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Abstract
A feedback vertex set in an undirected graph is a subset of vertices whose removal results in an
acyclic graph. It is well-known that the problem of finding a minimum sized (or k-sized in case of
decision version of) feedback vertex set (FVS) is polynomial time solvable in (sub)-cubic graphs,
in pseudo-forests (graphs where each component has at most one cycle) and mock-forests (graphs
where each vertex is part of at most one cycle). In general graphs, it is known that the problem is
NP -complete, and has an O∗((3.619)k) fixed-parameter algorithm and an O(k2) kernel where k,
the solution size, is the parameter. We consider the parameterized and kernelization complexity
of feedback vertex set where the parameter is the size of some structure in the input. In particular,
we show that

FVS is fixed-parameter tractable, but is unlikely to have polynomial sized kernel when para-
meterized by the number of vertices of the graph whose degree is at least 4. This answers a
question asked in an earlier paper.
When parameterized by k, the number of vertices, whose deletion results in a pseudo-forest,
we give an O(k6) vertices kernel improving from the previously known O(k10) bound.
When parameterized by the number k of vertices, whose deletion results in a mock-d-forest,
we give a kernel consisting of O(k3d+3) vertices and prove a lower bound of Ω(kd+2) vertices
(under complexity theoretic assumptions). Mock-d-forest for a constant d is a mock-forest
where each component has at most d cycles.
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1 Introduction

In the early years of parameterized complexity and algorithms, problems were almost always
parameterized by solution size. Recent research has focused on other parameterizations
based on structural properties of the input [16, 9, 15, 8], above or below guaranteed optimum
values [14]. Such ‘non-standard’ parameters are known to be small in practice. Also once a
problem is shown to be fixed-parameter tractable (and/or having a polynomial kernel) with
respect to a parameter, it is a natural question whether it has a fixed-parameter algorithm
or polynomial kernel with respect to a smaller parameter. Similarly, when a problem is
W -hard or has no polynomial kernel then it is interesting to ask whether it is fixed-parameter
tractable or admits a polynomial kernel when it is parameterized by a structurally larger
parameter. We study such ecology of parameterization for Feedback Vertex Set.

Feedback Vertex Set in an undirected graph G asks whether G has a subset S of
at most k vertices such that G \ S is a forest, for a given integer k. The set S is called
a feedback vertex set of the graph. The problem is known to be NP -complete even on
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21:2 Structural Parameterizations of Feedback Vertex Set

bipartite graphs [13] and in graphs of degree at most 4 [20], but is polynomial time solvable in
sub-cubic graphs [22, 6, 5], asteroidal triple free graphs [19] and chordal bipartite graphs [17].
The problem is easy (polynomial time) to solve in pseudo-forests (graphs in which each
component has at most one cycle), in mock-forests (graphs where each vertex is part of at
most one cycle), in cliques and disjoint union of cliques. This is also one of the well-studied
problems in parameterized complexity and when parameterized by solution size, it has an
algorithm with running time O∗(3.619k) [18]1 and a kernel with O(k2) vertices and edges [21].

Some parameterizations by the size of some structure in the input have already been
explored. Feedback Vertex Set parameterized by the size of maximum induced matching
(also maximum independent set and vertex clique cover) has been shown to be W [1]-Hard
but contained in XP (See [16, 1]). Bodlaender et al. [2] proved that Feedback Vertex
Set parameterized by deletion distance to a cluster graph (disjoint union of cliques) has no
polynomial kernel unless NP ⊆ coNP/poly. Jansen et al. [16] give a survey of results known
for such structural parameterization of feedback vertex set and show that

Feedback Vertex Set parameteirzed by Deletion Distance to chordal graph
is fixed-parameter tractable;
Feedback Vertex Set parameterized by Deletion Distance to Pseudo-forest
has an O(f10) kernel and a kernel lower bound of Ω(f4) where f is the size of the deletion
distance to pseudo-forest of the input graph.
Feedback Vertex Set parameterized by Deletion Distance to mock-forest has
no polynomial kernel unless NP ⊆ coNP/poly.

Our Results: Jansen et al. suggested in [16], “An interesting question in this direction is
whether Feedback Vertex Set is XP or FPT when parameterized by the vertex deletion
distance to sub-cubic graphs or alternatively, parameterized by the number of vertices of degree
more than 3". While the first question remains open, our first result is an answer to the
latter question (FVS-High-Degree defined below). We answer it positively by providing a
fixed-parameter algorithm running in time O∗(2k). We also prove that this problem has no
polynomial kernel unless NP ⊆ coNP/poly.

FVS-High-Degree Parameter: k

Input: An undirected graph G such that |{u ∈ V (G)|degG(u) > 3}| ≤ k and ` ∈ N.
Question: Does G have a feedback vertex set of size at most `?

Our next result is an improved kernel for the following problem for which an
O(k10) vertex kernel and a conditional lower bound of Ω(k4) were given by Jansen et
al. [16].

FVS-Pseudo-Forest Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
graph in which every component has at most one cycle and an integer `.
Question: Does G have a feedback vertex set of size at most `?

We give a kernel on O(k6) vertices, narrowing the gap between upper and lower bound
for the size of the kernel. Note that every feedback vertex set is also a pseudo-forest deletion
set, but not all pseudo-forest deletion sets are feedback vertex sets. So, in this problem, our
parameter is smaller than the solution size.

1 O∗ notation suppresses polynomial factors.
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Finally, we consider a variation of mock-forests (called mock-d-forest) where each com-
ponent has at most d cycles, where d is a constant, and consider the kernelization complexity
of FVS parameterized by the deletion distance to mock-d-forests. It is easy to see that FVS
is fixed-parameter tractable when parameterized by the deletion distance to mock-d-forest
(or any mock-forest) as any mock-forest has tree-width at most 2. Also, it is easy to see that
any pseudo-forest deletion set is also a mock-d-forest deletion set. But not all mock-d-forest
deletion sets are pseudo-forest deletion sets. So, our parameter for this problem is not just
smaller than solution size, it is even smaller than the parameter for FVS-Pseudo-Forest
problem. But, it is larger than the size of the mock-forest deletion set for which case there is
no polynomial kernel.

FVS-Mock-d-Forest where d ≥ 2 and d is a constant Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
mock-forest where every component has at most d cycles and an integer `.
Question: Does G have a feedback vertex set of size at most `?

When d is not bounded, then we know that this problem has no polynomial kernel unless
NP ⊆ coNP/poly [16]. Here, we provide a O(k3d+3) vertex kernel for this problem when d
is a constant. And we also prove that a kernel consisting of O(kd+2−ε) is unlikely for any
ε > 0 unless NP ⊆ coNP/poly. We assume that for FVS-Pseudo-Forest, the deletion set
to pseudo-forest is given with the input. But, this is not a serious assumption as there are
constant factor approximation algorithms [10, 12] for computing a minimum vertex deletion
set to a pseudo-forest of a graph.

We organise our paper as follows. In Section 2, we introduce the notations. In Section 3,
we provide the FPT Algorithm for FVS-High-Degree and prove that it has no polynomial
kernel unless NP ⊆ coNP/poly. In Section 4, we provide the improved polynomial kernel for
FVS-Pseudo-Forest. In Section 5, we provide the polynomial kernel and a conditional
kernel lower bound of Ω(kd+2) for FVS-Mock-d-Forest.

2 Preliminaries and Notations

By [r], we mean the set {1, 2, . . . r}. Throughout the paper we denote the feedback vertex set
number (the size of a minimum feedback vertex set) by fvs(G). Let S be a set of vertices.
By

(
S
r

)
, we denote the family of subsets of S containing exactly r vertices. By

(
S
≤r
)
, we

denote the family of subsets of S containing at most r vertices. We call a pair of vertices
(u, v) a double edge if there are at least 2 edges between u and v. Otherwise we call (u, v) a
non-double-pair. For an edge (u, v) the multiplicity of (u, v) is the number of edges present
between u and v. Let G = (V,E) be a tree or a pseudo-forest or a mock-forest. Then a set
of vertices V ′ ⊆ V (G) is a degree-2-path if V ′ induces an acyclic path and every vertex of
the path has degree exactly 2 in G. A degree-2-path is maximal if no proper superset of V ′
is a degree-2-path. Let G be a graph where we contract an edge (u, v). Then we denote
G′ = G/(u, v) as the graph created by contraction of edge (u, v). Let uv be the contracted
vertex as a result of contraction. Then, NG′(uv) = NG(u) ∪NG(v). We denote G[B] by the
graph induced on the vertex set B ⊆ V (G). We say G[B] is a double-clique if there are at
least 2 edges between every pair of vertices in B.

We give the definitions of fixed-parameter tractability, kernelization, polynomial parameter
transformation and its related facts.

IPEC 2016



21:4 Structural Parameterizations of Feedback Vertex Set

2.1 Definitions and Properties
I Definition 1 (Fixed-Parameter Tractability). Let L ⊆

∑∗×N is a parameterized language.
L is said to be fixed-parameter tractable (or FPT ) if there exists an algorithm B, a constant
c and a computable function f such that ∀x, ∀k, B on input (x, k) runs in at most f(k).|x|c
time and outputs (x, k) ∈ L iff B([x, k]) = 1. We call the algorithm B as fixed-parameter
algorithm.

I Definition 2 (Slice-Wise Polynomial (XP )). Let L ⊆
∑∗×N is a parameterized language. L

is said to be Slice-Wise Polynomial (or in XP ) if there exists an algorithm B, a constant c and
computable functions f, g such that ∀x, ∀k, B on input (x, k) runs in at most f(k).|x|g(k)+c

time and outputs (x, k) ∈ L iff B([x, k]) = 1. We call the algorithm B as XP Algorithm.

I Definition 3 (Kernelization). Let L ⊆
∑∗×N be a parameterized language. Kernelization

is a procedure that replaces the input instance (I, k) by a reduced instance (I ′, k′) such that
k′ ≤ f(k), |I ′| ≤ g(k) for some function f, g depending only on k.
(I, k) ∈ L if and only if (I ′, k′) ∈ L.

The reduction from (I, k) to (I ′, k′) must be computable in poly(|I|+k) time. If g(k) = kO(1)

then we say that L admits a polynomial kernel.

I Definition 4 (Soundness/Safeness of Reduction Rule). A reduction rule that replaces an
instance (I, k) of a parameterized language L by a reduced instance (I ′, k′) is said to be
sound or safe if (I, k) ∈ L if and only if (I ′, k′) ∈ L.

I Definition 5 (Polynomial parameter transformation (PPT)). Let P1 and P2 be two para-
meterized languages. We say that P1 is polynomial parameter reducible to P2 if there exists
a polynomial time computable function (or algorithm) f :

∑∗×N → ∑∗×N, a polyno-
mial p : N → N such that (x, k) ∈ P1 if and only if f(x, k) ∈ P2 and k′ ≤ p(k) where
f((x, k)) = (x′, k′). We call f to be a polynomial parameter transformation from P1 to P2.

The following proposition gives the use of the polynomial parameter transformation for
obtaining kernels for one problem from another.

I Proposition 6 ([3]). Let P,Q ⊆ Σ∗ × N be two parameterized problems and assume that
there exists a PPT from P to Q. Furthermore, assume that classical version of P is NP-hard
and Q is in NP. Then if Q has a polynomial kernel then P has a polynomial kernel.

2.2 Initial Preprocessing Rules
For the algorithms in Section 3, 4, 5, we use the following well known reduction rules. See
Chapter 3, 4 of [6] for safeness of these Reduction Rules. Here ` is the size of the solution
(fvs) being sought.

I Reduction Rule 7. If there exists u ∈ V (G) such that u has a self loop, then G′ ←
G \ {u}, `′ ← `− 1.

I Reduction Rule 8. If there exists a vertex v such that degG(v) ≤ 1, then G′ ← G\v, `′ ← `.

I Reduction Rule 9. If there exists a vertex v such that NG(v) = {u,w}, then delete the
vertex v and add an edge (u,w) into G.

Note that Reduction Rule 9 can create parallel edges.

I Reduction Rule 10. If there exists an edge (u, v) whose multiplicity is more than 2, then
reduce its multiplicity to 2.
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3 Feedback Vertex Set Parameterized by number of vertices of
degree more than 3

FVS-High-Degree Parameter: |{u ∈ V (G)|degG(u) > 3}| ≤ k

Input: An undirected graph G = (V,E) and an integer `.
Question: Does G have a feedback vertex set of size at most `?

Note that our input can be a multigraph. We prove that this problem is fixed-parameter
tractable and has no polynomial kernel unless NP ⊆ coNP/poly. First, we provide an
FPT Algorithm to answer a question asked in [16]. Then, we prove that this problem has
no polynomial kernel. Let S = {u ∈ V (G)|degG(u) > 3}. Throughout this section and in
Sections 4, and 5, we use F to denote G \ S.

3.1 Fixed-Parameter Algorithm

Now, we provide the FPT Algorithm for this problem. We first make the graph minimum
degree three. Then, we run over all possible subsets of S and for every subset S′ of S, we
reduce that instance to a polynomial time solvable problem.

I Theorem 11. There exists an algorithm that runs in O(2k · nO(1)) time for FVS-High-
Degree problem.

Proof. First we apply Reduction Rules 7, 8, 9, 10 in sequence and keep updating ` appropri-
ately. Then the algorithm works as follows (see Algorithm 1 for pseudo-code).

We guess a subset S′ ⊆ S that intersects S with an ` sized feedback vertex set we are
seeking for. If G[S \ S′] has a cycle, then we move on to the next guess. Otherwise, let
S′′ = S \ S′ and G[S′′] is a forest. Now, let F = G \ S. `′ = `− |S′|. Now, we have to find a
minimum feedback vertex set D of G \ S′ such that S′′ ∩D = ∅. Note that every vertex in F
has degree at most three in G and also in G\S′. Now, we subdivide every edge (u, v) ∈ E(F ),
by adding a new vertex eu,v and we add eu,v to S′′. We get T ′ = S′′ ∪ {eu,v|(u, v) ∈ E(F )}.
u and v are the only two neighbours of eu,v. Hence we have that for every vertex u ∈ V (F ),
u has no neighbour in F . Let the graph we have currently is G′′. Let R′ = V (G′′) \ T ′. Note
that R′ is an independent set. Our goal is to find a feedback vertex set of G′′ of at most `′
vertices that is disjoint from T ′. Now, we pre-process G′′ using the following reduction rules
(also available in [18]) so that every vertex in R′ has exactly three neighbours in T ′ and all
such neighbours appear in different components of G′′[T ′]. We need to apply these rules in
sequence. Safeness of first two of them are easy to see.

I Reduction Rule 12. If there exists u ∈ R′ such that degG′′(u) ≤ 1, then delete u.

I Reduction Rule 13. If there exists u ∈ R′ such that G′′[T ′ ∪ {u}] has a cycle, then delete
u from G′′ and reduce `′ by 1.

Notice that Reduction Rule 13 is also applicable when a vertex u ∈ R′ has exactly two
neighbours in T ′ that are in same component of G[T ′].

I Reduction Rule 14. If there exists a vertex u ∈ R′ such that u has exactly 2 neighbours
in T ′ and those two neighbours in different components of G′′[T ′], then move u to T ′.

IPEC 2016
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I Lemma 15 (?2). Reduction Rules 12, 13 and 14 are safe and can be implemented in
polynomial time.

When Reduction Rules 12, 13, 14 are not applicable, then our goal is to solve the following
problem.

Special Disjoint Feedback Vertex Set
Input: An undirected graph G = (V,E), S1 ∪ S2 = V (G), S1 ∩ S2 = ∅, G[S1] is a forest,
S2 is an independent set and every vertex of S2 has exactly 3 neighbours and all are in
different components of G[S1].
Goal: Find a minimum feedback vertex set W of G such that W ∩ S1 = ∅.

The following Lemma is due to Kociumaka and Pilipczuk [18] which uses matroid techniques.

I Lemma 16 ([18]). Let (G,S1, S2) be an instance of Special Disjoint Feedback Vertex
Set. Then there exists a polynomial time algorithm that finds a minimum feedback vertex
set W of G such that W ⊆ S2.

Now, if |W | ≤ `′, then we output Yes. Otherwise we repeat the above steps for another
subset of S. There are at most 2|S| many such subset S′ of S and after guessing subset, the
problem is polynomial time solvable. If for every subset of S, it is seen that |W | > `′, then
we output No. Therefore, we have an algorithm that runs in time O∗(2k). J

3.2 Kernelization Lower Bound
Now, to justify that FVS-High-Degree has no polynomial kernel unless NP ⊆ coNP/poly,
we use the following theorem and the construction that is used by Jansen et al. [16].

I Theorem 17 ([11]). Let φ be a boolean formula in CNF form with n variables and m
clauses. CNF-SAT parameterized by n has no polynomial kernel unless NP ⊆ coNP/poly.

Jansen et al. [16] provided a polynomial parameter transformation from CNF-SAT
parameterized by number of variables, n to Feedback Vertex Set parameterized by
deletion distance to Mock-Forest. In that construction, the size of the deletion distance to
Mock-Forest is at most 4n. In the same construction, the number of vertices of the graph
whose degree is at least 4 is 2n. For details, see Section 6 in [16]. So, the same transformation
is also a polynomial parameter transformation from CNF-SAT parameterized by number of
variables to FVS-High-Degree. Thus, we have the following corollary.

I Corollary 18. FVS-High-Degree has no polynomial kernel unless NP ⊆ coNP/poly.

4 Improved Polynomial Kernel for Parameterization by Deletion
Distance to Pseudo-Forest

FVS-Pseudo-Forest Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
graph in which every component has at most one cycle, and an integer `.
Question: Does G have a feedback vertex set of size at most `?

2 Due to lack of space, the proofs of Lemmas and Observations marked ? will appear in the full version.
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Algorithm 1: FVS-Param-High-Degree-Vertices
input :G = (V,E) and ` ∈ N
output : Yes if ∃C ⊆ V (G), |C| ≤ ` such that G \ C is a forest, No otherwise

1 S ← {u ∈ V (G)|degG(u) ≥ 4};
2 `′ ← `;
3 for every S′ ⊆ S do
4 if G[S \ S′] is a forest then
5 S′′ ← S \ S′;
6 `′ ← `− |S′|;
7 F = G \ S;
8 T = ∅;
9 for each (u, v) ∈ E(F ) do

10 T ← T ∪ {eu,v};
11 T ′ ← T ∪ S′′;
12 E′ = E(G[S′′]) ∪ {(u, eu,v)|(u, v) ∈ E(F )};
13 G′′ = (T ′, E′);
14 Apply Reduction Rules 12, 13, 14 in this sequence and keep updating `′

appropriately.;
15 When Reduction Rules 12, 13, 14 are not applicable, run algorithm for

Lemma 16 and get W ;
16 if |W | ≤ `′ then
17 Return Yes

18 Return No;

Throughout the section for input (G,S, `), we use F to denote G[V (G) \ S]. An O(k10)
vertex kernel is provided by Jansen et al. [16]. We provide here an improved kernel. We
first apply the Reduction Rules 7, 8, 9, 10. It is easy to see that these reduction rules can
be applied in polynomial time. When Reduction Rules 7, 8, 9, 10 are not applicable, then
every vertex of the graph has degree at least three and there are at most two edges between
every pair of vertices. In particular, every vertex in V (F ) has at least one neighbour in S.
We partition the vertices of F into H1, H2, H3. We also partition the components of F into
F1, F2, F3, F4. Formal notations are given as follows.

H1 = {u ∈ V (F )|degF (u) ≤ 1}.
H2 = {u ∈ V (F )|degF (u) = 2}.
H3 = {u ∈ V (F )|degF (u) ≥ 3}.
F1 – set of connected component of F that is a tree.
F2 – set of connected component of F that contains a vertex from H1 and also contains
a cycle. Let c2 be the number of such components.
F3 – set of connected component of F that are induced cycles consisting of two vertices.
Let c3 be the number of such components.
F4 – set of connected component of F that are induced cycles of length at least three.
Let c4 be the number of such components.

Let P be the collection of maximal degree-2-paths in F1 ∪ F2. Let M̂ be a maximum
matching in G[P ∪ F4]. Also let ĉ = c2 + c4. We will use these notations in the rest of the
section.

IPEC 2016
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4.1 General Reduction Rules
Our first step is to device some reduction rules to bound the number of vertices in H1. By
pseudo-forest property, the number of vertices in H3 becomes bounded. Now, to bound
the number of vertices in H2, we need to bound the number of edges in M , the number of
maximal degree-2-paths in P and c4. By pseudo-forest property, the number of maximal
degree-2-paths in P also becomes bounded once |H1| and |H3| are bounded. In order to
define such reduction rules, we need to use the fact crucially that the minimum degree of G
is at least 3. In particular, for every vertex v ∈ H1, either there exists x ∈ S such that (x, v)
is double-edge or there exists x, y ∈ NG(v) ∩ S. For every vertex v ∈ H1, there exists x ∈ S
such that (x, v) ∈ E(G). The reduction rules described in this subsection help to bound H1
and also M ∩ (E(F1) ∪ E(F2)). These reduction Rules also appear in [4] in different form.

I Reduction Rule 19. Let x ∈ S. Then G′ ← G \ {x}, `′ ← ` − 1 if any of the following
happens.

There are at least |S|+ 1 vertices in H1 that are connected to x by a double-edge.
There are at least |S| + ĉ + 1 vertices in F1 ∪ F2 ∪ F4 that are matched by M̂ and are
connected to x by a double-edge.
NG(x) contains both end points of at least |S|+ ĉ+ 1 edges in M̂ .

I Reduction Rule 20. Let x, y ∈ S such that (x, y) is not a double-edge. Then, make (x, y)
into a double-edge if one of the following happens.
|NG(x) ∩NG(y) ∩H1| ≥ |S|+ 2.
NG(x) ∪NG(y) contains both end points of at least |S|+ ĉ+ 2 edges of M̂ .

Even though Reduction Rule 20 does not reduce the size of the graph, it helps to capture
some constraints and also helps to apply some other reduction rules (for example Reduction
Rule 21).

I Reduction Rule 21.
If there exists a vertex u ∈ F such that degF (u) = 0, and there is no double edge attached
to u and if NG(u) ∩ S forms a double clique, then G′ ← G \ {u}.
If there exists u ∈ F such that degF (u) = 1, and there is no double edge attached to u and
NG(u) ∩ S forms a double clique, then G′ ← G/(u, v) where {v} = NG(u) ∩ F . However,
the multiple edges created because of contraction should not be deleted.
If there exists (u, v) ∈M such that NG(u)∩NG(v)∩S = ∅, and no double edge is attached
to either of u or v and G[(NG(u)∪NG(v))∩S] forms a double clique, then G′ ← G/(u, v).
However, multiple edges or self loops created because of contraction should not be deleted.

See Figure 1 for illustration.

4.2 Bounding |H1 ∪ H3|
Now, we proceed to bound the number of vertices in F that have degree at most one and at
least three. We know that F is a pseudo-forest. We need to use some structural properties
of a pseudo-forest and also in applicability of the Reduction Rules 7, 8, 9, 10 19, 20 21. Here
is an observation about pseudo-forest.

I Observation 22 (?). Let G = (V,E) be a pseudo-forest and let V1 = {v ∈ V (G)|degG(v) ≤
1} and V3 = {v ∈ V (G)|degG(v) ≥ 3}. Then, |V3| ≤ |V1|.

Using the Observation 22, we have the following lemma.
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u uv vuv
uv

Figure 1 Illustration of Reduction Rule 21.

I Lemma 23. When Reduction Rules 7, 8, 9, 10, 19, 20 and 21 are not applicable, |H1∪H3| =
2k2 + 2(k + 1)

(
k
2
)
.

Proof. We know that H1∪H3 ⊆ V (F1∪F2). Since Reduction Rules 7, 8, 9 are not applicable,
every vertex in H1 has at least two neighbours in S. As Reduction Rule 21 is not applicable,
for every vertex v ∈ H1, we associate either z ∈ S when (x, z) is a double-edge. Otherwise
we associate (x, y) ∈

(
S
2
)
for v, when x, y ∈ NG(v) ∩ S and (x, y) is not a double-edge. As

Reduction Rule 19 is not applicable, for every z ∈ S, there are at most |S| vertices in H1 that
are connected by a double-edge. As Reduction Rule 20 is not applicable, for every (x, y) ∈

(
S
2
)

and (x, y) is not a double-edge, NG(x) ∩NG(y) contain at most |S|+ 1 vertices of H1. Then
|H1| ≤ k2 + (k + 1)

(
k
2
)
. By Observation 22, we know that |H3| ≤ |H1| ≤ k2 + (k + 1)

(
k
2
)
. So,

|H1 ∪H3| ≤ 2k2 + 2(k + 1)
(
k
2
)
. J

4.3 Bounding the number of components in F3 and F4

Now, what remains is to get an upper bound on |H2|. Towards that, we need to bound M̂
which requires to use an upper bound on the number of induced cycles, i.e. the number of
components in F4, i.e. c4. We also need to bound c3 to bound the number of vertices in H2.
In addition, we also need to use some facts from the earlier Subsection 4.1. By definition,
for any component of F3 and F4, no vertex has exactly one neighbour in F . In particular
the graph induced on the set of components of F3 and F4 is a two regular graph. To get an
upper bound on number of such components, we need to do a little more work. We recall
the following concept due to Jansen et al. [16].

I Definition 24. Let C be a connected component in F3 ∪ F4 and let X ⊆ NG(C) ∩ S. We
say that C can be resolved with respect to X if there exists u ∈ C such that C \ {u} is acyclic
and for every connected component C ′ in C \ {u}, |NG(C ′) ∩X| ≤ 1, |NG(X) ∩ C ′| ≤ 1 and
G[(C \ {u}) ∪X] has no cycle.

The idea is that if a component C can be resolved with respect to its neighbourhood in
S, then we can just delete that component and reduce the budget by 1. Every connected
component of F3 and F4 are just induced cycles. When Reduction Rules 8, 9, 10 are not
applicable, we show that the components in F3 and F4 have the following properties. A
variation of the following lemma is provided in [16]. Here we provide an improved version of
their lemma by using more facts that are useful for our purpose.

I Lemma 25 (?). Let C be a connected component in F3 ∪ F4 and Reduction Rules 8, 9 be
not applicable. Then, if there exists X ⊆ NG(C) ∩ S such that C can not be resolved with
respect to X then the followings statements are true.
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If C ∈ F3, then there exists X ′ ⊆ X, |X ′| ≤ 4 such that C can not be resolved with respect
to X ′.
If C ∈ F4, then there exists X ′ ⊆ X, |X ′| ≤ 3 such that C can not be resolved with respect
to X ′.

Now, the idea behind the proof of Lemma 25 is that if for some X ⊆ S, |X| ≤ 3 (or
|X| ≤ 4), there are a large number of components that can not be resolved with respect to X,
then any minimum feedback vertex set must intersect X. Therefore, we have the following
definition (also available in [16]).

I Definition 26. Let (G,S, `) be an instance of FVS-Pseudo-Forest. We say that
X ⊆ S, |X| ≤ 4 (respectively |X| ≤ 3), be such that at least t connected components in F3
(respectively F4) can not be resolved with respect to X, then we say that X is saturated by t
unresolvable components in F3 (respectively F4).

I Lemma 27 (?). Let (G,S, `) be an instance of FVS-Pseudo-Forest and A ⊆ S, |A| ≤
3 and A is saturated by |S|+ 4 components in F4, then any minimum feedback vertex set
of G must intersect A.
Let (G,S, `) be an instance of FVS-Pseudo-Forest and A ⊆ S, |A| ≤ 4 and A is
saturated by |S|+ 7 components in F3, then any minimum feedback vertex set of G must
intersect A.

Now, we have the following Reduction Rule that follows from Lemma 27.

I Reduction Rule 28.
Let C be a connected component of F3. If for each A ⊆

(
S∩NG(C)
≤4

)
, component C can be

resolved with respect to A or A is saturated by at least |S|+ 8 non-resolvable components
in F3, then delete C and reduce ` by 1
Let C be a connected component of F4. If for each A ⊆

(
S∩NG(C)
≤3

)
, component C can be

resolved with respect to A or A is saturated by at least |S|+ 5 non-resolvable components
in F4, then delete C and reduce ` by 1.

I Lemma 29 (?). Reduction Rules 19, 20, 21 and 28 are safe and can be implemented in
polynomial time.

Now, we have the following lemma when the above reduction rules are not applicable.

I Lemma 30. Recall that the number of components in F3, F4 are c3, c4 respectively. When
Reduction Rule 7, 8, 9, 10 28 are not applicable, then

c3 ≤ (k + 7)
4∑
i=1

(
k
i

)
.

c4 ≤ (k + 4)
3∑
i=1

(
k
i

)
.

Proof. Assume that the conditions hold. We prove the statement in the given order.
Since Reduction Rule 28 is not applicable, for each component C in F3, there is a set
A ∈

(
NG(C)∩S
≤4

)
⊆
(|S|

4
)
such that C can be resolved with respect to A and A is saturated

by at most |S|+ 7 components. Then, for each component C in F3, we choose one such
set A and charge C to A. Clearly we can charge to every set A at most |S|+ 7 times,
otherwise some set A would be saturated by |S|+ 8 components. Hence the number of

components in F3 is at most (|S|+ 7)
4∑
i=1

(|S|
i

)
≤ (k + 7)

4∑
i=1

(
k
i

)
.



D. Majumdar 21:11

Similarly we can show that the number of components in F4 is (|S| + 4)
3∑
i=1

(|S|
i

)
≤

(k + 4)
3∑
i=1

(
k
i

)
. J

The following is an easy consequence of the Lemma 30.

I Corollary 31. When Reduction Rule 7, 8, 9, 10 28 are not applicable, then, the number of

vertices in F3 is at most 2(k + 7)
4∑
i=1

(
k
i

)
.

4.4 Bounding |H2| and Putting Things together
Now, use the results in the earlier section and proceed to get an upper bound on the number
of vertices in H2. We need few more structural properties of pseudo-forests for that. As any
component in F2 has at least one vertex who has exactly one neighbour in F , number of
components in F2, i.e. c2 ≤ |H1|. So, we have the following lemma.

I Lemma 32. Recall that the number of components in F2 is c2. Then c2 ≤ |H1|.

Proof. Note that any component in F2 must have at least one vertex from H1. Therefore,
the number of components in F2 is at most |H1|. J

Recall that in order to bound |H2|, we also need an upper bound on the number of
degree-2-paths in P. The following is a structural property of pseudo-forest which helps to
do so.

I Observation 33 (?). Let G = (V,E) be a pseudo-forest where every component has at least
one vertex of degree 1. Let V1 = {v ∈ V (G)|degG(v) ≤ 1} and V3 = {v ∈ V (G)|degG(v) ≥ 3}
and P be the set of maximal degree-2-paths in G. Then, |P| ≤ |V3|+ |V1|.

I Lemma 34. If Reduction Rule 7, 8, 9, 10, 19, 20, 21, 28 are not applicable, then the
number of vertices in |H2| = O(k6).

Proof. By Corollary 31, we have that |V (F3)| = O(k5). Recall that by Lemma 32, we have
that c2 = O(k3). Also by Lemma 30, we have that c4 = O(k4). So, ĉ = c2 + c4 = O(k4).
Recall that M̂ be the maximum matching in P ∪ F4. As Reduction Rule 9 is not applicable,
every vertex in H2 has at least one neighbour in S. As Reduction Rule 21 is not applicable,
for every (u, v) ∈ M̂ , we associate z ∈ NG(u) ∩NG(v) ∩ S when NG(u) ∩NG(v) ∩ S 6= ∅ or
(u, z) is a double-edge. Otherwise, we associate x ∈ NG(u) ∩ S, y ∈ NG(v) ∩ S such that
(x, y) is not a double-edge. For any z ∈ S, define Matched(z) = {(u, v) ∈ M̂ |(u, z) is a
double-edge or u, v ∈ NG(z)}. As Reduction Rule 19 is not applicable, for every z ∈ S,
|Matched(z)| ≤ 2|S| + 2ĉ. Similarly as Reduction Rule 20 is not applicable, for every
x, y ∈

(
S
2
)
and (x, y) is not a double-edge, NG(x)∪NG(y) contain both end points of at most

|S|+ ĉ+1 edges of M̂ . Since ĉ = O(k4), we have that |M̂ | ≤ |S|(2|S|+2ĉ)+
(
S
2
)
(|S|+ ĉ+1) ≤

2k2 + 2k · O(k4) +
(
k
2
)
· O(k4) = O(k6). A maximal degree-2-path can also have only one

vertex which is not matched by M̂ . Recall that P be the collection of all maximal degree-
2-paths in F1 ∪ F2. Using Observation 33, we get that |P| ≤ |H1|+ |H3| = O(k3). So, the
number of vertices in H2 that are not matched by M̂ is at most |P| + |M̂ | = O(k6). So,
|H2| = O(k6). J

The following is the main theorem of this section and this is an easy consequence of Lemma 23
and Lemma 34.

I Theorem 35. FVS-Pseudo-Forest has a kernel consisting of O(k6) vertices.
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5 Kernelization of Feedback Vertex Set Parameterized by Deletion
distance to bounded Mock Forest

Now we consider the Feedback Vertex Set problem parameterized by the size of a deletion
set whose deletion results in a mock-d-forest. Recall that a graph is called mock-d-forest
when every vertex is contained in at most one cycle and every connected component has at
most d cycles. Formal definition of the problem is given below.

FVS-Mock-d-Forest for d ≥ 2 and d is a constant Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
graph of which every vertex participates in at most most one cycle, every component
has at most d cycles for some constant d and an integer `.
Question: Does G have a feedback vertex set of size at most `?

When d is not bounded, then there is no polynomial kernel unless NP ⊆ coNP/poly. In
this section, we first provide a polynomial kernel for this problem when d is a constant and
d ≥ 2. After that we provide a lower bound for this problem.

5.1 Polynomial Kernel for FVS-Mock-d-Forest
Our kernelization algorithm follows along the line of the kernel for FVS-Pseudo-Forest in
the earlier section. Here, we need to use some special properties of mock-d-forest. We use
F = G\S throughout the section. Let PF be the collection of maximal acyclic degree-2-paths
in F . Let MF be a maximum matching in PF and set of induced cycles in F . Let ĉ be the
total number of cycles in F . We partition V (F ) into three parts as follows.

F1 = {u ∈ V (F )|degF (u) ≤ 1}.
F2 = {u ∈ V (F )|degF (u) = 2}.
F3 = {u ∈ V (F )|degF (u) ≥ 3}.

Our first step is to bound the number of vertices in F1. An upper bound on F1 along with
some properties of pseudo-forest, we get an upper bound on the number of vertices of F3.
Then, we have to bound the number of edges in MF and the number of maximal acyclic
degree-2-paths in PF . Now, we are ready to state the Reduction Rules. Our Reduction
Rules in this section are generalisations of the Reduction Rules in Section 4. We apply the
following two reduction rules that are more general variant of Reduction Rules 19, 20.

I Reduction Rule 36. Let x ∈ S. Then G′ ← G \ {x}, `′ ← ` − 1 if one of the following
conditions is satisfied.

There are at least |S|+ 1 vertices in F1 that are connected to x by a double-edge.
There are at least |S|+ ĉ+ 1 vertices in F2 that are matched by MF and are connected to
x by a double-edge.
NG(x) contains both end points of at least |S|+ ĉ+ 1 edges in MF .

I Reduction Rule 37. Let (x, y) ∈
(
S
2
)
. Then make (x, y) into a double-edge if one of the

following conditions is satisfied.
NG(x) ∩NG(y) contains at least |S|+ 1 vertices from F1.
NG(x) ∩NG(y) contains both end points of at least |S|+ ĉ+ 2 edges of MF .

We apply Reduction Rules 7, 8, 9, 10, 36, 37, 21 in the this order (Recall that we did
similar in Section 4).

I Lemma 38 (?). When Reduction Rules 7 8, 9, 10, 36, 37, 21 are not applicable, then
|F1| = O(k3).
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We need to bound the number of vertices in F2 and F3. To have that, we need to bound
the number of components in F . We need to do little more work for that. In particular, we
need the following definition which is a generalisation of Definition 24.

I Definition 39. Let C be a connected component in F and let X ⊆ NG(C) ∩ S. We
say that C can be resolved with respect to X if there exists {u1, u2, . . . , ud} ⊆ C such
that C \ {u1, . . . , ud} is acyclic and for every connected component C ′ in C \ {u1, . . . , ud},
|NG(C ′) ∩X| ≤ 1, |NG(X) ∩ C ′| ≤ 1 and G[(C \ {u1, . . . , ud}) ∪X] has no cycle.

The following lemma is a generalisation of Lemma 25. It is useful to bound the number of
components in F .

I Lemma 40 (?). Let C be a connected component of F having exactly d cycles and let
X ⊆ NG(C) ∩ S such that C can not be resolved with respect to X. Then, there exists
X ′ ⊆ X, |X ′| ≤ 3d such that C can not be resolved with respect to X ′.

The following definition is a generalisation of Definition 26 in Section 4.

I Definition 41. Let A ⊆ S, |A| ≤ 3d be such that there are t components in F that can
not be resolved with respect to A. Then, we say that A is saturated by t components in F .

The following lemma is a property of mock-forest. We will need this to prove the safeness
of the Reduction Rule 43.

I Lemma 42 (?). Let (G,S, `) be an instance of FVS-Mock-d-Forest] and A ⊆ S, |A| ≤ 3d
and A is saturated by |S|+

(3d
2
)

+ 1 components in F , then any minimum feedback vertex set
of G must intersect A.

Now, we have just one more reduction rule to get an upper bound on the number of
components in F . And Lemma 45 is a consequence of inapplicability of Reduction Rule 43.

I Reduction Rule 43. Let C be a connected component in F that contains some cycle. If
for each A ∈

(
NG(C)∩X
≤3d

)
, component C can be resolved with respect to A or A is saturated by

|S|+
(3d

2
)

+ 2 components, then remove C and reduce ` by the number of cycles in C.

I Lemma 44 (?). Reduction Rules 36, 37 and 43 are safe and can be implemented in
polynomial time.

I Lemma 45. Let (G,S, `) be an irreducible instance with respect to Reduction Rule 43, then
number of components in F is at most O(|S|3d+1).

Proof. Consider any component C ∈ F . Reduction Rule 43 is not applicable, therefore,
there exists A ⊆ S, |A| ≤ 3d such that C can not be resolved with respect to A. Also, for
the same reason, A can be saturated by at most |S|+

(3d
2
)

+ 1 components. Therefore, the
number of components is at most (|S|+

(3d
2
)
)
(|S|

3d
)
≤ 9d2.|S|3d+1 = O(d2.|S|3d+1). J

We have bounded the number of components in F . We already have bounded the number
of vertices in F1. We are left to bound |F3 ∪ F2|. We need graph theoretic properties of
mock-d-forest to get an upper bound on |F3|. Recall that in Section 4, we used observations
about pseudo-forest. Similarly, in this section, we use observations about mock-forest when
there are at most d cycles in a mock-forest.

I Observation 46 (?). Let G = (V,E) be a mock forest with c components where every
component has at most d cycles. V1 = {v ∈ V (G)|degG(v) ≤ 1}, V2 = {v ∈ V (G)|degG(v) =
2}, V3 = {v ∈ V (G)|degG(v) ≥ 3}. Then |V3| ≤ |V1|+ 2cd− 2c.
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Using Lemma 38 and Observation 46, we have the following Lemma.

I Lemma 47. Let c be the number of components in F . Then, |F3| = O(k3d+1).

Proof. By Lemma 38, we know that |F1| = O(k3). Now, by Observation 46, we know that
|F3| ≤ |F1| + 2c(d − 1). Recall that c = O(k3d+1). Now, c(d − 1) ≤ ĉ = O(k3d+1). So,
|F3| = O(k3d+1). J

Now, what remains is to bound the number of vertices in F2. For that, we need to
bound MF and also the number of maximal acyclic degree-2-paths in PF . Using structural
properties of mock-d-forest, we have the following lemma that bounds the number of maximal
acyclic degree-2-paths in F , i.e. PF .

I Lemma 48 (?). |PF | = O(k3d+1) where c′ is the number of components in F that have at
least two cycles.

Using the above observations and lemmas we have the following lemma.

I Lemma 49 (?). |F2| = O(|S|3d+3).

Combining Lemma 38, 47, 49, we get the following theorem.

I Theorem 50. FVS-Mock-d-Forest has a kernel consisting of O(k3d+3) vertices.

5.2 Kernel Lower Bound for FVS-Mock-d-Forest
We provide a polynomial parameter transformation from (d+ 2)-CNF-SAT parameterized
by the number of variables to Feedback Vertex Set parameterized by deletion distance
to Mock-d-Forest where d ≥ 2. A polynomial parameter transformation from CNF-SAT
to FVS-Mock-Forest when every clause has exactly r literals where r is a power of 2 is
already known [16]. We modify the construction for a polynomial parameter transformation
from (d+ 2)-CNF-SAT to FVS-Mock-d-Forest where d is not necessarily a power of 2.

Let the clause Ci have di ≤ d+ 2 literals. We provide a clause gadget of height ji where
2ji−1 < di ≤ 2ji . We create d2 many copies for this gadget. In this gadget, the terminal
vertices are the corresponding vertices of literals (See figure 2). For clause Cq with its r’th
copy, we name literals as yq,r,1, . . . , yq,r,di

. And we create a variable gadget for variable xi
as a cycle of 3 vertices. Let {ti, fi, ei} are those vertices. We define S =

n⋃
i=1
{ti, fi, ei}. Let

yq,r,j be the j’th literal of clause Cq. Let the variable corresponding to that variable is xi.
Then, if the literal yq,r,j is x̄i, then we connect yq,r,j with fi. Otherwise we connect yq,r,j
with ti. We do the same for every r ∈ [d2]. We set ` = d2

m∑
i=1

(di − 2).

I Lemma 51 (?). Let φ be a (d + 2)-CNF formula. Let Gφ be the graph constructed
from φ using the construction above. Then φ is satisfiable if and only if (Gφ, S, `) is Yes-
Instance. Thus there is a polynomial parameter transformation from (d+ 2)-CNF-SAT to
FVS-Mock-d-Forest.

I Theorem 52. [[7]] d-CNF-SAT parameterized by n, the number of variables, has no
kernel of size O(nd−ε) for any d ≥ 3, ε > 0 unless NP ⊆ coNP/poly.

Using Lemma 51 and Theorem 52, we have the following theorem.

I Theorem 53. FVS-d-Mock-Forest has no kernel consisting of O(kd+2−ε) vertices for
every d ≥ 2, ε > 0 unless NP ⊆ coNP/poly.
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Terminal Vertices

yq,r,1 yq,r,2
yq,r,3 yq,r,4 yq,r,5 yq,r,6

yq,r,7

Figure 2 Illustration of Clause Gadget Construction for 7 literals.

6 Conclusion

We have given a kernel with O(k6) vertices for FVS-Pseudo-Forest improving from an
earlier O(k10) bound [16], and narrowing the gap with the Ω(k4) conditional lower bound.
Bridging the gap further is an interesting problem. We proved that FVS-High-Degree is
fixed-parameter tractable. Status of Feedback Vertex Set parameterized by deletion distance
to a (sub)-cubic graph (a related problem) remains open, and we do not even know an
XP algorithm for the problem. We considered FVS parameterized by deletion distance
to mock-d-forest and proved an upper bound of O(k3d+3) and lower bound Ω(kd+2) under
complexity theoretic assumptions. Narrowing this gap is another interesting future direction.
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