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Abstract
This paper presents a machine-verified analysis of a number of classical algorithms for the list
update problem: 2-competitiveness of move-to-front, the lower bound of 2 for the competitive-
ness of deterministic list update algorithms and 1.6-competitiveness of the randomized COMB
algorithm, the best randomized list update algorithm known to date. The analysis is verified
with help of the theorem prover Isabelle; some low-level proofs could be automated.
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1 Introduction

Interactive theorem provers have been applied to deep theorems in mathematics [9, 10] or
fundamental software components [20, 22] but hardly to quantitative algorithm analysis.
This paper demonstrates that nontrivial results from that area are amenable to verification
(which for us always means “interactive”) by analyzing the best known deterministic and
randomized online algorithms for the list update problem with the help of the theorem
prover Isabelle/HOL [25, 26]. Essentially, this paper formalizes the main results of the
first two chapters of the classic text by Borodin and El-Yaniv [6]: 2-competitiveness of
move-to-front (MTF), the lower bound of 2 for the competitiveness of all deterministic list
update algorithms and 1.6-competitiveness of COMB [2], the best randomized online list
update algorithm known to date. For reasons of space we are forced to refer the reader to
the online formalization [12] (15600 lines) for many of the definitions and all of the formal
proofs.

The list update problem is a simple model to study the competitive analysis of online
algorithms (where requests arrive one by one) compared to offline algorithms (where the
whole sequence of requests is known upfront). In the simplest form of the problem we are
given a list of elements that can only be searched sequentially from the front and each request
asks if some element is in that list. In addition to searching for the element the algorithm
may rearrange the list by swapping any number of adjacent elements to improve the response
time for future requests. One is usually not interested in the offline algorithm (the problem
is NP-hard [3]) but merely uses it as a benchmark to compare online algorithms against.

This paper advocates to extend verification of algorithms from functional correctness
to quantitative analysis. There are a number of examples of such verifications for classical
algorithms, but this is the first verified analysis of any online algorithm. Our verified proof
of the 1.6-competitiveness of COMB appears to be one of the most complex verified analyses
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49:2 Verified Analysis of List Update Algorithms

of a randomized algorithm to date. Our paper should be read as a contribution to the
formalization of computer science foundations, here quantitative algorithm analysis.

It should be noted that although our verification is interactive, some tedious low-level
proofs could be automated (see the verification of algorithm BIT in Section 4.6).

The paper is structured as follows: Section 2 explains our notation. Sections 3 and 4
roughly follow chapters 1 and 2 of [6], with some omissions: Section 3 formalizes deterministic
list update algorithms, analyzes MTF and proves a lower bound. Section 4 formalizes
randomized list update algorithms, proves two analysis techniques (list factoring and phase
partioning), and analyzes the algorithms BIT, TS and finally COMB.

1.1 Related Work
This work grew out of an Isabelle-based framework for verified amortized analysis applied to
classical data structures like splay trees [24]. Charguéraud and Pottier [7] verified the almost-
linear amortized complexity of Union-Find in Coq. The verification of randomized algorithms
was pioneered by Hurd et al. [15, 16, 17] who verified the Miller-Rabin probabilistic primality
test and part of Rabin’s probabilistic mutual exclusion algorithm. Barthe et al. (e.g. [5])
verify probabilistic security properties of cryptographic constructions.

An orthogonal line of research is the automatic resource bound analysis of deterministic
functional or imperative programs, e.g., [13].

The list update problem is still an active area of research [23]; for a survey see [19].

2 Notation

Isabelle’s higher-order logic is a simply typed λ-calculus: function application is written f x
and g x y rather than f (x) and g(x,y); binary functions usually have type A → B → C
instead of A × B → C, and analogously for nary functions; λx. t is the function that maps
argument x to result t. The notation t :: τ means that term t has type τ .

The type of lists over a type α is α list. The empty list is [], prepending an element x in
front of a list xs is written x · xs and appending two lists is written xs @ ys. The length of
xs is |xs|. Function set converts a list into a set. The predicate distinct xs expresses that
there are no duplicates in xs. The ith element of xs (starting at 0) is xsi. By index xs x we
denote the index (starting at 0) of the first occurrence of x in xs; if x does not occur in xs
then index xs x = |xs|. If x occurs before y in xs we write x < y in xs:

x < y in xs ←→ index xs x < index xs y ∧ y ∈ set xs

The condition x ∈ set xs is implied by the right-hand-side.
Given two lists xs and ys, we call a pair (x, y) an inversion if x occurs before y in xs but

y occurs before x in ys. The set of inversions is defined like this:

Inv xs ys = {(x, y) | x < y in xs ∧ y < x in ys}

Given a list xs and two elements x and y, let xsxy denote the projection of xs on x and y,
i.e., the result of deleting from xs all elements other than x and y.

Note that the LATEX presentations of definitions and theorems in this paper are generated
by Isabelle from the actual definitions and theorems. To increase readability we employed
Isabelle’s pretty-printing facilities to emulate the notation in [6]. This has to be taken into
account when comparing formulas in the paper with the actual Isabelle text [12].
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2.1 Probability Mass Functions
Type α pmf of probability mass functions [14, §4] represent distributions of discrete random
variables on a type α. Function setpmf D denotes the support set of the distribution D and
pmf D e denotes the probability of element e in the distribution D.

I Example 1. Our background theory defines the Bernoulli distribution bernoullipmf, a pmf
on the type bool which satisfies (amongst others) the following properties:

setpmf (bernoullipmf p) ⊆ {True, False}
pmf (bernoullipmf (1/2)) x = 1/2
0 ≤ p ∧ p ≤ 1 =⇒ pmf (bernoullipmf p) True = p

Furthermore the monadic operators bindpmf :: α pmf → (α → β pmf ) → β pmf and
returnpmf :: α → α pmf, as well as the operator mappmf :: (α → β) → α pmf → β pmf
are defined. With the help of these functions more complex pmf s can be synthesized from
simpler ones. To demonstrate how to work with pmf, we define bv n the uniform distribution
over bit vectors of length n recursively.

I Example 2. This is an example of probabilistic functional programming [8] with the help
of Haskell’s do-notation (which is just syntax for the bind operator).

bv 0 = returnpmf []
bv (n + 1) = do {
x ← bernoullipmf (1/2);
xs ← bv n;
returnpmf (x · xs)
}

The base case bv 0 is defined as the distribution that assigns probability 1 to the empty
list. In the step case, we draw x from the Bernoulli distribution and a sample xs from the
distribution bv n and return x · xs.

We further define the simple function flip i b that flips the ith bit of the bit vector b.
When we apply flip i to every element of the probability distribution bv n we obtain again
the same probability distribution: mappmf (flip i) (bv n) = bv n.

3 List Update: Deterministic Algorithms

3.1 Online and Offline Algorithms
We need to define formally what online and offline algorithms are. Our formalization is
similar to request-answer systems [6] but we clarify the role of the initial state and replace a
history-based formalization with an equivalent state-based one. Everything is parameterized
by a type of requests R, a type of answers A, a type of states S, a type of internal states I,
and by the following three functions: step :: S → R → A → S, t :: S → R → A → IN and
wf :: S → R list → bool. Answers describe how the system state changes in reaction to a
request: step s r a is the new state after r has been answered by a and t s r a is the time
or cost of that step. The predicate wf defines the well-formed request sequences depending
on the initial state. An offline algorithm is a function of type S → R list → A list that
computes a list of answers from a start state and a list of requests. An online algorithm is a
pair (ι, δ) of an initialization function ι :: S → I that yields the initial internal state, and a
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transition function δ :: S × I → R → A × I that yields the answer and the new internal
state. In the sequel assume A = (ι, δ).

Note that we separate the problem specific states S and step function step from the
algorithm specific internal states I and transition function δ to obtain a modular framework.
Elements of type S × I are called configurations.

In this context we define the following functions:
Step A (s, i) r = (let (a, i ′) = δ (s, i) r in (step s r a, i ′))
transforms one configuration into the next by composing δ and step.
T s rs as is the time it takes to process a request list rs and corresponding answer list as
(of the same length) starting from state s via a sequence of steps.
OPT [s;rs] = Inf {T s rs as | |as| = |rs|} where Inf is the infimum, is the time of the
optimal offline algorithm servicing rs starting from state s. Note that the infimum is
taken over the times of all answer lists with appropriate length.
A[s;rs] is the time an online algorithm A takes to process a request list rs via a sequence
of Steps starting from configuration (s, ι s).
Algorithm A is deemed c-competitive if its cost is at most c times OPT. Formally:
compet A c S ←→ (∀ s∈S . ∃ b≥0. ∀ rs. wf s rs −→ A[s;rs] ≤ c ∗ OPT [s;rs] + b)
It expresses that the online algorithm A is c-competitive on the set of initial states S and
well-formed request sequences.

3.2 On/Offline Algorithms for List Update
The list update problem consists of maintaining an unsorted list of elements while the cost of
servicing a sequence of requests has to be minimized. Each request asks to search an element
sequentially from the front of the list. A penalty equal to the position of the requested
element has to be paid. In order to minimize the cost of future requests the requested element
can be moved further to the front of the list by a free exchange. Any other swap of two
consecutive elements in the list costs one unit and is called a paid exchange.

We instantiate our generic model as follows. Given a type of elements α, states are
of type α list, requests of type α, and answers are of type IN × IN list. An answer (n,
[n1,. . . ,nk]) means that the requested element is moved n positions to the front at no cost
(free exchange) after swapping the elements at index ni and ni + 1 (i = k,. . . ,1) at the cost
of 1 per exchange (paid exchanges). Based on two functions mtf 2 :: IN → α → α list → α list
and swaps :: IN list → α list → α list we define step s r (k, ks) = mtf 2 k r (swaps ks s) and
t s r (k, ks) = index (swaps ks s) r + 1 + |ks|. There is no need for paid exchanges after
the move to front because they can be performed at the beginning of the next step. Corner
cases: mtf 2 k x xs does nothing if x /∈ set xs and moves x to the front if x ∈ set xs and
index xs x < k; swaps [n1,. . . ,nk] xs ignores indices ni such that |xs| ≤ ni + 1. We focus on
the static list model by instantiating the well-formedness predicate wf by the predicate static
defined by static s rs ←→ set rs ⊆ set s.

Sleator and Tarjan [30], who introduced the list update problem, claimed (their Theorem 3)
that offline algorithms do not need paid exchanges. Later Reingold and Westbrook [28]
refuted this and proved the opposite: offline algorithms need only paid exchanges. This may
also be considered as an argument in favour of verification.

3.3 Move to Front
The archetypal online algorithm is move to front (MTF): when an element is requested, it is
moved to the front of the list, without any paid exchanges. MTF needs no internal state
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and thus we identify I with the unit type that contains only the dummy element (). The
pair MTF = (λ_. (), λ(s, i) r . ((|s| − 1, []), ())) is an online algorithm in the sense of our
above model.

Now we verify Sleator and Tarjan’s result [30] that MTF is at most 2-competitive, i.e., at
most twice as slow as any offline algorithm. We are given an initial state s of distinct elements,
a request sequence rs and an answer sequence as computed by some offline algorithm such
that |as| = |rs|. The state of MTF after servicing the requests rs0, . . . , rsn − 1 is denoted
by smtf n, the cost of executing step n is denoted by tmtf n. The state after answering the
requests rs0, . . . , rsn − 1 with the answers as0, . . . , asn − 1 is denoted by soff n, the cost
toff n of executing asn is broken up as follows: coff n is the cost of finding the requested
element rsn and poff n (foff n) is the number of the paid (free) exchanges. Following [30]
we define the potential as the number of inversions that separates MTF from the offline
algorithm (Φ n = |Inv (soff n) (smtf n)|) and prove the key lemma

I Lemma 3. tmtf n + Φ (n + 1) − Φ n ≤ 2 ∗ coff n − 1 + poff n − foff n

Its proof is a little bit tricky and requires a number of lemmas about inversions that formalize
what is often given as a pictorial argument. By telescoping and defining Tmtf n = (

∑
i<n

tmtf i) we obtain Sleator and Tarjan’s Theorem 1:

I Theorem 4. Tmtf n ≤ (
∑

i<n 2 ∗ coff i + poff i − foff i) − n[[6, Theorem 1.1]]

It follows that Tmtf n ≤ (2 − 1/|s|) ∗ Toff n, where Toff n = (
∑

i<n toff i), provided s 6= []
and ∀ i<n. rsi ∈ set s. By definition of OPT we obtain the following corollary [6]:

I Corollary 5. s 6= [] ∧ distinct s ∧ set rs ⊆ set s =⇒ MTF [s;rs] ≤ (2 − 1/|s|) ∗ OPT [s;rs]

Because compet is defined relative to wf and we have instantiated wf with the static list
model (which implies set rs ⊆ set s), we obtain the following compact corollary:

I Corollary 6. compet MTF 2 {s | distinct s}

The assumption s 6= [] has disappeared because we no longer divide by |s|.

3.4 A Lower Bound
The following lower bound for the competitiveness of any online algorithm is due to Karp
and Raghavan [18]:

I Theorem 7. compet A c {xs | |xs| = l} ∧ l 6= 0 ∧ 0 ≤ c =⇒ 2 ∗ l/(l + 1) ≤ c

The corresponding Theorem 1.2 in [6] is incorrect because it asserts that every online
algorithm is c-competitive for some constant c, but this is not necessarily the case if the
algorithm uses paid exchanges. In the proof it is implicitly assumed there are no paid
exchanges when claiming “The total cost incurred by the online algorithm is clearly l ∗ n”.

Our proof roughly follows the original sketch [18, p. 302]. Let A = (ι, δ) be an online
algorithm. We define a cruel request sequence that always requests the last element in the
state of A, given a start configuration and length:

cruel A c 0 = []
cruel A (s, i) (n + 1) = last s · cruel A (Step A (s, i) (last s)) n
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We also define a cruel offline adversary for A that first sorts the state in decreasing order
of access frequency in the cruel sequence and does nothing afterwards:

adv A s rs =
(if rs = [] then []
else let crs = cruel A (Step A (s, ι s) (last s)) (|rs| − 1)

in (0, sort_sws (λx. |rs| − 1 − count_list crs x) s) ·
replicate (|rs| − 1) (0, []))

For the first step sort_sws computes the necessary paid exchanges according to the frequency
count computed by count_list from the cruel sequence crs; the remaining steps are do-nothing
answers (0, []).

For the analysis let A[s;n] (resp. C [s;n]) be the time A (resp. the adversary adv A)
requires to answer the cruel request sequence of length n + 1 starting in state s. Assume
l 6= 0. First we prove C [s;n] ≤ a + (l+1)∗n div 2 where a = l2 + l + 1. The cost of
the first step of the cruel adversary (searching and sorting) is at most a, and the cost of
searching for n requested items is at most (l + 1) ∗ n div 2. We obtain the latter bound
by writing the cost as a sum of terms i ∗ f i where f i is the number of requests of the ith
item in the sorted list, i = 0,. . . ,l−1. Because the f i decrease with increasing i, the result
follows by Tchebychef’s inequality [11, 2.17] that the mean of the product is at most the
product of the means. The cost A[s;n] is (n + 1) ∗ l if there are no paid exchanges and thus
(n+1)∗l ≤ A[s;n]. Combining this with the upper bound for C [s;n] we obtain 2∗l/(l+1) ≤
A[s;n]/(C [s;n]−a) for all large enough n. From c-competitiveness of A we obtain a constant
b such that (A[s;n]−b)/C [s;n] ≤ c. The additive constants are typically (and incorrectly)
ignored, in which case 2∗l/(l+1) ≤ c is immediate; otherwise it takes a bit of limit reasoning.

4 List Update: Randomized Algorithms

4.1 Randomized Online Algorithms
Now we generalize our model of online algorithms of §3.1 to randomized online algorithms.
We view a randomized algorithm not as a distribution of deterministic algorithms, but an
algorithm working on a distribution of configurations. The monad described in §2.1 suggests
this view and enables us to formulate randomized algorithms concisely. Furthermore we
expect that proofs can be mechanized more easily that way.

The initialization function now not only yields one initial internal state but a distribution
over the type of internal states: S → I pmf. Similarly the transition function of randomized
online algorithms has the type (S × I) pmf → R → (A × I) pmf. We now generalize a
number of functions from the deterministic to the randomized setting. We overload the
names because the deterministic versions are special cases of the randomized ones. Whether
A = (ι, δ) is a randomized or deterministic online algorithm will be clear from the context.

A compound Step on configurations consists of two steps: first the online algorithm will
produce a distribution of answer and new internal states, then the problem (step) will
process the answer and yield a new configuration distribution:
Step A r (s, i) = do {

(a, is ′) ← δ (s, i) r ;
returnpmf (step s r a, is ′)
}
config A s rs formalizes the execution of A by denoting the distribution of configurations
after servicing the request sequence rs starting in state s.
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A[s;rs] denotes the expected time A takes to process a request list rs via a sequence of
Steps starting from the distribution of configurations obtained by combining s with ι s.
compet A c S ←→ (∀ s∈S . ∃ b≥0. ∀ rs. wf s rs −→ A[s;rs] ≤ c ∗ OPT [s;rs] + b) expresses
that A is c-competitive against an oblivious adversary on the set of initial states S.

Function embed (ι, δ) = (λs. returnpmf (ι s), λs r . returnpmf (δ s r)) turns a deterministic into
a randomized algorithm. It preserves the above notions. For example, for any deterministic
algorithm A it holds that compet A c S0 ←→ compet (embed A) c S0.

4.2 BIT
In this section we study a simple randomized algorithm for the list update problem called BIT
due to Reingold and Westbrook [28]. BIT breaks the 2-competitive barrier for deterministic
online algorithms (Theorem 7): we will prove that BIT is 1.75-competitive.

BIT keeps for every element x in the list a bit b(x). The b(x) are initialized randomly,
independently and uniformly. When some x is requested, its bit b(x) is complemented; then,
if b(x), x is moved to the front. Formally, the internal state is a pair (b, s0) :: bool list ×
α list where s0 is the initial list and |b| = |s0|. The informal b(x) becomes bindex s0 x.

I Definition 8 (BIT). BIT = (ιBIT, δBIT) where ιBIT s0 = mappmf (λb. (b, s0)) (bv |s0|)
δBIT (s, b, s0) x = returnpmf ((if bindex s0 x then 0 else |s|, []), flip (index s0 x) b, s0)

Function ιBIT generates a random bit vector (for bv see §2.1) of length |s0| and pairs it
with s0. Function δBIT is given a configuration (s, b, s0) and a request x, flips x’s bit in b,
and if it was set, the answer is move-to-front, otherwise it is do-nothing. BIT is a barely
random algorithm: only the initialization function is randomized, the transition function is
deterministic.

I Theorem 9 ([6, Theorem 2.1]). compet BIT (7/4) {init | init 6= [] ∧ distinct init}

The proof of this theorem is similar to the proof that MTF is 2-competitive: the potential
function involves weighted inversions. Therefore we do not discuss the details (see [12]). We
now introduce an alternative to the potential function method, which allows us to analyze
BIT again and move on to more advanced algorithms.

4.3 List Factoring
The list factoring method enables us to reduce competitive analysis of list update algorithms
to lists of size two. The main idea is to modify the cost measure. The cost of accessing some
element will be the number of elements that precede it. We attribute a “blocking cost” of
1 to every element that precedes the requested element. For the requested element and all
following the blocking cost is 0. In summary, the cost of accessing the ith item is no longer i
+ 1 but i. This is called the partial cost model, in contrast to the full cost model. Costs
in the partial cost model are marked with an asterisk; for example, t∗ s r a = t s r a − 1.
Upper bounds on the competitive ratio in the partial cost model are also upper bounds on
the competitive ratio in the full cost model [6, Lemma 1.3].

Let A∗[s;rs](x;i) denote the expected blocking cost of element x in the ith step of the
execution of algorithm A on the request sequence rs starting from state s. The notations∑

x∈Mx. mx and
∑

x | Px. mx denote summations over a set or restricted by a predicate.
We will need a set of all pairs (x, y) ∈ M × M of distinct elements where only one of the
two pairs (x, y) and (y, x) is included. For simplicity we assume M is linearly ordered and
define Diff 2 M = {(x, y) | x ∈ M ∧ y ∈ M ∧ x < y}.
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Now consider the cost incurred by an online algorithm without paid exchanges:

A∗[s;rs] =
∑

i<|rs|

∑
x∈set s. A∗[s;rs](x;i)

=
∑

x∈set s.
∑

i<|rs| A
∗[s;rs](x;i)

=
∑

x∈set s.
∑

y∈set s.
∑

i | i < |rs| ∧ rsi = y. A∗[s;rs](x;i)
=

∑
(x, y)∈{(x, y) | x ∈ set s ∧ y ∈ set s ∧ x 6= y}.∑
i | i < |rs| ∧ rsi = y. A∗[s;rs](x;i)

=
∑

(x, y)∈Diff 2 (set s).∑
i | i < |rs| ∧ (rsi = y ∨ rsi = x).

A∗[s;rs](y;i) + A∗[s;rs](x;i)

The inner summation of the last expression is abbreviated by A∗xy[s;rs] and interpreted as the
expected cost generated by x blocking y or vice versa. We can condense the above derivation:

I Lemma 10 ([6, Equation (1.4)]). A∗[s;rs] = (
∑

(x, y)∈Diff 2 (set s). A∗xy[s;rs])

As the value of any summand on the right hand side only depends on the relative order of x
and y during the execution and the relative order may only change when x or y are requested
(as we disallowed paid exchanges for now) one might think that this is exactly the same as
the cost incurred by the algorithm when run on the projected request list rsxy starting from
the projected initial state sxy. While this is not the case in general, this equality yields a
good characterization of a subset of all list update algorithms and is thus referred to as the
pairwise property. Most of the list update algorithms studied in the literature share this
property, including MTF, BIT, TS and COMB (see Table 1 in [19] where “projective” means
“pairwise”).

I Definition 11 (pairwise property). Algorithm A satisfies the pairwise property if
distinct s ∧ set rs ⊆ set s ∧ (x, y) ∈ Diff 2 (set s) =⇒ A∗[sxy;rsxy] = A∗xy[s;rs]

With a similar development as for Lemma 10 we can split the costs of OPT∗ into the
costs that are incurred by each pair of elements: first the costs incurred by blocking each
other and second the number of paid exchanges that change the elements’ relative order:

I Theorem 12 ([6, Equation (1.8)]).
OPT∗[s;rs] = (

∑
(x, y)∈Diff 2 (set s). OPT∗xy[s;rs] + OPT∗P ;xy[s;rs])

If we consider the summand for a specific pair (x,y), we see that it gives rise to an (not
necessarily optimal) algorithm servicing the projected request sequence rsxy. Thus this
term is an upper bound for the optimal cost for servicing rsxy. This fact is established by
constructing this projected algorithm and showing that its cost is equal to the right-hand
side of the inequality:

I Lemma 13 ([6, Equation (1.7)]). OPT∗[sxy;rsxy] ≤ OPT∗xy[s;rs] + OPT∗P ;xy[s;rs]

Now we are in the position to describe the list factoring technique:

I Theorem 14 ([6, Lemma 1.2]). Let A be an algorithm that does not use paid exchanges,
satisfies the pairwise property and is c-competitive for lists of length 2. Then A is c-competitive
for arbitrary lists.
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Proof. A∗[s;rs] Lemma 10=
∑

(x, y)∈Diff 2 (set s). A∗xy[s;rs]
pairwise=

∑
(x, y)∈Diff 2 (set s). A∗[sxy;rsxy]

c-compet.
≤

∑
(x, y)∈Diff 2 (set s). c ∗ OPT∗[sxy;rsxy] + b

Lemma 13
≤ c ∗

(
∑

(x, y)∈Diff 2 (set s). OPT∗xy[s;rs] + OPT∗P ;xy[s;rs]) +
b ∗ (|s| ∗ (|s| − 1))/2

Lemma 12= c ∗ OPT∗[s;rs] + b ∗ (|s| ∗ (|s| − 1))/2 J

For showing that algorithm A has the pairwise property it suffices to show that the
probability that x precedes y during the service of the projected request sequence is equal to
the probability when servicing the original request sequence.

I Lemma 15 ([6, ⇒ of Lemma 1.1]). For an online algorithm A without paid exchanges,
let sxy

A;rsxy and sA;rs denote the configuration distribution after servicing the projected
respectively full request list rs starting from s. Then
mappmf (λ(s,is). x < y in s) sxy

A;rsxy = mappmf (λ(s,is). x < y in s) sA;rs =⇒ pairwise A

4.4 OPT 2: an Optimal Algorithm for Lists of Length 2
We formalize OPT2, an optimal offline algorithm for lists of length 2 due to Reingold and
Westbrook [29], verify its optimality, and determine the cost of OPT2 on different specific
request sequences. The informal definition of OPT2 is as follows [29]:

I Definition 16 (OPT2 informally). After each request, move the requested item to the front
via free swaps if the next request is also to that item. Otherwise do nothing.

Observe that this algorithm only needs knowledge of the current and next request. Thus it
is almost an online algorithm, except that it needs a lookahead of 1.

Function OPT2 rs [x, y] that takes a request sequence rs and a state [x, y] and returns
an answer sequence is defined easily by recursion on rs.

I Theorem 17 (Optimality of OPT2).
set rs ⊆ {x, y} ∧ x 6= y =⇒ T∗ [x, y] rs (OPT2 rs [x, y]) = OPT∗[[x, y];rs]

The proof is by induction on rs followed by a “simple case analysis” [29] the formalization of
which is quite lengthy.

In an execution of OPT2, after two consecutive requests to the same element that element
will be at the front. This enables us to partition the request sequence into phases and restart
OPT2 after each phase:

I Lemma 18. If x 6= y ∧ s ∈ {[x, y], [y, x]} ∧ set us ⊆ {x, y} ∧ set vs ⊆ {x, y} then
OPT2 (us @ [x, x] @ vs) s = OPT2 (us @ [x, x]) s @ OPT2 vs [x, y].

Thus we can partition a request sequence into phases ending with two consecutive requests
to the same element and we know the state of OPT2 at the end of each phase. Such a phase
can have one of four forms, for any of these we have “calculated” the cost of OPT2 (see
Table 1). This involves inductive proofs in the case of the Kleene star.

In the following two subsections the phase partitioning technique is described in more
detail and is then used to prove that BIT is 7/4-competitive.
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4.5 Phase Partitioning
In the following we will partition all request sequences into complete phases that end with
two consecutive requests to the same element and possibly a trailing incomplete phase. The
set of all request sequences can be described by (x+y)∗, the complete phases by ϕxy =
(x?(yx)∗yy+y?(xy)∗xx) and the incomplete phases (that do not contain two consecutive
occurrences of the same element) by ϕxy = (x?(yx)∗y+y?(xy)∗x). The regular expression
r? is short for r + ε. In order to prove identities like L (ϕxy

∗ϕxy
?) = L ((x+y)∗) we use a

regular expression equivalence checker available in Isabelle/HOL [21], which we extend to
regular expressions with variables. This prevents us from overlooking corner cases, such as
the missing D case in Table 1 (see the end of 4.6).

We now want to compare costs of an online algorithm A and OPT2 on a complete phase
rs and lift results to arbitrary request sequences σ containing two different elements. This
lifting requires us to show (by an invariant proof), that at the end of each complete phase A
and OPT2 are in sync again.

Recall that OPT2 will have element rs|rs| − 1 in front of the state after servicing rs. Let
SA be a configuration distribution of A, then SA;rs denotes the configuration distribution
after the service of rs by A starting from SA and A∗[SA;rs] denotes its cost. Let invA SA x
s be a predicate on a configuration distribution of A, a request and a state. Suppose for any
SA, x and s that (i) invA SA x s =⇒ A∗[SA;rs] ≤ c ∗ T∗ [x, y] rs (OPT2 rs [x, y]) and (ii)
invA SA x s =⇒ invA SA;rs (rs|rs| − 1) s. Then we can conclude A∗[SA;σ] ≤ c ∗ T∗ [x, y]
σ (OPT2 σ [x, y]) + c if the predicate invA SA x [x, y] holds initially.

This fact follows by well-founded induction on the length of σ. If we additionally verify
that the invariant invA SA x [x, y] holds for SA being the configuration distribution after
initializing algorithm A from state [x, y] we can finally conclude A∗[[x,y], σ] ≤ c ∗ T∗ [x, y]
σ (OPT2 σ [x, y]) + c = c ∗ OPT∗[[x, y];σ] + c.

Note that invA SA x s must imply that all states in the configuration distribution SA

have x in front. If this is not the case and the state [y, x] has nonzero probability, for the
complete phase rs = [x, x], A has nonzero costs whereas OPT2 pays nothing. This makes
showing property (i) impossible. Consequently not all pairwise algorithms can be analyzed
with this technique (e.g. RMTF [6]).

To further facilitate the analysis, all complete phases can be classified into four forms,
described by the regular expressions found in the first column of Table 1. Together with
the list factoring technique, the proof of an algorithm being c-competitive is reduced to
determining the costs on request sequences of these forms. This kind of analysis is conducted
in the next section for BIT.

4.6 Analysis of BIT
We now show that BIT is 7/4-competitive using both the list factoring method and the phase
partitioning technique.

With the help of Lemma 15 we proved that BIT has the pairwise property. The result can
be established by induction on the original request sequence and a case distinction whether
the requested element is one of x and y or not, the rest is laborious bookkeeping. We refer
the reader to [12] for the details.

I Lemma 19. pairwise BIT

Let us turn to showing that BIT is 7/4-competitive on lists of length 2. To that end
we analyze BIT on the different forms of complete phases as explained above. At the end
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Table 1 Costs of BIT, OPT2 and TS for request sequence of the four phase forms; x is the first
element in the state; k is the number of iterations of the Kleene star expression.

σ BIT OPT2 TS

A x?yy 1.5 1 2
B x?yx(yx)∗yy 1.5 ∗ (k + 1) + 1 (k + 1) + 1 2 ∗ (k + 1)
C x?yx(yx)∗x 1.5 ∗ (k + 1) + 0.25 (k + 1) 2 ∗ (k + 1)− 1
D xx 0 0 0

of each complete phase, BIT will have the last request in front of the state (because the
element was requested twice and one of the two requests moved it). BIT and OPT2 thus are
synchronized before and after each phase. BIT’s invariant invBIT S x s (in the sense of the
previous subsection) is defined as saying that in every configuration in the distribution S,
element x is in front of the state and the second component of the internal state is s.

Table 1 shows the costs of BIT for the four respective forms. We now verify both
the preservation of invBIT and the cost incurred by BIT for a phase rs of form B, i.e.,
rs ∈ L (x?yx(yx)∗yy).

We start with the configuration distribution S satisfying invBIT S x s (see above). First
we observe that serving an optional request x does not alter the configuration distribution
nor add any cost. Now serving the request y moves y to the front for two out of four
configurations and in every case adds cost 1. In one of the former two configurations the next
request to element x brings x to the front again. Consequently the state after serving yx is
[y, x] iff y’s bit is set and x’s bit is not set. This distribution of configurations is preserved
by any number of further requests yx. Serving the first request to yx costs 1 + 1/2 as well as
any further request to yx has cost 3/4 + 3/4. Let σ be the part of rs with the Kleene star,
by induction on the Kleene star in σ the cost for serving σ is 3/4 ∗ |σ|. The trailing request
to yy then costs 3/4 + 1/4 and y is moved to the front in all configurations. Thus finally the
invariant invBIT S ′ y s is satisfied, where S ′ is the configuration distribution after serving rs.
Note that here the order of y and x have changed. In the analysis of the next phase, x and y
take the swapped positions. But as they are interchangeable in all the theorems this does no
harm.

Determining the costs in Table 1 is usually presented in the style of the last paragraph
([6, §2.4] and [2, Lemma 3]). While these calculations are tedious for humans, the proof
assistant is able to carry them out almost automatically: with the help of some lemmas about
how BIT transforms the configuration distribution on single requests, the costs of complete
phases can be calculated and proved mechanically.

Note that in contrast to Table 1.1 in [6, §1.6.1] we define the phase forms differently.
They allow more than one initial x in forms A, B and C, we only allow zero or one. Our
forms precisely capture the idea of splitting the request sequence into phases that end with
two consecutive requests to the same element. Moreover, form D is missing from their table.

The results for the other phase forms follows in a similar way and finally we prove BIT∗[[x,
y];σ] ≤ 7/4 ∗ OPT∗[[x, y];σ] + 7/4. Together with the pairwise property of BIT and the list
factoring method we can lift the result to lists of arbitrary length and obtain another proof
of Theorem 9.

Actually the ratio between costs of BIT and OPT2 tends to 3/2 for long phases, only
the poor performance of short phases of form C leads to the competitive ratio of 7/4. This
observation does not follow from the combinatorial proof of Section 4.2.
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4.7 TS to the Rescue
The deterministic online algorithm TS due to Albers [1] performs well in the cases where
BIT performs badly. We now present the analysis of TS and in the following subsection will
show how the two algorithms can be combined. TS does the following:

I Definition 20 (TS informally). After each request, the accessed item x is inserted immedi-
ately in front of the first item y that precedes x in the list and was requested at most once
since the last request to x. If there is no such item y or if x is requested for the first time,
then the position of x remains unchanged.

This algorithm has an internal state of type α list, the history of requests already processed.
The transition function δTS is formalized as follows:

I Definition 21.
δTS (s, is) r =

(let V r = {x | x < r in s ∧ count_list (take (index is r) is) x ≤ 1}
in ((if index is r < |is| ∧ V r 6= ∅

then index s r − Min (index s ‘ V r) else 0,
[]),
r · is))

Note that take n xs returns the length n prefix of xs; because the history is stored in reverse
order, take (index is r) is is the part of the history since the last request to element r.

For the analysis of TS we employ the proof methods developed in the preceding subsections.
We first examine the costs of the four phase forms by simulation and induction. Then, by
the phase partitioning method, we extend the result to any request sequence. The invariant
needed for TS essentially says is = [] ∨ (∃ x s ′ hs. s = x · s ′ ∧ is = x · x · hs): either TS has
just been initialized or the last two requests were to the first element in the state. Intuitively
this invariant implies that for the next request to y, the element would not be moved to the
front of x. The last column of Table 1 shows the costs of TS for the four respective phase
forms. TS performs better than BIT for short phases of forms B and C.

To lift this result to arbitrary initial lists, it remains to show that TS satisfies the pairwise
property. With Lemma 15 and because we are in the deterministic domain it suffices to show
that the relative order of x and y is equal both in the service of the projected as well as
the original request sequence. This fact is not as obvious as for MTF or BIT; for showing
this equality at any point in time during the service of TS, we do a case distinction on the
history and look at most at the last three accesses to x and y. For most cases it is quite
easy to determine the current relative order both in the projected as well as the full request
sequence. For example, after two requests to the same element x, x must be before y in both
cases. The only tricky case is when the last requests were xxy: then a proof involving infinite
descent is used along the lines of Lemma 2 in [2].

Finally we obtain the fact pairwise TS and hence

I Theorem 22 ([6, Theorem 1.4]). compet TS 2 {s | distinct s ∧ s 6= []}

4.8 COMB
Our development finally peaks in the formalization of the 8/5-competitive online algorithm
COMB due to Albers et al. [2] that chooses with probability 4/5 between executing BIT and
TS. COMB’s internal state type is the sum type of the internal state types of BIT and TS,
function ιCOMB initializes like BIT and TS with respective probabilities and function δCOMB
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applies δBIT or δTS depending on the type of the internal state it receives. As COMB is a
combination of BIT and TS, several properties carry over directly: COMB is barely random,
does not use paid exchanges and pairwise COMB holds.

Table 1 shows that BIT outperforms TS for long phases. TS is cheaper only for short
phases of forms B and C. The combination of the two algorithms yields an improved
competitive ratio of 8/5. The result is established by analyzing the combined cost for the
different phase forms and then use the phase partitioning and list factoring method. This
does not involve any combinatorial tricks, but only combining certain lemmas about BIT
and TS.

I Theorem 23 ([6, Theorem 2.2]). compet COMB (8/5) {x | distinct x ∧ x 6= []}

It can also be shown (we did not verify this) that the probability for choosing between BIT
and TS is optimal and that COMB attains the best competitive ratio possible for pairwise
algorithms in the partial cost model [4].

5 Conclusion

This paper has demonstrated that state of the art randomized list update algorithms can
be analyzed with a theorem prover. In the process we found mistakes and omissions in the
published literature (for example, Theorem 7 and Table 1).

The field of programming languages is full of verified material (e.g., [25, 27]) which has
lead to achievements like Leroy’s verified C compiler [22]. We believe that eventually both
functional correctness and performance of critical software components will be verified. Such
verifications will require verified algorithm analyses such as presented in this paper.
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