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Abstract
The ground term reachability problem consists in determining whether a given variable-free term
t can be transformed into a given variable-free term t′ by the application of rules from a term
rewriting system R. The joinability problem, on the other hand, consists in determining whether
there exists a variable-free term t′′ which is reachable both from t and from t′. Both problems
have proven to be of fundamental importance for several subfields of computer science. Never-
theless, these problems are undecidable even when restricted to linear term rewriting systems.
In this work, we approach reachability and joinability in linear term rewriting systems from the
perspective of parameterized complexity theory, and show that these problems are fixed para-
meter tractable with respect to the depth of derivations. More precisely, we consider a notion
of parallel rewriting, in which an unbounded number of rules can be applied simultaneously to
a term as long as these rules do not interfere with each other. A term t1 can reach a term t2 in
depth d if t2 can be obtained from t1 by the application of d parallel rewriting steps. Our main
result states that for some function f(R, d), and for any linear term rewriting system R, one can
determine in time f(R, d) · |t1| · |t2| whether a ground term t2 can be reached from a ground term
t1 in depth at most d by the application of rules from R. Additionally, one can determine in time
f(R, d)2 · |t1| · |t2| whether there exists a ground term u, such that u can be reached from both
t1 and t2 in depth at most d. Our algorithms improve exponentially on exhaustive search, which
terminates in time 2|t1|·2O(d) · |t2|, and can be applied with regard to any linear term rewriting
system, irrespective of whether the rewriting system in question is terminating or confluent.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.2 Analysis
of Algorithms and Problem Complexity

Keywords and phrases Linear Term Rewriting Systems, Ground Reachability, Ground Joinabil-
ity, Fixed Parameter Tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.25

1 Introduction

Term rewriting systems have played a major role in several fields of computer science,
such as, functional programming languages, specification of abstract data types, symbolic
computation and automated theorem proving [16, 1, 2]. Many practical and theoretical
aspects of the theory of term rewriting system revolve around two fundamental problems:
ground reachability, and ground joinability. In the former, given a rewriting system R and
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25:2 Reachability in Linear Term Rewriting Systems

two ground terms t and t′ one is asked to determine whether t′ can be reached from t by the
application of a sequence of rewriting rules from R. In the latter, joinability, one is asked
whether there is a ground term u which can be reached from both t and t′. Both problems
are known to be decidable for several restricted classes of rewriting systems, such as ground
rewriting systems, right-ground systems, shallow right-linear systems, and left-linear growing
systems [13, 14, 15, 18]. On the other hand, ground reachability and joinability on linear
term rewriting systems are known to be undecidable if no other restriction is imposed [20].
Indeed, it can be shown that for each Turing machine M , there exists a linear term rewriting
system RM such that the halting problem for M can be reduced to ground reachability
(joinability) in RM [20].

A rewriting system R is said to be linear if it contains only rules of the form l → r

where var(r) ⊆ var(l) and each variable occurs at most once in l, and at most once in
r. For instance, the associativity rule x · (y · z) → (x · y) · z is linear. In this work, we
show that despite the undecidability of ground state reachability and joinability for linear
term rewriting systems, both problems are fixed parameter tractable with respect to the
depth of derivations. In this context, we consider a notion of parallel rewriting in which an
unbounded number of rules can be applied simultaneously to a term, as long as these rules
do not interfere with each other [19, 4]. Such a simultaneous application of independent
rewriting rules is known in term-rewriting theory literature as multi-step. We say that a
term t can reach a term t′ in depth at most d if t′ can be obtained from t by the application
of d multi-steps.

I Theorem 1 (Main Theorem). There is a function f(R, d) such that for any set of linear
term rewriting rules R, and any ground terms t and t′ over Σ,

one can determine in time f(R, d) · |t| · |t′| whether t′ can be reached from t in depth at
most d.
one can determine in time f(R, d)2 · |t| · |t′| whether there exists a ground term u such
that u is reachable in depth at most d from both t and t′.

Our algorithms improve substantially on the running time of exhaustive search. We
note that given a term t of size |t|, there may be up to 2O(|t|) possible ways of applying
simultaneous rewriting rules to t. Additionally, if a term t′ is obtained from t in depth d,
then the size of t′ may be as large as |t| · 2O(d). Therefore, as many as 2|t|·2O(d) distinct terms
may be derived from a term t in depth at most d. Indeed this upper bound is asymptotically
tight and can be matched even in ground rewriting systems. Consider for instance, a ranked
alphabet Σ = {g, a} consisting of one binary function symbol g, one constant symbol a, and
a term rewriting system R consisting of a single rewriting rule a → g(a, a). Then for any
term t over Σ, one can derive at least 2|t|·2Ω(d) distinct terms from t in depth at most d.
In other words, even when d is a constant, determining whether a term t′ can be reached
from a term t in depth at most d by exhaustive search takes time exponential in t in the
worst case, while using our approach, this problem can be solved in time f(R, d) · |t| · |t′|.
We also should note that it is straightforward to define infinite families of pairs of terms
(tn, t′n) such that t′n can be reached from tn in a single multi-step, but which require the
application of an unbounded number of sequential individual rewriting steps. For instance,
consider the term tn = a1 + b1 + a2 + b2 + ...+ an + bn where ai = 1 , bi = 2 and + is an
associative commutative binary function symbol. Then in one multi-step one can reach the
term t′n = b1 + a1 + b2 + a2 + ... + bn + an, whereas one would need to use n individual
rewriting steps to derive t′ from t. Note that the larger the n, the larger is the number of
individual rewriting rules necessary to reach t′ from t, while a single multi-step is sufficient
for any n.
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2 Term Rewriting and Tree Automata

In this section we define standard notions from term rewriting systems and tree automata.
Extensive treatments of term rewriting theory can be found in [1, 7] and on tree-automata
theory can be found in [5, 12].

2.1 Terms
The set of natural numbers, excluding 0, is denoted by N. We let N0 = N ∪ {0}. A ranked
alphabet is a finite set Σ of function symbols together with an arity function a : Σ → N0.
Intuitively the arity a(f) of a symbol f ∈ Σ specifies the number of inputs of f . A function
symbol of arity 0 is called a constant symbol. We let a(Σ) = max{a(f) | f ∈ Σ} be the
maximum arity of a symbol in Σ. Let X be a finite set of variables and Σ be a ranked
alphabet. The set Ter(Σ ∪X) of all terms over Σ ∪X is inductively defined as follows:

If x is a variable in X then x is a term in Ter(Σ ∪X)
if f ∈ Σ and t1, ..., ta(f) are terms in Ter(Σ ∪ X) then f(t1, t2, ..., ta(f)) is a term in
Ter(Σ ∪X).

If f is a function symbol of arity 0 then we write simply f to denote the term f(). A
position for a term t is a string over N. The empty string is denoted by ε. The set of positions
for a term t is inductively defined as follows.

Pos(t) = {ε} if t ∈ X.
Pos(f(t1, ..., ta(f))) = {ε} ∪ {i.p | 1 ≤ i ≤ a(f), p ∈ Pos(ti)}

We note that if t is either a variable or a function symbol of arity 0, then Pos(t) = {ε}.
We let |t| = |Pos(t)| denote the size of the term t. The subterm t|p of t at position p is
inductively defined as follows. At the base case, t|ε = t. Now, if t = f(t1, t2, ..., ta(f)), then
for each j ∈ {1, ..., a(f)} and each position jp ∈ Pos(t), t|jp = tj |p.

Let t = f(t1, ..., ta(f)) be a term in Ter(Σ ∪X). We let rs(t) = f be the root symbol of t.
If t = x for a variable x ∈ X then we set rs(t) = x. For each p ∈ Pos(t), we let t(p) = rs(t|p)
denote the root symbol of the subterm of t at position p.

We denote by var(t) the set of variables occurring in t. A ground term is a term t such
that var(t) = ∅. In other words, a term t is ground if it contains no variables. In some places
we may write t ∈ Ter(Σ) to indicate that t is a ground term.

A substitution is a function σ : X → Ter(Σ ∪X) mapping variables in X to terms in
Ter(Σ ∪X). If t is a term, and σ is a substitution, then we denote by tσ the term that is
obtained from t by replacing each variable x ∈ X with the term σ(x). If t and s are terms
and p is a position in Pos(t) then we denote by t[s]p the term that is obtained from t by
replacing the subterm t|p with the term s.

2.2 Term Rewriting
A rewriting rule is a pair l→ r where l and r are terms in Ter(Σ ∪X) with var(r) ⊆ var(l).
We say that a rule l → r is linear if each variable occurs at most once in l and at most
once in r. Note that this definition of linearity allows var(l) ∩ var(r) 6= ∅. A term rewriting
system is any finite set R of rewriting rules. We say that R is linear if each rewriting rule
l→ r in R is linear.

Let t be a term in Ter(Σ ∪X), p be a position in Pos(t), and l → r be a rewriting
rule in R. We say that l → r can be applied to t at position p if there is a substitution
σ : X → Ter(Σ ∪X) such that t|p = lσ. In this case, we let t′ = t[rσ]p be the term that is
obtained from t by the application of the rewriting rule l→ r at position p. We write t→R t′
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to denote that t′ can be obtained from t by the application of some rewriting rule l→ r ∈ R

at some position p of t. We say that →R is the relation induced by R on Ter(Σ ∪X). We
let →∗R be the transitive closure of →R. In other words, t→∗R t′ if and only if t′ is obtained
from t by the application of a finite number of rewriting rules from R.

2.3 Tree Automata
Let Q be a finite set of symbols of arity 0 called states. The elements of the set Ter(Σ ∪Q)
are called configurations. A transition is a rewriting rule of the form f(q1, ..., qa(f))→ q for
some function symbol f ∈ Σ and states q1, ..., qa(f), q ∈ Q. A (bottom-up non-deterministic)
finite tree-automaton over Σ is a tuple A = (Q,Σ, F,∆) where F ⊆ Q is a set of final states
and δ is a set of transitions. Note that ∆ should be regarded as a term rewriting system
acting on terms in Ter(Σ ∪Q). We may write →A to denote the rewriting relation induced
by the transitions ∆. Analogously, we may write →∗A to denote →∗∆. The tree language
recognized by a state q in A is defined as

L(A, q) = {t ∈ Ter(Σ) | t→∗A q}.

Intuitively, L(A, q) is the set of all ground terms in Ter(Σ) that can be reduced to the state
q by the application of transitions (rewriting rules) in ∆. The tree language accepted by A
is defined as L(A) =

⋃
q∈F L(A, q). As an abuse of notation we will often write q ∈ A and

t→ q ∈ A to denote respectively that q ∈ Q and t→ q ∈ ∆.
The size of A, which is defined as |A| = |Q| + |∆|, measures the number of states in

Q plus the number of transitions in ∆. If f(q1, ..., qa(f))→ q is a transition in ∆, then we
say that q is the consequent of f(q1, ..., qa(f)) → q, while each state in {q1, ..., qa(f)} is an
antecedent of f(q1, ..., qa(f))→ q. We say that q is incident with a transition if it is either
an antecedent or a consequent of the transition. The in-degree of a state q in Q, denoted
by δ(q) is the number of transitions in ∆ that have q as a consequent. The maximum state
in-degree of A, defined as δ(A) = maxq∈Q δ(q), is the maximum in-degree of a state in A.
We say that A is reachable if for each state q ∈ Q the language L(A, q) is non-empty.

I Lemma 2 (Membership [10]). Let A be a tree automaton over Σ, and let t be a ground
term in Ter(Σ). One can determine in time O(|t| · |A|) whether t ∈ L(A).

I Lemma 3 (Emptiness of Intersection [10]). Let A and A′ be two tree automata over Σ.
One can determine in time O(|A| · |A′|) whether L(A) ∩ L(A′) = ∅.

2.4 Simultaneous Rewriting via Multi-Steps
In this work we will be interested in a notion of rewriting that allows for the simultaneous
application of several rules to a term as long as these rules do not interfere with each other.
Such a notion of simultaneous rewriting can be formalized via the notion of multi-step
[19]. A more detailed treatment rewriting by multi-steps can be found in [4] (Chapter 4).
When restricted to the setting of rewriting on ground terms the notion of multi-step can be
formalized as in Definition 4.

I Definition 4 (Multi-Step). Let R be a term rewriting system. The multi-step relation
⊆ Ter(Σ)× Ter(Σ) induced by R is inductively defined as follows.

1. f(t1, ..., ta(f)) f(t′1, ..., t′a(f)) if f ∈ Σ and ti t′i for each i ∈ {1, ..., a(f)}.
2. lσ rθ if l→ r ∈ R, and σ, θ : X → Ter(Σ) are substitutions such that σ(x) θ(x)

for each variable x ∈ var(l).
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Figure 1 The application of a multi-step t t′ where t = (((a·b)·c)·d)·e and t′ = (a·(b·c))·(d·e).
This multi-step t t′ intuitively corresponds to the simultaneous application of two instances of
the associativity rule (x · y) · z → x · (y · z) to t. The regions surrounded by red curves indicate the
portions of the term identifying a match for the left-hand side of the rule. The multistep can be
decomposed in two ways as a sequence of individual rewriting rules: either as t→R t1 →R t′ or as
t→R t2 →R t′.

Note that the base case of the inductive definition is embedded in Condition 1. More
precisely, for each function symbol f ∈ Σ of arity 0, we have that f f . We note that a
multi-step t t′ may be decomposed in several different ways as sequences of applications
of individual rewriting rules from R. For instance, in Figure 1 we depict the application of a
multi-step to a term t. Intuitively, this multi-step t t′ corresponds to the simultaneous
application of two instances of the associativity rule (x · y) · z → x · (y · z). There are
two different ways of decomposing t t′ into sequences of individual rewriting rules:
t→R t1 →R t′ and t→R t2 →R t′.

We say that a term t′ is derived from a term t in depth at most d if there is a sequence of
multi-steps t0 t1 ... td such that t0 = t and td = t′. We write t d

t′ to denote
that t′ can be obtained from t in depth at most d.

3 Tree Automata Completion for Multi-Steps

Tree Automata completion is a powerful set of techniques which has found many applications
in the field of termination analysis of rewriting systems [9, 11, 17, 8]. In this section we show
that completion techniques, which have been so far used only in the context of sequential
term rewriting, can be used to characterize derivability in one multi-step on linear term
rewriting systems. More precisely, given a tree-automaton A and a linear term rewriting
system R, we use a special instance of the tree-automata completion algorithm introduced in
[9] in the context of sequential rewriting to construct a particular tree-automaton N (A,R).
Subsequently, in Lemma 7 we show that the language accepted by N (A,R) consists precisely
of the set of terms that can be obtained from terms in L(A) by the application of one
multi-step. A crucial aspect of our construction is that the size of the tree automaton
N (A,R) is upper bounded by g(R, δ) · |A| where g(R, δ) is a function that depends only on
the term rewriting system R and on the maximum state in-degree δ of A. In other words,
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Figure 2 Graphical representation of the tree automata associated with terms l, r, t and t′

respectively. The symbols x, y and z are variables. The symbol � is a function symbol of arity 2,
and a, b, c are constants (function symbols of arity 0). States are denoted by black dots.

the size of N (A,R) grows linearly with the size of A. This linear growth will be crucial for
our fixed parameter tractability results.

I Definition 5 (Tree Automaton Associated with a Term). Let t be a term in Ter(Σ ∪X).
The tree automaton associated with t, denoted by A(t) = (Q,Σ, F,∆) is defined as follows.

Q = {qtp | p ∈ Pos(t)} F = {qtε}

∆ = {f(qtp.1, ..., qtp.a(f))→ qtp | t(p) = f}
(1)

Intuitively, if t is a ground term, then A(t) is the ’simplest’ (but not necessarily minimal)
tree automaton that accepts t and no other term. On the other hand, if t has some variable
then the language of A(t) is empty. Nevertheless, this is not relevant, since in this case
these tree-automata will be glued to other tree-automata in order to define a meaningful
tree-language. In Figure 2 we depict tree-automata associated with several terms with and
without variables.

Let A = (Q,Σ, F,∆) be a tree automaton and let l be a term in Ter(Σ ∪X). A state-
substitution for l is a function γ : var(l)→ Q that associates with each variable x ∈ var(l) a
state γ(x) ∈ Q. Note that the term lγ obtained from l by replacing each variable x with the
state γ(x) is a configuration in Ter(Σ ∪Q). Also note that if l is a ground term in Ter(Σ),
then the only state-substitution for l is the empty function γ :→ Q. In this case, lγ = l. We
say that a state-substitution γ : var(l) → Q is good for a pair (q, l) if lγ →∆ q. In other
words, γ is good for (q, l) if the configuration lγ can be reduced to state q by the application
of transitions in ∆. We letM(A, q, l) be the set good state-substitutions for (q, l).

Let l→ r be a linear term rewriting rule over Σ. We let qlε denote the unique accepting
state of A(l), and qrε denote the unique accepting state of A(r). Additionally, for each
variable x ∈ var(l) ∩ var(r), we let qlx denote the unique state of A(l) corresponding to
the variable x, and we let qrx denote the unique state of A(r) corresponding to the variable
x. Now let A be a tree automaton over Σ, and γ : var(l) → Q be a state-substitution in
M(A, q, l). We denote by C(A, q, l→ r, γ) the tree automaton which is obtained by creating
a fresh copy of A(r), and by renaming the minimal and maximal states of A(r) as follows.

1. Rename the state qrε in A(r) to the state q.
2. For each variable x ∈ var(l) ∩ var(r), rename the state qrx of A(r) to the state γ(x).

Now consider the tree automaton A ∪ C(A, q, l→ r, γ). Intuitively, this tree automaton
is obtained by creating a copy of A(r) and subsequently, by identifying its accepting state qrε
with the state q of A, and by identifying, for each variable x ∈ var(l) ∩ var(r), the state qrx
with the state γ(x). This process is illustrated in Figure 3.
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Figure 3 Let l = (x · y) · z and r = x · (y · z). Left: The disjoint union of a tree automaton A
with the tree automaton A(r). The state-substitution γ maps the state qlx to q1 the state qly to q2

and the state qlz to q3. The portion of A in blue shows that the configuration lγ can be reduced
to the state q using transitions of A. Right: The tree automaton A ∪ C(A, γ, l → r) obtained by
identifying qrε with q, qrx with q1, qry with q2, and qrz with q3. The tree automaton C(A, q, l→ r, γ) is
illustrated in red.

I Definition 6 (Next Layer Operator). Let R be a linear term rewriting system and A be a
reachable tree automaton. The tree automaton N (A,R) is defined as follows.

N (A,R) = A ∪
⋃

q ∈ Q, l→ r ∈ R
γ ∈ M(A, q, l)

C(A, q, l→ r, γ). (2)

We say that each sub-automaton C(A, q, l → r, γ) of N (A,R) is a right-component of
N (A,R). Intuitively, N (A,R) may be regarded as being constructed by adding one right
component C(A, q, l→ r, γ) to A at a time, in any desired order (See Figure 4).

The next lemma states that N (A,R) accepts precisely those terms that can be reached
from terms in L(A) by the application of one multi-step.

I Lemma 7. Let R be a linear term rewriting system, and let A be a tree automaton over
Σ. The tree automaton N (A,R) accepts the following language.

L(N (A,R)) = {t′ | ∃t ∈ L(A), t t′}. (3)

Proof. Let A = (Q,Σ, F,∆) and N (A,R) = (Q ∪Q′, Σ, F,∆ ∪∆′) where Q ∩Q′ = ∅ and
∆ ∩∆′ = ∅. Note that the final states of N (A,R) are the same as those of A.

Completeness Proof

First we show that L(N (A,R)) ⊇ {t′ | ∃t ∈ L(A), t t′}. It is enough to show that for
each state q ∈ Q if t ∈ L(A, q) and t t′ then t′ ∈ L(N (A,R), q). The proof of this claim
is by induction on the structure of t, using Definition 4.

In the base case of Condition 1 of Definition 4, t = a where a is a function symbol of
arity 0 and t′ = a. In this case the claim follows trivially. In the base case of Condition 2 of
Definition 4, both t and t′ are ground terms and t→ t′ belongs to R. Let γ : ∅ → Q be the
empty substitution. Since the term t′ reaches the state q in C(A, q, a→ t′, γ) we have that
t′ ∈ L(N (A,R), q).

For the inductive step of Condition 1, let t = f(t1, ..., ta(f)) and t′ = f(t′1, ..., t′a(f))
where ti t′i for each i ∈ {1, ..., a(f)}. Since t ∈ L(A, q), there exists a transition
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Figure 4 Left: A tree automaton A which recognizes the language L(A) = {(((a · b) · c) · d) · e}.
Right: The tree automaton N (A,R) which recognizes the language L(N (A,R)) = {(((a · b) · c) ·
d) · e, ((a · (b · c)) · d) · e, ((a · b) · (c · d)) · e, ((a · b) · c) · (d · e), (a · (b · c)) · (d · e)}. The three right
components of N (A,R) are depicted in red.

(q1, ..., qa(f), f)→ q in A such that ti reaches qi for each i ∈ {1, ..., a(f)}. By the induction
hypothesis, since ti t′i, we have that t′i ∈ L(N (A,R), qi). Therefore, f(t′1, ..., t′a(f)) ∈
L(N (A,R), q).

For the inductive step of Condition 2, let t = lσ for some substitution σ : X → Ter(Σ),
and let t′ = rθ where for each variable x ∈ var(l), σ(x) θ(x). Since t ∈ L(A, q), there
exists a state substitution γ : var(l)→ Q such that lγ →∗∆ q. By the induction hypothesis,
θ(x) ∈ L(N (A,R), γ(x)) for each x ∈ var(l). Additionally, rγ →∗∆′ q in the right component
C(A, q, l→ r, γ). This implies that t′ ∈ L(N (A,R), q).

Soundness Proof

Now we show that L(N (A,R)) ⊆ {t′ | ∃t ∈ L(A), t t′}. It is enough to show that for
each state q of A, if t′ ∈ L(N (A,R), q) then there is a ground term t ∈ L(A, q) such that
t t′. The proof is by well founded induction with terms ordered by the strict subterm
relation.

Let q ∈ Q and let t ∈ L(N (A,R), q). In the base case, let t′ = a for some function
symbol a of arity 0. Let a → q be a transition in N (A,R). If a → q belongs to ∆ then
a ∈ L(A, q) and additionally, by the base case of Condition 1 of Definition 4, we have that
a a. If a → q belongs to ∆′, then there is some rewriting rule l → r in R and some
state-substitution γ : var(l) → Q such that a → q is a transition in C(A, q, l → r, γ). Let
σ : var(l) → Ter(Σ) be a substitution that associates with each variable x ∈ var(l) an
arbitrary term in L(A, γ(x)). Note that such term is guaranteed to exist, since by assumption
A is reachable. Then the term lσ belongs to L(A, q). Additionally, by Condition 2 of
Definition 4, we have that lσ aτ where τ : ∅ → Ter(Σ) is the empty substitution. This
verifies the claim in the base case.

Now let t′ = f(t′1, ..., t′a(f)) where f has arity at least 1. Then there exists a transition
f(q1, ..., qa(f))→ q in ∆ ∪∆′ such that t′i ∈ L(N (A), qi) for each i ∈ {1, ..., a(f)}. There are
two cases to be analysed.
1. If f(q1, ..., qa(f)) → q belongs to ∆ then all states q1, ..., qa(f) belong to Q. In this

case, by the induction hypothesis, there exists terms t1, ..., ta(f) such that ti t′i and
ti ∈ L(A, qi) for each i ∈ {1, ..., a(f)}. This implies that the term t = f(t1, ..., ta(f)) is in
L(A, q) and additionally, by Condition 1 of Definition 4, we have that t t′.
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2. If f(q1, ..., qa(f)) → q belongs to ∆′ then the states q1, ..., qa(f) belong to some right
component of N (A,R). In other words, there is some rewriting rule l → r in R, some
substitution θ : var(r) → Ter(Σ) and some state-substitution γ : var(l) → Q such
that t′ = rθ, lγ →∗∆ q and rγ →∗∆′ q and such that θ(x) ∈ L(N (A,R), γ(x)) for each
x ∈ var(r). By the induction hypothesis, for each x ∈ var(r) ⊆ var(l) there is a term
sx which belongs to L(A, γ(x)) and sx θ(x). Additionally, since A is reachable,
for each variable y ∈ var(l)\var(r) there is at least one term sy in L(A, γ(y)). Let
σ : var(l)→ Ter(Σ) be a substitution that sets σ(x) = sx for each variable x ∈ var(r),
and which sets σ(y) = sy for each variable y ∈ var(l)\var(r). Then the term lσ belongs
to L(A, q) and additionally, by Condition 2 of Definition 4, lσ rθ. J

4 Bounding the Size of N (A,R)

In this section we will establish an upper bound for the size of the tree automaton N (A,R) in
terms of the size of A, the maximum state in-degree of A, and several parameters extracted
from the term rewriting system R. Subsequently, we will use Lemma 7, together with the size
upper bound mentioned above to establish the fixed parameter tractability of reachability
and joinability in depth d.

A morphism from a tree automaton A = (Q,Σ, F,∆) to a tree automaton A′ =
(Q′, Σ, F ′, ∆′) is a function µ : Q→ Q′ such that for each transition f(q1, ..., qa(f))→ q in
∆, the transition f(µ(q1), ..., µ(qa(f))) → µ(q) is in ∆′. As an abuse of notation we write
µ : A → A′ to denote such a morphism.

Let l ∈ Ter(Σ ∪X) and A(l) be the tree automaton associated with l. We say that a
morphism µ : A(l) → A from A(l) to A is rooted at a state q ∈ A if µ(qlε) = q where qlε
is the unique maximal state of A(l). Each such morphism µ defines a state-substitution
γ : var(l) → Q which is defined by setting γ(x) = µ(qlx) for each variable x ∈ var(l).
Intuitively, the morphism µ specifies a run of the automaton A (i.e. a sequence of transitions
from A) which are applied to reduce the configuration lγ to the state q.

For each tree automaton A, each state q of A, and each positive integer s, we denote by
η(A, q, s) the set of all pairs (l, µ) where l is a term in Ter(Σ ∪X) of size at most s, and µ
is a morphism from A(l) to A rooted at q.

In the following lemma we show an upper bound on the size of η(A, q, s) in terms of the
maximum state in-degree of A.

I Lemma 8. Let A be a tree-automaton over Σ of maximum state in-degree δ, q be a state
of A, and s be a positive integer. Let a be the maximum arity of a function symbol in Σ.
Then |η(A, q, s)| ≤ (e ·max{δ, a})2s+1.

Proof. Let T (δ) be the rooted infinite δ-regular tree. Let bk,δ be the number of rooted
subtrees of T (δ) of size k. It is well known that bk,δ ≤

(
δ·k
k

)
(See for instance [6, 3]). Using

the inequality
(
n
k

)
≤
(
e·n
k

)k (where e ≈ 2.71 is the Euler number) we have that bk,δ ≤ (e · δ)k.
This implies that the number ck,δ of rooted subtrees of T (δ) of size at most k is upper
bounded by ck,δ ≤ (e · δ)k+1.

Now let U(A, q) be the unfolding of A rooted at q. Since the maximum in-degree of A is
δ, we have that U is a rooted infinite tree of degree at most max{a, δ}. Additionally, if l is a
term in Ter(Σ ∪X) of size s, then for each pair (l, µ) ∈ η(A, q, s) the image of A(l) under µ
on A corresponds unequivocally to a rooted subtree of U(A, q) of size at most 2s. Therefore,
the number of possible morphisms rooted at q from A(t) to A where t is a term of size s is
upper bounded by the number of rooted subtrees of U(A, q) of size at most 2s. This implies
that |η(A, q, s)| ≤ (e · δ)2s+1 if δ ≥ a, and |η(A, q, s)| ≤ (e · a)2s+1 if a ≥ δ. J
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The next lemma establishes an upper-bound for the size and for the state in-degree of
N (A,R) in terms of the size of A, state in-degree of A, and several parameters extracted
from the term rewriting system R.

I Lemma 9. Let A be a tree automaton of maximum in-degree δ. Let R be a linear term
rewriting system. Let s1 be the maximum size of the left-hand side of a rule in R, and s2
be the maximum size of a right-hand side of a rule in R. Let ρ be the maximum number of
rules in R with the same left-hand side.
1. The maximum in-degree of N (A,R) is at most δ + ρ · (e ·max{a, δ})2s1+1.
2. The size of N (A,R) is at most |A|+ 2 · s2 · ρ · (e ·max{a, δ})2s1+1 · |A|.
3. N (A,R) can be constructed in time O

(
s2 · ρ · (e ·max{a, δ})2s1+1 · (log |R|) · |A|

)
.

Proof.
1. Let q be a state of A. The in-degree of q in N (A,R) is equal to the in-degree of q in
A plus the number of right-components C(A, q, l→ r, γ) of N (A,R) rooted at q, where
l → r is a rule in R and γ is a good state-substitution for (q, l). By Lemma 8 there is
at most (e ·max{a, δ})2s1+1 pairs of the form (l, µ) where where l is a term of size at
most s1 and µ : A(l) → A is a morphism from A(l) to A rooted at q. Therefore the
number of components C(A, q, l→ r, γ) is upper bounded by (e ·max{a, δ})2s1+1. Since
the number of rules with same left-hand side is upper bounded by ρ, we have that each
pair (l, µ) ∈ η(A, q, s1) gives rise to at most ρ right components rooted at q. Therefore,
the in-degree of q in N (A,R) is at most δ + ρ · (e ·max{a, δ})2s1+1.

2. As argued in the previous item, the number of right components of N (A,R) rooted at q
is upper bounded by ρ · (e ·max{a, δ})2s1+1. Since each right-component C(A, γ, l→ r)
is isomorphic to A(r), we have that such component has size at most 2 · |r| ≤ 2 · s2.
Therefore, the size of N (A,R) is upper bounded by |A|+2 ·s2 ·ρ · (e ·max{a, δ})2s1+1 · |A|.

3. Assume that R is specified as a lexicographically ordered list of rules. For each state q
of A, we can enumerate in time O((e ·max{a, δ})2s1+1) the set of all pairs (l, γ) where
l ∈ Ter(Σ ∪X) and γ is a morphism from A(l) to A. For each of these pairs, we use
binary search to look up for the existence of a rule in R having l as left-hand side. Each
such look up takes time O(log |R|). Finally, for each rule l → r in R, we create the
right component C(A, q, l → r, γ). The addition of each such component takes time
O(|r|) ≤ O(s2). Since there are at most ρ rules with right-hand side l, the total amount
of time to construct the automaton is O

(
s2 · ρ · (e ·max{a, δ})2s1+1 · (log |R|) · |A|

)
. J

Now let t ∈ Ter(Σ) be a ground term over Σ, and let R be a linear term rewriting system.
Let A(t) be the tree automaton associated with t. For each d ∈ N we inductively define the
tree automaton A(t,R, d) as follows.

A(t,R, d) =


A(t) if d = 0

N (A(t,R, d− 1), R) if d ≥ 1.
(4)

Note that L(A(t,R, 0)) = L(A(t)) = {t}. Additionally, from Lemma 7 it follows
straightforwardly by induction on d that A(t,R, d) is a tree automaton recognizing precisely
the ground terms in Ter(Σ) that can be reached from t in depth at most d. Let a be the
maximum arity of a function symbol in Σ. Then the maximum in-degree of a vertex of
A(t,R, 0) is a, while the size of A(t,R, 0) is 2 · |t|. The next proposition establishes upper
bounds for the size and maximum in-degree of the tree automaton A(t,R, d).
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I Proposition 10. Let a be the maximum arity of a function symbol in Σ. Let s1 be the
maximum size of the left-side of a rule in R, s2 be the maximum size of the right-side of a
term in R, and ρ be the maximum number of rules in R with the same left-hand side.

The maximum in-degree of A(t,R, d) is at most (e · ρ · a)s2·d
1 .

The size of A(t,R, d) is at most sd2 · (e · ρ · a)s2·d
1 · |t|.

A(t,R, d) can be constructed in time sd2 · (e · ρ · a)s2·d
1 · (log |R|) · |t|.

We omit the proof of Proposition 10 since it follows straightforwardly from Lemma 9 by
induction on d. Finally, we are in a position to prove Theorem 1.

Proof of Theorem 1

1. Reachability. Let f(R, d) = sd2 · (e · ρ · a)s2d
1 · (log |R|). Given two ground terms t and

t′ we want to determine whether t′ can be derived from t in depth at most d. First,
we construct in time f(R, d) · |t| the tree automaton A(t,R, d), whose size is at most
f(R, d) · |t|. Then we determine whether A(t,R, d) accepts the term t′. By Lemma 2 this
membership test can be performed in time f(R, d) · |t| · |t′|.

2. Joinability. Given two ground terms t and t′ we want to determine whether there exists
a term u such that u can be derived both from t and from t′ in depth at most d. First
we construct the tree automata A(t,R, d) and A(t′,R, d) whose sizes are respectively
upper bounded by f(R, d) · |t| and f(R, d) · |t′|. We have that there exists a term u that
can be reached by both t and t′ in depth at most d if and only if A(t,R, d) ∩ A(t′,R, d)
is non-empty. By Lemma 3, this emptiness of intersection test can be realized in time
f(R, d)2 · |t| · |t′|.

5 Conclusion

In this work we have shown that reachability and joinability in linear term rewriting systems
are fixed parameter tractable with respect to the depth of derivations. More precisely,
we showed that given a linear term rewriting system R, and ground terms t and t′ one
can determine in time f(R, d) · |t| · |t′| whether t′ is reachable from t in depth at most d,
and in time f(R, d)2 · |t| · |t′| whether t and t′ are joinable in depth at most d. We note
that the function f(R, d) depends double exponentially on d. We leave open the problem
of determining whether the dependence on d in the function f(R, d) can be substantially
improved.
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