the
walk uQvjRv would be shorter than the shortest path uPv, which is absurd. Thus,

l(uPv) = min
1≤i≤r

di + dist(v, vi)

= min
1≤i≤r

[
pπ(u)

]
i
+ dist(v, vi) ,

where
[
pπ(u)

]
i
is the ith coordinate of the vector pπ(u). Maximising over all u ∈ U we arrive

at

max
u∈U

l(uPv) = max
u∈U

min
1≤i≤r

[
pπ(u)

]
i
+ dist(v, vi)

= max
pπ(u)∈Dπ

min
1≤i≤r

[
pπ(u)

]
i
+ dist(v, vi)

= max
(d1,...,dr)∈Dπ

min
1≤i≤r

{di + dist(v, vi)} ,

by definition of Dπ. Repeating this argument to W and the corresponding distance profile
vectors indexed by ρ we see that the length of the longest shortest path uPv is indeed
expressed by (6). J

T. Husfeldt 16:9

Proof of Theorem 1, vertex-superlinear. Assume without loss of generality that G is con-
nected.

First assume that we know a bound R with R ≥ diamG but R = O(diamG). We
compute a tree decomposition T of width O(k) using Theorem 2. We then run Algorithm D
on input G and T . From the resulting Dπ and Dρ, we use Theorem 3 and Lemma 6 to
compute all eccentricities. From these values we can easily compute diamG = maxv e(v),
rad(G) = minv e(v), and list the vertices on the perimeter and in the center.

It remains to analyse the running time. Algorithm D performs two passes through T ,
which as O(kn) nodes. At each node, the computation is dominated by the applications
of Lemmas 4 and 5. This entails processing Dπ and Dπ′ , both of which are bounded by
(R+ 2)O(k). The total running time of algorithm D therefore bounded by |T |(R+ 2)O(k) =
n expO(k log diamG). When we apply Lemma 6, we need to compute the pairwise distances
dist(v, vi) for v, vi ∈ Vt for each tree node t ∈ T . This entails |T |

(
O(k)

2
)
computations, each

requiring time O(|T |k6) after O(k3n logn) preprocessing according to Theorem 3. Since we
have |T | = O(kn), this step takes time n1+o(1) poly(k).

If we do not know R, we can search for it iteratively R = 2, 3, . . ., until no infinite
eccentricities appear. This increases the running time by a factor of at most diamG, which
is absorbed in our time bounds. J

3 Vertex-linear time

We finish the proof of Theorem 1 with the desired time bound by showing how the distances
between vertices within the same piece can be computed in time linear in n. The idea is to
construct a graph whose edge lengths model those paths that have all their internal nodes
outside of the current piece. A standard all-pairs shortest paths computation among those
vertices then suffices.

I Algorithm L (Linear time distances). Given a graph and a tree decomposition T , this
algorithm computes dist(u, v) for each pair of vertices u, v belonging to Vt.

L1 – Internal distances. Compute distπ(t) and distρ(t) as in algorithm D, with R = n.
L2 – Traverse T top-down. Process T top-down. At each node t perform Steps L3 and L4.
L3 – Construct H. Let H be the complete graph on vertex set Vt. If t has a single child

then set l(u, v) = min{distπ(t)(u, v), distρ(t)(u, v)}. If t has two children t′ and t′′ then
set l(u, v) = min{distπ(t′)(u, v), distπ(t′′)(u, v), distρ(t)(u, v)}.

L4 – Find distances between all pairs in H. Run the Bellman–Ford algorithm to compute
the distances distH(u, v) in H between each pair of vertices u, v ∈ Vt. Let dist(u, v) =
distH(u, v).

I Theorem 7. Algorithm L is correct. If G has n vertices and T has width k then the
algorithm runs in time O(nk3).

Proof. In the first step, the algorithm mimics algorithm D but avoids the computation of
Dφ and Dρ. This requires, at each node t ∈ T , the constant-time computations described in
Lemmas 4 and 5 for each pair u, v ∈ Vt. Thus, the running time is dominated by running
the all-pairs shortest paths computation in Step L4, which runs in time O(|V (H)|3). J

We note that the performance of the algorithm is dwarfed by the requirements of actually
computing a tree decomposition, so for the polynomial dependency on k it is crucial that T
be provided as part of the input.

IPEC 2016

16:10 Computing Graph Distances Parameterized by Treewidth and Diameter

This finishes the proof of Theorem 1. Note that the computations of algorithm L can be
performed during the top-down traversal in Steps D6–D8, just after distρ(t) is found. Thus,
a unified presentation of the algorithm could be given in only two traversals.

4 Conclusion

Our constructions do extend readily to directed graphs, and parameters like directed eccent-
ricity, source radius, etc. can be computed within the same time bound as their undirected
counterparts. We choose to claim this here without proof, since a more general present-
ation that encompasses directed graphs incurs considerable expository overhead without
providing much insight outside of what is already present in the appendix of [1]. The
most notable changes arise in the computation of round-trip distance from u to v, which
is the minimum of the sums of the lengths of directed paths uPv and vQu. To compute
these values, we need to change the definition of distance profile vectors to matrices: For
partition π = (U, {v1, . . . , vr},W) consider the r × r matrix M with mij = d if there is a
vertex u ∈ U such that there exist U -internal shortest directed paths viPu and uPvj with
d = l(viPu) + l(uPvj). The set Dπ then contains all matrices with elements bounded by
R that are realised by some u ∈ U . The total size of this set is bounded by (R + 2)r2 .
When vr is forgotten in the tree decomposition, the entries mir and mrj account for directed
U -internal paths of length mir +mij . The resulting time running time, suppressing several
details, becomes n expO(k2 log diamG), much like the bound of O(k2n logk

2−1 n) of [1]. In
both constructions, we notice an exponential dependency on the square of the treewidth.

Our bounds rely on the fact that we store merely the existence of vertex pairs at certain
distances, not the number of such pairs. Thus, our constructions have nothing to contribute
to various graph distance measures that involve counting, such as the Wiener index, the
median, or closeness centrality.

The main question opened up by our algorithms is the complexity of computing supercon-
stant diameter. In particular, an algorithm with running time n expO(k) could exist even
for diameter ω(1). However, we conjecture that the diameter of a graph with treewidth and
diameter k cannot be computed in time n2−ε exp o(k log k).

Acknowledgements. I am happy that Virginia Vassilevska Williams told me about this
question.

References

1 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In
Proceedings of the Twenty-Seventh Annual ACM–SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, Va, USA, January 10–12, 2016, pages 377–391. SIAM, 2016.

2 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michał Pilipczuk. An O(ckn) 5-approximation algorithm for treewidth. SIAM
J. Comput., 45(2):317–378, 2016.

3 Sergio Cabello and Christian Knauer. Algorithms for bounded treewidth with orthogonal
range searching. Comput. Geom., 42(9):815–824, 2009.

4 Shiva Chaudhuri and Christos D. Zaroliagis. Shortest path queries in digraphs of small
treewidth. Algorithmica, 27(3):212–226, 2000.

T. Husfeldt 16:11

5 David Eppstein. Subgraph isomorphism in planar graphs and related problems. In Proceed-
ings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January
1995. San Francisco, California, pages 632–640. ACM/SIAM, 1995.

6 Russel Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

7 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms for graphs of
bounded treewidth are probably optimal. In Proceedings of the Twenty-Second Annual
ACM–SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, pages 777–789. SIAM, 2011.

8 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1–4, 2013, pages 515–524. ACM, 2013.

9 Dan E. Willard. New data structures for orthogonal range queries. SIAM J. Comput.,
14(1):232–253, 1985.

IPEC 2016

	Introduction
	Related work

	Algorithm
	Preliminaries
	Distance profiles
	Maintaining distance profiles over neighbouring cuts
	Tree decompositions

	Vertex-linear time
	Conclusion

