
Employing MPI Collectives for Timing Analysis on
Embedded Multi-Cores
Martin Frieb1, Alexander Stegmeier2, Jörg Mische3, and
Theo Ungerer4

1 Systems and Networking, Department of Computer Science, University of
Augsburg, Augsburg, Germany
martin.frieb@informatik.uni-augsburg.de

2 Systems and Networking, Department of Computer Science, University of
Augsburg, Augsburg, Germany
alexander.stegmeier@informatik.uni-augsburg.de

3 Systems and Networking, Department of Computer Science, University of
Augsburg, Augsburg, Germany
mische@informatik.uni-augsburg.de

4 Systems and Networking, Department of Computer Science, University of
Augsburg, Augsburg, Germany
ungerer@informatik.uni-augsburg.de

Abstract
Static WCET analysis of parallel programs running on shared-memory multicores suffers from
high pessimism. Instead, distributed memory platforms which communicate via messages may
be one solution for manycore systems. Message Passing Interface (MPI) is a standard for commu-
nication on these platforms. We show how its concept of collective operations can be employed
for timing analysis. The idea is that the worst-case execution time (WCET) of a parallel pro-
gram may be estimated by adding the WCET estimates of sequential program parts to the
WCET estimates of communication parts. Therefore, we first analyse the two MPI operations
MPI_Allreduce and MPI_Sendrecv. Employing these results, we make a timing analysis of the
conjugate gradient (CG) benchmark from the NAS parallel benchmark suite.

1998 ACM Subject Classification C.1.2 [Processor Architectures] Multiple-Instruction-Stream,
Multiple-Data-Stream Processors (MIMD), C.3 [Special-Purpose and Application-Based Sys-
tems] Real-Time and Embedded Systems, D.1.3 Concurrent Programming, D.2.13 [Reusable
Software] Reusable libraries, J.7 [Computers in Other Systems] Real time

Keywords and phrases Real Time, Network on Chip, WCET, Timing Analysis, MPI

Digital Object Identifier 10.4230/OASIcs.WCET.2016.10

1 Introduction

Future embedded real-time systems might realise high performance through high parallelism
with many cores. For increasing core numbers, shared memory puts strong limitations on
static WCET analysis: it always has to be assumed that all nodes access the memory before
the own request is processed by the memory controller (cf. [12, 5]). Furthermore, modern
multi- and manycore architectures employ networks on chip (NoCs) to connect cores.

Therefore, parallel platforms with distributed memory and message-based communication
might be the way to go (cf. [8]). Message Passing Interface (MPI) [4] is the standard for
message-based communication which is widely used in high-performance computing. It
encapsulates communication not only in single requests, but also in collective operations,

© Martin Frieb, Alexander Stegmeier, Jörg Mische, and Theo Ungerer;
licensed under Creative Commons License CC-BY

16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016).
Editor: Martin Schoeberl; Article No. 10; pp. 10:1–10:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.WCET.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


10:2 Employing MPI Collectives for Timing Analysis on Embedded Multi-Cores

where all participating cores work together. For example, one (master) core distributes
data and coordinates computation which is done by several (slave) cores. This is achieved
by executing the same code on all cores and making case distinctions at some points to
differentiate between master and slave cores. Moreover, this characteristic is beneficial for
timing analysis of a parallel program: worst-case response times (WCRTs) are low and all
cores share the same state in the program. Communication steps work as implicit barriers:
Cores synchronise and afterwards go on executing sequential code.

However, only few research already took place in the field of real-time message passing
parallel programs. Metzlaff et al. [9] described that an overall WCET estimate of a parallel
program may be determined by adding the WCET estimate of communication parts to the
WCET estimates of sequential program parts. They presumed a predictable NoC, simple
cores and distributed memory. Now we go one step further: instead of only determining the
worst-case traversal times (WCTTs) for the communication, the WCETs of MPI collectives
including the WCTTs are estimated. Then, these collectives’ WCET estimates can be added
to the WCET estimates of sequential program parts to get an overall WCET estimate.

Since MPI collective operations can be reused by any MPI program, the corresponding
timing analysis may also be reused. Thus, the analysis effort for MPI collective operations
is necessary only once for a given hardware platform and WCTT behaviour (schedule, see
Section 2.3). Then, the only remaining work at new programs is to WCET analyse the
sequential program parts.

The contributions of our paper are the following: First, we show that a generic timing
analysis of MPI collectives is possible for a given hardware platform and generic schedule.
We formulate equations with hardware- and schedule specific parameters which can be used
to determine the WCET estimate of a MPI operation. Then, we utilise these equations to
determine the WCET estimate of a benchmark, where we determined sequential WCET
estimates and joined them with WCET estimates of MPI collective operations.

The rest of the paper is structured as follows: In the next Section, we present related
work and backgrounds about (real-time) MPI and the setting for our analysis. Afterwards,
we analyse MPI collective operations in Section 3 and utilise the results for the analysis of
the conjugate gradient (CG) benchmark in Section 4. Finally, we conclude our paper in
Section 5 and give an outlook to future work.

2 Related Work and Background

2.1 MPI
MPI is the de-facto standard for message passing [4]. It encapsulates all communication
between cores or distributed systems. MPI programs are typically written in a way that all
cores execute the same code.

Many MPI programs utilise collective operations to distribute a computation and gather
results. These are operations which are executed by all cores of a group1. A simple example
would be a barrier, but data exchange also often works with collective operations, e. g.
MPI_Scatter or MPI_Gather. MPI_Scatter distributes data stored at one core to all
participating cores. Afterwards, each core has an equally sized portion of data to work with.
MPI_Gather is its counterpart – it collects data from several cores to compound it.

1 At MPI, groups help to specify which cores communicate together. A group may have any size – only
two cores, but also all cores.



M. Frieb, A. Stegmeier, J. Mische, and T. Ungerer 10:3

The first step towards a timing-analysable MPI was MPI/RT, a standard for real-time
MPI [6, 14], an extension of MPI 1.1 from 1998. On the one hand, its extensions are
quite broad. On the other hand, MPI/RT is quite old, does not respect NoCs and is not
commonly used. In our implementation we focused on being simple and time-predictable
and on following the widespread standard MPI [4].

In the context of real-time multi- and manycore architectures, Sørensen et al. [16] already
analysed simple MPI operations for the Argo NoC [7]. They implemented send and receive
operations as well as barriers and broadcasting. In our paper, we focus on collective operations
and their impact on timing analysis. Moreover, we develop a concept for the complete timing
analysis of MPI programs. Furthermore, we apply it on a complete benchmark and compare
two different variations of time division multiplexing (TDM).

2.2 PaterNoster NoC and our Implementation

For being able to estimate the WCET of an MPI operation, it is required that the underlying
NoC ensures upper bounds for communication. In our paper, we use the PaterNoster NoC [10]
which fullfills this requirement by providing guaranteed service (GS) with TDM [11], see
details in Section 2.3.

The nodes in our NoC are arranged in a quadratic torus and connected via unidirectional
X rings (horizontal) and Y rings (vertical). Each node consists of a processing element (core),
a sufficiently sized send/receive buffer and a lightweight router. Data exchange takes place
via flits that are sent from one node to another over the NoC. Because the information where
a flit is to be sent is included seperately, there is no need of a head flit. Flits are 32 bits wide
and are forwarded instantly without buffering. They first take the X direction and then the
Y direction (xy-routing). When flits change their direction from X to Y, they are stored in a
so-called corner buffer until it is the right time to leave the node. The right time to leave
and arrive at buffers is determined by a schedule, see the following Section 2.3.

The goal of our implementation is to abstract communication in a parallel program:
instead of making a detailed WCTT analysis for every program again, the already known
WCET estimates of MPI collectives may be used. The WCET estimate of a program can then
be determined by adding the WCET estimates of MPI operations to the WCET estimates
of sequential parts. Because all nodes execute the same sequential code and we take its
WCET estimate, it can be assumed that they are all finished when reaching a MPI operation.
However, there are some restrictions to enable our implementation to stay general, e. g. no
derived data types are allowed and we assume that no flit gets lost. Sometimes, more flits
have to be sent at collective operations than with direct communication. One example
are acknowledgement flits, which contain no real data, but only the information that a
communication partner is ready.

2.3 Scheduling

TDM means that shared resources are available for each requester for a fixed time interval.
Each of them has its own time slot – these are ordered in a way that no conflicts can occur.
At a NoC this means that for each pair of senders and receivers it is clear when their flit
is at which location in the NoC – ensuring that no other node will place a flit there at the
same time. This enables estimating a WCTT – first, each participant has to wait until its
time slot is available, then the flit can be transmitted. The time intervals and their order
form one round of a TDM schedule.

WCET 2016



10:4 Employing MPI Collectives for Timing Analysis on Embedded Multi-Cores

There are two types of schedules: custom and generic schedules. Custom schedules are
computed for the specific configuration of applications on a core. They feature a good
(worst-case) performance, but each time something is changed, they have to be recomputed
since a change may result in a conflict. Generic schedules are application-independent – they
describe a regular pattern: when is each node allowed to send flits? How many? Which
nodes are allowed for receiving these flits?

The (worst-case) performance of generic schedules is worse than that of custom schedules.
However, it is possible to give general statements and changes are easier to handle than with
custom schedules. In our case, we make general statements about the timing behaviour of
MPI collective operations. Our timing estimation applies for any application utilising this
collective operation, presuming that the same NoC and schedule is used.

Schoeberl et al. propose a generic All-To-All schedule (AA) [13]: within one period of
the schedule, each node is allowed to send flits to any other node. However, each node is
allowed to send at most one flit to the same node. In the worst-case this means that all nodes
send one flit to each other node. Mische et al. propose a One-To-One schedule (11) amongst
others [11]: each node is allowed to send and receive at most one flit in one period. This is
much stricter than All-To-All, but results in shorter periods, when not all nodes participate.
Furthermore, the worst-case is the same as the average case: each node sends and receives
one flit. Sending several flits takes several rounds. A detailed comparison of different generic
schedules for MPI collective operations takes place in [15].

3 Timing Analysis of MPI Collectives

3.1 Setting for the Analysis
Generally, our approach is platform-independent. However, to get concrete numbers, we
make a timing analysis on a custom platform. It is composed of 16 nodes connected via the
PaterNoster NoC and arranged as a 4x4 unidirectional torus. The NoC has been already
described in Section 2.2. Each node consists of a simple core with ARM instruction set,
5 stage pipeline, no caches and 10 cycles memory access latency to the local memory. We
apply a 1:1 mapping meaning that each core executes one thread.

We utilise the static WCET analysis tool OTAWA [3] for the sequential program parts.
3 cycles are assumed for the assembler instructions for sending and receiving a flit. Another
4 cycles are assumed for the time between execution of the assembler instructions and
availability of the flits at the NoC buffer (and vice versa)2. This time can be changed at
any time by adjusting the parameter tBuf at the equations in the rest of this paper. For
communication between nodes we considered two schedules: All-To-All as described by
Schoeberl et al. [13] or One-To-One as described by Mische et al. [11]. Their WCTTs are
described by the following two equations, where n is the dimension of the NoC (4 in our
case), f is the number of flits to be transmitted and χ is the number of participating nodes
(excluding the master node). Details can be found in [11, 15]:

WCTTAll−To−All = n2 · (n+ 1)
2 · f + n2

2 + 2n (1)

WCTTOne−To−One = n · χ · f + 2n (2)

2 This time is very short because our group develops hardware support for fast message passing to
substitute shared memory synchronisation.



M. Frieb, A. Stegmeier, J. Mische, and T. Ungerer 10:5

Master Slave 1 Slave 2

A

B

C

D

E

F

G

Figure 1 MPI_Allreduce with one master and two slave nodes.

Applying these equations with parameters later needed in this paper gives following
numbers: When 1 flit is to be transmitted in a 4x4 NoC with All-To-All schedule, we get a
WCTT of 56 cycles. With the same schedule, the WCTT is 136 cycles for 3 flits, 616 cycles
for 15 flits or 14 056 cycles for 351 flits. Utilising the One-To-One schedule, 1 flit can be
transmitted to or from 2 participating nodes with a WCTT of 16 cycles or 351 flits in 2 816
cycles. When χ and f are both 15 at the One-To-One schedule, the WCTT is 908 cycles,
while it would be 44 cycles when they are both 3. These numbers will be used later in our
analysis.

3.2 MPI_Allreduce
MPI_Allreduce and its variations are defined as “global reduction operations such as sum,
max, min, or user-defined functions, where the result is returned to all members of a group” [4].
Thereby, all participating nodes send their values to the master node, which combines them
with the given operation. In the benchmark example in Section 4, this operation is summing
up the values. When the master node has finished collecting and totalising, it sends the
result to all participating nodes.

3.2.1 MPI_Allreduce: Structure
The implementation of MPI_Allreduce is structured as follows (letters correspond to Fig-
ure 1):
(A) First, there is a short initialisation phase.
(B) Then, the master node sends an acknowledgement flit to all participating nodes.
(C) While the flits are on their way, the master node initialises some data structures preparing

receiving of the values and the operation to be performed on them. At the slave nodes,
there is a small sequential code after receiving the acknowledgement flit.

(D) Now, the slave nodes send their values to the master node. When more than one value
should be sent, slave nodes go on sending without waiting for further acknowledgement
flits from the master node.

(E) The master node gathers the values sent from the slave nodes and collects them in an
array. Afterwards, the master node copies its own values to the array.

(F) Then, the collective operation is applied on the collected values (e. g. summing up
values).

(G) Finally, the result of the operation is broadcasted to all participating nodes.

WCET 2016



10:6 Employing MPI Collectives for Timing Analysis on Embedded Multi-Cores

Table 1 Execution steps and their estimated WCET contribution to MPI_Allreduce.

Step Estimated WCET contribution
A 73
B 12χ (local processing of broadcast)

C,D max(23 + 6n2 + 11χ, 2 · (ttransm,χ + tBuffer) + 24)
D (f − 1) · max(35χ, ttransm,χ) (when there is more than one value)
E 35χ+ 15 + 32f (processing and copying own values)
F 42 + (χ+ 1) · (94 + 23f) (arithmetic op.) or 42 + (χ+ 1) · 41 (bitwise op.)
G 14 + f · (11 + 12χ) + f · ttransm,χ + tBuffer + 35

3.2.2 MPI_Allreduce: Timing Analysis

There is one prerequisite for the timing analysis: data structures have to be allocated
statically. Since MPI_Allreduce gets the data structures handed over as calling parameter,
this is left to the program.

Table 1 illustrates the execution steps of MPI_Allreduce and their contribution to the
WCET estimate: After the initialisation, the broadcast of an acknowledgement flit is prepared
at the master node (A). This is sent out and processed by the slave nodes (B), who reply
with the (first) value to be sent (D). Meanwhile, the master node prepares data structures
needed for the receiving and the collective operation (C). When C is finished before D, it
has to wait for D and vice versa. Therefore, the maximum of C and D has to be taken into
account for the WCET estimate.

In the case that more than one value is to be sent, the maximum of the time to receive
flits (processing received values at the master node and store them in an array) and the time
to transmit flits has to be determined (step D). At step E, the last received values are stored
in the array and the values from the master node are appended. Afterwards, an arithmetic
operation (e.g. SUM, MIN, MAX) or a bitwise operation (e.g. AND, OR, XOR) is applied
on the collected values (F). Finally, broadcasting of the results is prepared and performed,
followed by postprocessing in step G.

The variables in Table 1 were already described in Section 3.1. Additionally, two types of
transportation times exist: ttransm.,χ is the time to get χ flits transported from all nodes to
one node or vice versa, while tBuf is the time flits need to pass from the NoC to the pipeline
and vice versa. We assume 4 cycles to move from the sender’s core to the NoC router and 4
cycles to move from the receiver’s NoC router into the pipeline, which are together 8 cycles.

Alltogether, the WCET estimate of MPI_Allreduce can be rewritten as the following
equation (the elements from Table 1 are summarised and transformed):

WCETAR(f, χ) = 273 + 35fχ+ max(23 + 6n2 + 11χ, 24 + 2(ttransm,χ + tBuf ))
+ 141χ+ (f − 1) max(35χ, ttransm,χ) + (66 + ttransm,χ)f + tBuf

(3)

Utilising the numbers from Section 3.1, WCET estimates for several scenarios can be
computed. For example, the WCET estimate of MPI_Allreduce is 6 698 cycles for 2 flits to
be transmitted to or from 15 nodes when the All-To-All schedule is used, while it is 8 158
cycles with the One-To-One schedule. When f is 351 and χ is 3, All-To-All’s WCET estimate
is 156 373 cycles while One-To-One’s WCET estimate is 113 073 cycles. Due to traversal
times which are influenced by group sizes, One-To-One scheduling is better than All-To-All
scheduling in the second case.



M. Frieb, A. Stegmeier, J. Mische, and T. Ungerer 10:7

Table 2 Execution steps and their estimated WCET contribution to MPI_Sendrecv.

Step Estimated WCET contribution
Initialisation 20

acknowledgement sender-receiver max(5, ttransm,1 + tBuf )
time between acknowledgements 7
acknowledgement receiver-sender max(5, ttransm,1 + tBuf ) (only if sender != receiver)

initialisation for sendrecv-loop 15
sendrecv-loop 15 + max(f · 32, ttransm,f ) + tBuf

postprocessing, finish function 51

3.3 Analysis of MPI_Sendrecv
Analogous to MPI_Allreduce, we analyse the operation MPI_Sendrecv. Its purpose is to
send and receive messages at the same time. The communication partners for sending and
receiving do not need to be the same. Table 2 illustrates the parts of MPI_Sendrecv and
shows their calculated WCET estimates.

f is the maximum of the number of flits to be sent and received. ttransm,f is the time
needed to transmit f flits through the NoC, while ttransm,1 is the time needed to transmit 1
flit through the NoC.

The process of MPI_Sendrecv works as follows: After the initialisation, the sender sends
an acknowledgement flit to the receiver, who waits for it. When the communication partners
for sending and receiving are different, the other core also acknowledges the communication.
After finishing acknowledgements, the loop for sending and receiving data is first prepared,
then executed. Finally, some postprocessing takes place before the function is finished.

Since transmission and buffer times are expected to be greater than five, the equation
may be written as shown in Equation (4):

WCETSR(f) = 108 + 2 · (ttransm,1 + tBuf ) + max(f · 32, ttransm,f ) + tBuf (4)

Again, the numbers from Section 3.1 can be used in this equation. For sending and
receiving 351 values to/from two different nodes, the WCET estimate of MPI_Sendrecv is
14 300 with the All-To-All schedule and 11 396 with the One-To-One schedule.

3.4 Differences at varying configurations
While sequential parts always remain equal, the impact of communication parts changes
with the size of the NoC: With increasing NoC size, communication times increase, too.
Furthermore, the impact of the schedule also increases.

On the other side, a timing anomaly can occur at a small NoC: when the transmission
is faster than new flits are provided by the core, it might have to be assumed that a flit
misses a round of the schedule and has to wait until the next round is carried out (each
round one flit can be transported). This leads to a “step” at the admission time of the flit,
which could cause disadvantageous configurations of small NoCs being slower than a little
bit larger NoCs.

Attention has to be paid at the receive buffer: a core is stalled when the send buffer is
full, which means that everything still works fine because the WCET is driven by the WCTT.
However, all schedules rely on free capacity at the receive buffer. When it is full, receiving of
flits does not follow the schedule anymore and blows up the WCET. It could also mean that

WCET 2016



10:8 Employing MPI Collectives for Timing Analysis on Embedded Multi-Cores

estimating a WCET is not possible anymore. At our analysis, we assume that buffers are
large enough.

4 Case study: Timing Analysis of the CG benchmark

Utilising the results from the previous Section, we analyse the conjugate gradient (CG)
benchmark, which is taken from the NAS Parallel Benchmark Suite3 [1, 2]. It is described as
following: “a conjugate gradient method used to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive definite matrix. This kernel is typical
of unstructured grid computations in that it tests irregular long-distance communication,
using unstructured matrix-vector multiplication” [1]. The NAS Parallel Benchmarks were
developed for highly parallel systems. Therefore, they seem to be good benchmarks for
embedded real-time multicores with distributed memory.

For the analysis, we decided to analyse a class S CG benchmark, which is the smallest
class: The matrix size is 1400 · 1400, there are 7 nonzero values per row and 15 main
benchmark iterations take place4. In the benchmark, the matrix is divided into equal sized
blocks and each block is assigned to one core for computation.

Several changes had to be done for analysis: first, the benchmark had to be ported
from FORTRAN 77 to C99. Then, we had to ensure that no data structures are allocated
dynamically. Since OTAWA’s support for floating point is not yet available for the ARM
instruction set, we used integers instead of doubles5.

The structure and estimated WCETs’ contributions of the benchmark are illustrated
in Table 3. Thereby, we did not analyse the initialisation of the benchmark (which is not
included in the table), but the parts which are intended for benchmarking a system. This
means the steps 1 to 18 have to be executed: After a sequential part at the beginning and one
execution of MPI_Allreduce, a for loop is executed, which is iterated 15 times (estimated
WCETs in the third column are for one iteration, those in the last column for 15 iterations).
Afterwards, four sequential parts and communication parts alternate, before the end of the
main iteration loop is reached. In the right column of Table 3 it is shown how much each
step totally contributes to Equation 5.

Altogether, CG benchmark’s estimated WCET can be summarised as follows:

WCET cg = 1 896 959 + WCETAR(2, 15) + 17 · WCETAR(1, 3)
+ 16 · (WCETAR(351, 3) + WCETSR(351))

(5)

1 896 959 is the sum of the sequential parts from Table 3, where the for loop was respected
with 15 iterations. Most of the variables needed to get a total WCET estimate were already
computed throughout the previous Section 3. The only missing number is WCETAR(1, 3),
which is 1 323 with the All-To-All schedule and 1 071 with the One-To-One schedule. The
numbers can be placed in Equation (5) and lead to following results:

WCET cg,AA = 1 896 959 + 6 698 + 17 · 1 323 + 16 · (156 373 + 14 300) = 4 656 916 (6)
WCET cg,11 = 1 896 959 + 8 158 + 17 · 1 071 + 16 · (113 073 + 11 396) = 3 914 828 (7)

3 http://www.nas.nasa.gov/Software/NPB/.
4 We only analyse 1 iteration – the result may be multiplied by 15 to get the final result.
5 This leads to loss of precision, but all computational steps keep the same. We do not focus on analysing
all sequential instructions precisely, but to demonstrate the possibility of analysing parallel program
structures.

http://www.nas.nasa.gov/Software/NPB/


M. Frieb, A. Stegmeier, J. Mische, and T. Ungerer 10:9

Table 3 Parts of the main iteration loop and their estimated WCET contribution.

Step Description Est. WCET contrib. Contrib. to Equation 5
1 Start of main iteration loop 15 929 15 929
2 MPI_Allreduce WCETAR(1,3) WCETAR(1,3)
3 Begin of for loop (15 iterations) 100 490 15 · 100 490 = 1 507 350
4 MPI_Allreduce WCETAR(351,3) 15 ·WCETAR(351,3)
5 Sequential part 2 480 15 · 2 480 = 37 200
6 MPI_Sendrecv WCETSR(351) 15 · WCETSR(351)
7 Sequential part 10 749 15 · 10 749 = 161 235
8 MPI_Allreduce WCETAR(1,3) 15 · WCETAR(1,3)
9 End of for loop (15 iterations) 3 792 15 · 3 792 = 56 880

10 Sequential part 100 513 100 513
11 MPI_Allreduce WCETAR(351,3) WCETAR(351,3)
12 Sequential part 2 480 2 480
13 MPI_Sendrecv WCETSR(351) WCETSR(351)
14 Sequential part 3 180 3 180
15 MPI_Allreduce WCETAR(1,3) WCETAR(1,3)
16 Sequential part 8 142 8 142
17 MPI_Allreduce WCETAR(2,15) WCETAR(2,15)
18 End of main iteration loop 4 050 4 050

odd Sum of sequential parts 1 896 959

With the All-To-All schedule, one main iteration loop of the CG benchmark has an overall
estimated WCET of 4 656 916 cycles, while it is 3 914 828 with the One-To-One schedule.
The result of the One-To-One schedule is better than with the All-To-All schedule, because
its periods are shorter when only a part of the nodes participates at communication with
one node. However, for large groups the All-To-All schedule outperforms the One-To-One
schedule.

Furthermore, it can be seen that the communication times are very large compared to the
sequential program parts. This is caused by the communication intensive program structure,
mainly influenced by the operations where 351 values are exchanged. These operations are
executed 16 times.

5 Conclusion and Outlook

We presented our idea that collective (MPI) operations are beneficial for timing analysis of
parallel distributed memory platforms with message passing communication. Timing analysis
is performed of the two MPI collective operations MPI_Allreduce and MPI_Sendrecv for a
platform with simple ARM cores connected via the PaterNoster NoC. Afterwards, we used
these results to make a timing analysis of the CG benchmark, which does a lot of inter-core
communication to move data and coordinate computation.

Maybe there are better implementations exhibiting lower WCET bounds for the MPI
collectives. With this paper, we made the first step to show the feasability that MPI collectives
could be one way to enable timing analysis for parallel platforms. Our next step will be to
tighten the WCET estimate with (i) an improved MPI implementation, (ii) better workload
distribution within MPI collectives and (iii) optimised hardware support. Furthermore, we
see the need to implement and analyse more collectives, as well as making the results open
source at https://github.com/unia-sik.

WCET 2016

https://github.com/unia-sik


10:10 Employing MPI Collectives for Timing Analysis on Embedded Multi-Cores

References
1 D.H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R.A. Fa-

toohi, P.O. Frederickson, T.A. Lasinski, R. S. Schreiber, H.D. Simon, V. Venkatakrishnan,
and S.K. Weeratunga. The NAS parallel benchmarks. International Journal of High Per-
formance Computing Applications, 5(3):63–73, 1991. doi:10.1177/109434209100500306.

2 D.H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R.A. Fa-
toohi, P.O. Frederickson, T.A. Lasinski, R. S. Schreiber, H.D. Simon, V. Venkatakrishnan,
and S.K. Weeratunga. The NAS Parallel Benchmarks – Summary and Preliminary Results.
In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing’91,
pages 158–165, New York, NY, USA, 1991. ACM. doi:10.1145/125826.125925.

3 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An Open Toolbox
for Adaptive WCET Analysis. In Software Technologies for Embedded and Ubiquitous
Systems, volume 6399 of LNCS, pages 35–46. Springer Berlin Heidelberg, 2011. doi:
10.1007/978-3-642-16256-5_6.

4 Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version
3.1. High Performance Computing Center Stuttgart (HLRS), 2015.

5 M. Frieb, R. Jahr, H. Ozaktas, A. Hugl, H. Regler, and T. Ungerer. A parallelization
approach for hard real-time systems and its application on two industrial programs. Inter-
national Journal for Parallel Programming, 2016. doi:10.1007/s10766-016-0432-7.

6 A. Kanevsky, A. Skjellum, and A. Rounbehler. MPI/RT – an emerging standard for high-
performance real-time systems. In Proceedings of the Thirty-First Hawaii International
Conference on System Sciences, volume 3, pages 157–166, 1998. doi:10.1109/HICSS.1998.
656130.

7 E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, K. Goossens, and J. Sparsø. Argo: A
Real-Time Network-on-Chip Architecture With an Efficient GALS Implementation. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 24(2):479–492, Feb 2016.
doi:10.1109/TVLSI.2015.2405614.

8 B. Lisper. Towards Parallel Programming Models for Predictability. In 12th International
Workshop on Worst-Case Execution Time Analysis, volume 23, pages 48–58, Dagstuhl,
Germany, 2012. doi:10.4230/OASIcs.WCET.2012.48.

9 S. Metzlaff, J. Mische, and T. Ungerer. A real-time capable many-core model.
In 32nd IEEE Real-Time Systems Symposium: WiP Session, pages 21–24, Vienna,
Austria, 2011. URL: http://www.cs.wayne.edu/~fishern/Meetings/wip-rtss2011/
WiP-RTSS-2011-Proceedings-Post.pdf.

10 J. Mische and T. Ungerer. Low power flitwise routing in an unidirectional torus with
minimal buffering. In Fifth International Workshop on Network on Chip Architectures,
NoCArc’12, pages 63–68, New York, NY, USA, 2012. ACM. doi:10.1145/2401716.
2401730.

11 J. Mische and T. Ungerer. Guaranteed service independent of the task placement in
nocs with torus topology. In 22nd International Conference on Real-Time Networks
and Systems, RTNS’14, pages 151:151–151:160, New York, NY, USA, 2014. ACM. doi:
10.1145/2659787.2659804.

12 C. Rochange, A. Bonenfant, P. Sainrat, M. Gerdes, J. Wolf, T. Ungerer, Z. Petrov, and
F. Mikulu. WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MER-
ASA Multi-Core. In 10th International Workshop on Worst-Case Execution Time Analysis
(WCET 2010), volume 15, pages 90–100, Dagstuhl, Germany, 2010. doi:10.4230/OASIcs.
WCET.2010.90.

13 M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki. A Statically Scheduled Time-
Division-Multiplexed Network-on-Chip for Real-Time Systems. In Sixth IEEE/ACM In-

http://dx.doi.org/10.1177/109434209100500306
http://dx.doi.org/10.1145/125826.125925
http://dx.doi.org/10.1007/978-3-642-16256-5_6
http://dx.doi.org/10.1007/978-3-642-16256-5_6
http://dx.doi.org/10.1007/s10766-016-0432-7
http://dx.doi.org/10.1109/HICSS.1998.656130
http://dx.doi.org/10.1109/HICSS.1998.656130
http://dx.doi.org/10.1109/TVLSI.2015.2405614
http://dx.doi.org/10.4230/OASIcs.WCET.2012.48
http://www.cs.wayne.edu/~fishern/Meetings/wip-rtss2011/WiP-RTSS-2011-Proceedings-Post.pdf
http://www.cs.wayne.edu/~fishern/Meetings/wip-rtss2011/WiP-RTSS-2011-Proceedings-Post.pdf
http://dx.doi.org/10.1145/2401716.2401730
http://dx.doi.org/10.1145/2401716.2401730
http://dx.doi.org/10.1145/2659787.2659804
http://dx.doi.org/10.1145/2659787.2659804
http://dx.doi.org/10.4230/OASIcs.WCET.2010.90
http://dx.doi.org/10.4230/OASIcs.WCET.2010.90


M. Frieb, A. Stegmeier, J. Mische, and T. Ungerer 10:11

ternational Symposium on Networks on Chip (NoCS), pages 152–160, May 2012. doi:
10.1109/NOCS.2012.25.

14 A. Skjellum, A. Kanevsky, Y. Dandass, J. Watts, S. Paavola, D. Cottel, G. Henley, L. S.
Hebert, Z. Cui, and A. Rounbehler. The Real-Time Message Passing Interface Stand-
ard (MPI/RT-1.1). Concurrency and Computation: Practice and Experience, 16(S1):i–322,
2004. doi:10.1002/cpe.744.

15 A. Stegmeier, M. Frieb, J. Mische, and T. Ungerer. WCTT bounds for MPI Collectives
in the Paternoster NoC. In 14th International Workshop on Real-Time Networks (RTN),
Toulouse, France, 2016.

16 R.B. Sørensen, W. Puffitsch, M. Schoeberl, and J. Sparsø. Message passing on a time-
predictable multicore processor. In IEEE 18th International Symposium on Real-Time
Distributed Computing, pages 51–59, April 2015. doi:10.1109/ISORC.2015.15.

WCET 2016

http://dx.doi.org/10.1109/NOCS.2012.25
http://dx.doi.org/10.1109/NOCS.2012.25
http://dx.doi.org/10.1002/cpe.744
http://dx.doi.org/10.1109/ISORC.2015.15

	Introduction
	Related Work and Background
	MPI
	PaterNoster NoC and our Implementation
	Scheduling

	Timing Analysis of MPI Collectives
	Setting for the Analysis
	MPI_Allreduce
	MPI_Allreduce: Structure
	MPI_Allreduce: Timing Analysis

	Analysis of MPI_Sendrecv
	Differences at varying configurations

	Case study: Timing Analysis of the CG benchmark
	Conclusion and Outlook

