
Optimal Dynamic Program for r-Domination
Problems over Tree Decompositions∗

Glencora Borradaile1 and Hung Le2

1 Department of Electrical Engineering and Computer Science, Oregon State
University, USA
glencora@eecs.orst.edu

2 Department of Electrical Engineering and Computer Science, Oregon State
University, USA
lehu@onid.oregonstate.edu

Abstract
There has been recent progress in showing that the exponential dependence on treewidth in
dynamic programming algorithms for solving NP-hard problems is optimal under the Strong
Exponential Time Hypothesis (SETH). We extend this work to r-domination problems. In r-
dominating set, one wishes to find a minimum subset S of vertices such that every vertex of G
is within r hops of some vertex in S. In connected r-dominating set, one additionally requires
that the set induces a connected subgraph of G. We give a O((2r + 1)twn) time algorithm for r-
dominating set and a randomized O((2r+ 2)twnO(1)) time algorithm for connected r-dominating
set in n-vertex graphs of treewidth tw. We show that the running time dependence on r and tw is
the best possible under SETH. This adds to earlier observations that a “+1” in the denominator
is required for connectivity constraints.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases r-dominating set, Exponential Time Hypothesis, Dynamic Programming

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.8

1 Introduction

There has been recent progress in showing that the exponential dependence on treewidth in
dynamic programming algorithms for solving NP-hard problems is optimal under the Strong
Exponential Time Hypothesis (SETH) [12]. Lokshtanov, Marx and Saurabh showed that
for a wide variety of problems with local constraints, such as maximum independent set,
minimum dominating set and q-coloring, require Ω∗((2−ε)tw), Ω∗((3−ε)tw) and Ω∗((q−ε)tw)
time in graphs of treewidth tw, where Ω∗ hides polynomial dependence on the size of the
graph [15]; these lower bounds met the best-known upper bounds for the same problems.
For problems with connectivity constraints, such as connected dominating set, some thought
that a dependence of twtw would be required. Cygan et al. showed that this is not the case,
giving tight upper and lower bounds for the dependence on treewidth for many problems,
including connected dominating set [6]. They also observed that the base of the constant
increased by one when adding a connectivity constraint. For example, vertex cover has tight
upper and lower bounds of O∗(2tw) and Ω∗((2− ε)tw) while connected vertex cover has tight

∗ This material is based upon work supported by the National Science Foundation under Grant No. CCF-
1252833.

© Glencora Borradaile and Hung Le;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

Table 1 Old and new results on the domination problem

Lower Bound Reference Upper Bound Reference
DS Ω∗((3 − ε)tw) [15] O∗(3tw) [19]

CDS Ω∗((4 − ε)tw) [6] O∗(4tw) [6]
rDS Ω∗(2r + 1)(1−ε)tw) Theorem 3 O∗((2r + 1)tw) Theorem 2

rCDS Ω∗(2r + 2)(1−ε)tw) Theorem 5 O∗((2r + 2)tw) Theorem 4

upper and lower bounds of O∗(3tw) and Ω∗((3− ε)tw). Similarly, dominating set has tight
upper and lower bounds of O∗(3tw) and Ω∗((3− ε)tw) while connected dominating set has
tight upper and lower bounds of O∗(4tw) and Ω∗((4− ε)tw).

1.1 Generalization to r-domination

In this paper, we show that this pattern of dependence extends to domination problems
over greater distances. The r-dominating set (rDS) problem is a natural extension of the
dominating set (DS) problem, in which, given a graph G of n vertices, the goal is to find a
minimum subset S of vertices such that every vertex of G is within r hops of some vertex
in S. Likewise, the connected r-dominating set (rCDS) is the connected generalization of
connected dominating set (CDS). We show that rDS can be solved in O∗((2r + 1)tw) time
and that rCDS can be solved in O∗((2r + 2)tw) time. Further, we show that these upper
bounds are tight, assuming SETH, even when r is non-constant. We note that our results
generalize the previous results listed in Table 1 when r = O(1) since we can reformulate
our lower bound as Ω∗(2r + 1− ε′)tw) for rDS problem and as Ω∗(2r + 2− ε′)tw) for rCDS
problem by setting ε = 1− ln(2r+1−ε′)

ln(2r+1) .

1.2 Notation

We denote the input graph with vertex set V and edge set E by G = (V,E) and use n to
denote the number of vertices. Edges of the graph are undirected and unweighted. For two
vertices u, v, we denote the shortest distance and path between them by dG(u, v) and PG(u, v).
Given a subset of vertices S and u a vertex of G, we define dG(u, S) = minv∈S{dG(u, v)}
and PG(u, S) = PG(u, v) where v is a vertex in S such that d(u, S) = d(u, v). We omit the
subscript G when G is clear from context. G[S] is the subgraph induced by S. A set of
vertices D is an r-dominating set if for every vertex v ∈ V , there exists u ∈ D such that
dG(u, v) ≤ r.

I Definition 1 (Tree decomposition). A tree decomposition of G is a tree T whose nodes are
subsets Xi (so-called bags) of V satisfying the following conditions:
1. The union of all sets Xi is V .
2. For each edge (u, v) ∈ E, there is a bag Xi containing both u, v.
3. For a vertex v ∈ V , all the bags containing v make up a subtree of T .

The width of a tree decomposition T is maxi∈T |Xi| − 1 and the treewidth of G is the
minimum width among all possible tree decompositions of G. We will assume throughout
that graph G has treewidth tw and that we are given a tree decomposition of G of width tw.

A path decomposition is a tree decomposition whose underlying structure is a path. The
pathwidth of a path decomposition and a graph G is defined the same as treewidth.

G. Borradaile and H. Le 8:3

1.2.1 Upper and lower bounds for r-dominating set
The algorithm we give is a generalization of the O(3twtw2n)-time algorithm for DS given by
van Rooij, Bodlaender and Rossmanith [19].

I Theorem 2. There is an O((2r + 1)tw+1n)-time algorithm for rDS in graphs G with n
vertices and treewidth tw.

Demaine et al. [8] gave an algorithm with running time O((2r+1) 3
2 bwn) for rDS in graphs

of branchwidth bw; since branchwidth and treewidth are closely related by the inequality
bw ≤ tw + 1 ≤ b 3

2bwc (for which there are tight examples) [16], our algorithm improves
the exponential dependence. Our proof of the corresponding lower bound uses a high level
constructionz of Lokshtanov, Marx and Saurabh for DS [15] to get around the case when
log(2r + 1) is not an integer. However, to handle a wide range of values r, the gadgets we
require are non-trivial. We prove the following in Section 3.

I Theorem 3. If r-dominating set can be solved in (2r+ 1)(1−ε)pwnO(1) time in a graph with
pathwidth pw and n vertices for every ε < 1, then there is a δ < 1 such that SAT instances
of n0 variables can be solved in O∗(2δn0).

1.2.2 Upper and lower bounds for connected r-dominating set
As with the algorithms for connectivity problems with singly-exponential time dependence on
treewidth as introduced by Cygan et al. [6], our algorithm for rCDS is a randomized Monte-
Carlo algorithm. We note that there exists deterministic algorithms with singly-exponential
time dependence on treewidth for connected domination problems [2, 11]. However, these
algorithms have worse exponential time than the randomized algorithm that we present. As
for rDS, we include the details of this upper bound in Appendix B:

I Theorem 4. There is a O∗((2r + 2)tw+1)-time true-biased Monte-Carlo algorithm that
decides rCDS for graphs of treewidth tw.

The gadget construction from the lower bound of Cygan et al. [6] for r = 1 assigns truth
values to vertices of the gadget, and hence, it is not immediately extended to r ≥ 2. We
design a new construction that assigns truth values to edges of the gadget. Furthermore,
we employ the global construction in the proof of Theorem 3 to get around the case when
log(2r + 2) is not an integer. It turns out that our construction works for a wide range of
values of r. The following theorem is proved in Section 5.

I Theorem 5. If connected r-dominating set can be solved in (2r+ 2)(1−ε)pwnO(1) time in a
graph with pathwidth pw and n vertices for every ε < 1, then there is a δ < 1 such that SAT
instances of n0 variables can be solved in O∗(2δn0).

1.3 Motivation
Algorithms for problems in graphs of bounded treewidth are useful as subroutines in many
approximation algorithms for graphs having bounded local treewidth [10]; specifically,
polynomial-time approximation schemes (PTASes) for many problems, including dominating
set, TSP and Steiner tree, in planar graphs and graphs of bounded genus all reduce to the
same problem in a graph of bounded treewidth whose width depends on the desired preci-
sion [4, 5, 13, 1]. For sufficiently small r, Baker’s technique and Demaine and Hajiaghayi’s
bidimensionality framework imply PTASes for rDS and rCDS (respectively) [1, 7]. For larger

IPEC 2016

8:4 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

values of r, approximate r-domination can be achieved by the recent bi-criteria PTAS due to
Eisenstat, Klein and Mathieu [9]; they guarantee a (1 + ε)r-dominating set of size at most
1 + ε times the optimal r-dominating set. It is an interesting open question of whether a true
PTAS (without approximating the domination distance) can be achieved for rDS in planar
graphs for arbitrary values of r. We also note that the bi-criteria PTAS of Eisenstat, Klein
and Mathieu [9] is not an efficient PTAS, one which the degree of the polynomial in n (the
size of the graph) does not depend on the desired precision, ε. Our new lower bounds suggest
that, for large r, it may not be possible to design an efficient PTAS for rDS without also
approximating the domination distance, since the O∗(rtw) run-time of the dynamic program
becomes an O∗(r1/ε) run time for the PTAS.

2 Algorithm for r-dominating Set

In this section, we sketch the dynamic programming algorithm to find an optimal r-dominating
set and leave the details in Appendix A. To simplify the dynamic program, we will use a
nice tree decomposition1. Kloks shows how to make a tree decomposition nice in linear time
with only a constant factor increase in space (Lemma 13.1.2 [14]).

We denote the size of the bag Xi by ni. We use Vi to denote the set of vertices in
descendant bags of Xi. The dynamic programming table Ai for a node Xi of the tree
decomposition is indexed by bags of the tree decomposition and all possible distance-labelings
of the vertices in that bag. For a vertex v in bag Xi, a positive distance label for v indicates
that v is r-dominated at that distance in G[Vi], and a negative distance label for v indicates
that v should be r-dominated at that distance in G but not in G[Vi].

For an r-dominating set D, we say that D induces the labeling c : Xi → [−r, r] for bag
Xi such that:

c(u) =
{
dG(u,D) if dG[Vi](u,D ∩ Vi) = dG(u,D)
−dG(u,D) otherwise

If D induces the labeling c, the set D∩Vi is the partial solution associated with c. We limit
ourselves to labelings that are locally valid as optimal r-dominating sets in G induce locally
valid labelings at any bag of the tree decomposition; c is locally valid if |c(u)− c(v)| ≤ 1 for
any two adjacent vertices u, v ∈ Xi. If a labeling c is not locally valid, we define Ai[c] = −∞.

We show how to populate Ai from the populated tables for the child/children of Xi. Over
the course of the dynamic programming, we maintain the following correctness invariant at
all bags of the of the tree T :

Correctness Invariant. For any locally valid labeling c of Xi, we will maintain:

Ai[c] = min
D⊆V

D induces c

|D ∩ Vi| . (1)

Intuitively, Ai[c] is the minimum size of the partial solution associated with labeling c.
From the root bag X0, we can extract the minimum size of an r-dominating set from the
root’s table. This is the optimal answer by the correctness invariant and the definition of
induces.

We define an ordering � on labels for single vertices: `1 � `2 if |`1| = |`2| and `1 ≤ `2. We
extend this ordering to labelings c, c′ for a bag of vertices Xi by saying c � c′ if c(u) � c′(u)
for all u ∈ Xi.

1 The definition of a nice tree decomposition is in Appendix A

G. Borradaile and H. Le 8:5

I Lemma 6 (Ordering Lemma). Let D′ and D be two r-dominating sets that induce two
labelings c and c′ of a bag Xi such that (i) |D∩Xi| = A[c], (ii) |D′ ∩Xi| = A[c′] , (iii) c′ � c
and (iv) D has minimum size among r-dominating sets that induce c. If A[c′] > A[c], then
|D′| > |D|.

The Ordering Lemma tells us that if c′ � c and A[c′] > A[c], the r-dominating set that
induces c′ cannot be the minimum r-dominating set of the graph. Thus, we will maintain the
following Ordering Invariant to reduce the number of cases we need to consider in populating
the table of an introduce node and join node.

Ordering Invariant. If two labelings c and c′ of X satisfy c′ � c, then Ai[c′] ≤ Ai[c].

We sketch some ideas to show how to update the dynamic programming tables here and
leave the rest in Appendix A. There are four types of nodes in a nice tree decomposition:
leaf nodes, forget nodes, introduce nodes and join nodes and we will handle each type of
nodes separately. Leaf nodes and forget nodes can be handled straightforwardly and more
care is needed when when handling introduce nodes and join nodes. For introduce nodes, the
introduced vertices can r-dominate the vertices that are not r-dominated in the subgraph
induced by the descendant bags. Thus, we may need to change negative distance labelings
to positive distance labelings and that introduces some complication.

For join nodes, we need two intermediate tables, called the indication table and the
convolution table that can be computed efficiently from children tables. Suppose we are given
two dynamic programming tables of two children nodes Xj , Xk and we want to propagate the
dynamic programming table of the parent node Xi. The indication table indexes the solution
Aj [c] and is indexed by labellings and numbers from 0 to n. We initialize the indication
table Nj for Xj by (we likewise initialize Nk):

Nj [cj][x] =
{

1 ifAj [cj] = x

0 otherwise (2)

The convolution table N̄i for Xi (and likewise N̄j and N̄k for Xj and Xk) is also indexed
by labellings and numbers from 0 to n. However, we use a different labeling scheme. To
distinguish between the labeling schemes, we use the bar-labels [−r, . . . ,−1, 0, 1̄, . . . , r̄] for
the convolution table and c̄ to represent a bar-labeling of the vertices in a bag. We define
the convolution table in terms of the indication tables as:

N̄i[c̄][x] =
∑

c : |c(u)|=c̄(u)

Ni[c][x] (3)

We show (in Appendix A) that convolution tables can be computed from indication tables
and vice versa in time O(nni(2r + 1)ni) and the convolution table of a join node can be
efficiently computed from those of children nodes. This property gives us an efficient way to
update the dynamic programming table of a join node.

3 Lower Bound for r-dominating Set

In this section we prove Theorem 3 by giving a reduction from a SAT instance of n0 variables
and m clauses to an instance of r-dominating set in a graph of pathwidth pw such that:

pw ≤ n0p

bp log(2r + 1)c +O (rp) for any integer p. (4)

IPEC 2016

8:6 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

g1
g1

g2

P

g2

p1 p2 p3 p2r+1p1 p2 p3 p2r+1p

A A

B C B C

Figure 1 (a) An r-frame (r = 3). (b) An r-frame avoiding p (dashed edges to be deleted). (c)
Two r-frames and a path of length 2r + 1 (r=3). (d) Graph obtained from identifying the two
r-frames and path in (c).

Therefore, an O∗
(

(2r + 1)(1−ε)pw
)
-time algorithm for r-dominating set would imply an

algorithm for SAT of time O∗
(

(2r + 1)(1−ε)pw
)
which is O∗

(
2(1−ε)pw log (2r+1)). We argue

that for sufficiently large p depending only on ε, there is a δ such that:

(1− ε)pw log (2r + 1) = δn0

which would complete the reduction. By Equation (4),

(1− ε)pw log (2r + 1) = n0

(
(1− ε)p log (2r + 1)
bp log(2r + 1)c + O((1− ε)rp)

n0bp log(2r + 1)c

)
The second term in the bracketed expression is o(1) for large n0; we show that the first term
in the bracketed expression equal to δ which is less than 1 for sufficiently large p:

(1− ε)p log (2r + 1)
bp log(2r + 1)c ≤ bp log(2r + 1)c − εbp log(2r + 1)c+ 1

bp log(2r + 1)c = 1− ε+ 1
bp log(2r + 1)c

Therefore, choosing p sufficiently large makes this expression smaller than 1− ε/2.
Given an integer p, we assume, without loss of generality, that n is a multiple of

bp log(2r + 1)c. Divide the n0 variables of the SAT formula into t groups, F1,, Ft, each of
size bp log(2r+ 1)c; t = n0

bp log(2r+1)c . We assume that r ≥ 2. In the following, the length of a
path is given by the number of edges in the path.

r-frame
An r-frame is a graph obtained from a grid of size (r + 1)× (r + 1), adding edges along the
diagonal, removing vertices on one side of the diagonal, subdividing edges of the diagonal path
and connecting the subdividing vertices to the vertices of the adjacent triangles. The vertex
A is the top of the r-frame and the path BC is the bottom path of the r-frame. A necessary
condition of the r-frame is that the center vertex of the bottom path must r-dominate the
whole r-frame. An r-frame avoiding a vertex p of the bottom path is the graph obtained
by deleting edges not in the bottom path and incident to p. We define identification to be
the operation of identifying the bottom paths of one or more r-frames with a path of length
2r + 1 (see Fig. 1).

The group gadget
We construct a gadget to represent each group of variables as follows. Let P = {P1, P2, ..., Pp}
be a set of p paths, each of length 2r+ 1. For each path Pi, we construct a graph Ci from Pi

G. Borradaile and H. Le 8:7

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5

a2 a4 a6

s2r+2s2r+1s2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

Pr(2r)

xS

Pr(2r)

Pr(2r)

xS(2r+2)P

a1 a3 a5

C1

C2

CP

Path of length r − 1

x̄S

x̄S(2r+2)P

x

Figure 2 The group gadget. The red edges are edges of r-frames with top xS .

by identifying two r-frames with top vertices g1 and g2, called guards, to Pi. In the remaining
steps of the construction, we will only connect different parts of the gadget to the vertices of
P. In order to r-dominate the guards, we see:

I Observation 7. At least one vertex of Ci will be required in the dominating set in order to
r-dominate Ci.

Let S be a set of p vertices, one selected from each path in P. Let S be the collection
of all such sets. We injectively map each set in S to a particular truth assignment for the
corresponding group of variables. Since the number of sets in S maybe larger than the number
of truth assignments, we remove the sets that are not mapped to any truth assignment. For
every S ∈ S, add a vertex xS , and for each P ∈ P , identify an r-frame with top xS avoiding
the vertex in S ∩ P with P (see Figure 2). Attach each xS to a distinct vertex x̄S via a path
of length r − 1. We then connect x̄S to two new vertices x and x′, for all S ∈ S, and attach
paths of length r − 1 to each of x and x′. Since no vertex in P can r-dominate, for example,
x, we get:

I Observation 8. The group gadget requires at least p+ 1 vertices to be r-dominated.

The super group gadgets
Recall that m is the number of clauses of the SAT instance. For each group Fi, create
m(2rpt+1) copies {B̂1

i , ..., B̂
(2rpt+1)m
i } of a group gadget. For every j = 1, . . . , (2rpt+1)m−1

and ` = 1, . . . , p, connect the last vertex of P` in B̂ji to the first vertex of P` in B̂j+1
i . Add

two vertices h1 and h2, connect h1 to the first vertices of paths in B̂1
i and h2 to the last

vertices of paths in B̂m(2rpt+1)
i and attach two paths of length r to each of h1 and h2 (see

Figure 3).

IPEC 2016

8:8 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

path of length r-1

B̂xi

c`j

h1 h2

Figure 3 The super group gadgets. Each shaded square represents a group gadget. Each row of
group gadgets represents one group of variables. Each column of group gadgets represents all groups.

Connecting the super group gadget to represent a SAT formula

Recall that each set S ∈ S for a particular group of variables corresponds to a particular truth
assignment for that group of variables. For each clause j, we create 2rpt+ 1 clause vertices c`j
for ` = 0, . . . , 2ptr and connect each clause vertex to all vertices x̄S in {B̂m`+ji |i = 1, . . . , t},
for all S ∈ S that correspond to truth assignments that satisfy the clause j. Connect a path
of length r − 1 to each clause vertex.

I Lemma 9. If φ has a satisfying assignment, G has a r-dominating of size (p+ 1)tm(2rpt+
1) + 2.

Proof. Given a satisfying assignment of φ, we construct the dominating set D of G as follows.
For each group gadget Bji , 1 ≤ i ≤ t, 1 ≤ j ≤ m(2rpt + 1), we will select {x̄S} ∪ S, for S
corresponding to the satisfying assignment of the group variables, for the r-dominating set.
S r-dominates:

All the guards and some vertices of their r-frames within distance r from S.
All the vertices xS′ and some vertices of their r-frames within distance r from S for all
S′ ∈ S\{S}.
All the vertices of the path Pi in Bji and maybe some vertices of its copies in Bj+1

i and
Bj−1
i within distance r from S (see Figure 4)

The remaining vertices of the r-frames of guards and xS for S ∈ S that are not r-
dominated by S in Bji would be r-dominated by the set S of the nearby group gadgets. The
set of vertices that are r-dominated by the vertex x̄S include:

The vertices of the path from xS to x̄S .
The clause vertex connected to x̄S and its attached path.
The vertex x and x′ and their attached paths.
The vertices x̄S′ and the vertices of the path from xS′ to x̄S′ for S′ ∈ S\{S}.

G. Borradaile and H. Le 8:9

Pi Pi

(a) a path in B̂ji (b) a path in B̂j+1
i

g1

g2

g1

g2

Figure 4 Two paths Pi in two consecutive gadgets for r = 3. Two circled vertices are in the
r-dominating set D. The vertex p1

i of the gadget B̂j+1
i is not dominated by the vertex p5

i of the
same gadget but it is dominated by the vertex p5

i of B̂ji . The distance between two circled vertices
must be no larger than 7 (= 2r + 1). The numbering of the vertices of the horizontal path is shown
in Figure 1.

Taking the union over all t groups, and all m(2rpt+ 1) copies of the group gadgets in the
super group gadgets gives (p+ 1)tm(2rpt+ 1) vertices. Adding vertices h1 and h2 gives the
lemma. J

I Lemma 10. If G has a r-dominating set of size (p + 1)tm(2ptr + 1) + 2, then φ has a
satisfying assignment.

Proof. Let D be the r-dominating set of size (p+ 1)tm(2ptr + 1) + 2. Since some vertices
in the paths attached to h1 and h2 must be in D, we can replace these with h1 and h2.
By observation 8, at least (p + 1) vertices of each group gadget must be in D, which
implies that exactly (p + 1) vertices are chosen from each group gadget since there are
tm(2ptr + 1) group gadgets. Let B̂ji , 1 ≤ i ≤ t, 1 ≤ j ≤ m(2ptr + 1) be a group gadget and
let Pk ∈ P = {P1, . . . , Pp} be a path of B̂ji . By observation 7, at least one vertex from each
Pk, 1 ≤ k ≤ p must be included in D. To dominate the vertex x and x′ and their attached
paths, at least one vertex from the set {x̄S |S ∈ S} must be selected. Therefore, the set of
p+ 1 vertices in D ∩ B̂ji includes:

p vertices, one from each path Pk, 1 ≤ k ≤ p, which make up the set S.
the vertex x̄S that corresponds to xS since xS is not dominated by S.

We say that the dominating set D is consistent with a set of gadgets {B̂i}ki=1 iff D ∩ P is
the same for all B̂i. We show that there exists a number ` ∈ {0, 1, . . . , 2rtp} such that D is
consistent with the set of gadgets {B̂m`+ji |1 ≤ j ≤ m} for each 1 ≤ i ≤ t. For two consecutive
gadgets B̂qi and B̂q+1

i , if two vertices pai and pbi of the path Pi in B̂qi and of its copy in B̂q+1
i ,

respectively, are selected, the distance between them must be less than 2r + 1 (see Figure 4).
Therefore, we have b ≤ a. We call two consecutive gadgets B̂qi and B̂q+1

i a bad pair if b < a.
Since the distance between pai and pbi is smaller than 2r+1, there are at most 2pr consecutive
bad pairs for each i and for t groups of variables Fi, 1 ≤ i ≤ t, the number of bad pairs is no
larger than 2rpt. By the pigeonhole principle, there exists a number ` ∈ {0, 1, . . . , 2rtp} such
that D is consistent with the set of gadgets B̂m`+ji , 1 ≤ j ≤ m for all i.

For each i ∈ {1, . . . , t}, let {B̂m`+ji |1 ≤ j ≤ m} for some ` ∈ {0, 1, . . . , 2prt} be the
set of group gadgets that is consistent with D and let Fi be the corresponding group of
variables. We assign to the variables of group Fi the values of assignment corresponding
to the selected set S. This assignment satisfies the clauses of φ that are connected to the
vertices x̄S . Because all clauses of φ are r-dominated, the truth assignment of all groups
Fi, 1 ≤ i ≤ t, makes up a satisfying assignment of φ. J

IPEC 2016

8:10 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

We prove the following bound on pathwidth using a mixed search game [17]. We view the
graph G as a system of tunnels. Initially, all edges are contaminated by a gas. An edge can
be cleared by placing two searchers at both ends of that edge simultaneously or by sliding a
searcher along that edge. A cleared edge can be recontaminated if there is a path between
this edge and a contaminated edge such that there is no searcher on this path. Set of rules
for this game includes:

Placing a searcher on a vertex.
Removing a searcher from a vertex.
Sliding a searcher on a vertex along an incident edge.

A search is a sequence of moves following these rules. A search strategy is winning if all edges
of G are cleared after its termination. The minimum number of searchers required to win
is the mixed search number of G, denoted by ms(G). The following relation is established
in [17]:

pw(G) ≤ms(G) ≤ pw(G) + 1 .

I Lemma 11. pw(G) ≤ tp+O(rp).

Proof. We give a search strategy using at most tp + O((2r + 1)p) searchers. For a group
gadget B̂, we call the sets of vertices {P 1

i |1 ≤ i ≤ p} and {P 2r+1
i |1 ≤ i ≤ p} the sets of entry

vertices and exit vertices, respectively. We search the graph G in m(2rpt+1) rounds. Initially,
we place tp searchers on the entry vertices of t group gadgets B̂1

i , 1 ≤ i ≤ t. We use one more
searcher to clear the path and the edges incident to h1. In round b, 1 ≤ b ≤ m(2prt + 1)
such that b = m`+ j, 0 ≤ ` ≤ 2prt+ 1, 1 ≤ j ≤ m, we keep tp searchers on the entry vertices
of all group gadgets B̂ml+ji , 1 ≤ i ≤ t. We clear the group gadget B̂ml+ji by using at most
5(2r + 1)p+ 4 searchers in which:

(2r + 1)p searchers are placed on the vertices of p paths in P.
2(2r + 1) searchers to clear the guards and their r-frames.
3 searchers are placed on x, x′ and c`j and one more searcher to clear their attached paths.
2(2r + 1) to clear xS and their r-frames for all S ∈ S.

After B̂ml+ji is cleared, we keep searchers on the exit vertices and c`j , remove other searchers
and reuse them to clear B̂ml+ji+1 . After all the group gadgets in round b are cleared, we slide
searchers on the exit vertices of B̂bi to the entry vertices of B̂b+1

i for all 1 ≤ i ≤ t and start
a new round. When b = m(2rpt + 1), we need one more searcher to clear the path and
the edges incident to h2. In total, we use at most tp+ (5 + p)(2r + 1) + 4 searchers which
completes the proof of the lemma. J

Combined with Lemmas 9 and 10, we get Theorem 3.

4 Algorithm for Connected r-dominating Set

We apply the Cut&Count technique by Cygan et al. [6] to design a randomized algorithm
which decides whether there is a connected r-dominating set of a given size in graphs of
treewidth at most tw in time O((2r+ 2)twnO(1)) with probability of false negative at most 1

2
and no false positives.

Rather than doubly introduce notation, we give an overview of the Cut&Count technique
as applied to our connected r-dominating set problem. The goal is, rather than search
over the set of all possible connected r-dominating sets, which usually results in Ω(twtw)
configurations for the dynamic programming table, to search over all possible r-dominating
sets. Formally, let S be the family of connected subsets of vertices that r-dominate the input

G. Borradaile and H. Le 8:11

graph and let Sk ⊆ S be the subset of solutions of size k. Likewise, let R be the family of
(not-necessarily-connected) subsets of vertices that r-dominate the input graph and similarly
define Rk. Note that S and Sk are subsets of R and Rk, respectively. We wish to determine,
for a given k, whether Sk is empty. We cannot, of course, simply determine whether Rk is
empty. Instead, for every subset of vertices U , we derive a family C(U) whose size is odd only
if G[U] is connected. Further, we assign random weights ω to the vertices of the graph, so
that, by the Isolation Lemma (formalized below), the subset of Sk contains a unique solution
of minimum weight with high probability. We can then determine, for a given k, the parity
of | ∪U∈Rk : ω(U)=W C(U)| for every W . We will find at least one value of W to result in odd
parity if Sk is non-empty.

The Isolation Lemma was first introduced by Valiant and Vazirani [18]. Given a universe
U of |U| elements and a weight function ω : U → Z. For each subset X ⊆ U, we define
ω(X) =

∑
x∈X ω(x). Let F be a family of subsets of U. We say that ω isolates a family F if

there is a unique set in F that has minimum weight.

I Lemma 12 (Isolation Lemma). For a set U, a random weight function ω : U→ {1, 2, . . . , N},
and a family F of subsets of U:

Prob[ω isolates F] ≥ 1− |U|
N

.

Throughout the following, we fix a root vertex, ρ, of the graph G = (V,E) and use a
random assignment of weights to the vertices ω : V → {1, 2, . . . , 2n}.

4.1 Cutting
Given a graph G = (V,E), we say that an ordered bipartition (V1, V2) of V is a consistent
cut of G if there are no edges in G between V1 and V2 and ρ ∈ V1. We say that an ordered
bipartition (C1, C2) of a subset C of V is a consistent subcut if there are no edges in G

between C1 and C2, and, if ρ ∈ C then ρ ∈ C1.

I Lemma 13 (Lemma 3.3 [6]). Let C be a subset of vertices that contains ρ. The number of
consistent cuts of G[C] is 2cc(G[C])−1 where cc(G[C]) is the number of connected components
of G[C].

Recall the definitions of S, Sk, R and Rk from above. We further let Sk,W be the subset
of Sk with the further restriction of having weight W : Sk,W = {U ∈ Sk : ω(U) = W}.
Similarly, we define Rk,W . Let Ck,W be the family of consistent cuts derived from Rk,W as:

Ck,W = {(C1, C2)) : C ∈ Rk,W and (C1, C2) is a consistent cut of G[C]} .

Since the number of consistent cuts of G[C] for C ∈ Sk,W is odd by Lemma 13 and the
number of of consistent cuts of G[C] for C ∈ Rk,W \ Sk,W is even by Lemma 13, we get:

I Lemma 14 (Lemma 3.4 [6]). For every W , |Sk,W | ≡ |Ck,W | (mod 2).

4.2 Counting
Lemma 14 allows us to focus on computing |Ck,W | (mod 2). In Appendix B, we give an
algorithm to compute |Ck,W | for all k and W (W ∈ {1, 2, . . . , 2n2}):

I Lemma 15. There is an algorithm which computes |Ck,W | for all k and W in time
O(k2n4(2r + 2)tw).

IPEC 2016

8:12 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

s1 s2 s3 s4 s5 s6 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6

a7

a2r

a2r+1

a2r+2

a2r+3

Figure 5 A core for group gadgets. The dashed lines represent paths of length r + 1 connected
to rT .

Let k∗ be the size of the smallest connected r-dominating set. Since the range of ω has size
2n, by the Isolation Lemma, the smallest value W ∗ of W such that Sk∗,W is non-empty also
implies that |Sk∗,W∗ | = 1 with probability 1/2. By Lemma 14, |Ck∗,W∗ | is also odd (with
probability 1/2). We can then find |Ck∗,W∗ | by linear search over the possible values of W .
Thus Lemma 15 implies Theorem 4

5 Lower Bound for Connected r-dominating Set

In this section, we prove Theorem 5. The main idea is similar to that of the previous section:
a reduction from n0-variable, m-clause SAT to an instance of connected r-dominating set in
a graph of pathwidth pw such that:

pw ≤ n0p

bp log(2r + 2)c +O
(
(2r + 2)2p) for any integer p.

Given this reduction, the final argument for Theorem 5 is similar to the argument at the
beginning of Section 3. Let φ be a SAT formula with n0 variables and m clauses. For a
given integer p, we assume that n0 is divisible by bp log(2r + 2)c. We partition φ’s variables
into t = n

bp log(2r+2)c groups of variables {F1, F2, . . . , Ft} each of size bp log(2r + 2)c. We will
speak of an r-dominating tree as opposed to a connected r-dominating set: the tree is simply
a witness to the connectedness of the r-dominating set. We treat the problem as rooted: our
construction has a global root vertex, rT , which we will require to be in the rCDS solution.
This can be forced by attaching a path of length r to rT .

Core
A core is composed of a path with 2r+3 vertices a1, a2, . . . , a2r+3, 2r+2 edges s1, s2, . . . , s2r+2
(called segments), consecutive odd-indexed vertices connected by a subdivided edge and
consecutive even-indexed vertices connected by a subdivided edge. The even indexed vertices
a2, a4, . . . , a2r+2 are connected to the root rT via paths of length r + 1 (see Figure 5).

Pattern
A pattern Pr(q) is a tree-like graph with q leaves and a single root rP such that the distance
from the root to the leaves is r. The structure depends on the parity of r; if r is even, the
children of vertex h are connected by a clique (indicated by the oval). The dotted lines
represent paths of length r−1

2 for r odd and r
2 − 1 for r even (see Figure 6).

G. Borradaile and H. Le 8:13

p1 p2 p3 p4 pq

h

rP

p1 p2 p3 p4 pq

h

rP

(a) Pr(q) when r is odd

r+1
2

r−1
2

r
2 + 1

r
2 − 1

(b) Pr(q) when r is even
p1 p2 p3 pq

Pr(q)

(c) shorthand for Pr(q)

rP

Figure 6 A pattern Pr(q) with root rP . The oval in (b) is a clique between neighboring vertices
of the vertex h.

I Observation 16. A leaf of a pattern r-dominates all but the other leaves of the pattern.

Given a set of q vertices X, we say that pattern Pr(q) is attached to set X if the leaves of
Pr(q) are identified with X.

Core gadget
We connect patterns to the core in such a way as to force a minimum solution to contain
a path from rT to the core, ending with a segment edge. To each core that we use in the
construction, we attach one pattern Pr(r + 1) to the odd-indexed vertices a1, a2, . . . , a2r+1
(but not a2r+3) and another pattern Pr(r + 1) to the even-indexed vertices a2, a4, . . . , a2r+2.
In order to r-dominate the roots of these patterns, the dominating tree must contain a path
from rT to an odd-indexed vertex and to an even-indexed vertex. We attach additional
path-forcing patterns to guarantee that, even after adding the rest of the construction, this
path will stay in the dominating tree. For i = 1, . . . , r, for the r + 1 vertices that are i hops
from rT , we attach a pattern Pr(r + 1). As a result, at least one vertex at each distance
from rT must be included in the dominating tree. A core gadget is a subgraph of the larger
construction such that edges from the remaining construction only attach to the vertices
a1, a2, . . . , a2r+3 and rT . The previous observations guarantee:

I Observation 17. The part of a rCDS that intersects a core gadget can be modified to
contain a path from rT to an odd-indexed vertex (via a segment edge) without increasing its
size.

Group gadget
For each group Fi of variables, we construct a group gadget which consists of p cores
{C1, C2, . . . , Cp}. Let S be a set of p segments, one from each core, and let S be a collection
of all possible such sets S; therefore |S| = (2r + 2)p. Since a group represents bp log(2r + 2)c
variables, there are at most 2p log(2r+2) = (2r+2)p truth assignments to each group of variables.
We injectively map each set in S to a particular truth assignment for the corresponding
group of variables. Since the number of sets in S maybe larger than the number of truth
assignments, we remove the sets that are not mapped to any truth assignment. For each
set S ∈ S, we connect a corresponding set pattern Pr(2rp) to the cores as follows. For each
i = 1, . . . , p, Pr(2rp) is attached to

the vertices a1, a2, . . . , a2r+2 of Ci except the endpoints of sj if sj ∈ S
the vertices a2, a3, . . . , a2r+1 if s2r+2 ∈ S

IPEC 2016

8:14 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5

a2 a4 a6

s2r+2s2r+1s2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

Pr(2r)

xS

Pr(2r)

Pr(2r)

xS(2r+2)P

a1 a3 a5

C1

C2

CP

Path of length r − 1

x̄S

x̄S(2r+2)P

x

Figure 7 A group gadget. Red segments are segments of the set S. The vertex xS is the root of
the pattern shown. The dashed lines represent paths of length r + 1 connected to rT .

We label the root of this pattern by the set vertex xS . We then connect these set patterns
together. For each S ∈ S, we connect:

xS to a new vertex x̄S via a path of length r − 1
x̄S to the root rT via paths of length r + 1
x̄S to a common vertex x, and
x to a path of length r − 1.

Similarly, as in the core gadget construction, for the set of vertices {x̄S |S ∈ S}, we add
path forcing patterns Pr(|S|) to each level of vertices along the paths from r to x̄S , S ∈ S
(see Figure 7).

I Observation 18. The part of a rCDS that intersects a group gadget can be modified to
contain a path from rT to a vertex in the set {x̄S |S ∈ S} without increasing its size.

Super-path
A super path Fi is a graph that consists of X = m ((2r + 1)pt+ 1) copies of the group
gadget B1

i , B
2
i , . . . , B

X
i , which are assembled into a line (m is the number of clauses). Vertex

a2r+s of every core gadget of the group gadget Bji is identified with the vertex a1 of the
corresponding core gadget of the group gadget Bj+1

i . The vertices a1 and a2r+3 of the core
gadgets of B1

i and BXi are directedly connected to the root rT . In order to dominate all the
odd- and even-indexed vertices of the cores (without spanning more than one segment edge
per core), we must have:

G. Borradaile and H. Le 8:15

I Observation 19. If an endpoint of segment edge sj in the tth core of Bki is in the rCDS,
then there must be an endpoint of a segment sj′ in the tth core of Bk+1

i that is also in the
rCDS, for j′ ≤ j.

Representing clauses
For each clause Cj of φ, we introduce ((2r + 1)pt+ 1) clause vertices c`j , 0 ≤ ` ≤ (2r + 1)pt.
(There are m((2r + 1)pt+ 1) clause vertices in total.) For a fixed i (1 ≤ i ≤ t) and for each
c`j , (1 ≤ j ≤ m, 0 ≤ ` ≤ (2r + 1)pt), we connect c`j to Bm`+ji by connecting it directly to
the subset of vertices in the set {x̄S |S ∈ S} of Bm`+ji such that the truth assignments of
the corresponding subsets in the collection S satisfy the clause Cj . Each clause vertex is
attached to a path of length r − 1. Denote the final constructed graph as G.

I Lemma 20. If φ has a satisfying assignment, G has a connected r-dominating set of
((r + 2)p+ r + 1)tm((2r + 1)tp+ 1) + 1 vertices.

Proof. Given a satisfying assignment of φ, we construct an r-dominating tree T as follows.
For group i, let Si be the set of p segments which corresponds to the truth assignment of
variables of Fi. In addition to the root, T contains:

The path of length r + 2 from rT that ends in each segment of Si for every group in the
construction. Each such path contains r+ 2 vertices in addition to the root. As there are
tm((2r + 1)tp+ 1) groups and p cores per group, this takes (r + 2)ptm((2r + 1)tp+ 1)
vertices. By Observation 16, this set of vertices will r-dominate all of the non-leaf vertices
of all the patterns in the core gadget, since all these patterns include a leaf in one of these
paths. This set of vertices will also dominate xS for every S 6= Si since S will connect to
the endpoints of at least one segment edge that is not in Si.
For each group, the path of length r + 1 from rT to x̄Si . Each such path contains r + 1
vertices (not including the root). As there are tm((2r + 1)tp + 1) groups, this takes
(r + 1)tm((2r + 1)tp+ 1) vertices (not including the root). The vertex x̄Si r-dominates
the vertices on the path from xSi

to x̄Si
, the vertex x and the path attached to it, the

clause vertex connected to x̄Si and its attached path and the vertices on the path from
xS to x̄S , not including xS , for every S 6= Si. J

I Lemma 21. If G has an r-dominating tree of ((r + 2)p + r + 1)tm((2r + 1)tp + 1) + 1
vertices, then φ has a satisfying assignment.

Proof. Let T be the r-dominating tree; T contains the root rT . By Observations 17 and 18,
each group gadget requires at least (r + 2)p+ r + 1 vertices (not including the root) in the
dominating tree. Since the number of copies of group gadget is tm((2r + 1)tp + 1), this
implies exactly (r + 2)p+ r + 1 vertices of each group gadget will be selected in which:

For each core gadget, exactly one segment si in the set {s1, s2, . . . , s2r+2} and a path
connecting it to the root rT are selected which totals (r+ 2)p vertices for p cores. Denote
the set of p selected segments by S.
r + 1 vertices on the path from x̄S to the root rT .

We say that T is consistent with a set of group gadgets iff the set of segments in T are the
same for every group gadget. If two segments sa and sb of two consecutive cores in group
gadgets Bqi and Bq+1

i , respectively, are in T , by Observation 19, we have b ≤ a. If b < a, we
call sa and sb a bad pair. Since there are p cores in which there can be a bad pair, and each
core has 2r+ 2 segments, for each super-path, there can be at most (2r+ 1)p consecutive bad
pairs. Since we have t super-paths, there are at most tp(2r+ 1) bad pairs. By the pigeonhole

IPEC 2016

8:16 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

principle, there exists a number ` ∈ {0, 1, . . . , tp(2r + 1)} such that T is consistent with the
set of gadgets {Bm`+ji |1 ≤ i ≤ t, 1 ≤ j ≤ m}.

Let {Bm`+ji |1 ≤ i ≤ t, 1 ≤ j ≤ m} be the set of group gadgets which is consistent with T .
For each group gadget Bm`+ji , we assign the truth assignment corresponding to the set of
segments S ∈ T ∩Bm`+ji to variables in the group Fi. The assignment of variables in all Fi
makes up a satisfying assignment of φ, since all clause vertices are r-dominated by T . J

I Lemma 22. pw(G) ≤ tp+O((2r + 2)2p).

By slightly adapting the proof of Lemma 11, we can prove Lemma 22 and we leave the details
as an exercise to readers.

Acknowledgement. We thank the anonymous reviewers for helpful comments and for
pointing out the mistake in the earlier version of the proof of Theorem 3.

References
1 B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal

of the ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.
2 H.L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential

time algorithms for connectivity problems parameterized by treewidth. In Proceedings of
the 40th International Colloquium on Automata, Languages and Programming, ICALP’13,
pages 196–207, 2013. doi:10.1007/978-3-642-39206-1_17.

3 H.L. Bodlaender and B.A. Fluiter. Reduction algorithms for graphs of small treewidth.
Information and Computation, 167(2):86–119, 2001. doi:10.1006/inco.2000.2958.

4 G. Borradaile, E. Demaine, and S. Tazari. Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus graphs. Algorithmica, 68(2):287–311, 2014.
doi:10.1007/s00453-012-9662-2.

5 G. Borradaile, P. Klein, and C. Mathieu. An O(n logn) approximation scheme for Steiner
tree in planar graphs. ACM Transactions on Algorithms, 5(3):31:1–31:31, 2009. doi:
10.1145/1541885.1541892.

6 M. Cygan, J. Nederlof, M. Pilipczuk, J.M.M. van Rooij M. Pilipczuk, and J.O. Wo-
jtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS’11, pages 150–159, 2011. doi:10.1109/FOCS.2011.23.

7 E. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction
decomposition. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’07, pages 278–287, 2007.

8 E.D. Demaine, F.V. Fomin, M. Hajiaghayi, and D.M. Thilikos. Fixed-parameter al-
gorithms for the (k, r)-center in planar graphs and map graphs. In Proceedings of the 30th
International Conference on Automata, Languages and Programming, ICALP’03, pages
829–844, 2003. doi:10.1007/3-540-45061-0_65.

9 D. Eisenstat, P.N. Klein, and C. Mathieu. Approximating k-center in planar graphs. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’14,
pages 617–627, 2014.

10 D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000. doi:10.1007/s004530010020.

11 F.V. Fomin, D. Lokshtanov, and S. Saurabh. Efficient computation of representative sets
with applications in parameterized and exact algorithms. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’14, pages 142–151, 2014.

http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1007/978-3-642-39206-1_17
http://dx.doi.org/10.1006/inco.2000.2958
http://dx.doi.org/10.1007/s00453-012-9662-2
http://dx.doi.org/10.1145/1541885.1541892
http://dx.doi.org/10.1145/1541885.1541892
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1007/3-540-45061-0_65
http://dx.doi.org/10.1007/s004530010020

G. Borradaile and H. Le 8:17

12 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

13 P.N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs
with edge-weights. SIAM Journal on Computing, 37(6):1926–1952, 2008. doi:10.1137/
060649562.

14 Ton Kloks, editor. Treewidth, Computations and Approximations, volume 842. Springer
Berlin Heidelberg, 1994. doi:10.1007/BFb0045375.

15 D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’11, pages 777–789, 2011.

16 N. Robertson and P.D. Seymour. Graph minors. X. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/
0095-8956(91)90061-N.

17 A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searching and proper-path-width. Theor-
etical Computer Science, 137(2):253–268, 1995. doi:10.1007/3-540-54945-5_50.

18 L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47(0):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

19 J.M.M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Proceedings of 17th
European Symposium on Algorithms, ESA’09, pages 566–577, 2009. doi:10.1007/
978-3-642-04128-0_51.

A Details of the Dynamic Programming Algorithm for r-dominating
Set

I Definition 23 (Nice tree decomposition). A tree decomposition T of G is nice if the following
conditions hold:

T is rooted at node X0.
Every node has at most two children.
Any node Xi of T is one of four following types:
leaf node: Xi is a leaf of T ,
forget node: Xi has only one child Xj and Xi = Xj\{v} ,
introduce node: Xi has only one child Xj and Xj = Xi\{v},
join node: Xi has two children Xj , Xk and Xi = Xj = Xk.

We will show how to handle each of the four types of nodes (leaf, forget, introduce and
join) in turn. We use #0(Xi, c) to denote the number of vertices in Xi that are assigned
label 0 in c in populating the tables for leaf and join nodes. We say v positively resolves u if
c(v) = c(u)− 1 when c(u) > 0; we use this definition for leaf and introduce nodes.

Leaf Node

We populate the table Ai for a leaf node Xi as follows:

Ai[c] =

0 if c is locally valid and all negative
#0(Xi, c) if c is locally valid and all positive are positively resolved
∞ otherwise

(5)

We can populate the table for a leaf node in O(n2
i (2r + 1)ni) time. Also, we can prove

the correctness invariant is maintained at leaf nodes by induction on the label of vertices.

IPEC 2016

http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1137/060649562
http://dx.doi.org/10.1137/060649562
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1007/3-540-54945-5_50
http://dx.doi.org/10.1016/0304-3975(86)90135-0
http://dx.doi.org/10.1007/978-3-642-04128-0_51
http://dx.doi.org/10.1007/978-3-642-04128-0_51

8:18 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

Forget Node

Let Xi be a forget node with child Xj and Xi = Xj ∪ {u}. Let ci be a labeling of Xi. We
consider extensions of ci to labelings cj = ci × d of Xj as follows:

cj(v) =
{
ci(v) if v ∈ Xi

d otherwise .

We populate the table Ai for forget node Xi as follows:

Ai[ci] = min
{
Aj [ci × d] ∀d < 0,∃ a v in Xi s.t. ci(v) = d+ dG(u, v)
Aj [ci × d] ∀d ≥ 0

. (6)

Assuming the correctness invariant for Aj , we can show that the correctness invariant
is maintained for forget nodes. For running time, we can check the condition for the first
case of Equation (6) in time proportional to the degree of u in Xj (O(ni)). Thus, we can
populate the table for a forget node Xi with child Xj in O(ni(2r + 1)nj) time.

Introduce Node

Let Xi be an introduce node with its child Xj and Xi = Xj ∪{u}. We show how to compute
Ai[ci] where ci = cj × d is the extension of a labeling cj for Xj to Xi where u is labeled d.
We define a map φ applied to the label cj(v) of a vertex v:

φ(cj(v)) =
{
−cj(v) if cj(v) > 0 and dG[Vi](v, u) = dG(u, v) = cj(v)− d
cj(v) otherwise

.

We use φ(cj) to define the natural extension this map to a full labeling of Xj . Clearly
φ(cj) � cj . This map corresponds to the lowest ordering label that is � cj that we use in
conjunction with the Ordering Invariant. Note that φ will be used only for d ≥ 0. There are
three cases for computing Ai[cj × d], depending on the value of d:
d = 0: In this case, u is in the dominating set. If a vertex v ∈ Xj is to be r-dominated

by u via a path contained in G[Vi], it will be represented by the table entry in which
cj(v) = −dG(u, v). Therefore Aj [c′j] + 1 corresponds to the size of a subset of Vi that
induces the positive labels of cj × 0 for any c′j � cj and where cj(v) = dG(u, v) =
dG[Vi](v, u). The Ordering Invariant tells us that the best solution is given by the rule
Ai[cj × 0] = Ai[φ(cj)× 0] = Aj [φ(cj)] + 1.

d > 0: In this case, u is r-dominated is to be dominated by a vertex in Vi via a path contained
by G[Vi]. Therefore, we require there be a neighbor v of u in Xj (with a label) that
positively resolves u; otherwise, the labeling cj×d is infeasible. Further, for other vertices
v′ of Xj which are r-dominated by a vertex of Vi by a path through u and contained by
G[Vi], the condition of the mapping φ must hold dG(v′, u) = dG[Vi](v′, u) = cj(v′)− d. As
for the previous case, the Ordering Invariant tells us that the best solution is given by
the rule: Ai[c×{t}] = Aj [φ(c)] if v ∈ Xi s.t v positively resolves u and Ai[c×{t}] = +∞
otherwise.

d < 0: In this case, u is not r-dominated by a path contained entirely in G[Vi]. Therefore,
the table entries for Xi are simply inherited from Xj (as long as cj × d is locally
valid). We set Ai[c× {ci(u)}] = Aj [c] if c× {ci(u)} is a locally valid labeling of Xi and
Ai[c× {ci(u)}] = +∞ otherwise.

Since the correctness invariant holds for Xj , and by the arguments above (using the
Ordering Lemma), the correctness invariant is maintained for introduce nodes. Also, we can
populate the dynamic programming table for an introduce bag in O((2r + 1)twtw) time.

G. Borradaile and H. Le 8:19

Join Nodes

In this section, we will refer to the tables of the previous sections as the original tables. We
denote the indication table by N and the convolution table by N̄ . We will initialize Nj and
Nk from Aj and Ak, then compute N̄j from Nj and N̄k from Nk, then combine N̄j and N̄k
to give N̄i, then compute Ni from N̄i and finally Ai from Ni. The tables N̄j can be used to
count the number of r-dominating sets; we view our method as incorrectly counting so that
we can more efficiently compute Ai from Aj and Ak while still correctly computing Ai.

Let Xi be a join node with two children Xj and Xk and Xi = Xj = Xk. We say the
labeling ci (for Xi) is consistent with labelings cj and ck (for Xj and Xk, respectively) if for
every u ∈ Xi:
1. If ci(u) = 0, then cj(u) = 0 and ck(u) = 0.
2. If ci(u) = t < 0, then cj(u) = t and ck(u) = t.
3. If ci(u) = t > 0, then (cj(u) = t) ∧ (ck(u) = −t) or (cj(u) = −t) ∧ (ck(u) = t) or

(cj(u) = t) ∧ (ck(u) = t).
Ai[ci] = min(Aj [cj] +Ak[ck]−#0(Xi, ci)|ci is consistent with cj and ck) (7)

Using the indication table, Equation 7 can be written as:

Ai[ci] = min{∞,min{x : Ni[ci][x] > 0}} (8)

where we define

Ni[ci][x] =
∑

xj ,xk:xj+xk−#0(Xi,ci)=x
ci is consistent with cj and ck

Nj [cj][xj] ·Nk[ck][xk] . (9)

We guarantee that Ni[ci][x] is non-zero only if there is a subset of Vi of size x that induces
the positive labels of ci. This, along with the correctness invariant held for the children of
Xi, we maintain the correctness invariant at join nodes.

The following observation, which is a corollary of Equation (7) and the definition of
consistent, is the key to our algorithm:

I Observation 24. If the vertex u ∈ Xi has label t̄, its label in Xj and Xk must also t̄.

Running time analysis

I Lemma 25. Convolution tables can be computed from indication tables and vice versa in
time O(nni(2r + 1)ni).

Proof. Consider the indicator table Ni and convolution table N̄i for bag Xi; we order the
vertices of Xi arbitrarily. We calculate Equation (3) by dynamic programming over the
vertices in this order.

We first describe how to compute N̄i from Ni. We initialize N̄i[c] = Ni[c′] where
c′(u) = c(u) if c(u) ≤ 0 and c′(u) = c(u) if c′(u) > 0. We then correct the table by
considering the barred labels of the vertices according to their order from left to right. In
particular, suppose c = c1×{t̄}×c2, for some t > 0, be a labeling in which c1 is a bar-labeling
of the first ` vertices of Xi and c2 is a bar-labeling of the last ni − `− 1 vertices. We update
N̄i[c] in order from ` = 0, . . . , ni according to:

N̄i[c1 × {t̄} × c2][x] := N̄i[c1 × {t̄} × c2][x] + N̄i[c1 × {−t} × c2][x] . (10)

It is easy to show that this process results in the same table as Equation (3).

IPEC 2016

8:20 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

We now describe how to compute Ni from N̄i, which is the same process, but in reverse.
We initialize Ni[c] = N̄i[c′] where c(u) = c′(u) if c(u) ≤ 0 and c(u) = c′(u) if c(u) > 0. We
then update Ni[c] in reverse order of the vertices of Xi, i.e. for ` = ni, ni− 1, . . . , 0 according
to:

Ni[c1 × {t} × c2][x] := Ni[c1 × {t} × c2][x]−Ni[c1 × {−t} × c2][x] . (11)

Since the labeling c has length of ni, the number of operations for the both forward and
backward conversion is bounded by O(nni(2r + 1)ni). J

I Lemma 26. The convolution tables for Xi, Xj and Xk satisfy:

N̄i[c̄][x] =
∑

xi,xj : xi+xj−#0(Xi,c̄)=x

N̄j [c̄][xi] · N̄k[c̄][xj] (12)

Proof. If a labeling c is consistent with c1, c2, we write c ∼ (c1, c2).

N̄i[c̄][x] =
∑

c : |c(u)|=c̄(u)

Ni[c][x]

=
∑

c : |c(u)|=c̄(u)

∑
xj ,xk : xj+xk−#0(Xi,c)=x

cj ,ck : c∼(cj ,ck)

(Nj [cj][xj] ·Nk[ck][xk])

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

∑
c : |c(u)|=c̄(u)
cj ,ck : c∼(cj ,ck)

(Nj [cj][xj] ·Nk[ck][xk])

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

∑
cj : |cj(u)|=c̄(u)
ck : |ck(u)|=c̄(u)

(Nj [cj][xj] ·Nk[ck][xk])

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

∑
cj : |cj(u)|=c̄(u)

N̄j [c̄][x1]
∑

ck : |ck(u)|=c̄(u)

Nk[ck][xk]

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

N̄j [c̄][x1] · N̄k[c̄][x2]

J

I Lemma 27. The time required to populate the dynamic programming table for join node
Xi is O(n2(2r + 1)ni).

Proof. We update the table Ai of the join node Xi by following steps: (1) computing the
indication tables Nj [cj][x] and Nk[ck][x] for all possible cj , ck and x by Equation (2), (2)
computing the convolution tables N̄j [c̄][x] and N̄k[c̄][x] via Lemma 25, (3) computing the
table N̄i[c̄][x] of the join node Xi via Lemma 26, (4) computing the indication table Ni[ci][x]
of the join node Xi via Lemma 25 and (5) computing the table Ai[ci] of the join node Xi by
Equation (8). J

Proof of Theorem 2

Theorem 2 follows from the correctness and running time analyses for each of the types of
nodes of the nice tree decomposition. Using the finte integer index property [3, 19], we can
reduce the running time of Theorem 2 to O((2r + 1)tw+1tw2n).

For a given bag Xi, let Sc be the minimum partial solution that is associated with a
labeling c of Xi; |Sc| = A[c]. Let S1 be the minimum partial solution that is associated with
the labeling c1 = {1, 1, . . . , 1} of Xi.

G. Borradaile and H. Le 8:21

I Lemma 28 (Claim 5.4 [3] – finite integer index property). For a given bag Xi, if the minimum
partial solution Sc can lead to an optimal solution of G, we have:

||Sc| − |S1|| ≤ ni + 1 .

I Theorem 29. We can populate the dynamic programming table for join node Xi in
O(n2

i (2r + 1)ni) time.

Proof. By Lemma 28, for a fixed c̄, there are at most 2ni + 3 values x ∈ {1, 2, . . . , n} such
that N̄ [c̄][x] 6= 0. Therefore, by maintaining non-zero values only, we can populate the table
by: (1) computing the convolution tables N̄j [c̄][x] and N̄k[c̄][x] via Lemma 25, (2) computing
the table N̄i[c̄][x] of the join node Xi via Lemma 26, (3) computing the indication table
Ni[ci][x] of the join node Xi via Lemma 25 and (4) computing the table Ai[ci] of the join
node Xi by Equation (8). J

Clearly, Theorem 29 implies an O((2r + 1)tw+1tw2n) time algorithm for rDS problem.

B Counting Algorithm for connected r-dominating set

To determine |Ck,W | for each W , we use dynamic programming given a tree decomposition T
of G. To simplify the algorithm, we use an edge-nice variant of T. A tree decomposition T is
edge-nice if each bag is one of following types:
Leaf: a leaf Xi of T with Xi = ∅
Introduce vertex: Xi has one child bag Xj and Xi = Xj ∪ {v}
Introduce edge: Xi has one child bag Xj and Xi = Xj and E(Xi) = E(Xj) ∪ {e(u, v)}
Forget: Xi has one child bag Xj and Xj = Xi ∪ {v}
Join: Xi has two children Xj , Xj and Xi = Xj = Xk

We root this tree-decomposition at a leaf bag. Let Gi = (Vi, Ei) be the subgraph formed by
the edges and vertices of descendant bags of the bag Xi.

As with the dynamic program for the r-dominating set problem, we use a distance labeling,
except we have two types of 0 labels:

c : Xi → {−r, . . . ,−1, 01, 02, 1, . . . , r}

A vertex u is in a corresponding subsolution if c(u) ∈ {01, 02} and the subscript of 0 denotes
the side of the consistent cut of the subsolution that u is on. Throughout, we only allow the
special root vertex to be labeled 01. We use the same notion of induces as for the non-connected
version of the problem, with the additional requirement that we maintain bipartitions (cuts)
of the solutions. Specifically, a cut (C1, C2) induces the labeling c for a subset X of vertices
if d(u,C1 ∪ C2) = c(u) if c(u) > 0, u ∈ C1 if c(u) = 01 and u ∈ C2 if c(u) = 02. We limit
ourselves to locally valid solutions as before.

A dynamic programming table Ai for a bag Xi of T is indexed by a distance labeling
c of Xi, and integers t ∈ {0, . . . , n} and W ∈ {0, 1, . . . , 2n2}. Ai[t,W, c] is the number of
consistent subcuts (C1, C2) of Gi such that: (i) |C1 ∪ C2| = t, (ii) ω(C1 ∪ C2) = W and (iii)
C1 ∪ C2 induces the labeling c for Xi.

We show how to compute Ai[t,W, c] of the bag Xi given the tables of it children.

Leaf

Let Xi be a non-root leaf of T: Ai[t,W, ∅] = 1.

IPEC 2016

8:22 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

Introduce vertex

Let Xi be an introduce vertex bag with its child Xj and Xi = Xj ∪ {u}. Let c × d is a
labeling of Xi where c is a labeling of Xj and d is the label of u. There are four cases for
computing Ai[t,W, c× d] depending on the value of d. Since u is isolated in Gi, we need not
worry about checking for local validity.

Ai[t,W, c× d] =

0 if d > 0
Aj [t− 1,W − ω(u), c] if d = 01

Aj [t− 1,W − ω(u), c] if d = 02

Aj [t,W, c] if d < 0

Introduce edge

Let Xi be an introduce edge bag with its child Xj and Ei = Ej ∪ {e(u, v)}. For any labeling
that is not locally valid upon the introduction of uv, that is, if |c(u) − c(v)| > 1, we set
Ai(t,W, c) = 0. If c(u) = 01 and c(v) = 02 (or vice versa), c cannot correspond to a consistent
subcut, so Ai(t,W, c) = 0. If c(u) = c(v)− dGi

(u, v) ≥ 0 then u positively resolves v. We say
that a vertex x ∈ Gi is uniquely resolved by u at distance d if there is no vertex other than
u that positively resolves v and dGi

(u, v) = d. When the edge e(u, v) is introduced to the
bag Xi, some vertices will be positively resolved by u. The vertices v ∈ Xi that are uniquely
resolved by u at distance dGi(u, v) have negative labels in Xj . We define a map φ applied to
the label c(x) of a vertex x:

φ(c(x)) =
{
−c(x) if x is uniquely resolved by u at distance dGi

(u, x)
c(x) otherwise

We use φ(c) to define the natural extension this map to a full labeling of Xi. We get
Ai[t,W, c] = Aj [t,W, c] + Aj [t,W, φ(c)]. In all other cases, the labeling is locally valid,
the corresponding subcuts are valid and neither u nor v has been positively resolved, so
Ai[t,W, c] = Aj [t,W, c].

Forget

Let Xi be a forget bag with child Xj such that Xj = Xi ∪ {u}. We compute Ai[t,W, c] from
Aj [t,W, c× d] where c× d is a labeling of Xj where u is labeled d. We say that the labeling
c× d is forgettable if d ≥ 0 or there is a vertex v ∈ Xj such that c(v) = d+ dGi

(u, v). In the
first case, u has been dominated already; in the second case, the domination of u must be
handled through other vertices in Xj in order for the labeling to be induced by a feasible
solution.

Ai[t,W, c] =
∑

d : c×d is forgettable
Aj [t,W, c× d] .

Join

Let Xi be a join bag with children Xj and Xk and Xi = Xj = Xk. We say the labeling
ci (for Xi) is consistent with labelings cj and ck (for Xj and Xk, respectively) if for every
u ∈ Xi

If ci(u) = 0j for j ∈ {1, 2}, then cj(u) = 0j and ck(u) = 0j .
If ci(u) = t < 0, then cj(u) = t and ck(u) = t.

G. Borradaile and H. Le 8:23

If ci(u) = t > 0, then one of the following must be true: (a) cj(u) = t and ck(u) = −t,
(b) cj(u) = −t and ck(u) = t or (c) cj(u) = t and ck(u) = t.

Given this, Ai[t,W, ci] is the product Aj [t1,W1, cj] · · ·Ak[t2,W2, ck] summed over: (i) all t1
and t2 such that t1 + t2 − t is equal to the number of vertices that are labeled 01 or 02 by ci,
(ii) all W1 and W2 such that W1 +W2 −W is equal to the weight of vertices that are labeled
01 or 02 by ci and (iii) all ci and cj that are consistent with cj and ck.

By using the bar-coloring formulation, as for the disconnected case, we can avoid summing
over all pairs of consistent distance labellings and instead compute Ai[t,W, c̄i] as the product
Aj [t1,W1, c̄i] · · ·Ak[t2,W2, c̄i] summed over all t1 and t2 and all W1 and W2 as described
above. Using this latter formulation, we can compute Ai in time O(k2n3(2r + 2)tw).

Running Time

The number of configurations for each node of T is O(kn2(2r + 2)tw). The running time
to update leaf, introduce edge, introduce vertex, and forget bags is O(kn2(2r + 2)tw). The
running time to update join bags is O(k2n3(2r + 2)tw). Therefore, the total running time
of the counting algorithm is O(nk2n3(2r + 2)tw) = O(k2n4(2r + 2)tw) after running the
algorithm for all possible choices of root vertex ρ.

IPEC 2016

	Introduction
	Generalization to r-domination
	Notation
	Upper and lower bounds for r-dominating set
	Upper and lower bounds for connected r-dominating set

	Motivation

	Algorithm for r-dominating Set
	Lower Bound for r-dominating Set
	Algorithm for Connected r-dominating Set
	Cutting
	Counting

	Lower Bound for Connected r-dominating Set
	Details of the Dynamic Programming Algorithm for r-dominating Set
	 Counting Algorithm for connected r-dominating set

