
Finger Search in Grammar-Compressed Strings∗

Philip Bille1, Anders Roy Christiansen2, Patrick Hagge Cording3,
and Inge Li Gørtz4

1 Technical University of Denmark, DTU Compute, Lyngby, Denmark
2 Technical University of Denmark, DTU Compute, Lyngby, Denmark
3 Technical University of Denmark, DTU Compute, Lyngby, Denmark
4 Technical University of Denmark, DTU Compute, Lyngby, Denmark

Abstract
Grammar-based compression, where one replaces a long string by a small context-free grammar
that generates the string, is a simple and powerful paradigm that captures many popular com-
pression schemes. Given a grammar, the random access problem is to compactly represent the
grammar while supporting random access, that is, given a position in the original uncompressed
string report the character at that position. In this paper we study the random access problem
with the finger search property, that is, the time for a random access query should depend on
the distance between a specified index f , called the finger, and the query index i. We consider
both a static variant, where we first place a finger and subsequently access indices near the finger
efficiently, and a dynamic variant where also moving the finger such that the time depends on
the distance moved is supported.

Let n be the size the grammar, and let N be the size of the string. For the static variant
we give a linear space representation that supports placing the finger in O(logN) time and
subsequently accessing in O(logD) time, where D is the distance between the finger and the
accessed index. For the dynamic variant we give a linear space representation that supports
placing the finger in O(logN) time and accessing and moving the finger in O(logD + log logN)
time. Compared to the best linear space solution to random access, we improve a O(logN) query
bound to O(logD) for the static variant and to O(logD + log logN) for the dynamic variant,
while maintaining linear space. As an application of our results we obtain an improved solution
to the longest common extension problem in grammar compressed strings. To obtain our results,
we introduce several new techniques of independent interest, including a novel van Emde Boas
style decomposition of grammars.

1998 ACM Subject Classification E.4 Coding and Information Theory, E.1 Data Structures,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Compression, Grammars, Finger search, Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.36

1 Introduction

Grammar-based compression, where one replaces a long string by a small context-free
grammar that generates the string, is a simple and powerful paradigm that captures many
popular compression schemes including the Lempel-Ziv family [49, 48, 46], Sequitur [35],
Run-Length Encoding, Re-Pair [32], and many more [40, 20, 29, 30, 47, 4, 2, 3, 26]. All of
these are or can be transformed into equivalent grammar-based compression schemes with
little expansion [38, 14].

∗ A full version of the paper is available at https://arxiv.org/abs/1507.02853.

© Philip Bille, Anders R. Christiansen, Patrick H. Cording, and Inge L. Gørtz;
licensed under Creative Commons License CC-BY

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. 36; pp. 36:1–36:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.36
https://arxiv.org/abs/1507.02853
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Finger Search in Grammar-Compressed Strings

Given a grammar S representing a string S, the random access problem is to compactly
represent S while supporting fast access queries, that is, given an index i in S to report S[i].
The random access problem is one of the most basic primitives for computation on grammar
compressed strings, and solutions to the problem are a key component in a wide range of
algorithms and data structures for grammar compressed strings [9, 10, 21, 22, 23, 8, 28, 42,
43, 6].

In this paper we study the random access problem with the finger search property, that
is, the time for a random access query should depend on the distance between a specified
index f , called the finger, and the query index i. We consider two variants of the problem.
The first variant is static finger search, where we can place a finger with a setfinger operation
and subsequently access positions near the finger efficiently. The finger can only be moved
by a new setfinger operation, and the time for setfinger is independent of the distance to the
previous position of the finger. The second variant is dynamic finger search, where we also
support a movefinger operation that updates the finger such that the update time depends
on the distance the finger is moved.

Our main result is efficient solutions to both finger search problems. To state the bounds,
let n be the size the grammar S, and let N be the size of the string S. For the static finger
search problem, we give an O(n) space representation that supports setfinger in O(logN)
time and access in O(logD) time, where D is the distance between the finger and the accessed
index. For the dynamic finger search problem, we give an O(n) space representation that
supports setfinger in O(logN) time and movefinger and access in O(logD + log logN) time.
The best linear space solution for the random access problem uses O(logN) time for access.
Hence, compared to our result we improve the O(logN) bound to O(logD) for the static
version and to O(logD + log logN) for the dynamic version, while maintaining linear space.
These are the first non-trivial bounds for the finger search problems.

As an application of our results we also give a new solution to the longest common
extension problem on grammar compressed strings [9, 28, 36]. Here, the goal is to compactly
represent S while supporting fast lce queries, that is, given a pair of indices i, j to compute
the length of the longest common prefix of S[i,N] and S[j,N]. We give an O(n) space
representation that answers queries in O(logN + log2 `), where ` is the length of the longest
common prefix. The best O(n) space solution for this problem uses O(logN log `) time, and
hence our new bound is always at least as good and better whenever ` = o(Nε).

1.1 Related Work
We briefly review the related work on the random access problem and finger search.

Random Access in Grammar Compressed Strings. First note that naively we can store S
explicitly using O(N) space and report any character in constant time. Alternatively, we can
compute and store the sizes of the strings derived by each grammar symbol in S and use this
to simulate a top-down search on the grammars derivation tree in constant time per node.
This leads to an O(n) space representation using O(h) time, where h is the height of the
grammar [25]. Improved succinct space representation of this solution are also known [15].
Bille et al. [10] gave a solution using O(n) and O(logN) time, thus achieving a query
time independent of the height of the grammar. Verbin and Yu [45] gave a near matching
lower bound by showing that any solution using O(n logO(1) N) space must use Ω(log1−εN)
time. Hence, we cannot hope to obtain significantly faster query times within O(n) space.
Finally, Belazzougui et al. [6] very recently showed that with superlinear space slightly faster
query times are possible. Specifically, they gave a solution using O(nτ logτ N/n) space and

P. Bille, A. R. Christiansen, P.H. Cording, and I. L. Gørtz 36:3

O(logτ N) time, where τ is a trade-off parameter. For τ = logεN this is O(n logεN) space
and O(logN/ log logN) time. Practical solutions to this problem have been considered in
[5, 34, 24].

The above solutions all generalize to support decompression of an arbitrary substring
of length D in time O(taccess + D), where taccess is the time for access (and even faster
for small alphabets [6]). We can extend this to a simple solution to finger search (static
and dynamic). The key idea is to implement setfinger as a random access and access and
movefinger by decompressing or traversing, respectively, the part of the grammar in-between
the two positions. This leads to a solution that uses O(taccess) time for setfinger and O(D)
time for access and movefinger.

Another closely related problem is the bookmarking problem, where a set of positions,
called bookmarks, are given at preprocessing time and the goal is to support fast substring
decompression from any bookmark in constant or near-constant time per decompressed
character [16, 21]. In other words, bookmarking allows us to decompress a substring of
length D in time O(D) if the substring crosses a bookmark. Hence, with bookmarking we
can improve the O(taccess +D) time solution for substring decompression to O(D) whenever
we know the positions of the substrings we want to decompress at preprocessing time. A
key component in the current solutions to bookmarking is to trade-off the Ω(D) time we
need to pay to decompress and output the substring. Our goal is to support access without
decompressing in o(D) time and hence this idea does not immediately apply to finger search.

Finger Search. Finger search is a classic and well-studied concept in data structures, see
e.g., [7, 11, 13, 39, 17, 19, 27, 33, 31, 37, 41] and the survey [12]. In this setting, the goal is
to maintain a dynamic dictionary data structure such that searches have the finger search
property. Classic textbook examples of efficient finger search dictionaries include splay trees,
skip lists, and level linked trees. Given a comparison based dictionary with n elements, we
can support optimal searching in O(logn) time and finger searching in O(log d) time, where
d is the rank distance between the finger and the query [12]. Note the similarity to our
compressed results that reduce an O(logN) bound to O(logD).

1.2 Our results
We now formally state our results. Let S be a string of length N compressed into a grammar
S of length n. Our goal is to support the following operations on S.

access(i): return the character S[i]
setfinger(f): set the finger at position f in S.
movefinger(f): move the finger to position f in S.

The static finger problem is to support access and setfinger, and the dynamic finger search
problem is to support all three operations. We obtain the following bounds for the finger
search problems.

I Theorem 1. Let S be a grammar of size n representing a string S of length N . Let f be
the current position of the finger, and let D = |f − i| for some i. Using O(n) space we can
support either:
(i) setfinger(f) in O(logN) time and access(i) in O(logD) time.
(ii) setfinger(f) in O(logN) time, movefinger(i) and access(i) both in O(logD + log logN)

time.

FSTTCS 2016

36:4 Finger Search in Grammar-Compressed Strings

Compared to the previous best linear space solution, we improve the O(logN) bound
to O(logD) for the static variant and to O(logD + log logN) for the dynamic variant,
while maintaining linear space. These are the first non-trivial solutions to the finger search
problems. Moreover, the logarithmic bound in terms of D may be viewed as a natural
grammar compressed analogue of the classic uncompressed finger search solutions. We note
that Theorem 1 is straightforward to generalize to multiple fingers. Each additional finger
can be set in O(logN) time, uses O(logN) additional space, and given any finger f , we can
support access(i) in O(logDf) time, where Df = |f − i|.

1.3 Technical Overview

To obtain Theorem 1 we introduce several new techniques of independent interest. First, we
consider a variant of the random access problem, which we call the fringe access problem.
Here, the goal is to support fast access close to the beginning or end (the fringe) of a substring
derived by a grammar symbol. We present an O(n) space representation that supports fringe
access from any grammar symbol v in time O(logDv + log logN), where Dv is the distance
from the fringe in the string S(v) derived by v to the queried position.

The main component in our solution to this problem is a new recursive decomposition.
The decomposition resembles the classic van Emde Boas data structure [44], in the sense
that we recursively partition the grammar into a hierarchy of depth O(log logN) consisting
of subgrammars generating strings of lengths N1/2, N1/4, N1/8, We then show how to
implement fringe access via predecessor queries on special paths produced by the decomposi-
tion. We cannot afford to explicitly store a predecessor data structure for each special path,
however, using a technique due to Bille et al. [10], we can represent all the special paths
compactly in a tree and instead implement the predecessor queries as weighted ancestor
queries on the tree. This leads to an O(n) space solution with O(logDv + (log logN)2) query
time. Whenever Dv ≥ 2(log logN)2 this matches our desired bound of O(logDv + log logN).
To handle the case when Dv ≤ 2(log logN)2 we use an additional decomposition of the grammar
and further reduce the problem to weighted ancestor queries on trees of small weighted
height. Finally, we give an efficient solution to weighted ancestor for this specialized case
that leads to our final result for fringe access.

Next, we use our fringe access result to obtain our solution to the static finger search
problem. The key idea is to decompose the grammar into heavy paths as done by Bille
et al. [10], which has the property that any root-to-leaf path in the directed acyclic graph
representing the grammar consists of at most O(logN) heavy paths. We then use this to
compactly represent the finger as a sequence of the heavy paths. To implement access, we
binary search the heavy paths in the finger to find an exit point on the finger, which we then
use to find an appropriate node to apply our solution to fringe access on. Together with a
few additional tricks this gives us Theorem 1(i).

Unfortunately, the above approach for the static finger search problem does not extend
to the dynamic setting. The key issue is that even a tiny local change in the position of the
finger can change Θ(logN) heavy paths in the representation of the finger, hence requiring
at least Ω(logN) work to implement movefinger. To avoid this we give a new compact
representation of the finger based on both heavy path and the special paths obtained from
our van Emde Boas decomposition used in our fringe access data structure. We show how to
efficiently maintain this representation during local changes of the finger, ultimately leading
Theorem 1(ii).

P. Bille, A. R. Christiansen, P.H. Cording, and I. L. Gørtz 36:5

1.4 Longest Common Extensions
As application of Theorem 1, we give an improved solution to longest common extension
problem in grammar compressed strings. The first solution to this problem is due to Bille
et al. [9]. They showed how to extend random access queries to compute Karp-Rabin
fingerprints. Combined with an exponential search this leads to a linear space solution to the
longest common extension problem using O(logN log `) time, where ` is the length of the
longest common extension. We note that we can plug in any of the above mentioned random
access solution. More recently, Nishimoto et al. [36] used a completely different approach to
get O(logN + log ` log∗ N) query time while using superlinear O(n logN log∗ N) space. We
obtain:

I Theorem 2. Let S be a grammar of size n representing a string S of length N . We can
solve the longest common extension problem in O(logN + log2 `) time and O(n) space where
` is the length of the longest common extension.

Note that we need to verify the Karp-Rabin fingerprints during preprocessing in order to
obtain a worst-case query time. Using the result from Bille et al. [10] this gives a randomized
expected preprocessing time of O(N logN). Theorem 2 improves the O(logN log `) solution
to O(logN + log2 `). The new bound is always at least as good and asymptotically better
whenever ` = o(N ε) where ε is a constant. The new result follows by extending Theorem 1
to compute Karp-Rabin fingerprints and use these to perform the exponential search from [9].
Due to lack of space the proof of Theorem 2 is deferred to the full version.

2 Preliminaries

Strings and Trees. Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character
in S at index i and let S[i, j] be the substring of S of length j − i+ 1 from index i ≥ 1 to
|S| ≥ j ≥ i, both indices included. Given a rooted tree T , we denote by T (v) the subtree
rooted in a node v and the left and right child of a node v by left(v) and right(v) if the tree
is binary. The nearest common ancestor nca(v, u) of two nodes v and u is the deepest node
that is an ancestor of both v and u. A weighted tree has weights on its edges. A weighted
ancestor query for node v and weight d returns the highest node w such that the sum of
weights on the path from the root to w is at least d.

Grammars and Straight Line Programs. Grammar-based compression replaces a long
string by a small context-free grammar (CFG). We assume without loss of generality that
the grammars are in fact straight-line programs (SLPs). The lefthand side of a grammar rule
in an SLP has exactly one variable, and the forighthand side has either exactly two variables
or one terminal symbol. In addition, SLPs are unambigous and acyclic. We view SLPs as a
directed acyclic graph (DAG) where each rule correspond to a node with outgoing ordered
edges to its variables. Let S be an SLP. As with trees, we denote the left and right child of
an internal node v by left(v) and right(v). The unique string S(v) of length Nv is produced
by a depth-first left-to-right traversal of v in S and consist of the characters on the leafs in
the order they are visited. The corresponding parse tree for v is denoted T (v). We will use
the following results, that provides efficient random access from any node v in S.

I Lemma 3 ([10]). Let S be a string of length N compressed into a SLP S of size n. Given
a node v ∈ S, we can support random access in S(v) in O(logNv) time, and at the same time
reporting the sequence of heavy paths and their entry- and exit points in the corresponding
depth-first traversal of S(v). The number of heavy paths visited is O(logNv).

FSTTCS 2016

36:6 Finger Search in Grammar-Compressed Strings

3 Fringe Access

In this section we consider the fringe access problem. Here the goal is to compactly represent
the SLP, such that for any node v, we can efficiently access locations in the string S(v) close
to the start or the end of the substring. The fringe access problem is the key component in
our finger search data structures. A straightforward solution to the fringe access problem
is to apply a solution to the random access problem. For instance if we apply the random
access solution from Bille et al. [10] stated in Lemma 3 we immediately obtain a linear space
solution with O(logNv) access time, i.e., the access time is independent of the distance to
the start or the end of the string. This is an immediate consequence of the central grammar
decomposition technique of [10], and does not extend to solve fringe access efficiently. Our
main contribution in this section is a new approach that bypasses this obstacle. We show
the following result.

I Lemma 4. Let S be an SLP of size n representing a string of length N . Using O(n) space,
we can support access to position i of any node v, in time O(log(min(i,Nv − i)) + log logN).

The key idea in this result is a van Emde Boas style decomposition of S combined with a
predecessor data structure on selected paths in the decomposition. To achieve linear space
we reduce the predecessor queries on these paths to a weighted ancestor query. We first give
a data structure with query time O((log logN)2 + log(min(i,Nv − i))). We then show how to
reduce the query time to O(log logN + log(min(i,Nv − i))) by reducing the query time for
small i. To do so we introduce an additional decomposition and give a new data structure
that supports fast weighted ancestor queries on trees of small weighted height.

For simplicity and without loss of generality we assume that the access point i is closest
to the start of S(v), i.e., the goal is to obtain O(log(i) + log logN) time. By symmetry we
can obtain the corresponding result for access points close to the end of S(v).

3.1 van Emde Boas Decomposition for Grammars
We first define the vEB decomposition on the parse tree T and then extend it to the SLP S.
In the decomposition we use the ART decompostion by Alstrup et al. [1].

ART Decomposition. The ART decomposition introduced by Alstrup et al. [1] decomposes
a tree into a single top tree and a number of bottom trees. Each bottom tree is a subtree
rooted in a node of minimal depth such that the subtree contains no more than x leaves
and the top tree is all nodes not in a bottom tree. The decomposition has the following key
property.

I Lemma 5 ([1]). The ART decomposition with parameter x for a rooted tree T with N
leaves produces a top tree with at most N

x+1 leaves.

The van Emde Boas Decomposition. We define the van Emde Boas Decomposition of a
tree T as follows. The van Emde Boas (vEB) decomposition of T is obtained by recursively
applying an ART decomposition: Let v = root(T) and x =

√
N . If N = O(1), stop.

Otherwise, construct an ART decomposition of T (v) with parameter x. For each bottom
tree T (u) recursively construct a vEB decomposition with v = u and x =

√
x.

Define the level of a node v in T as level(v) = blog logN − log logNvc (this corresponds
to the depth of the recursion when v is included in its top tree).

P. Bille, A. R. Christiansen, P.H. Cording, and I. L. Gørtz 36:7

3 2 2 3 1 4 3 3 1

l1 l2
bv

v

Bottom trees

Top tree

Nv = 22
sv = 5

le
ft
m
o
st
 t
o
p
 p
at
h

Figure 1 Example of the ART-decomposition and a leftmost top path. In the top, the nodes
forming the top tree are drawn. In the bottom, triangles representing the bottom trees with a
number that is the size of the bottom tree. v’s leftmost top path is shown as well, and the two trees
hanging to the left of this path l1 and l2.

Note that except for the nodes on the lowest level – which are not in any top tree – all
nodes belong to exactly one top tree. For any node v ∈ T not in the last level, let Ttop(v) be
the top tree v belongs to. The leftmost top path of v is the path from v to the leftmost leaf
of Ttop(v). See Figure 1.

Intuitively, the vEB decomposition of T defines a nested hierarchy of subtrees that
decrease by at least the square root of the size at each step.

The van Emde Boas Decomposition of Grammars. Our definition of the vEB decompos-
ition of trees can be extended to SLPs as follows. Since the vEB decomposition is based
only on the length of the string Nv generated by each node v, the definition of the vEB
decomposition is also well-defined on SLPs. As in the tree, all nodes belong to at most one
top DAG. We can therefore reuse the terminology from the definition for trees on SLPs as
well.

To compute the vEB decomposition first determine the level of each node and then
remove all edges between nodes on different levels. This can be done in O(n) time.

3.2 Data Structure
We first present a data structure that achieves O((log logN)2 + log(i)) time. In the next
section we then show how to improve the running time to the desired O(log log(N) + log(i))
bound.
Our data structure contains the following information for each node v ∈ S. Let l1, l2, . . . , lk
be the nodes hanging to the left of v’s leftmost top path (excluding nodes hanging from the
bottom node).

The length Nv of S(v).
The sum of the sizes of nodes hanging to the left of v’s leftmost top path sv = |l1|+ |l2|+
. . .+ |lk|.
A pointer bv to the bottom node on v’s leftmost top path.
A predecessor data structure over the sequence 1, |l1|+ 1, |l1|+ |l2|+ 1, . . . ,

∑k−1
i=1 |li|+ 1.

We will later show how to represent this data structure.

In addition we also build the data structure from Lemma 3 that given any node v supports
random access to S(v) in O(logNv) time using O(n) space.

FSTTCS 2016

36:8 Finger Search in Grammar-Compressed Strings

Query. To perform an access query we proceed as follows. Suppose that we have reached
some node v and we want to compute S(v)[i]. We consider the following five cases (when
multiple cases apply take the first):
1. If Nv = O(1). Decompress S(v) and return the i’th character.
2. If i ≤ sv. Find the predecessor p of i in v’s predecessor structure and let u be the

corresponding node. Recursively find S(u)[i− p].
3. If i ≤ sv +Nleft(bv). Recursively find S(left(bv))[i− sv].
4. If i ≤ sv +Nbv

. Recursively find S(right(bv))[i− sv −Nleft(bv)].
5. In all other cases, perform a random access for i in S(v) using Lemma 3.

To see correctness, first note that case (1) and (5) are correct by definition. Case (2) is
correct since when i ≤ sv we know the i’th leaf must be in one of the trees hanging to the
left of the leftmost top path, and the predecessor query ensures we recurse into the correct
one of these bottom trees. In case (3) and (4) we check if the i’th leaf is either in the left or
right subtree of bv and if it is, we recurse into the correct one of these.

Compact Predecessor Data Structures. We now describe how to represent the predecessor
data structure. Simply storing a predecessor structure in every single node would use O(n2)
space. We can reduce the space to O(n) using ideas similar to the construction of the "heavy
path suffix forest" in [10].

Let L denote the leftmost top path forest. The nodes of L are the nodes of S. A node u is
the parent of v in L iff u is a child of v in S and u is on v’s leftmost top path. Thus, a leftmost
top path v1, . . . , vk in S is a sequence of ancestors from v1 in L. The weight of an edge (u, v)
in L is 0 if u is a left child of v in S and otherwise Nleft(v). Several leftmost top paths in S
can share the same suffix, but the leftmost top path of a node in S is uniquely defined and
thus L is a forest. A leftmost path ends in a leaf in the top DAG, and therefore L consists of
O(n) trees each rooted at a unique leaf of a top dag. A predecessor query on the sequence
1, |l1|+ 1, |l1|+ |l2|+ 1, . . . ,

∑k−1
i=1 |li|+ 1 now corresponds to a weighted ancestor query in L.

We plug in the weighted ancestor data structure from Farach-Colton and Muthukrishnan [18],
which supports weighted ancestor queries in a forest in O(log logn+ log logU)) time with
O(n) preprocessing and space, where U is the maximum weight of a root-to-leaf path and n
the number of leaves. We have U = N and hence the time for queries becomes O(log logN).

Space and Preprocessing Time. For each node in S we store a constant number of values,
which takes O(n) space. Both the predecessor data structure and the data structure for
supporting random access from Lemma 3 take O(n) space, so the overall space usage is O(n).
The vEB decomposition can be computed in O(n log logN) time. The leftmost top paths
and the information saved in each node can be computed in linear time. The predecessor
data structure uses linear preprocessing time, and thus the total preprocessing time is
O(n log logN).

Query Time. Consider each case of the recursion. The time for case (1), (3) and (4) is
trivially O(1). Case (2) is O(log logN) since we perform exactly one predececssor query in
the predecessor data structure.

In case (5) we make a random access query in a node of size Nv. From Lemma 3 we have
that the query time is O(logNv). We know level(v) = level(bv) since they are on the same
leftmost top path. From the definition of the level it follows for any pair of nodes u and w
with the same level that Nu ≥

√
Nw and thus Nbv

≥
√
Nv. From the conditions we have

P. Bille, A. R. Christiansen, P.H. Cording, and I. L. Gørtz 36:9

i > sv + Nbv ≥ Nbv ≥
√
Nv. Since

√
Nv < i ⇔ logNv < 2 log i we have logNv = O(log i)

and thus the running time for case (5) is O(logNv) = O(log i).
Case (1) and (5) terminate the algorithm and can thus not happen more than once.

Case (2), (3) and (4) are repeated at most O(log logN) times since the level of the node we
recurse on increments by at least one in each recursive call, and the level of a node is at most
O(log logN). The overall running time is therefore O((log logN)2 + log i).

In summary, we have the following result.

I Lemma 6. Let S be an SLP of size n representing a string of length N . Using O(n) space,
we can support access to position i of any node v, in time O(log i+ (log logN)2).

3.3 Improving the Query Time for Small Indices
The above algorithm obtains the running time O(log i) for i ≥ 2(log logN)2 . We will now
improve the running time to O(log logN + log i) by improving the running time in the case
when i < 2(log logN)2 .

In addition to the data structure from above, we add another copy of the data structure
with a few changes. When answering a query, we first check if i ≥ 2(log logN)2 . If i ≥
2(log logN)2 we use the original data structure, otherwise we use the new copy.

The new copy of the data structure is implemented as follows. In the first level of the ART-
decomposition let x = 2(log logN)2 instead of

√
N . For the rest of the levels use

√
x as before.

Furthermore, we split the resulting new leftmost top path forest L into two disjoint parts: L1
consisting of all nodes with level 1 and L≥2 consisting of all nodes with level at least 2. For
L1 we use the weighted ancestor data structure by Farach-Colton and Muthukrishnan [18]
as in the previous section using O(log logn + log logN)) = O(log logN) time. However,
if we apply this solution for L≥2 we end up with a query time of O(log logn + log log x)),
which does not lead to an improved solution. Instead, we present a new data structure that
supports queries in O(log log x) time.

I Lemma 7 (see full version). Given a tree T with n leaves where the sum of edge weights
on any root-to-leaf path is at most x and the height is at most x, we can support weighted
ancestor queries in O(log log x) time using O(n) space and preprocessing time.

We reduce the query time for queries with i < 2(log logN)2 using the new data struc-
ture. The level of any node in the new structure is at most O(1 + log log 2(log logN)2) =
O(log log logN). A weighted ancestor query in L1 takes time O(log logN). For weighted
ancestor queries in L≥2, we know any node v has height at most 2(log logN)2 and on any
root-to-leaf path the sum of the weights is at most 2(log logN)2 . Hence, by Lemma 7 we
support queries in O(log log 2(log logN)2) = O(log log logN) time for nodes in L≥2.

We make at most one weighted ancestor query in L1, the remaining ones are made in L≥2,
and thus the overall running time is O(log logN+(log log logN)2+log i) = O(log logN+log i).

In summary, this completes the proof of Lemma 4.

4 Static Finger Search

We now show how to apply our solution to the fringe access to a obtain a simple data
structure for the static finger search problem. This solution will be the starting point for
solving the dynamic case in the next section, and we will use it as a key component in our
result for longest common extension problem.

Similar to the fringe search problem we assume without loss of generality that the access
point i is to the right of the finger.

FSTTCS 2016

36:10 Finger Search in Grammar-Compressed Strings

h3

h2=hs

h1

f i

r1
r2 r3

u

v(hs)

a i ‐ f ‐ a

right(u)

Figure 2 Illustration of the data structure for a finger pointing at f and an access query at location
i. h1, h2, h3 are the heavy paths visited when finding the finger. u corresponds to NCA(vf , vi)
in the parse tree and hs is the heavy path on which u lies, which we use to find u. a is a value
calculated during the access query.

Data Structure. We store the random access data structure from [10] used in Lemma 3
and the fringe search data structures from above. Also from [10] we store the data structure
that for any heavy path h starting in a node v and an index i of a leaf in T (v) gives the
exit-node from h when searching for i in O(log logN) time and uses O(n) space.

To represent a finger the key idea is store a compact data structure for the corresponding
root-to-leaf path in the grammar that allows us to navigate it efficiently. Specifically, let f
be the position of the current finger and let p = v1 . . . vk denote the path in S from the root
to vf (v1 = root and vk = vf). Decompose p into the O(logN) heavy paths it intersects,
and call these hj = v1 . . . vi1 , hj−1 = vi1+1 . . . vi2 , · · · , h1 = vij−1+1 . . . vk. Let v(hi) be the
topmost node on hi (v(hj) = v1, v(hj−1) = vi1 , . . .). Let lj be the index of f in S(v(hj))
and rj = Nv(hj) − lj . For the finger we store:
1. The sequence r1, r2, . . . , rj (note r1 ≤ r2 ≤ · · · ≤ rj).
2. The sequence v(h1), v(h2), . . . , v(hj).
3. The string FT = S[f + 1, f + logN].

Analysis. The random access and fringe search data structures both require O(n) space.
Each of the 3 bullets above require O(logN) space and thus the finger takes up O(logN)
space. The total space usage is O(n).

Setfinger. We implement setfinger(f) as follows. First, we apply Lemma 3 to make random
access to position f . This gives us the sequence of visited heavy paths which exactly
corresponds to hj , hj−1, . . . , h1 including the corresponding li values from which we can
calculate the ri values. So we update the ri sequence accordingly. Finally, decompress and
save the string FT = S[f + 1, f + logN].

The random access to position f takes O(logN) time. In addition to this we perform a
constant number of operations for each heavy path hi, which in total takes O(logN) time.
Decompressing a string of logN characters can be done in O(logN) time (using [10]). In
total, we use O(logN) time.

Access. To perform access(i) (i > f), there are two cases. If D = i − f ≤ logN we
simply return the stored character FT [D] in constant time. Otherwise, we compute the node

P. Bille, A. R. Christiansen, P.H. Cording, and I. L. Gørtz 36:11

u = nca(vf , vi) in the parse tree T as follows. First find the index s of the successor to D in
the ri sequence using binary search. Now we know that u is on the heavy path hs. Find the
exit-nodes from hs when searching for respectively i and f using the data structure from
[10] - the topmost of these two is u. See Fig. 2. Finally, we compute a as the index of f
in T (left(u)) from the right and use the data structure for fringe search from Lemma 4 to
compute S(right(u))[i− f − a].

For D ≤ logN , the operation takes constant time. For D > logN , the binary search
over a sequence of O(logN) elements takes O(log logN) time, finding the exit-nodes takes
O(log logN) time, and the fringe search takes O(log(i− f − a)) = O(logD) time. Hence, in
total O(log logN + logD) = O(logD) time.

5 Dynamic Finger Search

In this section we show how to extend the solution from Section 4 to handle dynamic finger
search. The target is to support the movefinger operation that will move the current finger,
where the time it takes is dependent on how far the finger is moved. Obviously, it should be
faster than simply using the setfinger operation. The key difference from the static finger is
a new decomposition of a root-to-leaf path into paths. The new decomposition is based on
a combination of heavy paths and leftmost top paths, which we will show first. Then we
show how to change the data structure to use this decomposition, and how to modify the
operations accordingly. Finally we shortly describe how to generalize the solution to work
when movefinger/access might both be to the left and right of the current finger.

Before we start, let us see why the data structure for the static finger cannot directly
be used for dynamic finger. Suppose we have a finger pointing at f described by Θ(logN)
heavy paths. It might be the case that after a movefinger(f + 1) operation, it is Θ(logN)
completely different heavy paths that describes the finger. In this case we must do Θ(logN)
work to keep our finger data structure updated. This can for instance happen when the
current finger is pointing at the right-most leaf in the left subtree of the root.

Furthermore, in the solution to the static problem, we store the substring S[f+1, f+logN]
decompressed in our data structure. If we perform a movefinger(f + logN) operation nothing
of this substring can be reused. To decompress logN characters takes Ω(logN) time, thus
we cannot do this in the movefinger operation and still get something faster than Θ(logN).

5.1 Left Heavy Path Decomposition of a Path
Let p = v1 . . . vk be a root-to-leaf path in S. A subpath pi = va . . . vb of p is a maximal heavy
subpath if va . . . vb is part of a heavy path and vb+1 is not on the same heavy path. Similarly,
a subpath pi = va . . . vb of p is a maximal leftmost top subpath if va . . . vb is part of a leftmost
top path and level(vb) 6= level(vb+1).

A left heavy path decomposition is a decomposition of a root-to-leaf path p into an
arbitrary sequence p1 . . . pj of maximal heavy subpaths, maximal leftmost top subpaths and
(non-maximal) leftmost top subpaths immediately followed by maximal heavy subpaths.

Define v(pi) as the topmost node on the subpath pi. Let lj be the index of the finger f
in S(v(pj)) and rj = Nv(pj) − lj . Let t(pi) be the type of pi; either heavy subpath (HP) or
leftmost top subpath (LTP).

A left heavy path decomposition of a root-to-leaf path p is not unique. The heavy path
decomposition of p is always a valid left heavy path decomposition as well. The visited heavy
paths and leftmost top paths during fringe search are always maximal and thus is always a
valid left heavy path decomposition.

FSTTCS 2016

36:12 Finger Search in Grammar-Compressed Strings

I Lemma 8. The number of paths in a left heavy path decomposition is O(logN).

Proof. There are at most O(logN) heavy paths that intersects with a root-to-leaf path
(Lemma 3). Each of these can at most be used once because of the maximality. So there can
at most be O(logN) maximal heavy paths. Each time there is a maximal leftmost top path,
the level of the following node on p increases. This can happen at most O(log logN) times.
Each non-maximal leftmost top path is followed by a maximal heavy path, and since there
are only O(logN) of these, this can happen at most O(logN) times. Therefore the sequence
of paths has length O(logN + log logN + logN) = O(logN). J

5.2 Data Structure
We use the data structures from [10] as in the static variant and the fringe access data
structure with an extension. In the fringe access data structure there is a predecessor data
structure for all the nodes hanging to the left of a leftmost top path. To support access and
movefinger we need to find a node hanging to the left or right of a leftmost top path. We can
do this by storing an identical predecessor structure for the accumulated sizes of the nodes
hanging to the right of each leftmost top path. Again, the space usage for this predecessor
structure can be reduced to O(n) by turning it into a weighted ancestor problem.

To represent a finger the idea is again to have a compact data structure representing the
root-to-leaf path corresponding to the finger. This time we will base it on a left heavy path
decomposition instead of a heavy path decomposition. Let f be the current position of the
finger. For the root-to-leaf path to vf we maintain a left heavy path decomposition, and
store the following for a finger:
1. The sequence r1, r2, . . . , rj (r1 ≤ r2 ≤ · · · ≤ rj) on a stack with the last element on top.
2. The sequence v(p1), v(p2), . . . , v(pj) on a stack with the last element on top.
3. The sequence t(p1), t(p2), . . . , t(pj) on a stack with the last element on top.

Analysis. The fringe access data structure takes up O(n) space. For each path in the left
heavy path decomposition we use constant space. Using Lemma 8 we have the space usage
of this is O(logN) = O(n).

Setfinger. Use fringe access (Lemma 4) to access position f . This gives us a sequence of
leftmost top paths and heavy paths visited during the fringe access which is a valid left heavy
path decomposition. Calculate ri for each of these and store the three sequences of ri, v(pi)
and t(pi) on stacks.

The fringe access takes O(log f + log logN) time. The number of subpaths visited during
the fringe access cannot be more than O(log f + log logN) and we only perform constant
extra work for each of these.

Access. To implement access(i) for i > f we have to find u = nca(vi, vf) in T . Find the
index s of the successor to D = i−f in r1, r2, . . . , rj using binary search. We know nca(vi, vf)
lies on ps, and vi is in a subtree that hangs of ps. The exit-nodes from ps to vf and vi are
now found - the topmost of these two is nca(vi, vf). If t(ps) = HP then we can use the
same data structure as in the static case, otherwise we perform the predecessor query on
the extra predecessor data structure for the nodes hanging of the leftmost top path. Finally,
we compute a as the index of f in S(left(u)) from the right and use the data structure for
fringe access from Lemma 4 to compute S(right(u))[i− f − a].

P. Bille, A. R. Christiansen, P.H. Cording, and I. L. Gørtz 36:13

The binary search on r1, r2, . . . , rj takes O(log logN) time. Finding the exit-nodes from ps
takes O(log logN) in either case. Finally the fringe access takes O(log(i−f−a)+log logN) =
O(logD+ log logN). Overall it takes O(logD+ log logN). Note the extra O(log logN) time
usage because we have not decompressed the first logN characters following the finger.

Movefinger. To move the finger we combine the access and setfinger operations. Find the
index s of the successor to D = i − f in r1, r2, . . . , rj using binary search. Now we know
u = nca(vi, vf) must lie on ps. Find u in the same way as when performing access. From
all of the stacks pop all elements above index s. Compute a as the index of f in S(left(u))
from the right. The finger should be moved to index i− f − a in right(u). First look at the
heavy path right(u) lies on and find the proper exit-node w using the data structure from
[10]. Then continue with fringe searh from the proper child of w. This gives a heavy path
followed by a sequence of maximal leftmost top paths and heavy paths needed to reach vi
from right(u), push the rj , v(pj), and t(pj) values for these on top of the respective stacks.

We now verify the sequence of paths we maintain is still a valid left heavy path de-
composition. Since fringe search gives a sequence of paths that is a valid left heavy path
decomposition, the only problem might be ps is no longer maximal. If ps is a heavy path it
will still be maximal, but if ps is a leftmost top path then level(u) and level(right(u)) might
be equal. But this possibly non-maximal leftmost top path is always followed by a heavy
path. Thus the overall sequence of paths remains a left heavy path decomposition.

The successor query in r1, r2, . . . , rj takes O(log logN) time. Finding u on pi takes
O(log logN) time, and so does finding the exit-node on the following heavy path. Popping a
number of elements from the top of the stacks can be done in O(1) time. Finally the fringe
access takes O(log(i− f − a) + log logN) = O(logD + log logn) including pushing the right
elements on the stacks. Overall the running time is therefore O(logD + log logn).

6 Moving/Access to the Left of the Dynamic Finger

Previously we have assumed i > f , we will now show how this assumption can be removed.
It is easy to see we can mirror all data structures and we will have a solution that works for
i < f instead. Unfortunately, we cannot just use a copy of each independently, since one of
them only supports moving the finger to the left and the other only supports moving to the
right. We would like to support moving the finger left and right arbitrarily. This was not a
problem with the static finger since we could just make setfinger in both the mirrored and
non-mirrored data structures in O(logN) time.

Instead we extend our finger data structure. First we extend the left heavy path
decomposition to a left right heavy path decomposition by adding another type of paths to
it, namely rightmost top paths (the mirrorred version of leftmost top paths). Thus a left
right heavy path decomposition is a decomposition of a root-to-leaf path p into an arbitrary
sequence p1 . . . pj of maximal heavy subpaths, maximal leftmost/rightmost top subpaths and
(non-maximal) leftmost/rightmost top subpaths immediately followed by maximal heavy
subpaths. Now t(pi) = HP |LTP |RTP . Furthermore, we save the sequence l1, l2, . . . , lj (lj
being the left index of f in T (v(pi))) on a stack like the r1, r2, . . . , rj values, etc.

When we do access and movefinger where i < f , the subpath ps where nca(vf , vi) lies can
be found by binary search on the lj values instead of the rj values. Note the lj values are
sorted on the stack, just like the rj values. The following heavy path lookup/fringe access
should now be performed on left(u) instead of right(u). The remaining operations can just
be performed in the same way as before.

FSTTCS 2016

36:14 Finger Search in Grammar-Compressed Strings

References
1 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In Proc.

39th FOCS, pages 534–543, 1998.
2 A. Apostolico and S. Lonardi. Some theory and practice of greedy off-line textual substi-

tution. In Proc. DCC, pages 119–128, 1998.
3 A. Apostolico and S. Lonardi. Compression of biological sequences by greedy off-line textual

substitution. In Proc. DCC, pages 143–152, 2000.
4 Alberto Apostolico and Stefano Lonardi. Off-line compression by greedy textual substitu-

tion. Proceedings of the IEEE, 88(11):1733–1744, 2000.
5 D. Belazzougui, T. Gagie, P. Gawrychowski, J. Karkkainen, A. Ordonez, S. J. Puglisi, and

Y. Tabei. Queries on lz-bounded encodings. In Proc. DCC, pages 83–92, April 2015.
doi:10.1109/DCC.2015.69.

6 Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo Tabei. Access,
rank, and select in grammar-compressed strings. In Proc. 23rd ESA, 2015.

7 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Inform. Process. Lett., 5(3):82–87, 1976.

8 Philip Bille, Patrick Hagge Cording, and Inge Li Gørtz. Compressed subsequence
matching and packed tree coloring. Algorithmica, pages 1–13, 2015. doi:10.1007/
s00453-015-0068-9.

9 Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Benjamin Sach, Hjalte Wedel Vildhøj,
and Søren Vind. Fingerprints in compressed strings. In Proc. 13th SWAT, 2013.

10 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti,
and Oren Weimann. Random access to grammar-compressed strings and trees. SIAM J.
Comput, 44(3):513–539, 2014. Announced at SODA 2011.

11 Guy E. Blelloch, Bruce M. Maggs, and Shan Leung Maverick Woo. Space-efficient finger
search on degree-balanced search trees. In Proc. 14th SODA, pages 374–383, 2003.

12 Gerth Stølting Brodal. Finger search trees. In Handbook of Data Structures and Applica-
tions. Chapman and Hall/CRC, 2004.

13 Gerth Stølting Brodal, George Lagogiannis, Christos Makris, Athanasios K. Tsakalidis, and
Kostas Tsichlas. Optimal finger search trees in the pointer machine. J. Comput. Syst. Sci.,
67(2):381–418, 2003. doi:10.1016/S0022-0000(03)00013-8.

14 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. She-
lat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.
Announced at STOC 2002 and SODA 2002.

15 Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fund.
Inform., 111(3):313–337, 2011.

16 Patrick Hagge Cording, Paweł Gawrychowski, and Oren Weimann. Bookmarks in grammar-
compressed strings. In Proc. 23rd SPIRE, pages x–y, 2016.

17 Paul F. Dietz and Rajeev Raman. A constant update time finger search tree. Inf. Process.
Lett., 52(3):147–154, 1994.

18 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and
algorithms. In Proc. 7th CPM, pages 130–140. Springer, 1996.

19 Rudolf Fleischer. A simple balanced search tree with O(1) worst-case update time. Int. J.
Found. Comput. Sci., 7(2):137–150, 1996. doi:10.1142/S0129054196000117.

20 P. Gage. A new algorithm for data compression. The C Users J., 12(2):23–38, 1994.
21 Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.

A faster grammar-based self-index. In Proc. 6th LATA, pages 240–251, 2012.
22 Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.

LZ77-based self-indexing with faster pattern matching. In Proc. 11th LATIN, pages 731–
742. Springer, 2014.

http://dx.doi.org/10.1109/DCC.2015.69
http://dx.doi.org/10.1007/s00453-015-0068-9
http://dx.doi.org/10.1007/s00453-015-0068-9
http://dx.doi.org/10.1016/S0022-0000(03)00013-8
http://dx.doi.org/10.1142/S0129054196000117

P. Bille, A. R. Christiansen, P.H. Cording, and I. L. Gørtz 36:15

23 Travis Gagie, Pawel Gawrychowski, and Simon J. Puglisi. Approximate pattern matching
in lz77-compressed texts. J. Discrete Algorithms, 32:64–68, 2015. doi:10.1016/j.jda.
2014.10.003.

24 Travis Gagie, Christopher Hoobin, and Simon J. Puglisi. Block graphs in practice. In Proc.
ICABD, pages 30–36, 2014.

25 Leszek Ga̧sieniec, Roman Kolpakov, Igor Potapov, and Paul Sant. Real-time traversal in
grammar-based compressed files. In Proc. 15th DCC, page 458, 2005.

26 Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. LZD factorization:
Simple and practical online grammar compression with variable-to-fixed encoding. In Proc.
26th CPM, pages 219–230. Springer, 2015.

27 Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A
new representation for linear lists. In Proc. 9th STOC, pages 49–60, 1977.

28 Tomohiro I, Wataru Matsubara, Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masay-
uki Takeda, Kazuyuki Narisawa, and Ayumi Shinohara. Detecting regularities on grammar-
compressed strings. Inform. Comput., 240:74–89, 2015.

29 J.C. Kieffer and E.H. Yang. Grammar based codes: A new class of universal lossless source
codes. IEEE Trans. Inf. Theory, 46(3):737–754, 2000.

30 J.C. Kieffer, E.H. Yang, G. J. Nelson, and P. Cosman. Universal lossless compression via
multilevel pattern matching. IEEE Trans. Inf. Theory, 46(5):1227–1245, 2000.

31 S. Rao Kosaraju. Localized search in sorted lists. In Proc. 13th STOC, pages 62–69, New
York, NY, USA, 1981. doi:10.1145/800076.802458.

32 N. Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. Proc. IEEE,
88(11):1722–1732, 2000.

33 Kurt Mehlhorn. A new data structure for representing sorted lists. In Proc. WG, pages
90–112, 1981.

34 Gonzalo Navarro and Alberto Ordónez. Grammar compressed sequences with rank/select
support. In 21st SPIRE, pages 31–44. Springer, 2014.

35 Craig G. Nevill-Manning and Ian H. Witten. Identifying Hierarchical Structure in Se-
quences: A linear-time algorithm. J. Artificial Intelligence Res., 7:67–82, 1997.

36 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. In Proc. 41st MFCS,
pages 72:1–72:15, 2016. doi:10.4230/LIPIcs.MFCS.2016.72.

37 William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990.

38 W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

39 Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica,
16(4/5):464–497, 1996.

40 Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and S. Arikawa.
Byte Pair encoding: A text compression scheme that accelerates pattern matching. Tech-
nical Report DOI-TR-161, Dept. of Informatics, Kyushu University, 1999.

41 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J.
ACM, 32(3):652–686, July 1985.

42 Toshiya Tanaka, I Tomohiro, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing convolution on grammar-compressed text. In Proc. 23rd DCC, pages 451–460,
2013.

43 I Tomohiro, Takaaki Nishimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Compressed automata for dictionary matching. Theor. Comput. Sci., 578:30–41, 2015.

44 P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Theory Comput. Syst., 10(1):99–127, 1976.

FSTTCS 2016

http://dx.doi.org/10.1016/j.jda.2014.10.003
http://dx.doi.org/10.1016/j.jda.2014.10.003
http://dx.doi.org/10.1145/800076.802458
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.72

36:16 Finger Search in Grammar-Compressed Strings

45 Elad Verbin and Wei Yu. Data structure lower bounds on random access to grammar-
compressed strings. In Proc. 24th CPM, pages 247–258, 2013.

46 Terry A. Welch. A technique for high-performance data compression. IEEE Computer,
17(6):8–19, 1984.

47 E.H. Yang and J.C. Kieffer. Efficient universal lossless data compression algorithms based
on a greedy sequential grammar transform – part one: Without context models. IEEE
Trans. Inf. Theory, 46(3):755–754, 2000.

48 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

49 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate
coding. IEEE Trans. Inf. Theory, 24(5):530–536, 1978.

	Introduction
	Related Work
	Our results
	Technical Overview
	Longest Common Extensions

	Preliminaries
	Fringe Access
	van Emde Boas Decomposition for Grammars
	Data Structure
	Improving the Query Time for Small Indices

	Static Finger Search
	Dynamic Finger Search
	Left Heavy Path Decomposition of a Path
	Data Structure

	Moving/Access to the Left of the Dynamic Finger

