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Abstract
We show that list-coloring for any intersecting hypergraph of m edges on n vertices, and lists
drawn from a set of size at most k, can be checked in quasi-polynomial time (mn)o(k2 log(mn)).
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1 Introduction

Hypergraph k-Coloring is the problem of checking whether the vertex-set of a given
hypergraph (family of sets) can be colored with at most k colors such that every edge receives
at least two distinct colors. It is a basic problem in theoretical computer science and discrete
mathematics which has received considerable attention (see, e.g. [3, 4, 11, 12, 26, 29, 38]).
The problem is NP-complete already for k = 2, and in fact, it is quasi-NP-hard1 to decide if a
2-colorable hypergraph can be (properly) colored with 2(logn)Ω(1) colors [26]. On the positive
side, there exist polynomial time algorithms that can color an O(1)-colorable hypergraph with
nO(1) colors, where n is the number of vertices (see, e.g., [1, 9, 30]). Several generalizations
of the problem have also been considered, for example, list-coloring where every vertex can
take only colors from a given list of colors [20, 37].

Given the intrinsic difficulty of the problem, it is natural to consider special classes of
hypergraphs for which the problem is easier. Some better results exist for special classes, e.g.,
better approximation algorithms for hypergraphs of low discrepancy and rainbow-colorable
hypergraphs [5], polynomial time algorithms for bounded-degree linear hypergraphs [4, 8], for
random 3-uniform 2-colorable hypergraphs [34], as well as for some special classes of graphs
[14, 25, 27, 10].

In this paper, we consider the special class of intersecting hypergraphs, i.e., those in
which every pair of edges have a non-empty intersection (also considered in [35]). While
this may seem as a strong restriction at a first thought, the problem is still actually highly
non-trivial. In fact, the case k = 2 is equivalent to the well-known Monotone Boolean
Duality Testing, which is the problem of checking for a given pair of monotone CNF and
DNF formulas if they represent the same monotone Boolean function [15, 35]. Determining
the exact complexity of this duality testing problem is an outstanding open question, which
has been referenced in a number of complexity theory retrospectives, e.g., [31, 32], and has
been the subject of many papers, see, e.g., [6, 7, 13, 19, 15, 16, 17, 18, 21, 23, 22, 24, 28, 36].

1 More precisely, there is no polynomial time algorithm unless NP⊆ DTIME(2polylog n).
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Fredman and Khachiyan [21] gave an algorithm for solving this problem with running time
no(logn), where n is the size of the input, thus providing strong evidence that this decision
problem is unlikely to be NP-hard.

The reduction from Boolean Duality Testing to checking 2-colorability is essentially
obtained by a construction from [35] which reduces the problem to checking if a monotone
Boolean function given by its CNF representation is self-dual. However, almost all the
known algorithms for solving Boolean duality testing cannot work directly with the
self-duality (and hence the 2-colorabilty) problem, due to their recursive nature which results
in subproblems that do not involve checking self-duality. The only algorithm we are aware of
that works directly on the 2-colorability version is the one given in [22], but it yields weaker
bounds nO(logn) than those given in [21]. In this paper, we provide bounds that (almost)
match those given in [21] and show that those can be in fact extended to the list-colorabilty
version2.

It is also worth mentioning that intersecting hypergraphs have been considered in [33,
Section 2.4.1] (with a slight generalization), where it was shown that if such a hypergraph is
2-colorable then it is also list-colorable for any lists of size 2. It is not clear whether such
result extends to the case k > 2.

2 Basic Notation and Main Result

Let H ⊆ 2V be a hypegraph on a finite set V , k ≥ 2 be a positive integer, and L : V → 2[k]

be a mapping that assigns to each vertex v ∈ V a non-empty list of admissible colors
L(v) ⊆ [k] := {1, . . . , k}. An L-(list) coloring of H is an assignment χ : V → [k] of colors
to the vertices of H such that χ(v) ∈ L(v) for all v ∈ V . An L-coloring is said to be
proper if it results in no monochromatic edges, that is, if |χ(H)| ≥ 2, for all H ∈ H, where
χ(H) := {χ(v) : v ∈ H}.

A hypergraph H is said to be intersecting if

H ∩H ′ 6= ∅ for all H, H ′ ∈ H. (1)

In this paper, we are interested in the following problem:

Proper-L-Coloring: Given a hypergraph H ⊆ 2V satisfying (1) and a mapping
L : V → 2[k], either find a proper L-coloring of H, or declare that no such coloring
exists.

We denote by n := |V |, m := |H|, ν := minv∈V |L(v)|, ρ := maxv∈V |L(v)|, and κ :=
maxu,v∈V, u6=v |L(u) ∩ L(v)|. We assume without loss of generality that ν ≥ 2.

For a set S ⊆ V , let HS := {H ∈ H : H ⊆ S} be the subhypergraph of H induced by
set S, HS = {H ∩ S : H ∈ H} be the projection (or trace) of H into S, and H(S) := {H ∈
H : H ∩ S 6= ∅}. For simplicity, we allow HS to be a multi-hypergraph (some edges may be
repeated). For v ∈ V , we define degH(v) := |{H ∈ H : v ∈ H}|.

The main result of the paper is the following.

I Theorem 1. Problem Proper-L-Coloring can be solved in time (mn)o(k2 log(mn)).

2 Note that is an intersecting hypergragh (with more than one edge) is trivially 3-colorable; so the
generalization to k colors would only be interesting if we consider list-coloring.
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In the following, we will consider partial L-colorings χ : V → [0 : k] := {0, 1, . . . , k}
of H, where χ(v) = 0 is used to mean that the vertex v is not assigned any color yet; we
say that such coloring is proper if no edge is monochromatic with this coloring. Given a
proper partial L-coloring χ of a hypergraph H ⊆ 2V , we will use the following notation:
V0(χ) := {v ∈ V : χ(v) = 0} and Hi(χ) := {H ∈ H : χ(H) = {0, i}} for i ∈ [0 : k], and
shall simply write V0 and Hi when χ is clear from the context. For i ∈ [0 : k], we write
H̄i :=

⋃
j 6=iHj . For a set S ⊆ V , we write S̄ := V \ S and denote by χ[S] the restriction

of χ on S. For two L-colorings χ : S → [k] and χ′ : S′ → [k], where S ∩ S′ = ∅, we denote
by χ′′ := χ ∪ χ′ : S ∪ S′ → [k] the k-coloring that assigns χ′′(v) := χ(v) for v ∈ S and
χ′′(v) := χ′(v) for v ∈ S′. If there is an H ∈ H such that |H| ≤ 1, we shall assume that H is
not properly L-colorable for any L : V → 2[k]. Also, by assumption, an empty hypergraph
(that is, H = ∅) is properly L-colorable.

In the following two sections we give two algorithms for solving the problem. They are
inspired by the two corresponding algorithms in [21] and can be thought of as generalizations.
The first algorithm is simpler and exploits the idea of the existence of a high-degree vertex in
any non-colorable instance. By considering all possible admissible colorings of such a vertex
we can remove a large fraction of the edges and recurse on substantially smaller subproblems.
Unfortunately, the degree of the high-degree vertex is only large enough to guarantee a
bound of mO(log2 m) (assuming k = O(1)). The second algorithm is more complicated and
considers both scenarios when there is a high-degree vertex and there are none (where now
the threshold for "high" is actually higher). If there is no high-degree vertex, then we can
find a "balanced-set" which contains a constant fraction of edges. Then a decomposition can
be obtained based on this set.

3 Solving Proper-L-Coloring in time nO(k3)mO(k2 log2 m)

We give two lemmas which show the existence of a high-degree vertex, unless the hypergraph
is easily colorable.
I Lemma 2. Let H ⊆ 2V be a given hypergraph satisfying (1) of minimum edge-size 2,
L : V → 2[k], and χ : V → [0 : k] be a proper partial L-coloring of H. Then either (i) there
is a vertex v ∈ V0 with degH0(v) ≥ |H0|

logν(mκ) , or (ii) an L-coloring χ0 : V0 → [k], such that
χ[V \ V0] ∪ χ0 is a proper L-coloring of H, can be found in O(ρ|V0|m) time.
Proof. We use the probabilistic method [2]. Let Hmin be an edge in

⋃k
i=0H

V0
i of minimum

size. Pick a random L-coloring χ0 : V0 → [k] by assigning, independently for each v ∈ V0,
χ0(v) = i ∈ L(v) with probability 1

|L(v)| . Then, for an edge H ∈ H0,

Pr[H is monochromatic] = |
⋂
v∈H

L(v)| ·
∏
v∈H

1
|L(v)| ≤ κ ·

(
1
ν

)|H|
,

and for H ∈ Hi, i ∈ [k],

Pr[H is monochromatic] ≤
∏

v∈H∩V0

1
|L(v)| ≤

(
1
ν

)|H∩V0|

.

It follows that

E[# monochromatic H ∈ H] =
∑
H∈H

Pr[H is monochromatic]

≤ κ
∑
H∈H0

(
1
ν

)|H|
+

k∑
i=1

∑
H∈Hi

(
1
ν

)|H∩V0|

≤ mκ
(

1
ν

)|Hmin|

.
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Thus if mκ
( 1
ν

)|Hmin|
< 1, then there is a proper L-coloring χ′ := χ[V \ V0] ∪ χ0 of H, which

can be found by the method of conditional expectations in time O(ρ|V0|m). Let us therefore
assume for the rest of this proof that |Hmin| ≤ logν(mκ).

Let vmax be a vertex of maximizing degH0(v) over v ∈ Hmin. Then (1) implies that

|H0| =

∣∣∣∣∣ ⋃
v∈Hmin

{H ∈ H0 : v ∈ H}

∣∣∣∣∣ ≤ ∑
v∈Hmin

|{H ∈ H0 : v ∈ H}| =
∑

v∈Hmin

degH0(v)

≤ |Hmin| degH0(vmax).

Consequently, degH0(vmax) ≥ |H0|
|Hmin| ≥

|H0|
logν(mκ) . J

I Lemma 3. Let H ⊆ 2V be a given hypergraph satisfying (1) of minimum edge-size 2,
L : V → 2[k] be a mapping, and χ : V → [0 : k] be a proper partial L-coloring of H. Then
either (i) there is a vertex v ∈ V0 and i, j ∈ [k], j 6= i, such that degHi(v) ≥ |Hi|

logν m
and

degHj (v) ≥ 1, or (ii) an L-coloring χ0 : V0 → [k], such that χ[V \ V0] ∪ χ0 is a proper
L-coloring of H, can be found in O(ρ|V0|m) time.

Proof. Let Hmin be an edge in
⋃k
i=1H

V0
i of minimum size. Note that (1) implies:

∀H ∈ Hi : H ∩H ′ ∩ V0 6= ∅ for all H ′ ∈ H̄i, (2)

since {i} = χ(H \ V0) 6= χ(H ′ \ V0) = {j} for all H ∈ Hi and H ′ ∈ Hj , for i 6= j.
If there is an i ∈ [k] such that Hj = ∅ for all j ∈ [k] \ {i} then an L-coloring satisfying

(ii) can be found by choosing arbitrarily χ(v) ∈ L(v) \ {i} for v ∈ V0. Assume therefore that
Hi 6= ∅ for at least two distinct indices i ∈ [k]. Pick a random L-coloring χ0 : V0 → [k] by
assigning, independently for each v ∈ V0, χ(v) = i ∈ L(v) with probability 1

|L(v)| . Then

Pr[∃i ∈ [k], H ∈ Hi : χ(Hi) = {i}] ≤
k∑
i=1

∑
H∈Hi

Pr[χ(H) = {i}]

≤
k∑
i=1

∑
H∈Hi

∏
v∈H∩V0

1
|L(v)| ≤ m

(
1
ν

)|Hmin|

.

Thus if m
( 1
ν

)|Hmin|
< 1, then there is an L-coloring satisfying (ii), which can be found by

the method of conditional expectations in time O(ρ|V0|m). Let us therefore assume for the
rest of this proof that |Hmin| ≤ logνm.

Let j be such that Hmin ∈ HV0
j , and vmax be a vertex maximizing degH̄j (v) over v ∈ Hmin.

Then (2) implies that

|H̄j | =

∣∣∣∣∣ ⋃
v∈Hmin

{H ∈ H̄j : v ∈ H}

∣∣∣∣∣ ≤ ∑
v∈Hmin

|{H ∈ H̄j : v ∈ H}| =
∑

v∈Hmin

degH̄j (v)

≤ |Hmin| degH̄j (vmax).

Consequently,
∑
i6=j degHi(vmax) = degH̄j (vmax) ≥ |H̄j |

|Hmin| ≥
|H̄j |

logν m
=
∑

i6=j
|Hi|

logν m
, from which

it follows that maxi 6=j
degHi (vmax)
|Hi| ≥

∑
i6=j

degHi (vmax)∑
i6=j
|Hi|

≥ 1
logν m

. J

If the number of edges in each Hi is small, the problem is easily solvable in polynomial
time.
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I Lemma 4. Given a hypergraph H ⊆ 2V such that maxki=0 |Hi| ≤ δ or |{i : Hi 6= ∅}| = 1,
a mapping L : V → 2[k], and a proper partial L-coloring χ : V → [0 : k] of H such that
H0 = ∅, there is a procedure Proper-L-Coloring-simple(H, L, χ) that checks if there is a
proper L-coloring of H extending χ, in time O((|V0|ρ)(k+1)δ).

Proof. If Hi 6= ∅ for exactly one i, then assigning any color j 6= i to the uncolored vertices
yields a proper L-coloring for H. On the other hand, if |Hi| ≤ δ for all i, we can simply try
all possibilities: for each edge H ∈ Hi, for i = 1, . . . , k (resp., H ∈ H0), we choose a vertex
v ∈ H ∩ V0 and a color for v among the colors in L(v) \ {i} (resp., two distinct vertices
v, v′ ∈ H ∩ V0 and two distinct colors i ∈ L(v) and j ∈ L(v′)). For each such choice, if the
resulting coloring, combined with χ, is a proper partial L-coloring for H, then it can be
extended to a proper L-coloring by coloring any remaining uncolored vertices arbitrarily;
otherwise, we conclude that no such coloring exists if we run out of choices. Since we have at
most (k + 1)δ edges in

⋃k
i=0Hi, the total number of choices is at most (|V0|ρ)(k+1)δ. J

The algorithm for solving Proper-L-Coloring is given as Algorithm 1, which is called
initially with χ ≡ 0. The algorithm terminates either with a proper L-coloring of H, or with
a partial L-coloring with some unassigned vertices, in which case we conclude that no proper
L-coloring of H exists.

The algorithm proceeds in two phases. As long as there is an edge with no assigned
colors, that is |H0| ≥ 1, the algorithm is still in phase I; otherwise it proceeds to phase II. In
a general step of phase I (resp. phase II), the algorithm picks a vertex v satisfying condition
(i) of Lemma 2 (resp., Lemma 3) and iterates over all feasible assignments of colors to v, that
result in no monochromatic edges; if no such v can be found, the algorithm concludes with a
proper L-coloring. In each iteration, any edge that becomes non-monochromatic is removed
and the algorithm recurses on the updated sets of hypergraphs. If non of the recursive calls
yields a feasible extension of the current proper partial L-coloring χ, we unassign vertex v
and return that there are no proper L-colorings (line 11).

To analyze the running time of the algorithm, let us measure the "volume" of a subproblem
with input (H,L, χ), in phase I by µ1 = µ1(H, χ) := |H0(χ)|, and in phase II by

µ2 = µ2(H, χ) := |{i ∈ [k] : |Hi(χ)| ≥ 1}| ·
k∏
i=1

max{|Hi(χ)|, 1}. (3)

The recursion stops when the volume µ2(H) becomes sufficiently small, or an L-coloring
satisfying condition (ii) of Lemmas 2 or 3 is found.

Lemma 4 implies that problem Proper-L-Coloring can be solved in time O((ρn)(k+1)ρ2)
if m ≤ δ := ρ2. Algorithm Proper-L-Coloring-A can be used to solve the problem in case
m > δ.

I Lemma 5. Algorithm 1 solves problem Proper-L-Coloring in time

(ρn)O(kρ2)ρ3mO(k2 log2 m
log ν ) .

Proof. Let ε := min{ 1
logν m

, 1
k}, α = 1

1−ε and δ = ρ2. Note that δ ≥ α2 since ε ≤ 1
k ≤

1
2 and

thus ρ ≥ 2 ≥ 1
1−ε = α.

Consider the recursion tree T of the algorithm. Let T1 (reps., T2) be the subtree (resp.,
sub-forest) of T belonging to phase I (resp., phase II) of the algorithm. Note that T2 consists
of maximal sub-trees of T, each of which is rooted at a leaf in T1. Let A1(µ) (resp., A2(µ))
be the total number of nodes in T1 (resp., T2) that result from a subproblem of volume µ.

IPEC 2016
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Algorithm 1 Proper-L-Coloring-A(H,L, χ)

Input: hypergraph H ⊆ 2V , a mapping L : V → 2[k], and a proper partial L-coloring
χ : V → [0 : k]

Output: TRUE (resp,. FALSE) if a proper L-coloring χ : V → [k] of H is (resp., cannot be)
found

1: V0 := V0(χ); Hi := Hi(χ) for i ∈ [0 : k]
2: if H0 6= ∅ then /* Phase I */
3: if there is v ∈ V0 satisfying condition (i) of Lemma 2 then
4: for each j ∈ L(v) do
5: χ(v) := j

6: if there is no H ∈ H such that χ(H) = {j} then /* if no edge becomes
monochromatic */

7: H′ := H \
⋃
i∈[k], i 6=j{H ∈ Hi : j ∈ χ(H)} /* delete non-monochromatic

edges */
8: return Proper-L-Coloring-A(H′,L, χ)
9: end if

10: end for
11: χ(v) := 0; return FALSE
12: else
13: Let χ0 : V0 → [k] be a coloring computed as in (ii) of Lemma 2
14: Set χ := χ[V \ V0] ∪ χ0 and stop /* A proper L-coloring has been found */
15: end if
16: else/* Phase II */
17: if µ2(H, χ) ≤ δ := ρ2 or |{i : Hi 6= ∅}| = 1 then
18: if Proper-L-Coloring-simple(H, L, χ) then
19: Stop /* A proper L-coloring has been found */
20: else
21: return FALSE
22: end if
23: end if
24: if there is v ∈ V satisfying condition (i) of Lemma 3 then
25: Same as in steps 4-11 of Phase I
26: else
27: Let χ0 : V → [k] be a coloring computed as in (ii) of Lemma 3
28: Set χ := χ[V \ V0] ∪ χ0 and stop /* A proper L-coloring has been found */
29: end if
30: end if

I Claim 6. The number of nodes in T1 is at most mlog ρ·logν(mκ)+O(1).

Proof. For a non-leaf node of T1, we have the recurrence:

A1(µ1) ≤ ρ ·A1((1− ε)µ1) + 1. (4)

At leaves we have µ1 = 0. It follows that the depth d(µ1) of the recursion subtree of a node
(in T1) of volume µ1 is at most log 1

1−ε
µ1 + 1, and hence the total number of tree nodes N1

is bounded by ρd(µ1)+1−1
ρ−1 ≤ µ

log 1
1−ε

ρ+2
1 . Using µ1 ≤ m, we get N1 = O(m

log ρ
log(1+1/ logν (mκ)) ) =

mlog ρ·logν(mκ)+O(1). J
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I Claim 7. The number of nodes in any sub-tree of T2 is at most mlog ρ·logν(mκ)+O(1).

Proof. Suppose that the algorithm proceeds to line 25 during the current recursive call
corresponding to a subproblem of volume µ2, and let v ∈ V be the vertex chosen at step 24,
and i, j ∈ [k] be such that i 6= j, degHi(v) ≥ ε|Hi| and degHj (v) ≥ 1. There are |L(v)|
recursive calls that will be initiated from this point, corresponding to ` ∈ L(v); consider
the `th recursive call. If ` 6= i then setting χ(v) = ` will result in deleting all the edges
containing v from Hi. Thus the new volume µ′2 will satisfy µ′2 ≤ (1− 1

logν m
)µ2 if |Hi| > 1

and µ′2 ≤ (1− 1
k )µ2 if |Hi| = 1; in both cases, µ′2 ≤ (1− ε)µ2. On the other hand, if ` = i,

then at least one edge in Hj will be deleted, yielding µ′2 ≤ µ2 − 1. Consequently we get the
recurrence:

A2(µ2) ≤ (ρ− 1) ·A(b(1− ε)µ2c) +A(µ2 − 1) + 1. (5)

By the stopping criterion in line 17, we have A2(µ2) = 1 for µ2 ≤ δ. We will prove by
induction on µ2 > δ that A2(µ2) ≤ C · µlogα µ2

2 , where C := (2δ + 1). We consider 3 cases:

Case 1. µ2 − 1 ≤ δ: Then b(1− ε)µ2c ≤ δ and (5) reduces to A2(µ2) ≤ ρ+ 1 < C.

Case 2. (1− ε)µ2 ≤ δ: Then (5) reduces to

A2(µ2) ≤ ρ+A2(µ2 − 1).

Iterating we get A2(µ2) ≤ rρ + A2(µ2 − r) ≤ rρ + 1, for r = µ2 − δ ≤ ε
1−εδ. Thus,

A2(µ2) ≤ ε
1−εδρ+ 1 ≤ 1

k−1ρδ + 1 ≤ C.

Case 3. µ2 − 1 > δ and (1− ε)µ2 > δ: We apply induction:

A2(µ2) ≤ C(ρ− 1) · ((1− ε)µ2)logα((1−ε)µ2) + C(µ2 − 1)logα(µ2−1) + 1

≤ C
ρ− 1

(1− ε)µ2
· 1
µ2
· µlogα µ2

2 + C(µ2 − 1)logα µ2 + 1

= C · µlogα µ2
2

(
ρ− 1
δµ2

+
(

1− 1
µ2

)logα µ2

+ 1
C · µlogα µ2

2

)

≤ C · µlogα µ2
2

(
1
µ2

+
(

1− 1
µ2

)2
+ 1
µ2

2

)
(since µ2 ≥ δ ≥ α2 and hence logα µ2 ≥ 2 )

≤ C · µlogα µ2
2 (since µ2 ≥ δ > 2).

Using the bound

µ2(H, χ) ≤ k ·
k∏
i=1
|Hi| ≤ k ·

(∑k
i=1 |Hi|
k

)k
≤ k ·

(m
k

)k
,

we get the claim. J

Putting these Claims 6 and 7 together, and noting that at internal nodes the running
time is O(nmρ), and that the roots of the maximal sub-trees in T2 are the leaves of T1, the
lemma follows. J

IPEC 2016
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4 Solving Proper-L-Coloring in time (nm)o(k2 log(nm))

For a hypergraph H ⊆ 2V and a positive number ε ∈ (0, 1), denote by T (H, ε) the subset
{v ∈ V : degH(v) > ε|H|} of "high" degree vertices in H. Given ε′, ε′′ ∈ (0, 1), let us call an
(ε′, ε′′)-balanced set with respect to H, any set S ⊆ V such that ε′|H| ≤ |HS | ≤ ε′′|H|.

I Lemma 8 ([19]). Let ε1, ε2 ∈ (0, 1) be two given numbers such that, ε1 < ε2 and T =
T (H, ε1) satisfies |HT | ≤ (1− ε2)|H|. Then there exists a (1− ε2, 1− (ε2 − ε1))-balanced set
S ⊇ T with respect to H. Such a set S can be found in O(nm) time.

I Lemma 9. Let H ⊆ 2V be a hypergraph satisfying (1), L : V → 2[k] be a mapping,
χ : V → [0 : k] be a proper partial L-coloring of H, and S ⊆ V0 be a given set of vertices
such that (H0)S 6= ∅. Then, χ is extendable to a proper L-coloring of H if and only if either

χ is extendable to a proper L-coloring for H̄0 ∪HS0 , or (6)
∃Y ∈ HS0 \ (H0)S , j ∈

⋂
v∈Y
L(v) : χ is extendable to a proper L-coloring χ′ for H

such that χ′(Y ) = {j}. (7)

Proof. Suppose that χ is extendable to a proper L-coloring χ′ for H. If (6) is not satisfied
then (since ∅ 6∈ HS0 by (1)) there is a Y ∈ HS0 \ (H0)S , such that (in any proper extension χ′
of χ) χ′(Y ) = {j}, for some j ∈

⋂
v∈Y L(v), and hence (7) is satisfied.

Conversely, if either (6) or (7) holds then there is an L-coloring extension χ′ of χ that
properly colors H. J

I Lemma 10. Let H ⊆ 2V be a hypergraph satisfying (1), L : V → 2[k] be a mapping,
χ : V → [0 : k] be a proper partial L-coloring of H, and S ⊂ V0 be a given set of vertices
such that, for some i ∈ [k], (Hi)S∪(V \V0) 6= ∅. Then χ is extendable to a proper L-coloring
of H if and only if either

χ is extendable to a proper L-coloring for H̄S∪(V \V0)
i ∪ (Hi)S∪(V \V0), or (8)

∃j 6= i, Y ∈ HS∪(V \V0)
j \ (Hj)S∪(V \V0) : j ∈

⋂
v∈Y
L(v), χ is extendable to a proper

L-coloring χ′ for H such that χ′(Y ) = {j}. (9)

Proof. Suppose that χ is extendable to a proper L-coloring χ′ for H. If (8) is not satisfied
then (since ∅ 6∈ H̄S∪(V \V0)

i by(1)) there is a Y ∈ HS∪(V \V0)
j for some j 6= i, such that

χ′(Y ) = {j} and j ∈
⋂
v∈Y L(v), and hence (9) is satisfied.

Conversely, suppose that either (8) or (9) holds. If (9) is satisfied then χ′ is a proper
L-coloring of H which extends χ. On the other hand, if (8) holds then there is an L-coloring
χ′ : S ∪ (V \ V0)→ [k] such that |χ(H)| ≥ 2 for all H ∈ H̄S∪(V \V0)

i ∪ (Hi)S∪(V \V0). Then χ′
can be extended to a proper L-coloring for H by setting χ′(v) ∈ L(v) \ {i} arbitrarily for
v ∈ V0 \ S (as H ∩ (V0 \ S) 6= ∅ for all H ∈ Hi \ (Hi)S∪(V \V0)). J

I Lemma 11. Let H ⊆ 2V be a hypergraph satisfying (1), L : V → 2[k] be a mapping,
χ : V → [0 : k] be a proper partial L-coloring of H such that Hi 6= ∅ for at least two
i’s, and ε1, ε2 ∈ (0, 1) be two given numbers such that, ε1 < ε2. Then either (i) there is
v ∈ V0 and i 6= j such that degHi(v) ≥ ε1|Hi| and degHj (v) ≥ ε1|Hj |, or (ii) there is a
(1− ε2, 1− (ε2 − ε1))-balanced set S ⊆ V0 with respect to HV0

j for some j ∈ [k].
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Proof. For any i 6= j such that Hi 6= ∅ and Hi 6= ∅, let Ti := T (HV0
i , ε1) and Tj := T (HV0

j , ε1).
If Ti ∩ Tj 6= ∅ then any v in this intersection will satisfy (i). Otherwise, (1) implies that
either (HV0

i )Ti = ∅ or (HV0
j )Tj = ∅, in which case a (1− ε2, 1− (ε2 − ε1))-balanced set with

respect to HV0
i or HV0

j , respectively, can be obtained by Lemma 8. J

Algorithm 2 is more sophisticated than Algorithm 1 as it does not require the existence
of a large-degree vertex, but uses more complicated decomposition rules, given by lemmas 9
and 10. As before, the algorithm proceeds in two phases. As long as there is a large "volume"
of edges with no assigned colors, that is |H0|

∑
H∈H0

|H| ≥ δ, the algorithm is still in phase I;
otherwise it proceeds to phase II. In a general step of phase I (resp., phase II), the algorithm
tries, in step 3 (resp., step 35), to find a vertex v of large degree in H0 (resp., in Hi and Hj
for some i 6= j) and iterates over all feasible assignments of colors to v, that result in no
monochromatic edges; if no such v can be found then Lemma 8 guarantees the existence of a
(1− ε2, 1− (ε2 − ε1))-balanced set with respect to H0 (resp., with respect to either HV0

i or
HV0
j as in Lemma 11), which is found in step 13 (resp, 38). Lemma 9 (resp., Lemma 10) then

reduces the problem in the latter case to checking (6) and (7) (resp., (8) and (9)), which
is done in steps 14, and 17-23 (resp., in steps 39, and 43-45), respectively. If none of the
recursive calls yields a feasible extension of the current proper partial L-coloring χ, we return
that there are no proper L-colorings (lines 11, 24, 32 and 46).

To analyze the running time of the algorithm, let us measure the volume of a subproblem
in phase I by µ2 = µ2(H, χ) = |H0|

∑
H∈H0

|H|, and in phase II by µ2 = µ2(H, χ) given by
(3). Phase II (and hence the recursion) stops when µ2(H, χ) ≤ δ, or an L-coloring has been
found.

Given a subproblem of volume µ, let ε(µ) := ln(eρ)
ξ(µ) , where ξ(µ) is the unique positive root

of the equation:(
ξ(µ)

2 ln(eρ)

)ξ(µ)
= µ2. (10)

Note that (for constant ρ) χ(µ) ≈ O
(

logµ
log logµ

)
. We set δ ≥ 2ρ such that ξ(δ) ≥ 2k ln(eρ).

Note that ξ(µ) ≥ 2 and ε(µ) ≤ 1
2k , for µ ≥ δ. We use in the algorithm: ε1(µ) := ε(µ) and

ε2(µ) := 2ε(µ).

I Lemma 12. Algorithm 2 solves problem Proper-L-Coloring in time (mn)o(k2 log(mn)).

Consider the recursion tree T of the algorithm. Let T1 (reps., T2) be the subtree (resp.,
sub-forest) of T belonging to phase I (resp., phase II) of the algorithm. Let B1(µ) (resp.,
B2(µ)) be the total number of nodes in T1 (resp., T2) that result from a subproblem of
volume µ. The lemma follows from the following two claims whose proofs are given in the
appendix.

I Claim 13. The number of nodes in T1 is at most (δ(ρδ + 1) + 1)(m2n)ξ(m2n).

Proof. If there is a vertex v ∈ V0 such that degH0(v) ≥ ε1|H0| then the algorithm proceeds
with steps 4-11 and we get the recurrence:

B1(µ1) ≤ ρ ·B1(b(1− ε1)µ1c) + 1, (11)

since we recurse in step 8 on a hypergraph H′ that excludes all the edges containing v
from H′0. On the other hand, if no such v can be found then Lemma 8 implies that there
is a (1 − ε2, 1 − (ε2 − ε1))-balanced set S, with respect to some H0, which is found in

IPEC 2016
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Algorithm 2 Proper-L-Coloring-B(H,L, χ)
Input: hypergraph H ⊆ 2V , a mapping L : V → 2[k], and a proper partial L-coloring χ : V → [0 : k]
Output: TRUE (resp,. FALSE) if a proper L-coloring χ : V → [k] of H is (resp., cannot be) found
1: V0 := V0(χ); Hi := Hi(χ) for i ∈ [0 : k]
2: if µ1 := µ1(H, χ)| > δ then /* Phase I */
3: if there is v ∈ V0 such that degH0

(v) ≥ ε1(µ1)|H0| then
4: for each j ∈ L(v) do
5: χ(v) := j
6: if there is no H ∈ H such that χ(H) = {j} then /* if no edge becomes monochromatic */
7: H′ := H \

⋃
i∈[k], i 6=j

{H ∈ Hi : j ∈ χ(H)} /* delete non-monochromatic edges */
8: return Proper-L-Coloring-B(H′,L, χ)
9: end if

10: end for
11: χ(v) := 0; return FALSE
12: else
13: Let S be a (1− ε2, 1− (ε2(µ1)− ε1(µ1)))-balanced set computed as in Lemma 8 w.r.t H0
14: if Proper-L-Coloring-B(H̄0 ∪HS

0 ,L, χ) then
15: stop /* A proper L-coloring has been found */
16: else
17: for each Y ∈ HS

0 \ (H0)S and j ∈
⋂

v∈Y
L(v) do

18: χ(Y ) := {j}
19: if there is no H ∈ H such that χ(H) = {j} then /* if no edge becomes monochromatic

*/
20: H′ := H \

⋃
i∈[k], i 6=j

{H ∈ Hi : j ∈ χ(H)} /* delete non-monochromatic edges */
21: return Proper-L-Coloring-B(H′,L, χ)
22: end if
23: end for
24: χ(Y ) := {0}; return FALSE
25: end if
26: end if
27: else/* Phase II */
28: if µ2 := µ2(H, χ) ≤ δ or |{i : Hi 6= ∅}| = 1 then
29: if Proper-L-Coloring-simple(H, L, χ) then
30: Stop /* A proper L-coloring has been found */
31: else
32: return FALSE
33: end if
34: else
35: if there is v ∈ V0 and i 6= j such that degHi

(v) ≥ ε1(µ2)|Hi| and degHj
(v) ≥ ε1|Hj | then

36: Same as in steps 4-11 of Phase I
37: else
38: Let S be a (1− ε2, 1− (ε2(µ2)− ε1(µ2)))-balanced set computed as in Lemma 8 w.r.t HV0

i
for some i ∈ [k]

39: if Proper-L-Coloring-B(H̄S∪(V \V0)
i ∪ (Hi)S∪(V \V0),L, χ) then

40: Set χ(v) ∈ L(v) \ {i} arbitrarily for v ∈ V0 \ S
41: stop /* A proper L-coloring has been found */
42: else
43: for each j 6= i and Y ∈ HS∪(V \V0)

j \ (Hj)S∪(V \V0) s.t. j ∈
⋂

v∈Y
L(v) do

44: Same as in steps 18-22 of Phase I
45: end for
46: χ(Y ) := {0}; return FALSE
47: end if
48: end if
49: end if
50: end if

step 13. Then we apply Lemma 9 which reduces the problem to one recursive call on the
hypergraph H̄0 ∪ HS0 in step 14, and at most |HS0 \ (H0)S | recursive calls (in step 21) on
the hypergraphs obtained by fixing the color of one set Y ∈ HS0 \ (H0)S . Note that S
satisfies: (1 − ε2)|H0| ≤ |(H0)S ≤ |(1 − (ε2 − ε1))|H0|. In particular, there is an H ∈ H0
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such that H \ S 6= ∅. Hence, in step 14, we recurse on the hypergraph H̄0 ∪ HS0 which
excludes at least one vertex from H. Moreover, in step 21, we recurse on a hypergraph H′
that has H′0 ⊆ H0 \ (H0)S , as all edges in (H0)S have non-empty intersections with the set
Y ∈ HS0 \ (H0)S in the current iteration of the loop in step 17, all vertices of which are
assigned color j. Since |H0 \ (H0)S | ≤ ε2|H0|, we get the recurrence:

B1(µ1) ≤ B1(µ1 − 1) + ρε2µ1 ·B1(bε2µ1c) + 1. (12)

By the termination condition of phase I (in line 2), we have B1(µ1) = 1 for µ1 ≤ δ. We
will prove by induction on µ1 ≥ δ that B1(µ1) ≤ C · µξ(µ1)

1 , for C := δ(ρδ + 1) + 1.
Let us consider first recurrence (11). If (1− ε1)µ1 ≤ δ then we get B1(µ1) ≤ ρ+ 1 < C.

Otherwise, we apply induction to get

B1(µ1) ≤ C · ρ((1− ε1)µ1)ξ(µ1) + 1 ≤ C · µξ(µ1)
1

(
ρ(1− ε1)χ(µ1) + 1

µ
ξ(µ1)
1

)

≤ C · µξ(µ1)
1

(
ρe−ε1ξ(µ1) + 1

µ
ξ(µ1)
1

)

≤ C · µξ(µ1)
1

(
1
e

+ 1
4

)
< C · µξ(µ1)

1 , (as ε1ξ(µ1) = ln(eρ) and ξ(µ1) ≥ 2 for µ1 ≥ δ).

Let us consider next recurrence (12). We consider 3 cases:

Case 1. µ1−1 ≤ δ: Then bε2µ1c ≤ δ and (12) reduces to B1(µ1) ≤ ρε2µ1+2 ≤ ρ(δ+1)+2 <
C.

Case 2. ε2µ1 ≤ δ: Then (12) reduces to

B1(µ1) ≤ B1(µ1 − 1) + ρε2µ1 + 1 ≤ B1(µ1 − 1) + ρδ + 1.

Iterating we get B1(µ1) ≤ B1(µ1 − r) + r(ρδ + 1) ≤ r(ρδ + 1) + 1, for r = µ1 − δ ≤(
1
ε2
− 1
)
δ. Thus, B1(µ1) ≤

(
1
ε2
− 1
)
δ(ρδ + 1) + 1. As ε2 = 2ε(µ1) = 2 ln(eρ)

ξ(µ1) , we get

B1(µ1) ≤
(

ξ(µ1)
2 ln(eρ) − 1

)
δ(ρδ + 1) + 1 ≤ (µ1 − 1) δ(ρδ + 1) + 1 ≤ Cµξ(µ1)

1 , for µ1 ≥ δ.

Case 3. µ1 − 1 > δ and ε2µ1 > δ: We apply induction:

B1(µ1) ≤ C(µ1 − 1)ξ(µ1) + C · ρε2µ1(ε2µ1)ξ(µ2) + 1

≤ C · µξ(µ1)
1

((
1− 1

µ1

)ξ(µ1)
+ ρε2µ1ε

ξ(µ1)
2 + 1

µ
ξ(µ1)
1

)

≤ C · µξ(µ1)
1

((
1− 1

µ1

)ξ(µ1)
+ ρε2
µ1

+ 1
µ
ξ(µ1)
1

)
(since εξ(µ1)

2 = 1
µ2

1
by (10))

≤ C · µξ(µ1)
1

((
1− 1

µ1

)2
+ 1
µ1

+ 1
µ2

1

)
(since ε2 ≤

1
k

and ξ(µ1) ≥ 2 for µ1 ≥ δ)

≤ C · µξ(µ1)
1 (since µ2 ≥ δ > 2).

Using µ1(H, χ) ≤ m2n, we get the claim. J

I Claim 14. The number of nodes in any sub-tree of T2 is at most

(δ(ρδ + 1) + 1)(mk/kk−1)ξ(m
k/kk−1) .

IPEC 2016
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Proof. If µ2(H, χ) ≤ δ (and already µ1(H, χ) ≤ δ), then Lemma 4 implies that problem
Proper-L-Coloring can be solved in time O((ρn)(k+1)δ), as m ≤ δ. If there is v ∈ V0
and i 6= j such that degHi(v) ≥ ε1|Hi| and degHj (v) ≥ ε1|Hj | then the algorithm proceeds
similar to steps 4-11 and we get the recurrence:

B2(µ2) ≤ ρ ·B2(b(1− ε1)µ2c) + 1, (13)

since we recurse (in the step similar to step 8) on a hypergraph H′ that excludes either all
the edges containing v from H′i, if we set the color of v to j, or all those containing v from
H′j if we set the color of v to i (or both, if we set the color of v to ` 6∈ {i, j}).

On the other hand, if no such v can be found then Lemma 11 implies that there is a
(1 − ε2, 1 − (ε2 − ε1))-balanced set S, with respect to some Hi, which is found in step 38.
Then we apply Lemma 10 which reduces the problem to one recursive call on the hypergraph
H̄S∪(V \V0)
i ∪ (Hi)S∪(V \V0) in step 39, and at most

∑
j 6=i |H

S∪(V \V0)
j \ (Hj)S∪(V \V0)| recursive

calls on the hypergraphs obtained by fixing the color of one set Y ∈ HS∪(V \V0)
j \(Hj)S∪(V \V0).

As S satisfies: (1− ε2)|Hi| ≤ |(Hi)S∪(V \V0)| ≤ (1− (ε2 − ε1))|Hi|, in step 39 we recurse on
the hypergraph H′ := H̄S∪(V \V0)

i ∪ (Hi)S∪(V \V0) with µ2(H′, χ) ≤ (1 − (ε2 − ε1))µ2(H, χ).
Moreover, for each Y satisfying the condition in step 43, we recurse on a hypergraph H′ that
has H′i ⊆ Hi \ (Hi)S∪(V \V0), as all edges in (Hi)S∪(V \V0) have non-empty intersections with
the set Y , all vertices of which are assigned color j 6= i. Since |Hi \ (Hi)S∪(V \V0)| ≤ ε2|Hi|,
we get the recurrence:

B2(µ2) ≤ B2(b(1− (ε2 − ε1))µ2c) + ρµ2 ·B2(bε2µ2c) + 1. (14)

By the stopping criterion in line 28, we have B2(µ2) = 1 for µ2 ≤ δ. We will prove by
induction on µ2 ≥ δ that B2(µ2) ≤ C · µξ(µ2)

2 , for C := δ(ρδ + 1) + 1.
As recurrence (13) is the same as (11), we need only to consider recurrence (14). We

consider 3 cases:

Case 1. (1 − (ε2 − ε1))µ2 ≤ δ: Then ε2µ2 ≤ 2ε(µ2)
1−ε(µ2)δ ≤

2
2k−1δ < δ for µ2 ≥ δ (recall

that ε(µ2) ≤ 1
2k for µ2 ≥ δ), and hence (13) reduces to B2(µ2) ≤ ρµ2 + 2 ≤ ρδ

1−ε(µ2) + 2 ≤
2kρδ
2k−1 + 2 < 2(ρδ + 1) < C.

Case 2. ε2µ2 ≤ δ: Then (12) reduces to

B2(µ2) ≤ B2((1− ε(µ2))µ2) + ρε2µ2 + 1 ≤ B2((1− ε(µ2))µ2) + ρδ + 1.

Iterating we get B2(µ2) ≤ B2(µ2(1− ε(µ2))r) + r(ρδ + 1) ≤ r(ρδ + 1) + 1, for r = ln(µ2/δ)
ε(µ2) ≤

ln(1/ε(µ2))
ε(µ2) . Thus, B2(µ2) ≤

(
ln(1/ε(µ2))
ε(µ2)

)
(ρδ + 1) + 1. As ln(1/ε(µ2))

ε(µ2) ≤ δµξ(µ2)
2 for µ2 ≥ δ ≥ 2

(since
(

1
2ε(µ2)

)ξ(µ2)
= µ2

2 by (10)), we get B2(µ2) ≤ δ(ρδ + 1) + 1 ≤ Cµξ(µ2)
1 .
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Case 3. (1− (ε2 − ε1))µ2 > δ and ε2µ2 > δ: We apply induction:

B2(µ2) ≤ C((1− ε(µ2))µ2)ξ(µ2) + C · ρµ2(ε2(µ2)µ2)ξ(µ2) + 1

≤ C · µξ(µ2)
2

(
(1− ε(µ2))ξ(µ2) + ρµ2(ε2(µ2))ξ(µ2) + 1

µ
ξ(µ2)
2

)

≤ C · µξ(µ2)
2

(
(1− ε(µ2))ξ(µ2) + ρ

µ2
+ 1
µ
ξ(µ2)
2

)
(since (ε2(µ2))ξ(µ2) = 1

µ2
2
by (10))

≤ C · µξ(µ2)
2

(
e−ε(µ2)ξ(µ2) + ρ

µ2
+ 1
µ
ξ(µ2)
2

)

≤ C · µξ(µ2)
2

(
1
eρ

+ ρ

µ2
+ 1
µ
ξ(µ2)
2

)
(since ε(µ2) = ln(eρ)

ξ(µ2) )

≤ C · µξ(µ2)
2

(
1
4 + 1

2 + 1
16

)
< C · µξ(µ2)

2 . (since ξ(µ2) ≥ 2 for µ2 ≥ δ ≥ 2ρ)

Using the bound µ1(H, χ) ≤ k ·
(
m
k

)k
, we get the claim.

Putting these Claims 6 and 7 together, the lemma follows. J

I Remark. Theorem 1 can be extended to the case when the input hypergraph H is almost
intersecting, that is, if for all H ∈ H,

H ∩H ′ = ∅ for at most O(1) edges H ′ ∈ H.

Acknowledgements. I thank Endre Boros and Vladimir Gurvich for helpful discussions.
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