
Turbocharging Treewidth Heuristics∗

Serge Gaspers†1, Joachim Gudmundsson2, Mitchell Jones3,
Julián Mestre4, and Stefan Rümmele5

1 UNSW, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

2 University of Sydney, Sydney, Australia
joachim.gudmundsson@sydney.edu.au

3 University of Sydney, Sydney, Australia
mjon1572@uni.sydney.edu.au

4 University of Sydney, Sydney, Australia
julian.mestre@sydney.edu.au

5 University of Sydney, Sydney, Australia; and
UNSW, Sydney, Australia
stefan.rummele@sydney.edu.au

Abstract
A widely used class of algorithms for computing tree decompositions of graphs are heuristics that
compute an elimination order, i.e., a permutation of the vertex set. In this paper, we propose to
turbocharge these heuristics. For a target treewidth k, suppose the heuristic has already computed
a partial elimination order of width at most k, but extending it by one more vertex exceeds the
target width k. At this moment of regret, we solve a subproblem which is to recompute the
last c positions of the partial elimination order such that it can be extended without exceeding
width k. We show that this subproblem is fixed-parameter tractable when parameterized by k
and c, but it is para-NP-hard and W [1]-hard when parameterized by only k or c, respectively.
Our experimental evaluation of the FPT algorithm shows that we can trade a reasonable increase
of the running time for quality of the solution.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases tree decomposition, heuristic, fixed-parameter tractability, local search

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.13

1 Introduction

The most widely used treewidth heuristics are simple algorithms that compute an elimination
order, i.e., a permutation of the vertex set. For a given elimination order π of a graph G,
we obtain a chordal completion G′ by eliminating vertices according to this order: when we
eliminate a vertex, we add edges to make its neighborhood into a clique, and then remove the
vertex. Given this chordal completion G′, we can obtain a tree decomposition by traversing
π backwards: for each vertex v in π, let L(v) denote the neighbors of v in G′ that occur later
than v in π; choose a bag that contains L(v) and add a new neighboring bag that contains
{v} ∪ L(v). Thus, for a given elimination order, the width of the tree decomposition we

∗ The authors acknowledge support under the ARC’s Discovery Projects funding scheme (DP150101134).
† Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship
(FT140100048).

© Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julian Mestre, and Stefan Rümmele;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Turbocharging Treewidth Heuristics

obtain is the largest degree of an eliminated vertex (i.e., the degree of the vertex when it is
eliminated).1

The GreedyDegree heuristic selects a vertex of minimum degree as the next vertex of
the elimination order, while the GreedyFillIn heuristic selects a vertex that has fewest non-
edges in its neighborhood. These heuristics compare favorably to more involved heuristics;
see [3], where a small additional improvement is achieved by turning the resulting chordal
completion into a minimal chordal completion in a post-processing step.

In this paper, we propose to turbocharge the GreedyDegree and the GreedyFillIn
heuristics. For a target treewidth k and a change parameter c, suppose the heuristic has
already computed a partial elimination order π of width at most k and length l, but extending
π by one more vertex exceeds the target width k. At this moment of regret, we solve a
subproblem which is to compute a partial elimination order π′ of width at most k and length
l + 1 which coincides with π in the first l − c positions. Having solved this subproblem, we
continue running the heuristic with the partial elimination order π′. In this paper, we formally
study this subproblem, parameterized by combinations of l, k, and c, and experimentally
evaluate what effect the turbocharging has on the width of the obtained tree decompositions.

The subproblem turns out to be para-NP-hard under Turing reductions for parameter
k, W [1]-hard for parameters c or l, but fixed-parameter tractable for the combination of
parameters k and c. Our implementation is based on this FPT algorithm, and the experiments
show an improvement of the width of the obtained tree decompositions for reasonable values
of the parameter c, which allows us to trade running time for quality of the solution.

Our turbocharging strategy solves a local-search subproblem when the heuristic gets
stuck because all remaining vertices have degree at least k + 1, similar to the turbocharging
strategy for list coloring by Hartung and Niedermeier [7]. Another way to turbocharge
the GreedyFillIn heuristic would be to select several vertices at a time and minimize
the number of edges added when eliminating this set of vertices. However, we quickly run
into limitations of this method, since this problem is W [1]-hard when parameterized by the
number of vertices we would like to eliminate, and we did not pursue this strategy further.

2 Preliminaries

A graph G = (V,E) consists of a vertex set V and an edge set E. The neighborhood N(v) of
vertex v in G is defined as the set of all vertices adjacent to v, N(v) = {w | {v, w} ∈ E}.

A tree decomposition of a graph G = (V,E) is a pair T = (T, χ), where T is a tree and χ
maps each node t of T (we use t ∈ T as a shorthand below) to a bag χ(t) ⊆ V , such that
1. for each v ∈ V , there is a t ∈ T , s.t. v ∈ χ(t);
2. for each {v, w} ∈ E, there is a t ∈ T , s.t. {v, w} ⊆ χ(t);
3. for each r, s, t ∈ T , s.t. s lies on the path from r to t, χ(r) ∩ χ(t) ⊆ χ(s).

The width of a tree decomposition is defined as the cardinality of its largest bag minus
one. The treewidth of a graph G, denoted by tw(G), is the minimum width over all tree
decompositions of G. For a given graph G and integer k, deciding whether G has treewidth
at most k is NP-complete [1]. For fixed k, one can decide in linear time whether a graph has
treewidth ≤ k and, if so, compute a tree decomposition of width k [2].

1 We refer the reader who is not familiar with some of these notions to the Preliminaries section.

S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:3

Treewidth
Instance: Graph G and integer k.
Problem: Decide whether tw(G) ≤ k holds.

One of the alternative characterizations of treewidth is based on so called elimination orders.
Let G = (V,E) be a graph and v ∈ V a vertex of G. Eliminating v from G refers to the process
of forming a clique out of the neighbourhood of v and removing v and its incident edges, that
is, we create a new graph G′ = (V \ {v}, (E ∪ E1) \ E2), where E1 = {{u,w} | u,w ∈ N(v)}
and E2 = {e ∈ E | v ∈ e}. An elimination order of a graph G = (V,E) with |V | = n is
a bijective function π : V → {1, . . . , n}. Starting with G and iteratively eliminating the
vertices in V according to the order π results in a sequence of n + 1 graphs with the last
one being the empty graph. The width of π is the maximum degree of any vertex v ∈ V
during its elimination according to the order π. This notion leads to the following alternative
characterization of treewidth.

I Theorem 1 (see for example [3]). Let G = (V,E) be a graph and let k ∈ N. G has treewidth
at most k if and only if there exists an elimination order π of width at most k.

We generalize the notion of elimination orders to partial elimination orders as follows. A
partial elimination order of length l ≤ n of a graph G = (V,E) with |V | = n is a bijective
partial function π : V → {1, . . . , l}, that is, an enumeration of l vertices of the graph. The
intended meaning of a partial elimination order is that it represents the first l positions of an
elimination order. Analogously to elimination orders, the width of partial elimination order
π is the maximum degree of any vertex v ∈ V during its elimination according the order π.

The two heuristics which we mentioned earlier as well as our algorithm compute the
treewidth based on elimination orders. The GreedyDegree heuristic as well as the
GreedyFillIn heuristic construct an elimination order by iteratively selecting the next
vertex in the elimination order and eliminating it from the graph. During the elimination
step, the vertex is removed and all its neighbours are connected to a clique. The selection of
the next vertex is based on a greedy criteria. GreedyDegree selects the vertex with the
minimal degree and GreedyFillIn selects the vertex whose elimination results in the fewest
new edges that need to be added to the graph in order to form a clique out of its neighbours.
In both cases ties are broken arbitrarily.

3 Local Search Variants of the Treewidth Problem

We are interested in how the existing greedy heuristics for Treewidth can be improved via
local search. We introduce the following problem, which we call the incremental conservative
(IC) treewidth problem, since it follows the spirit of incremental conservative k-list coloring
of graphs by Hartung and Niedermeier [7].

IC-Treewidth
Instance: Graph G, integer k and c, and partial elimination order π of length l

and width ≤ k.
Problem: Does there exist a partial elimination order π′ of length l+1 and width

≤ k such that π and π′ are identical on the first l − c positions?

Since we want to use an algorithm for IC-Treewidth as a subroutine for improving an
existing partial elimination order, we are interested in finding parameters for which the
problem becomes fixed-parameter tractable. The following result shows, that the length l
and hence also the change c are ineligible.

IPEC 2016

13:4 Turbocharging Treewidth Heuristics

I Theorem 2. IC-Treewidth is W[1]-hard when parameterized by l.

Proof. By reduction from Independent Set. An instance of Independent Set is given
by a graph G = (V,E) and integer k. The question is whether G has an independent set of
size k. Independent Set is W[1]-complete when parameterized by k [4].

Let (G = (V,E), k) be an instance of Independent Set with V = {v1, . . . , vn}. We
denote the maximum degree of G by ∆(G) = d. Now construct an instance (G′, π, c) of
IC-Treewidth as follows. Let U,W,X1, . . . , Xk−1, Y1, . . . , Yn be sets of new vertices of
cardinalities |U | = n, |W | = n + 2d, |Xi| = 2d + 1 for 1 ≤ i ≤ k − 1, and |Yj | = d + 1 for
1 ≤ j ≤ n. Let Ki

X with 1 ≤ i ≤ k − 1 denote the complete graph of the vertices on Xi.
Analogously, we denote by Kj

Y with 1 ≤ j ≤ n and by KW the complete graphs over Yj and
W , respectively. The new graph G′ = (V ∪U ∪W ∪X1 · · · ∪Xk−1 ∪ Y1 · · · ∪ Yn, E

′) contains
all edges of G, and all edges of the complete graphs Ki

X , Kj
Y , and KW . Additionally, we add

the following edges. Let U = {u1, . . . , un}.

{ui, vj} 1 ≤ i, j ≤ n
{ui, x} 1 ≤ i ≤ k − 1 and x ∈ Xi

{ui, w} k ≤ i ≤ n and w ∈W
{vj , y} 1 ≤ j ≤ n and y ∈ Yj

{x,w} x ∈ Xi, 1 ≤ i ≤ k − 1 and w ∈W
{y, w} y ∈ Yj , 1 ≤ j ≤ n and w ∈W

To complete the construction of the instance for IC-Treewidth, we set π = (u1, . . . , uk−1)
and c = k − 1. The partial elimination order π has width n+ 2d+ 1 since each vertex ui,
1 ≤ i ≤ k − 1, has as neighbourhood the n vertices of V and 2d + 1 vertices of Xi at the
time of its elimination. Note that this instance can be constructed in polynomial time.

We will show that G has an independent set of size k if and only if there exists a partial
elimination order π′ of width n+ 2d+ 1 and length k for graph G′. For the first direction,
assume that G has an independent set S of size k. Let π′ be an arbitrary order of the k
vertices in S. We show that π′ is a partial elimination order of width n+ 2d+ 1 for graph G′.
The neighbourhood of each vertex vj ∈ S in G′ consists of its original neighbourhood in G
together with all the vertices of U and Yj . Hence its degree is bounded by d(vj) ≤ n+ 2d+ 1.
Since S is an independent set, it holds for all pairs vi, vj ∈ S, that eliminating vi from G′
does not change the neighbourhood of vj . Therefore, π′ is a partial elimination order of
length k and width n+ 2d+ 1.

For the second direction, assume that π′ is a partial elimination order of length k and
width n+ 2d+ 1 for G′. We will show that the k vertices of π′ form an independent set in G.
π′ can not contain any vertex from W since they have degree n(3 + d) + 2dk − 1. Similar, π′
can not contain any vertex from Xi, 1 ≤ i ≤ k − 1, or from Yj , 1 ≤ j ≤ n, since they have
degree n+ 4d+ 1 and n+ 3d+ 1, respectively. We can also exclude vertices uk, . . . , un since
they have degree 2n + 2d. Starting by eliminating a vertex ui ∈ {u1, . . . , uk−1} creates a
clique of all vertices in V ∪Xi. This means, if π′ starts with ui, then it can not contain any
vertex from V . Note that eliminating a vertex vj ∈ V forms a clique of all vertices in U ∪ Yj .
Hence, if π′ contains vj , it can not be succeeded by any vertex in U . These two observations
combined, say that π′ either consists only of vertices of U or only of vertices of V . We can
exclude the case U , since π′ has length k and there are only k − 1 suitable vertices in U .
Therefore, π′ contains only vertices from V . It remains to show that these vertices form an
independent set. Assume towards a contradiction, that π′ contains two adjacent vertices, say
vi and vj . W.l.o.g. we assume vi is eliminated before vj . Eliminating vi introduces an edge

S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:5

between vj and all d+ 1 vertices of Yi. Hence, vj has now degree d(vj) ≥ n+ 2d+ 2. But
this means vj can not be contained in π′, which contradicts our assumption and the vertices
in π′ form indeed an independent set. J

This reduction from Independent Set together with a straight-forward NP-membership
via a guess and check algorithm, gives us NP-completeness of IC-Treewidth.

I Corollary 3. IC-Treewidth is NP-complete.

A problem that is closely related to IC-Treewidth is the following Length-l-Partial-
Elimination-Order problem. To solve IC-Treewidth, we can eliminate the first l − c
vertices of the graph and then ask for a length c+ 1 partial elimination order.

Length-l-Partial-Elimination-Order
Instance: Graph G, integer l and k.
Problem: Does there exist a partial elimination order of G of length l and width ≤ k?

I Theorem 4. Length-l-Partial-Elimination-Order is fixed-parameter tractable when
parameterized by l and k.

Proof. Let G = (V,E), l and k be an instance of Length-l-Partial-Elimination-Order.
Let S be set of vertices of degree at most k, i.e., S = {v ∈ V | dG(v) ≤ k}. Let G[S] be
the subgraph G induced by S. Let A be a greedy algorithm for Independent Set that
iteratively selects a minimum degree vertex and remove its closed neighborhood from the
graph, until it either finds an independent set I of size l or fails to do so.

In case A succeeds, we show that sequencing (v1, v2, . . . , vl) of I is a partial elimination
order of G of width ≤ k. Note that each vi belongs to S, so it has degree at most k in G.
Since I is an independent set, eliminating vi does not add a new edge incident on I. Hence,
the partial elimination order (v1, . . . , vl) has width at most k.

On the other hand, if A fails to find an independent set of size l, we know that |S| ≤
(l− 1)(k+ 1). To see this, note that adding some vertex v ∈ S to I can block at most k other
vertices (v’s neighbors) from being selected by the greedy algorithm. Since the maximum
independent set that A can find in case of failure has size l − 1, the bound on S follows.

We can exploit this insight to design a branching algorithm for Length-l-Partial-
Elimination-Order. Each node of the branching process will have associated a partial
elimination order π′ and a graph G′. On the first level we only have the root node, where
π′ is empty and G′ is the input graph. Consider a node (π′,G′) at level i of the branching
process and let S′ = {v ∈ V | dG′(v) ≤ k}. If |S′| > (l − i)(k + 1) then we can use A to
extend the partial elimination order by (l − i+ 1) additional nodes, we can do just that and
stop the branching process. Otherwise, if |S′| ≤ (l − i)(k + 1), we branch on every node
v ∈ S′, by adding it to π′ order and eliminating it from G′, thus generating a new node
(π′′,G′′) on level i+ 1.

Notice that the number of branches we need to follow from a node in level i is at most
(l − i)(k + 1). Therefore, the total number of nodes we explore is at most

∏l
i=1(l − i)(k +

1) = (l − 1)!(k + 1)l. Hence, we can decide Length-l-Partial-Elimination-Order in
O∗
(
(l − 1)!(k + 1)l

)
time. J

Given a partial elimination order, we can backtrack the last c choices and use this FPT
result to extend it again by c+ 1 vertices. This leads to the following corollary.

I Corollary 5. IC-Treewidth is fixed-parameter tractable when parameterized by c and k.

IPEC 2016

13:6 Turbocharging Treewidth Heuristics

Similar, the W[1]-hardness of IC-Treewidth when parameterized by c carries over
to Length-l-Partial-Elimination-Order parameterized by l. We show next, that the
combination of parameters l and k is indeed necessary, that is, we show hardness for parameter
k alone.

I Theorem 6. Length-l-Partial-Elimination-Order is NP-hard even when k = 5.

Proof. Our reduction is from the NP-hard problem Independent Set on Cubic Graphs,
which takes as input a 3-regular graph G = (V,E) and an integer k, and the question is whether
G has an independent set of size k, i.e., a set of k vertices that are pairwise non-adjacent [5].
We construct an instance (G′, l = k, 5) for Length-l-Partial-Elimination-Order as
follows. To obtain G′, we start from G and add a disjoint clique W on 7 vertices. For every
vertex v of G, we add two vertices av and bv to G′ and make them adjacent to W ∪ {v}. To
see that a partial elimination order π of width at most 5 of G′ corresponds to an independent
set in G, and vice-versa, first observe that π contains no vertex from W or N(W); indeed, the
first vertex from W ∪N(W) occurring in π has more than 5 neighbors when it is eliminated.
Secondly, assume the partial elimination order contains two adjacent vertices. Let v be the
first vertex that is eliminated for which at least one neighbor u has already been eliminated.
But then, v has degree at least 6 when it is eliminated because eliminating u added the edges
{v, au} and {v, bu}. But, on the other hand, eliminating an independent set of size l = k

gives a partial elimination order of width 5 and length l. J

IC-Treewidth is defined as a decision problem. We call the problem of actually
computing such a partial elimination order π′, the function version of IC-Treewidth. As
mentioned before, if it exists, computing a tree decomposition of width k can be done in
linear time for fixed k [2]. This does not hold for our partial elimination orders.

I Theorem 7. The function version IC-Treewidth is NP-hard under Turing reductions
even when k = 5.

Proof. By reduction from Length-l-Partial-Elimination-Order for the special case of
k = 5. We can solve this problem by iteratively solving IC-Treewidth starting with an
empty partial elimination order and ending with one of length l − 1. J

Another application of Theorem 4 is a greedy algorithm where iteratively the next l
vertices are selected instead of a single next vertex. A natural question is, whether we can
get an FPT result if we try to select these l vertices in such a way, that number of fill-in
edges is minimal. The following result shows that this is unlikely.

Min-FillIn-Set
Instance: Graph G = (V,E), integer l and T .
Problem: Does there exist a set S ⊆ V of size l, such that eliminating the vertices

in S from G adds at most T new edges to G?

I Theorem 8. Min-FillIn-Set is W[1]-hard when parameterized by l.

Proof. By reduction from Clique. An instance of Clique is given by a bipartite graph G
and integer k. The question is, whether G contains a clique of size k. Clique is W[1]-hard
when parameterized by k.

Let G = (V,E) and k be an instance of Clique. We construct an instance (G′ =
(V ′, E′), l, T) of Min-FillIn-Set as follows. The vertices V ′ consist of three disjoint sets
V ′ = X ∪ Y ∪Z, defined as follows. The set X contains a vertex for each edge in the original

S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:7

graph, i.e., X = {xe | e ∈ E}. The set Y contains two copies of each vertex inthe original
graph, i.e., Y = {yv, y

′
v | v ∈ V }. The set Z contains 4k new vertices Z = {z1, . . . , z4k}. For

each edge e = {v, w} ∈ E we add the following 4 edges to E′: {xe, yv}, {xe, y
′
v}, {xe, yw},

and {xe, y
′
w}. Additionally, E′ contains all possible edges between vertex sets Y and Z, i.e.,

Y and Z form a complete bipartite subgraph. Finally, we set l =
(

k
2
)
and T = 4

(
k
2
)

+ k.
Clearly, (G′ = (V ′, E′), l, T) can be constructed in polynomial time.

For the correctness, assume first that C ⊆ V is a solution to the Clique problem, i.e.,
C is a clique of size k. We will show that the

(
k
2
)
edges between vertices of C witness a

solution for our Min-FillIn-Set instance. Let S ⊆ X be the
(

k
2
)
vertices corresponding

to these edges. By construction, the neighbourhood of S consists of 2k vertices in Y that
correspond to the k vertices forming the clique C and their copies, say YC = {yi1 , . . . yik

}
and Y ′C = {y′i1

, . . . y′ik
}. Eliminating the vertices of S from G′ adds a new edge between

every vertex in y ∈ YC and its copy y′ ∈ Y ′C , resulting in k new edges. Furthermore, the
elimination of a vertex x{v,w} ∈ S forces the following 4 edges to be added to G′: {yv, yw},
{yv, y

′
w}, {y′v, yw}, and {y′v, y′w}. This results in a total of T = 4

(
k
2
)

+ k new edges being
added to G′. Hence, S is a solution for the Min-FillIn-Set instance.

For the other direction, assume that S ⊆ V ′ is a solution for Min-FillIn-Set. Observe
that eliminating a vertex y ∈ Y forces us to create a clique out of the 4k vertices Z, resulting
in more than T new edges to be added to G′. Similar, eliminating a vertex z ∈ Z forces
us to create a clique out of the vertices in Y . Note that we can assume that Y contains at
least 4k vertices, since otherwise we could simply blow up the Clique instance by adding at
most k new isolated vertices. Hence, S contains only vertices of X. As mentioned above, the
elimination of a vertex x{v,w} ∈ X forces the following 4 edges to be added to G′: {yv, yw},
{yv, y

′
w}, {y′v, yw}, and {y′v, y′w}. By construction, these 4 edges are unique for every vertex

x ∈ X. Since S is a solution of size
(

k
2
)
, we know that these 4

(
k
2
)
new edges are added to G′.

Furthermore, for every vertex v ∈ V that is incident to an edge e corresponding to one of
the eliminated vertices xe ∈ S, the edge {yv, y

′
v} is added to G′. Since S is a solution, we

know that ≤ T = 4
(

k
2
)

+ k are added to G′. Hence, S corresponds to a set of
(

k
2
)
edges that

is incident to at most k vertices. But this is only true, if S corresponds to the set of edges of
a k-clique in G. J

4 Turbocharged Treewidth Heuristics

In the previous section we showed that IC-Treewidth is fixed-parameter tractable when
parameterized by c and k. We use this FPT algorithm to extend an existing partial elimination
order in case a greedy heuristic gets “stuck”:

We use a standard greedy algorithm, like GreedyDegree or GreedyFillIn, with one
modification. In each step of the heuristic, we check if the next vertex that is to be eliminated,
will cause the partial elimination order to exceed our given target width. If this is not the
case, we proceed with the heuristic. On the other hand, if we would exceed the target width
(we call this a point of regret), instead we backtrack the last c eliminated vertices and use our
FPT algorithm to extend this shortened partial elimination order by adding c+ 1 vertices. If
the FPT algorithm is not able to produce such an extension, we abort, otherwise we switch
again to the greedy heuristic and continue to the next point of regret.

Algorithm 1 explains this approach in more detail for the case of using the GreedyDegree
heuristic. To change the used heuristic, only line 4 needs to be altered. The outer loop
(line 3) is executed |V | many times, as each iteration either extends the partial elimination
order π one position or aborts the whole search. Lines 5–7 correspond to the case when the

IPEC 2016

13:8 Turbocharging Treewidth Heuristics

Algorithm 1: TurbochargedMinDegree
Input :Graph G = (V,E), integer k, integer c.
Output :Elimination order of width ≤ k or no if none was found.

1 H ← G;
2 π ← ();
3 for i← 1 to |V | do
4 choose vertex v with minimum degree;
5 if d(v) ≤ k then
6 π ← π + (v);
7 H ← eliminate(H, v);
8 else
9 G′ ← eliminate(G, π[1], . . . , π[i− c− 1]);

10 W ← {v ∈ V (G′) | d(v) ≤ k}; // W is bounded by c(k + 1)
11 (H,π′)← IC-Treewidth(G′,W, k, c+ 1);
12 if π′ is empty then
13 return no;
14 else
15 π ← (π[1], . . . , π[i− c− 1]) + π′;

16 return π

Algorithm 2: IC-Treewidth
Input :Graph G, vertex set W , integer k, integer c.
Output :Pair (H, π) where π is a partial elimination order of width k and length c and H is

the remaining graph. (null, ∅) in case of failure.
1 for v ∈W do
2 H ← eliminate(G, v);
3 if c = 1 then
4 return (H, (v));
5 W ′ ← {v ∈ V (H) | d(v) ≤ k};
6 (H, π′)← IC-Treewidth(H,W ′, k, c− 1);
7 if π′ is not empty then
8 return (H, (v) + π′);

9 return (null, ∅);

heuristic does not run into a point of regret. Here we add the selected vertex v to π and
eliminate it from the graph. In case there is a point of regret, we fix the first part of the
elimination order (except the last c positions) and eliminate these vertices from the graph
(line 9). Vertex set W at line 10 contains all vertices of degree ≤ k. These are the vertices
which can be eliminated next without exceeding the target treewidth. The FPT algorithm
from Theorem 4 is implemented as a recursive procedure outlined in Algorithm 2.

5 Experimental Evaluation

To complement our theoretical analysis of the turbocharged approach, we performed a
thorough experimental evaluation of the turbocharged versions of GreedyDegree and
GreedyFillIn. The experiments were run on a quad-core Intel Core i7 processor running
at 2.7 GHz with 16GB of RAM. The implementation was in Java 7. We implemented and

S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:9

Table 1 Comparison of average quality and average running time on different classes of randomly
generated partial k-trees.

min-degree min-fill-in turbo-min-degree turbo-min-fill-in
n k p quality time quality time quality time quality time
250 10 0.20 10.44 0.12 11.42 0.18 10.44 0.22 10.12 0.43
250 10 0.40 10.16 0.10 11.34 0.15 10.16 0.20 10.04 0.36
250 15 0.20 15.60 0.17 16.64 0.27 15.60 0.28 15.34 0.63
250 15 0.40 15.20 0.14 16.38 0.22 15.20 0.26 15.12 0.51
250 20 0.20 20.64 0.22 21.96 0.37 20.64 0.35 20.32 0.86
250 20 0.40 20.22 0.18 21.60 0.30 20.22 0.34 20.08 0.69
500 10 0.20 10.72 0.36 11.72 0.59 10.72 0.51 10.24 1.55
500 10 0.40 10.32 0.28 11.64 0.44 10.32 0.49 10.26 1.23
500 15 0.20 15.94 0.63 16.86 1.09 15.94 0.83 15.70 2.71
500 15 0.40 15.32 0.46 17.04 0.78 15.32 0.79 15.20 1.96
500 20 0.20 20.88 0.94 22.18 1.67 20.88 1.21 20.82 4.04
500 20 0.40 20.32 0.67 22.08 1.17 20.32 1.16 20.38 2.84
1000 10 0.20 10.90 1.75 11.94 3.11 10.90 2.08 10.64 7.81
1000 10 0.40 10.56 1.29 11.98 2.18 10.56 1.93 10.20 5.83
1000 15 0.20 16.04 3.46 17.20 6.71 16.04 3.87 15.94 15.46
1000 15 0.40 15.58 2.44 17.26 4.40 15.58 3.70 15.46 10.78
1000 20 0.20 21.16 5.34 22.38 10.24 21.16 5.58 21.54 22.38
1000 20 0.40 20.50 3.76 22.56 6.90 20.50 5.77 20.34 15.84

tested the following four algorithms:
min-degree: Iteratively eliminates a vertex with minimum degree.
min-fill-in: Iteratively eliminates a vertex with minimum fill-in.
turbo-min-degree: The turbocharged version of min-degre.
turbo-min-fill-in: The turbocharged version of min-fill-in.

When generating the elimination order for each of the above algorithms ties between vertices
need to be broken. To handle this we use a fixed seed to generate a random permutation on
the vertices. This permutation is then used to break ties. Using the same seed across all
algorithms allows for a fair comparison between the heuristic and its turbocharged version.

The turbocharged version of the min-degree heuristic was implemented using the pseudo-
code given in Algorithms 1 and 2, with one minor enhancement. In the first line of Algorithm 2,
no specific order is given on W . To better guide the search, we first sort the vertices in
W by increasing degree. The idea is that while we are now sorting the set W according to
the heuristic at every call, we hope to find an extended ordering quicker. The min-fill-in
heuristic is implemented using the corresponding versions of Algorithms 1 and 2, with the
same enhancement.

We tested our algorithms on two types of instances: randomly generated partial k-trees
(Section 5.1), and benchmark instances (Section 5.2).

In the rest of this section we explain how these instances were generated/sourced and
analyze the experimental performance of the different algorithms.

5.1 Random instances

The partial k-trees were generated using the method by Gogate and Dechter [6, Section
7.2]. The generator takes as input a triple of parameters (n, k, p). It generates a graph of
treewidth at most k having n nodes and (1− p)

(
kn−

(
k+1

2
))

edges. In order to ensure that
the graph has a tree decomposition of width exactly k, we apply the Maximum-Minimum
Degree (MMD) lower bound proposed by Koster et al. [8] and only keep those that are
guaranteed to have treewidth k. Fifty partial k-trees were generated for each triple (n, k, p),

IPEC 2016

13:10 Turbocharging Treewidth Heuristics

for all combinations of the following parameters n = {250, 500, 1000}, k = {10, 15, 20} and
p = {0.2, 0.4}.

From Theorem 4 we know that the number of times the turbocharged heuristic has to
backtrack might be exponential in the length of the partial elimination order (l). Therefore,
to keep the computation tractable, c needs to be small. For the experiments we choose c = 8
as the default value.

Table 1 provides statistical summaries of the quality and running times of the different
algorithms on the randomly generated instances. The running times of turbo-min-degree
and turbo-min-fill-in contain the running times of min-degree and min-fill-in, re-
spectively, since whenever the turbocharged version fails to find a decomposition of given
target width, we return the result of the standard version instead. Hence, the quality of the
turbocharged version will always be at least as good as the quality of the standard algorithm
and the running time will always be slower. Our first observation is that min-degree out-
performs min-fill-in in terms of time and quality, which is consistent with the results
reported by Bodlaender and Koster [3].

For turbo-min-degree, we saw no improvement in the quality of the decomposition.
This is probably because in most cases min-degree finds the optimal solution (47% of the
instances) or a solution very close to the optimal. Even after setting c = 12 the turbocharged
version failed to improve on any instances.

For turbo-min-fill-in, however, we observed a large improvement in quality. In this
case the algorithm was able to find the optimal treewidth in 690 out of the 900 instances. In
many of the smaller instances, the algorithm did not even backtrack the full c = 8 vertices;
indeed, on average only six steps was required. This means that for min-fill-in we spend
a few additional seconds to turbocharge the heuristic and get a considerable improvement.
Note that for most of the random instances turbo-min-fill-in finds a treewidth that is
better than the ones found by min-degree and turbo-min-degree.

5.2 Benchmark instances
Two data sets were used for the experiments: DIMACS Graph coloring networks instances,2
and Bayesian networks repository instances.3 In total, there are 73 instances out of which 63
are DIMACS Graph coloring networks instances and 10 are Bayesian networks repository
instances. The purpose of these experiments is to test the turbocharged heuristics performance
on larger instances.

Each heuristic, min-degree and min-fill-in, was executed three times on each instance.
The best result (smallest treewidth) for each heuristic was selected. Finally, the heuristic
producing the best result for each instance was turbocharged, using the same random seed
for consistency.

For the turbocharged version the heuristic requires a target treewidth parameter (k), which
is unknown. To get around this problem we chose to perform a biased binary search as follows.
Let k′ be the best treewidth found by either min-degree or min-fill-in. The experimental
evaluation showed that the turbocharge heuristic typically improved the treewidth by 3-5%.
As a result we chose to perform a binary search in the range [0.94 ·k′, k′−1] which terminated
after four iterations. In the case when this interval is non-existent (i.e. (k′ − 1)/k′ ≤ 0.94),
we run the turbocharged heuristic with k′ − 1, k′ − 2, and so on.

2 http://mat.gsia.cmu.edu/COLOR/instances.html
3 http://www.cs.huji.ac.il/site/labs/compbio/Repository/

http://mat.gsia.cmu.edu/COLOR/instances.html
http://www.cs.huji.ac.il/site/labs/compbio/Repository/

S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:11

Table 2 A subset of the experimental results on DIMACS Graph coloring networks. For instances
DSJC1000.5 and DSJC500.9 we used c = 6, and for the other instances c = 8.

min-degree min-fill-in turbo
id n m tw quality time quality time quality time

queen7_7 49 952 35 37 0.056 37 0.075 36 0.104
queen8_8 64 1456 46 50 0.081 48 0.099 47 0.543
queen9_9 81 2112 59 64 0.100 63 0.128 62 0.266

queen11_11 121 3960 89 97 0.231 95 0.283 93 12.49
queen13_13 169 6656 125 140 0.610 137 0.808 135 36.67
queen14_14 196 8372 143 164 1.060 160 1.372 159 95.08

myciel4 23 71 10 11 0.011 11 0.016 10 4.62
le450_5b 450 5734 309 316 15.12 318 19.42 311 500.3
le450_15c 450 16680 372 376 21.35 376 26.44 372 240.6
le450_25d 450 17425 349 367 20.48 363 25.18 360 584.4
DSJC1000.5 1000 499652 977 980 642 978 705 977 5429
DSJC125.1 125 1472 64 67 0.144 66 0.170 65 54.885
DSJC250.1 250 6436 176 180 1.835 177 2.300 176 264.46
DSJC500.1 500 24916 409 413 31.086 411 43.048 410 2089.77
DSJC500.5 500 125248 479 481 41.024 482 48.481 479 19467.95
DSJC500.9 500 224874 492 493 45 493 47 492 2662

Coloring

We ran our heuristics on 63 instances of the DIMACS Graph coloring networks. Some of the
results are shown in Table 2. The fourth column shows the best known treewidth for each
instance extracted from the papers by Koster et al. [8] and Gogate and Dechter [6]. Each row
also lists the results obtained by the min-degree, the min-fill-in and the turbocharged
version (turbo).

In the 31 cases where neither greedy heuristics found the best known solution, the
turbocharge method was able to improve the result in 16 of the instances. These instances
are listed in Table 2. Specifically, in six of the cases the turbocharged version was able to
find a tree decomposition that has width equal to the best known solution.

In all but two cases the computation terminated within two hours. Note that due to the
size of some of the large instances, the parameter c = 6 was used for four instances, c = 4 for
one instance and, c = 8 for the remaining instances.

In Table 3 we list the same instances as in Table 2 to compare our results with the results
reported by Koster et al. [8] and Gogate and Dechter [6]. However it should be noted that
Koster et al. [8] implemented several approaches with varying quality performance and speed,
but we only include the smallest treewidth result in the table. For more details see [8].

Bayesian Networks

The Bayesian network instances are directed graphs transformed into undirected graphs for
the experiments. The set contains ten instances, most of these are quite small so in nine
out of the ten instances either the min-degree or min-fill heuristic found the best known
solution. Therefore turbocharging yielded no benefit. The only exception out of the ten
instances was the Link instance, where the turbocharged algorithm was able to improve the
min-fill heuristic from 15 to 13, which also improved the best known bound for this instance.

6 Conclusion and Future Work

We studied variants of the Treewidth problem that aim at modelling local search scenarios
that arise in the context of tree decomposition heuristics. We have shown that IC-Treewidth,

IPEC 2016

13:12 Turbocharging Treewidth Heuristics

Table 3 A comparison between turbocharged heuristics and the results reported by Gogate and
Dechter [6] and Koster et al. [8]. Note that the algorithm by Gogate and Dechter [6] was terminated
after 3 hours. Also note that Koster et al. [8] implemented several approaches with varying quality
performance and speed, however, only the smallest treewidth result is listed in this table.

Gogate and Dechter [6] Koster et al. [8] turbo
id n m quality time quality time quality time

queen7_7 49 952 35 543 35 0.51 36 0.10
queen8_8 64 1456 46 10800 46 1.49 47 0.54
queen9_9 81 2112 59 10800 59 3.91 62 0.27

queen11_11 121 3960 89 10800 89 23.36 93 12.5
queen13_13 169 6656 125 10800 125 107.6 135 36.7
queen14_14 196 8372 143 10800 145 215.4 159 95.1
myciel4 23 71 10 10800 10 0.01 10 4.6
le450_5b 450 5734 309 10800 313 7909 311 500
le450_15c 450 16680 372 10800 376 12471 372 241
le450_25d 450 17425 349 10800 356 11376 360 584
DSJC1000.5 1000 499652 977 10800 * * 977 5429
DSJC125.1 125 1472 64 10800 67 171.5 65 54.9
DSJC250.1 250 6436 176 10800 179 5507 176 264
DSJC500.1 500 24916 409 10800 * * 410 2089
DSJC500.5 500 125248 479 10800 * * 479 19468
DSJC500.9 500 224874 492 10800 * * 492 2662

the problem of extending a given partial elimination order without increasing its width by
recomputing at most the last c eliminated vertices, is hard when parameterized by either the
length of the partial elimination order or its width. But the problem becomes fixed-parameter
tractable when parameterized by the width and c combined. We used this FPT result to
turbocharge existing greedy heuristics by performing this local search whenever the heuristic
would exceed some given target width. This approach was implemented and evaluated,
showing that we can improve the quality of the heuristics with a modest trade off in the
running time.

In future work it would be interesting to study a permissive variant of IC-Treewidth,
which, for a given graph G = (V,E), integer k, and partial elimination order π of length
l and width at most k, asks to either compute a partial elimination order of length l + 1
and width at most k, or to determine that G has no elimination order (of length |V |) that
coincides with π on the first l − c vertices.

Acknowledgments. We thank Michael R. Fellows for inspiring this line of research.

References
1 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-

beddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
3 Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations I. Upper bounds.

Inf. Comput., 208(3):259–275, 2010. doi:10.1016/j.ic.2009.03.008.
4 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness

II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995.
5 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, 1979.
6 Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Proc.

of UAI’04, pages 201–208. AUAI Press, 2004.

http://dx.doi.org/10.1016/j.ic.2009.03.008

S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:13

7 Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by
conservation. Theor. Comput. Sci., 494:86–98, 2013.

8 Arie M.C.A. Koster, Hans L. Bodlaender, and Stan P.M. van Hoesel. Treewidth: Compu-
tational experiments. Electronic Notes in Discrete Mathematics, 8:54–57, 2001.

IPEC 2016

	Introduction
	Preliminaries
	Local Search Variants of the Treewidth Problem
	Turbocharged Treewidth Heuristics
	Experimental Evaluation
	Random instances
	Benchmark instances

	Conclusion and Future Work

