
Eager Stack Cache Memory Transfers∗

Amine Naji1 and Florian Brandner2

1 U2IS, ENSTA ParisTech, Université Paris-Saclay, Paris, France
amine.naji@ensta-paristech.fr

2 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France
florian.brandner@telecom-paristech.fr

Abstract
The growing complexity of modern computer architectures increasingly complicates the prediction
of the run-time behavior of software. For real-time systems, where a safe estimation of the
program’s worst-case execution time is needed, time-predictable computer architectures promise
to resolve this problem. The stack cache, for instance, allows the compiler to efficiently cache a
program’s stack, while static analysis of its behavior remains easy.

This work introduces an optimization of the stack cache that allows to anticipate memory
transfers that might be initiated by future stack cache control instructions. These eager memory
transfers thus allow to reduce the average-case latency of those control instructions, very similar
to “prefetching” techniques known from conventional caches. However, the mechanism proposed
here is guaranteed to have no impact on the worst- case execution time estimates computed by
static analysis. Measurements on a dual-core platform using the Patmos processor and time-
division-multiplexing-based memory arbitration, show that our technique can eliminate up to
62% (7%) of the memory transfers from (respectively to) the stack cache on average over all
programs of the MiBench benchmark suite.

1998 ACM Subject Classification C.3 [Special-Purpose and Application-Based Systems] Real-
Time and Embedded Systems

Keywords and phrases Predictability, Eager Memory Transfers, Stack Cache, Real-Time Sys-
tems, Prefetching, Eager Eviction

Digital Object Identifier 10.4230/OASIcs.WCET.2016.5

1 Introduction

The design of modern computer architectures has become more and more complex over the
last decades in order to optimize performance and efficiency. In the vast majority of the cases
modern architectures try to improve the average-case performance1 by introducing instruction
and data caches, branch predictors, instruction pipelines, and out-of-order execution. The
optimizations usually follow the popular design principle: “Make the common case fast.” [9].
A downside of this approach is that rare corner cases are often slowed down, which leads to
a considerable gap between the best-case and worst-case performance that can be observed.
This, in turn, complicates the precise analysis of the timing behavior of real-time programs
running on such computer architecture and often results in considerable overestimation.

Time-predictable computer architectures thus gained considerable traction in recent
years [15, 10, 12, 11]. In these designs the focus is on predictable and analyzable behavior,

∗ This work was supported by a grant (2014-0741D) from Digiteo France: “Profiling Metrics and Techniques
for the Optimization of Real-Time Programs” (PM-TOP).

1 Energy consumption recently gained considerable importance as a secondary design goal.

© Amine Naji and Florian Brandner;
licensed under Creative Commons License CC-BY

16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016).
Editor: Martin Schoeberl; Article No. 5; pp. 5:1–5:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.WCET.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Eager Stack Cache Memory Transfers

while retaining acceptable average-case performance. The stack cache [2] is an example of a
predictable cache design that was shown to be analyzable [6, 1], while efficiently handling
memory accesses to stack data [3] at low (hardware) cost. Stack data is cached using a sliding
window that follows the top of the stack across function calls. The cache is implemented
using a ring buffer, following a FIFO policy. Data accesses are, by definition, guaranteed
cache hits, the content of the cache thus has to be managed explicitly using three stack cache
control instructions: (1) sres k allows to reserve k words on the stack, (2) sfree k can be
used to free previously reserved stack space, and (3) sens k, finally, can be used to make sure
that at least k words are available in the cache. Only the reserve (sres) and ensure (sens)
operations may initiate time-consuming memory transfers and thus need to be considered
during timing analysis [6, 1]. In the case of the sres instruction, content might be evicted,
or spilled, from the cache in order to make space for the k newly reserved words. The sens
instruction on the other hand might require to fill data from main memory when less than
k words are available in the cache. The remaining stack cache operations (notably sfree)
have constant timing and are thus trivial to analyze.

In order to improve predictability and ensure composability, the original stack cache
design [2] stalls the processor while performing spilling or filling, even when the stack
cache would not be used by any of the subsequent instructions. This allows to analyze the
stack cache’s timing behavior in isolation from other components of the Patmos computer
architecture [12] at the expense of average-case performance. In this work, we explore the use
of eager – or anticipatory – memory transfers in order to alleviate this shortcoming. The goal
is to improve average-case performance by performing memory transfers in the background
alongside with other instructions that are executed by the processor. The eager transfers are,
however, not allowed to interfere with the worst-case behavior of the stack cache (or any
other hardware component in the system). Most notably, the timing bounds computed for a
regular stack cache without our optimizations, should not be invalidated in the presence of
our optimizations. This is ensured by exploiting features of a recently proposed stack cache
extension [3] to track data that are coherent between the cache and main memory.

2 Background

The stack cache is implemented as a ring buffer with two hardware registers holding point-
ers [2]: stack top (ST) and memory top (MT). The top of the stack is represented by ST, which
points to the address of all stack data either stored in the cache or in main memory. MT
points to the top element that is stored only in main memory. The stack grows towards lower
addresses. The difference MT− ST represents the amount of occupied space in the stack cache.
This notion of occupancy is crucial for the effective analysis of the stack cache behavior [6].
In this work we will use an extension of the original stack cache design that allows to track
coherent data [3]. This extension introduces a third pointer LP, which divides the stack
cache into two parts: (1) cache data between ST and LP is potentially incoherent with the
corresponding addresses in main memory, while (2) data between LP and MT is known to
have the same value in the cache and in main memory – the data is coherent. The knowledge
about coherent data allows to optimize the stack cache’s operation. This is captured by a
complementary notion of occupancy, called effective occupancy that is given by LP− ST.

Clearly, the (effective) occupancy cannot exceed the total size of the cache’s memory
|SC|. The stack cache thus has to respect the following invariants:

ST ≤ MT (1) 0 ≤ MT− ST ≤ |SC| (2) ST ≤ LP ≤ MT (3)

A. Naji and F. Brandner 5:3

Stack Cache Operations: The stack control instructions manipulate the three stack pointers
and initiate memory transfers to/from the cache from/to main memory, while preserving the
above equations. We summarize these instructions below, details are in [2, 3]:
sres k: Subtract k from ST. If this violates the Equations from above, data has to be evicted

from the cache. In the simplest case only coherent data is discarded, i.e., LP− ST ≤ |SC|
but MT − ST > |SC|. It then suffices to set MT = ST + |SC|. Otherwise, a memory
spill of incoherent data has to be performed by a transfer covering the address range
[ST + |SC|, LP] to main memory. When spilling is completed, the LP and MT pointers are
updated LP = MT = ST + |SC|.

sfree k: Add k to ST. If this violates Equation 1 or 3, MT and/or LP are simply set to ST.
Main memory is not accessed.

sens k: Ensure that the occupancy is larger than k. If this is not the case, a fill from
main memory is initiated covering the address range [MT, ST + k]. MT is subsequently
incremented to MT = ST + k. LP does not change.

Data in the cache is accessed using dedicated stack load and store instructions. These
instructions only access the stack cache’s ring buffer and thus exhibit constant execution
times. This is particularly true for stack store instructions, which only modify the cached
value but not the backing main memory. Modified values are potentially transferred to main
memory only by sres instructions. This policy resembles traditional write back caches. Also
note that the LP might be updated by stack store instructions, i.e., when previously coherent
data is modified. This has no impact on the constant instruction latency [3].

Compiler Support: The compiler manages the stack frames of functions quite similar to
other architectures with exception of the ensure instructions. Stack frames are typically
allocated upon entering a function (sres) and freed immediately before returning (sfree).
A function’s stack frame might be (partially) evicted from the cache during calls. Ensure
instructions (sens) are thus placed immediately after each call. Evicted data is then reloaded
into the cache. Functions may only access their own stack frames. Data that is larger than
the stack cache or that is shared is allocated on a shadow stack outside the stack cache.

3 Eager Memory Transfers

Prefetching is a well-known technique used in conventional caches, which aims to hide
memory access latencies caused by cache misses. Instead of waiting for a cache miss to
initiate a memory transfer, prefetching anticipates such misses and fetches data from memory
in advance of the actual memory reference. The idea, though simple, raises two important
problems: (1) the addresses of future memory references need to be predicted and (2) side
effects may arise due to the eviction of data from the cache in order to make space. Both
of these issues are difficult to solve in general settings and pose even more problems in the
context of real-time systems requiring predictability.

We explore the use of eager memory transfers – combining prefetching and eager evic-
tion [8] – in order to reduce the latency of the stack cache control instructions. We introduce
two kinds of eager memory transfers: (1) eager spilling transfers data from the stack cache
to main memory, while (2) eager filling transfers data from main memory to the stack cache.
The stack cache, in contrast to conventional caches, tracks its content using simple pointers
and thus can only cache a contiguous memory region between the ST and MT pointers. In the
following we will exploit this feature in order to realize “prefetching-like” functionality for
the stack cache and address the two aforementioned problems faced in standard caches.

WCET 2016

5:4 Eager Stack Cache Memory Transfers

Address Prediction: Due to the use of pointers to track the stack cache content, it is trivial
to predict the address of any future memory transfers that might be initiated by any stack
cache control instruction. Data is either read from memory at the address starting at MT or
written to memory at the address up to LP, depending on whether the (effective) occupancy
will grow too large (sres spilling up to LP) or will become too small (sens filling from MT).
It thus suffices to predict whether data needs to be spilled or filled with regard to the future
stack cache control instructions.

Side effects: We rely on a recently proposed stack cache extension [3] that allows to track
coherent data between the stack cache and main memory in order to avoid side effects when
performing eager memory transfers. A first observation is that eager spilling only needs to
consider incoherent data (just like regular spilling). The eagerly spilled data is, however, not
evicted from the stack cache. Instead, it simply becomes coherent. Since no data was evicted
from the cache, side effects on future sens instructions are excluded. Similarly, since the
amount of incoherent data was reduced, the spilling at future sres instructions is potentially
reduced. A second observation is that eagerly filled data is known to be coherent. Side effects
on future sres instructions are consequently excluded after eager filling since the amount of
incoherent data did not change. The filling at future sens instructions, on the other hand, is
reduced due to the newly loaded data.

The eager memory transfers are guaranteed to have no side effects on the stack cache
itself. However, side effects on other hardware components, and here in particular the bus
and main memory, may arise. For instance, a cache for regular data might be blocked by
an eager memory transfer upon a cache miss. Such interferences may, of course, impact the
program’s worst-case performance and compromise predictability as well as composability.

An elegant solution is to exploit the arbitration scheme that mitigates between competing
memory accesses [4, 1]. In the context of this work, we use the Patmos multi-core architecture,
which relies on time-division multiplexing (TDM) to arbitrate main memory accesses. In the
following we assume that each processor core may transfer a single memory burst from/to
main memory in a dedicated TDM slot. Transfers may only be initiated at the beginning of a
TDM slot, which are periodically scheduled in a TDM period. The duration of a period then
depends on the number of cores n and the duration of a TDM slot k and is given by n · k
cycles. We assume that the memory controller is able to process transfers with arbitrary start
addresses and lengths. The actual memory transfer is, however, performed at the granularity
of bursts, i.e., the start address and length are aligned accordingly to the burst size (excess
data is either masked or discarded). In such a setting it is easy to detect TDM slots that
are not used by any other hardware component. It suffices to check that no other memory
request is pending at the beginning of the processor core’s TDM slot. The free TDM slots
of a processor can then be used to perform the eager memory transfers and avoid any side
effects on either the stack cache itself nor any other hardware component.

3.1 Eager Fill
The eager fill operation aims to reduce the latency of a future ensure instruction sens k.
Recall that filling is required only when the occupancy is too small, i.e., MT− ST < k. The
occupancy has to be increased in order to reduce the latency. This can be achieved by
loading, i.e. filling, data from main memory such that MT can be pushed upwards until the
occupancy reaches the stack cache size. The corresponding memory transfer, however, has to
be limited to a single burst transfer in order to guarantee that only a single TDM slot is
occupied. Assuming a burst size BS, an eager fill operation thus proceeds as depicted by the

A. Naji and F. Brandner 5:5

if (MT - ST < |SC|) {
start = MT;
end =

⌊
MT+BS

BS

⌋
× BS;

fill(start , end);
MT = end;

}

(a) The eager fill operation.

if (LP− ST < k) {
end = LP;
start =

⌈
LP−BS

BS

⌉
× BS;

spill(start , end);
LP = start;

}

(b) The eager spill operation.

Figure 1 Pseudo code illustrating the operation of the eager filling and eager spilling.

algorithm in Figure 1a. The eager fill operation can be initiated whenever a TDM slot is
free and is then guaranteed to be free of any interference with other hardware components
that might wish to access main memory. It remains to show that the worst-case timing
of subsequent stack cache operations is not affected. Three cases have to be considered,
depending on the kind of the next stack cache control instruction:
sres k: May only initiate a memory transfer when incoherent data has to be evicted from

the cache. The address range of the transfer ([ST+ |SC|, LP]) only depends on the position
of ST and LP. Eager filling does not modify either of those pointers (effective occupancy)
and thus cannot impact spill costs.

sfree k: Free instructions do not access memory and exhibit constant latency.
sens k: May only initiate a memory transfer when the occupancy is too low. The address

range of the transfer ([MT, ST+k]) only depends on ST and MT. The former is not impacted
by eager filling, while the address of MT is incremented, i.e., the occupancy was previously
increased. Fill costs thus may only be reduced.

Eager fill operations, consequently, may only improve the latency of future sens instruc-
tions. Note, however, that some side effects may still arise. This may appear when all filling
of an sens instruction is eliminated. In this case, the sens instruction no longer synchronizes
with the TDM period and may change the alignment of subsequent memory accesses. This
may incidentally increase the number of stall cycles of these memory accesses. The number
of additional stall cycles can, however, never exceed the gain induced by eager filling. WCET
estimates computed without considering eager filling thus remain valid.

3.2 Eager Spill
The aim of the eager spill operation is to anticipate and reduce future spill costs associated
with subsequent sres instructions. A spill is initiated by an sres if the effective occupancy
would exceed the size of the stack cache, i.e., LP − ST > |SC|. The effective occupancy
thus has to be lowered in order to reduce the spill latency. One possible solution is to copy
incoherent stack data to main memory without evicting them from the cache. This allows to
decrement LP and thus reduce the effective occupancy.

As for eager filling, the corresponding memory transfer size must not exceed the burst
size so that at most one TDM slot is used. Assuming a burst size BS, an eager spill operation
then proceeds as depicted by Figure 1b. The eager spill operation can be performed during
free TDM slots as soon as the effective occupancy is non null. We will, nonetheless, prevent
the spilling of data from the stack frame of the current function. This is because it may
happen that data about to be eagerly spilled is modified by a stack store instruction. This
would require additional checks to ensure that incoherent data is correctly tracked and
increase hardware costs as well as complexity. As before, only free TDM slots are used,

WCET 2016

5:6 Eager Stack Cache Memory Transfers

which guarantees that eager spill operations cannot interfere with other memory accesses.
The worst-case timing of subsequent stack cache control operations is also not affected:
sres k: May only initiate a memory transfer when the effective occupancy becomes too

large. The covered address range ([ST + |SC|, LP]) only involves the ST and LP pointers.
The latter is lowered by eager spilling, while the former is not modified, i.e., effective
occupancy was previously decreased. The spill costs experienced by an sres instruction
thus may only be reduced.

sfree k: Free instructions do not access memory and exhibit constant latency.
sens k: May only initiate a memory transfer when the occupancy is too low. The address

range of the transfer ([MT, ST + k]) only depends on ST and MT. Both are not impacted by
eager spilling. Fill costs thus cannot be impacted by eager spilling.

Eager spill operations, consequently, may only improve the latency of future sres instruc-
tions. Similarly to eager filling, the alignment of memory accesses with regard to the TDM
period may change. The worst-case timing behavior of the program is not impacted.

3.3 Spill/Fill Arbitration
The eager fill and spill operations can be executed asynchronously alongside other instructions
that are executed by the processor whenever a free TDM slot is encountered and the respective
conditions necessary to perform a transfer are met. The two operations naturally compete
for the available TDM slots, we thus defined several simple arbitration policies.

Spill/Fill-Only: As the names indicate, in these two configuration schemes only one of the
two eager operations is performed throughout program execution, subject to the respective
conditions as described above. This allows to quantify the attainable profit of either operation,
ignoring the potential overhead induced by unprofitable eager transfers.

Alternate: Eager spill and fill are performed alternatingly in order to attain the maximum
profit by applying both operations whenever this is possible on a fair arbitration policy.

Threshold: This approaches aims to reduce the amount of unprofitable eager operations,
e.g., eagerly spilling data that is never evicted. Eager operations are performed alternatingly
until a preset (effective) occupancy level (threshold) is reached. In the experiments, eager
spilling stops when the effective occupancy is half of the stack cache size. Likewise, eager
filling stops when the occupancy reaches half of the stack cache size.

Saturation Counter: In this approach, the kind of the next stack control instruction is
predicted and eager operations chosen such that its transfer costs are reduced. The hypothesis
is that sres and sens instructions are performed in sequences when descending/ascending
the call chain. The prediction uses a saturation counter, similar to branch prediction [9], that
is in-/decremented up to prespecified maximum levels whenever an sres/sens instruction is
encountered. The eager spill/fill operations are then only permitted when the counter value
lies within predefined ranges. We use a simple 1-bit saturation counter in the experiments.

4 Experiments

We evaluated eager memory transfers using the cycle-accurate simulator of the Patmos
processor [12], which implements a stack cache and its associated control instructions. It

A. Naji and F. Brandner 5:7

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fB
lo

ck
s

Spill/Fill Only Threshold Alternate Saturation Counter
2 Cores 4 Cores 9 Cores

(a) Spill. The black bar represents the Spill-Only configuration.

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fB
lo

ck
s

(b) Fill. The black bar represents the Fill-Only configuration.

Figure 2 Normalized number of total cache blocks regularly spilled/filled with respect to standard
stack cache implementation supporting lazy pointer. (Lower is better).

also allows to simulate several processor cores in parallel that access a shared main memory
using bursts of 32 B. Memory arbitration is then performed using a TDM policy. We
furthermore extended the stack cache implementation to support eager memory transfers
using the arbitration strategies described above. Benchmarks of the MiBench benchmark
suite [5] were compiled using optimizations (-O2) and subsequently executed on multi-core
configurations with 2, 4 (2×2), and 9 (3×3) cores. Each core is equipped with a 256 byte
stack cache, a 64 KB, 4-way set-associative data cache using a least-recently used replacement
and write-through policy, as well as a 64 KB, 64-entry method cache using first in, first out
replacement. The stack cache operates on 4 byte blocks, while the block size of the other
caches matches the burst size of the main memory. Memory accesses take 21 cycles.

Figure 2 shows the normalized reduction in the number of blocks spilled and filled by sres
and sens instructions in comparison to regular program execution without eager memory
transfers. For eager spilling, results show a considerable reduction of spill costs by 62% over
all benchmarks for the dual-core platform. For several benchmarks all spilling is performed
by the eager operation (erijndael, ebf, dbf, bitcnts, drijndael). The total stack size of
rawcaudio and rawdaudio fits into the stack cache. So, no spilling is ever performed for these
benchmarks. The results for 4 and 9 cores are very close and give reductions of 6% and 1%
respectively. Notable differences can be observed for say-tiny, bitcnts, and djpeg-small.
This can be explained by the increased TDM period, which reduces the number of free
TDM slots and the potential to perform eager memory transfers. All arbitration strategies
were able to reduce the number of blocks spilled by sres instructions. The Alternate and
Threshold configurations performed best and almost always reached the best possible result
represented by the Spill-Only strategy.

WCET 2016

5:8 Eager Stack Cache Memory Transfers

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fB
lo

ck
s

Threshold Alternate Saturation Counter

(a) Spill.

ra
w

da
ud

io

er
ijn

da
el eb
f

cs
us

an
-s

m
al

l

pa
tr

ic
ia

cj
pe

g-
sm

al
l

se
ar

ch
-s

m
al

l

sh
a

ss
us

an
-s

m
al

l

sa
y-

tin
y

iff
t-t

in
y

ra
w

ca
ud

io

qs
or

t-s
m

al
l

ba
si

cm
at

h-
tin

y

di
jk

st
ra

-s
m

al
l

fft
-ti

ny db
f

bi
tc

nt
s

es
us

an
-s

m
al

l

dr
ijn

da
el

se
ar

ch
-la

rg
e

dj
pe

g-
sm

al
l

cr
c-

32

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fB
lo

ck
s

(b) Fill.

Figure 3 Efficiency of the various eager spill/fill arbitration policies relative to the Spill- and
Fill-Only configurations on a dual-core platform (Lower is better).

The results for eager filling are less pronounced, resulting in reductions of only 7.4%, 1.7%,
and 0.1% for the platforms with 2, 4, and 9 cores respectively. The large difference with eager
spilling is surprising. Investigations showed that our hypothesis that sres/sens instructions
often appear in sequences appears to hold. However, the average distance between sres
instructions is typically much larger than the distance between sens instructions. The
probability to encounter free TDM slots thus is much smaller between consecutive sens
instructions, thus reducing the amount of eager filling that can be performed. Again, all
strategies are able to achieve reductions. However, the Threshold configuration clearly
performs best. This is once more surprising, since the theoretical bandwidth available for
filling in the Alternate approach should at least reach 50% of the bandwidth of the Threshold
configuration. It appears that the limited number of TDM slots available in between sens
instructions aggravates the competition with eager spilling, explaining this bias. Further
investigations are, however, needed to confirm this hypothesis.

We also performed measurements on a single-core configuration, where the processor
performs memory accesses using a private bus (without TDM). Eager operations were
initiated following the Alternate arbitration scheme immediately when no other bus requests
were pending. Note that in this case interferences with other memory accesses frequently
occur. We observed that spilling and filling of the stack control instructions was completely
eliminated for almost all benchmarks, i.e., all cache transfers were carried out by eager
operations. This indicates that eager transfers are effectively limited by the number of free

A. Naji and F. Brandner 5:9

TDM slots. An interesting idea would thus be to investigate means to explicitly allocate
non-free TDM slots to eager operations. This could allow to entirely eliminate stalls at the
stack control instructions in an analyzable and predictable manner.

In addition to the effective reduction by the various configurations in the number of memory
transfers suffered by sres and sens instructions, we also compared the relative efficiency
of the approaches. Figure 3 shows the normalized number of blocks eagerly spilled/filled
with respect to the aggressive Spill-Only and Fill-Only configurations respectively. The
Threshold configuration appears to provide the best trade-off between efficiency and the
actual reduction of memory transfers by the stack control instructions. On the dual-core
platform and over all benchmarks, it eagerly spills 60% and eagerly fills 30% fewer cache
blocks than the Spill-/Fill-Only configurations respectively. Still the amount of excess spilling
(and to a lesser degree filling) is considerable. On average, over all benchmarks 75 times the
number of cache blocks are spilled compared to the number of cache blocks spilled by the
program when eager memory transfers are deactivated.

However, excess spilling is not necessarily a waste. The reduced effective occupancy
may reduce the cost of context switching [1]. The Threshold configuration on a dual-core
platform decreases the average effective occupancy over the benchmarks’ entire execution
time by about 25%. For ssusan_small, for instance, the reduction amounts to 68%, thus
considerably reducing the context switch cost related to the stack cache.

5 Related Work

Prefetching data before it is needed is a common concept in computer science and particular
in computer architecture design [13]. However, the vast majority of prefetching mechanisms
are only designed to improve the average-case and thus are not suited for the use in real-time
systems. The notable exception is the WCET-preserving stream prefetcher proposed by
Garside and Audsley [4]. The approach avoids side effects on the content of the cache by
introducing separate prefetch buffers – similar to the initial work on stream prefetching by
Jouppi [7]. In addition, properties of the bus arbitration scheme are exploited to schedule
“prefetch slots”. The authors observe that the interference between multiple cores in the
system is typically overestimated. A prefetch can thus be scheduled whenever an interference
is overdue, while respecting the worst-case execution time of the program. The actual
implementation is based on a fixed-priority scheme with a predefined blocking factor to
avoid starvation. The approach provides excellent average-case improvements. However, it
appears difficult to improve the WCET estimation by considering the prefetching, due to the
potential interaction with all other cores in the system. Our approach does not require a
separate memory structure and directly operates on the stack cache. An address prediction
mechanism is also not required since addresses are a priori kown (MT or LP). We thus expect a
much simpler hardware design. Instead of a fixed-priority scheme we rely on free TDM slots
that are left over by the program. Interference from other programs or processor cores with
regard to the eager memory transfers are consequently excluded. It thus appears feasible to
actually improve WCET estimates by taking the eager memory transfers into consideration.

In addition to prefetching, data is also transferred from the stack cache to main memory by
eager spill operations. To the best of our knowledge such a mechanism was not yet proposed
in the context of time-predictable cache design. Similar ideas were, however, explored for
conventional write-back cache designs and termed eager write-back [8].

An alternative approach is to allocate code as well as data to scratchpad memories [14].
However, scratchpad memories typically complement caches instead of replacing them. The

WCET 2016

5:10 Eager Stack Cache Memory Transfers

stack cache mixes properties of both, conventional caches and scratchpads, and thus is
situated in between those concepts. Due to space considerations we do not elaborate these
techniques in more depth here.

6 Conclusion

We presented an elegant and simple extension of the stack cache that allows to perform
memory transfers eagerly in order to reduce the latency of future stack cache control
instructions. We exploit the capability to track coherent data in the stack cache using the
lazy pointer (LP), which allows us to distinguish between the effective occupancy and the
total cache occupancy. Eager filling increases the occupancy and thus may profit future sens
instructions, while eager spilling decreases the effective occupancy and thus may profit sres
instructions. The interplay between effective occupancy and occupancy guarantees that the
worst-case timing is not impacted. In addition, we propose to perform these eager operations
in free TDM slots to avoid any interference with concurrent memory accesses.

References
1 S. Abbaspour, F. Brandner, A. Naji, and M. Jan. Efficient context switching for the stack

cache: Implementation and analysis. In Proc. of the Int’l Conf. on Real Time and Networks
Systems, RTNS’15, pages 119–128. ACM, 2015. doi:10.1145/2834848.2834861.

2 S. Abbaspour, F. Brandner, and M. Schoeberl. A time-predictable stack cache. In Proc. of
the Workshop on Software Technologies for Embedded and Ubiquitous Systems. 2013.

3 S. Abbaspour, A. Jordan, and F. Brandner. Lazy spilling for a time-predictable stack cache:
Implementation and analysis. In Proc. of the Workshop on Worst-Case Execution Time
Analysis, volume 39 of OASICS, pages 83–92, 2014.

4 J. Garside and N.C. Audsley. WCET preserving hardware prefetch for many-core real-time
systems. In Proc. of the Int’l Conf. on Real-Time Networks and Systems, RTNS’14. ACM,
2014. doi:10.1145/2659787.2659824.

5 M.R. Guthaus, J. S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In Proc. of the
Workshop on Workload Characterization, WWC’01, 2001.

6 A. Jordan, F. Brandner, and M. Schoeberl. Static analysis of worst-case stack cache beha-
vior. In Proc. of the Conf. on Real-Time Networks and Systems, RTNS’13, pages 55–64,
2013. doi:10.1145/2516821.2516828.

7 N.P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In Proc. of the Int’l Symp. on Computer Architecture,
ISCA’90, pages 364–373. ACM, 1990. doi:10.1145/325164.325162.

8 H.-H. S. Lee, G. S. Tyson, and M.K. Farrens. Eager writeback – a technique for improving
bandwidth utilization. In Proc. of the Int’l Symp. on Microarchitecture, MICRO 33, pages
11–21. ACM, 2000. doi:10.1145/360128.360132.

9 D.A. Patterson and J. L. Hennessy. Computer Organization & Design: The Hardware/Soft-
ware Interface. Morgan Kaufmann, 4rd edition, 2012.

10 J. Reineke, I. Liu, H.D. Patel, S. Kim, and E.A. Lee. PRET DRAM controller: Bank
privatization for predictability and temporal isolation. In Proc. of the Conf. on Hard-
ware/Software Codesign and System Synthesis, pages 99–108, 2011.

11 C. Rochange, S. Uhrig, and P. Sainrat. Time-Predictable Architectures. Wiley, 2014. doi:
10.1002/9781118790229.

12 M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C.W. Probst, S. Karlsson, and
T. Thorn. Towards a time-predictable dual-issue microprocessor: the Patmos approach. In

http://dx.doi.org/10.1145/2834848.2834861
http://dx.doi.org/10.1145/2659787.2659824
http://dx.doi.org/10.1145/2516821.2516828
http://dx.doi.org/10.1145/325164.325162
http://dx.doi.org/10.1145/360128.360132
http://dx.doi.org/10.1002/9781118790229
http://dx.doi.org/10.1002/9781118790229

A. Naji and F. Brandner 5:11

Bringing Theory to Practice: Predictability and Performance in Embedded Systems, DATE
Workshop PPES 2011, March 18, 2011, Grenoble, France, volume 18, pages 11–21. OASICS,
2011. doi:10.4230/OASIcs.PPES.2011.11.

13 A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, September 1982. doi:
10.1145/356887.356892.

14 V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET centric data allocation
to scratchpad memory. In Proc. of the Int’l Real-Time Systems Symp., RTSS’05, pages
223–232. IEEE, 2005. doi:10.1109/RTSS.2005.45.

15 R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(7):966–978, 2009.

WCET 2016

http://dx.doi.org/10.4230/OASIcs.PPES.2011.11
http://dx.doi.org/10.1145/356887.356892
http://dx.doi.org/10.1145/356887.356892
http://dx.doi.org/10.1109/RTSS.2005.45

	Introduction
	Background
	Eager Memory Transfers
	Eager Fill
	Eager Spill
	Spill/Fill Arbitration

	Experiments
	Related Work
	Conclusion

