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Abstract
We generalise the fundamental concept of LZ77 factorisation from strings to trees. A tree is
represented as a collection of edge-disjoint fragments that either consist of one node or has already
occurred earlier (in the BFS order). Similarly as for strings, such a collection uniquely determines
the tree, so by minimising the number of fragments we obtain a compressed representation of
the tree. We show that our generalisation has several useful properties of the standard LZ77
factorisation: it can be computed in polynomial time and its simpler variant in linear time; its
size is not larger than the smallest grammar for a tree; it can be transformed (in linear time)
into a tree grammar of size O(rg log(n/(rg))), where n is the size of the tree, g the size of the
smallest grammar for this tree and r the maximal arity of the nodes in the tree, which matches
a recent bound of Jeż and Lohrey [STACS 2014], but with a simpler and more modular proof.
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1 Introduction

Many popular compression text methods are based on the concept of block compression,
where the input text is divided into blocks, each block being either a single letter or a longer
block defined using the already compressed prefix (e.g. its arbitrary substring). Examples
of such methods include LZ77, LZ78 and LZW algorithms. Another closely connected and
particularly clean method is grammar compression, where we represent the input text as a
CFG deriving exactly one word. Such a grammar is usually called a straight-line program
(SLP). It is known that grammar compression captures most if not all block compression
methods with small or no overhead in the size of the representation, yet it is much easier
to operate on. This makes it particularly attractive given that the compressed data is
often not only stored, but also accessed and processed on demand, and decompressing it
defeats the purpose of having a small compressed representation in the first place. Thus,
a recent trend is a design of algorithms working directly on a compressed representation
of the data. Because grammar compression has an inductive definition, it is well-suited for
such processing. In fact, similar algorithms for block compression routinely transform the
the compressed representation into an equivalent SLP and only afterwards process it. The
connection between grammar and block compression is used also in the other direction, for
instance: computing a smallest SLP is NP-hard [8, 29, 7], but one can transform the LZ77
representation into an SLP, in this way we obtain an approximation algorithm with currently
best known approximation ratio [25, 8, 19].
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35:2 LZ77 Factorisation of Trees

However, often the data has a more complex structure than a one-dimensional text.
In particular, it is often the case that it has a natural hierarchical structure, which can
be represented as a tree. Such a tree can be of course flattened and then treated as the
input text, but this disregards the structure of the original data and hence might make
processing the compressed representation (provably) difficult [10]. Hence it is desirable to
design compression methods that retain the tree structure.

The folklore tree compression preserving the tree structure are directed acyclic graphs
(DAGs), in which identical subtrees are shared. They yield up to exponential compression,
processing DAGs is usually easy. The sharing mechanism of DAGs is limited, and it does
not generalise the SLP: text an, when treated as a tree, is incompressible using DAGs. Tree
SLP (TSLP) are a generalisation of SLP to the case of trees, which allow sharing of more
general substructures. Moreover, DAG are subclass of TSLP and TSLP can be exponentially
smaller than DAG. As in the case of SLP [8, 29], determining the size of the smallest TSLP
is NP-hard, but there are approximation algorithms for this problem [17, 20] as well as
heuristical ones [23, 5, 6].

TSLP became a de facto standard of tree compression in computer science, as several
types of queries can be computed on TSLP in polynomial time [24] and there are various
applications of TSLPs in other subfields. Most notably, they were used in problems related
to context unification [13, 14, 15, 21], culminating in the recent proof that context unification
is in PSPACE [18]. Moreover, studying matching problems for TSLP became an area on its
own [11, 12, 27]. Other applications of TSLP (and SLP) can be found in a recent survey [22].

There are other approaches at tree grammar compression: Akutsu [2] generalised SLP to
trees in a different (and incomparable) way. Bille et al. [3] proposed top trees, which are a
variant of TSLP for unranked and unlabelled trees. Bojańczyk and Walukiewicz [4] proposed
the model of forest algebras, which is designed specifically to handle unranked trees (while
their model does not mention grammars but rather expressions, it can be easily trimmed to
yield an TSLP-like formalism).

There were attempts at defining a variant of block compression designed for trees, but
none of them became standard nor did they have ties to tree grammar compression. In
particular, so far exploiting the connection between the grammar and block compression, so
popular in text compression, did not occur for trees.

Our contribution. We propose a model of block compression for trees, inspired by both the
notion of LZ77 and TSLPs. Similarly to LZ77, it represents the tree as a collection of trees
(with “holes” that are placeholders for another trees), called fragments; each fragment is
either an individual node or has already appeared earlier (in the BFS order) in the tree. Such
factorisation can be compactly represented: each fragment is encoded by the BFS-addresses of
the root and all the holes of its earlier occurrence. We give an O(n3) algorithm constructing
the smallest such representation for the general case, and a specialised linear algorithm for
the case when fragments have at most one hole. Such factorisations are related to TSLPs
in a similar way as LZ77 are related to SLPs: it is not difficult to see each TSLP can be
transformed into a factorisation without size increase. We prove that a factorisation can be
transformed into a TSLP defining the same tree yielding an approximation algorithm for the
smallest TSLP problem, the approximation ratio matches the best known [20].

2 Notions, definitions, basic results

Trees. We consider Σ-labeled rooted trees: The children of every node are ordered (by
the usual left-to-right order) and each node is labeled with a letter from a fixed ranked
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Figure 1 A tree f(c, A(a(f(c, c)), f(a(c), c))) and the result of applying a rule A(y1, y2) →
f(f(y1, c), y2).

alphabet Σ, i.e. every a ∈ Σ has arity ar(a). The label of a node u is denoted by label(u) and
determines its number of children ar(label(u)). By children(u) we denote the children of u,
and by parent(u) its parent. We assume integer alphabet, that is, Σ = {1, 2, . . . , n}, where n

is the size of the tree; thus, node labels can be sorted in O(n) time using RadixSort. By r we
denote the maximal arity of nodes in the tree. We often employ a BFS-order on the nodes
of the tree, denoted by ≤BF S or ≤, when this causes no confusion; it is a linear order. By
BFS-addresses (or addresses) we denote the BFS-order numbers.

We consider also trees with holes that represent missing subtrees. The holes are represented
by labels y, y1, y2, . . . from Y that is disjoint with Σ. For the purposes of building trees holes
have arity 0. Labels of different holes are different. As holes represent missing trees, we
can substitute trees (or with trees with holes) for them: we delete the appropriate hole and
replace it with the appropriate tree.

LZ77. As we model our tree factorisation on the LZ77 factorisations, let us recall the notion
of LZ77 for strings: An LZ77 factorisation of a word w is a representation w = f1f2 · · · f`,
where each fi (called phrase) is either a single letter or it already occurred in the text,
formally: fi = w[j . . j + |fi| − 1] for some j ≤ |f1 · · · fi−1|. If for some fi as in the latter
case it holds that j + |fi| > |f1 · · · fi−1| (informally, the whole phrase occurred earlier),
this factorisation is called self-referencing; it is called non-self-referencing otherwise. The
self-referencing factorisations are in some cases more succinct than the non-self referencing
ones, with the trivial example being string ak. Each fi can be represented as a single letter or
as a pair (j, |fi|), where j is as in the explanation above, yielding a compressed representation
of a LZ77 factorisation. The (compressed) size of a factorisation f1f2 · · · f` is `. Smallest
LZ77 factorisation of a given text can be computed in linear time.

Tree grammars. Tree grammars extend CFG to trees: they have nonterminals (finite set
N), terminals (ranked alphabet Σ), rules (P ) and a starting symbol (S). Nonterminals
generate trees with holes: each nonterminal A has an arity ar(A) and it generates a tree
with ar(A) holes. Thus in the rules we treat A as ar(A)-ary function symbol and in the rule
A→ t the tree t has ar(A) holes, labeled with y1, . . . , yar(A). To stress the dependence on
holes, we sometimes write the rule as A(y1, . . . , yar(A))→ t.

We apply a rule A→ t as follows: given a tree s we can rewrite its subtree A(t1, . . . , tar(A))
by t with each yi replaced by ti. Intuitively, we replace an A-labeled node by t(y1, . . . , yar(A))
and identify the j-th child of A with the unique yj-labeled node of t, see Fig. 1.

The size of a rule A(y1, . . . , yar(A))→ t is |t| − ar(A), i.e. the number of non-holes nodes
in t. This makes sense, as we can assume that BFS order of holes’ labels in t is y1, . . . , yar(A)
and all of them occur in t, so we do not have to list them when describing t. The size of a
tree grammar is the sum of sizes of its rules.

FSTTCS 2016



35:4 LZ77 Factorisation of Trees

Figure 2 BFS-factorisation: for simplicity, the node labels were suppressed, only one label of
each arity is used. The fragments are enclosed in blobs, the holes are represented as full dots, other
nodes are free. Note that nodes 7, 11, 14 are free nodes and holes in their fragments. The dashed
arrows are definitions.

In Tree SLP (or TSLP for short) we additionally insist that for A ∈ N there is exactly
one production A→ t and that nonterminals are linearly ordered such that S is the smallest
nonterminal and if A→ t and B occurs in t then B > A. So, TSLP produces a unique tree.

Factorisations of trees. A fragment F is a connected subtree of a tree T in which each
node either has the same label a as in T (and then has ar(a) children) or is labeled with
some y ∈ Y, in which case it is a leaf (in F ) and it is called a hole. The arity of a fragment
is its total amount of holes, a fragment of arity k is called a k-fragment. We require that
a fragment has at least 2 non-hole nodes. A free node is defined similarly as a fragment, but
it has exactly one non-hole node, i.e. it has a non-hole root and all its children are holes.
When referring to a free node rooted in v we call it simply v.

A factorisation F of a tree T , denoted by (T,F), is a collection of edge-disjoint fragments
and free nodes, such that each node of T is either a non-hole node in some fragment or a
free node. Such a factorisation is a BFS-factorisation if for each fragment F ∈ F , which is
rooted in v ∈ T , there is an isomorphic fragment F ′ of T , called the definition of F , rooted
in v′ <BF S v; note that F ′ is not necessarily in F and that F and F ′ may overlap. See
Fig. 2 for an example. Neither a factorisation, nor the BFS-factorisation of a tree is unique,
similarly to the LZ77 factorisation of a string.

For v ∈ F the corresponding v′ ∈ F ′ is the definition of v, denoted by def [v], a link
to this node is a definition link. The arity of a factorisation is the maximal arity of the
fragments in it. An `-factorisation is a factorisation of arity at most `.

Note that nodes are shared, but in such a case in the “lower” fragment (or free node)
this node is a root and in the “upper” a hole. In this way nodes in the tree can have two
definitions: one as a definition of a hole and one as a definition of a root. We store only the
latter but use a term “definition of a hole”, as it is useful in description and analysis.

We use the BFS order because the condition def [v] < v required for the root of the
fragment is inherited by other nodes in this fragment. Thus, given a fragment, we can extend
it by a node above the root (at the hole) as long as the labels are the same.

I Lemma 1. Let F be a fragment in a BFS-factorisation of a tree, D a definition of F and
u, v be two nodes in F . Then def [u] < u if and only if def [v] < v.

In case of TSLP, the maximal arity of nonterminals in a grammar usually multiplicatively
affects the running time and in general makes the reasoning about TSLP harder. Luckily, it
is known that any TSLP can be converted to a one that uses only nonterminals of arity 0
and 1, with a polynomial size increase [24]. Similar result can be also obtained for the tree
factorisations: a factorisation can be converted to a 1-factorisation, with a polynomial size
increase:
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2, 11

1, 7, 14

Figure 3 Compressed BFS-factorisation of the tree from Fig. 2. The fragments are depicted by
square boxes, the addresses of their definitions and holes are beneath the boxes.

I Lemma 2. In any factorisation an `-fragment can be (effectively) replaced with at most
(`−1)(r−2) 0-fragments, `−1 free nodes and (2`−1) 1-fragments. If the original factorisation
was a BFS one, also the obtained one is.

Compressed representation. The compressed BFS-factorisation for a BFS-factorisation
(T,F) is given by a tree: each fragment and free node is represented as a single node; an
edge between two fragments or free nodes means that they share a node in T (in other words:
a hole in one of them is a root in the other). Each fragment-node stores addresses (in T )
of its root and holes. See Fig. 3.

A compressed BFS-factorisation is valid if it corresponds to some BFS-factorisation of
a tree; not every compressed BFS-factorisation is valid, as it may use undefined addresses.
Still, a valid compressed BFS-factorisation defines a unique tree, which can be computed by
iteratively adding the nodes in the BFS order.

I Lemma 3. A valid compressed BFS-factorisation corresponds to exactly one BFS-factori-
sation of a tree, which can be computed in O(|T |) time, where T is the resulting tree.

For the purpose of storing the compressed factorisation, we count the storage size of
the factorisation in terms of memory cells rather than bits and assume that we can fit one
address in O(1) memory cells. Note that this is also the assumption for LZ77.

I Lemma 4. The compressed BFS-factorisation of (T,F) uses O(|F|) memory cells.

In the full version of this paper, we consider also weighted size of factorisations: the
weight of an i-fragment is wi and of a free node is 1; we assume 1 ≤ w0 ≤ w1 ≤ . . . . The
(weighted) size of the factorisation is the sum of weights of its fragments. To streamline the
presentation we do not consider the weights, though our algorithms work also in weighted
case.

Comparison with the text model. A text can be seen as a tree using only nodes of arity 1,
and the compressed BFS-factorisation of such a tree corresponds with a compressed LZ77
factorisation of this text: each LZ77 phrase can be extended to the right with an extra hole
added at the end. The sizes and the descriptions of two such factorisations are similar.

In case of text we can distinguish between self-referencing and non-self-referencing
factorisation. In case of trees we use only the self-referencing variant, as a clear and useful
definition of a non-self-referencing one is elusive.

Comparison with tree grammars. In case of strings, the size of the LZ77 is a lower bound
for the size of the grammar generating the same string [25, 8]; the same holds for trees; this
observation is the first step in the approximation algorithm for the smallest tree grammar
problem, presented in Section 4.

FSTTCS 2016
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I Lemma 5. The size of the smallest compressed BFS-factorisation for a tree T is not larger
than the size of the smallest TSLP for T .

3 Computing BFS-factorisations

In this section we first present a polynomial time dynamic programming algorithm Simple-
Factors, which computes an optimal BFS-factorisation (of unbounded arity). Then, we show
how to modify it, so that it computes optimal k-BFS-factorisations. Finally, using additional
insight, we give a specialised algorithm for 1-BFS-factorisations that runs in linear time. We
focus on describing how to calculate the number of fragments in an optimal BFS-factorisation,
reconstructing the corresponding factorisation is straightforward.

Unbounded arity. Let Tu denote the tree rooted in u and opt(u) the number of fragments
in an optimal factorisation of Tu into fragments occurring earlier in the whole tree T (so not
necessarily in Tu). To compute opt(u) SimpleFactors constructs a table T [u, v], which stores
the smallest size of a factorisation of Tu, such that v is the definition of u (or T [u, v] = +∞,
if label(u) 6= label(v)). We fill T [u, v] in a reversed BFS order, thus when calculating T [u, v]
the T [u′, v′] and opt(u′) are known for every u′ ∈ children(u) and v′ < u′.

Let children(u) = (u1, u2, . . . , ud) and children(v) = (v1, v2, . . . , vd). Then T [u, v] is 1
plus the number of fragments in subtrees rooted in ui, for each i. If ui is a hole this is
opt(ui); otherwise this is T [ui, vi]− 1 (the ‘−1’ is for the fragment rooted in ui in T [ui, vi],
which is not counted in T [u, v]). We take the minimum of those two numbers separately
for each i. Thus T [u, v] = 1 +

∑d
i=1 min(T [ui, vi]− 1, opt(ui)). Similarly, opt(u) = min(1 +∑d

i=1 opt(ui), minv<u T [u, v]), where the (outer) minimum represents the two possibilities:
there is a free node or a fragment rooted in u.

I Theorem 6. SimpleFactors computes the size of the smallest BFS-factorisation (of un-
bounded arity) using quadratic time and space.

Bounded arity. We modify SimpleFactors into BoundedFactors, which computes smallest
k-BFS-factorisation, by introducing another parameter. In particular, we again allow factor-
isations of Tu into fragments that occur earlier in T , not necessarily in Tu.

Let T [u, v, h] be the size of an optimal k-factorisation for Tu such that v < u is a
definition of u and the fragment rooted in u has h holes. Let children(u) = (u1, u2, . . . , ud)
and children(v) = (v1, v2, . . . , vd). Any factorisation of Tu, when restricted to Tui , is either a
free node with some fragments attached or an optimal factorisation of Tui

of a cost T [ui, vi, hi];
moreover, the sum of hi over all children is h, i.e. h1 + h2 + · · ·+ hd = h, where hi = 1 if ui

is a hole. Thus BoundedFactors fills the table T [u, v, h] similarly as SimpleFactors the T [u, v]
but computes an appropriate min-plus product of T [ui, vi, hi]− 1 instead of taking a simple
minimum; then opt(u) is computed from T [u, v, h] as previously. A careful analysis yields
O(n2 min(k2, n)) bound on the running time.

I Theorem 7. BoundedFactors computes the size of the smallest k-BFS-factorisation and
runs in O(n2 min(k2, n)) time and O(n2k) space, where n is the size of the tree and k the
maximal arity of fragments in the k-BFS-factorisation.

1-BFS-factorisations
BoundedFactors runs in quadratic time in case of 1-BFS-factorisations. We now present
a specialised version of BoundedFactors, called 1-Factors, which achieves linear time.
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I Theorem 8. The algorithm 1-Factors runs in linear time and computes the size of the
smallest 1-BFS-factorisation.

Outline. Each factorisation of Tu has one of the following types: (F1) it is a single 0-
fragment; (F2) the root u is a free node; (F3) there is a 1-fragment rooted in u such that its
hole is a leaf. 1-Factors processes the nodes in a BFS-reversed order and for each node u

computes for Tu the optimal factorisation of each type and takes the smallest among them.
Computing the F1 factorisations of all trees boils down to grouping the subtrees {Tu}u∈T

into isomorphism classes, which is explained in detail later on. F2 factorisation is easy to
calculate, as we already know the optimal factorisation trees rooted in children of u. Lastly,
we need to compute F3 factorisations only for nodes that do not have an F1 factorisation, as
it is always smaller than F3.

I Lemma 9. For every u, the size of F1 factorisations of Tu (if feasible) is at most the size
of F3 factorisation of Tu.

Call the nodes that have an F1 factorisation or are leaves bottom part and the remaining
nodes the top part.

I Lemma 10. Top part of the tree is a subtree rooted in the root of T ; it can be computed in
linear time.

Now, for F3 factorisations, we would like to also group 1-fragments into isomorphism
classes, but there are O(n2) of them. Thus we limit their amount: we show that it is enough
to consider maximal (in an appropriate sense) 1-fragments and prove that there are O(n) of
them. Furthermore, using additional insight we can compute in linear time a superset of all
1-factors used in an optimal 1-factorisation. Then it remains to calculate their actual cost,
to see whether they should be used in the 1-factorisation. It turns out that those candidates
are in some sense consecutive and we can process them in amortised constant time.

F1 factorisations. Two trees Tu and Tv are isomorphic, denoted by Tu ≡ Tv, if label(u) =
label(v) and the subtrees rooted at the corresponding children of u and v are also isomorphic.
Grouping subtrees of T into isomorphism classes in linear time is already folklore [1].

I Lemma 11. Given a tree T we can calculate in total time O(|T |) for every node u:
(1) a number id(u) ∈ {1, 2, . . . , |T |}, such that Tu ≡ Tv ⇐⇒ id(u) = id(v) (2) a node v < u

such that id(u) = id(v), whenever such v exists.

F3 factorisations. If F ′ is a definition of a fragment F then trees rooted in a node and its
definition are mostly isomorphic: define for every node u a number siblings-id(u), such that
siblings-id(u) = siblings-id(v) if and only if the following conditions hold: (1) label(parent(u))
= label(parent(v)); (2) u is the k-th child of parent(u) and v is the k-th child of parent(v);
(3) for every i ∈ {1, . . . , ar(parent(u))} \ {k}, the trees rooted in i-th child of parent(u) and
the i-th child of parent(v) are isomorphic. These can be efficiently computed, by appropriate
grouping of nodes and its siblings by RadixSort.

I Lemma 12. Given a tree T we can calculate in total O(|T |) time for every node u its
number siblings-id(u) ∈ {1, 2, . . . , |T |}.

Consider a 1-fragment F rooted at u1 and a hole at uk+1: the path from u1 to uk+1,
denoted as u1, . . . , uk+1, is the spine of F ; a spine is earlier than other if its hole is earlier.

FSTTCS 2016
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Given a path u1, . . . , uk+1 we call it a spine without explicitly mentioning the 1-fragment.
The length of the spine u1, . . . , uk+1 is k. A spine u1, . . . , uk+1 is isomorphic to a spine
v1, . . . , vk+1 if and only if siblings-id(ui) = siblings-id(vi) for i = 2, . . . , k + 1. Then 1-
fragments are isomorphic if and only if their spines are. This characterisation is used to find
isomorphism classes of 1-fragments. Given such classes, we can easily determine, whether
a fragment F can be used in a BFS-factorisation (i.e. whether it has an earlier definition).

I Lemma 13. 1-fragments are isomorphic if and only if their spines are. In particular,
a 1-fragment F can be used in a 1-BFS-factorisation if and only if there is an earlier spine
isomorphic to the spine of F .

A subsequence of a spine is also a spine, thus we extend the spines up as far as possible:
a spine u1, . . . , uk+1 is up-maximal if and only if it has an earlier isomorphic spine and
parent(u1), u1, · · · , uk+1 does not. A 1-fragment is up-maximal when its spine is and 1-
factorisation is up-maximal if each of its 1-fragment is. Any optimal 1-BFS-factorisation
can be converted into an up-maximal one without increasing its size; thus we consider only
up-maximal 1-factorisations.

Up-maximal spines can be compactly represented: for every node v let spine(v) be its
highest ancestor such that the path starting at spine(v) and ending at v is an up-maximal
spine; if there is no such an ancestor then spine(v) = v. All spine(v) and the lengths of the
corresponding spines can be calculated in linear-time using a suffix tree of a tree [28].

I Lemma 14. Given a tree T , we can find in O(|T |) total time for every node v its spine(v)
as well as the length of the spine beginning at spine(v) and a hole at v.

Now, F3 factorisation are computed as follows: we process the tree in the reversed
BFS order. When we are in a non-leaf node u we activate it, a node u is deactivated
when we processed spine(u). When we are in node u from a top part, we choose from its
active descendent v with minimal opt(v), if such v exists. We call such a query a minad
(minimal active descendent) query, and denote by minad(u). Then the cost of the smallest F3
factorisation of Tu is 1 + opt(minad(u)), or undefined, if minad(u) is not defined. Note that
opt(minad(u)) is already known, as minad(u) is processed. The data structure presented
below answers minad queries in amortised O(1) time.

Data structure for minad queries. We exploit the structure of spines in the top part of
the tree. Firstly, the top part can be represented as union of vertex disjoint paths: A snake
originates in a node from a top part; if u is on a snake and it has a unique son u′ that is not
in a bottom part then u′ is also on a snake; each snake is maximal: it cannot be extended
neither up nor down. A spine of a node in a top part is contained in a single snake, perhaps
except the hole.

I Lemma 15. Snakes are vertex-disjoint paths, all snakes can be constructed in linear time.
Let u be in a top part and let Tu have an F4 factorisation. Then there are: an optimal

up-maximal F4 factorisation of Tu and a snake u1, u2, . . . , us such that u = ui and the hole
of fragment rooted in u is either at some uj, where j > i, or at a child of us.

For a snake u1, . . . , us we ask queries minad(us), minad(us−1), . . . , minad(u1) in this order.
Our data structures are constructed for a snake and updated when we process consecutive
nodes of a snake. These data structures are called S1 and S2 later on, the former stores the
active children of us and the other the active nodes from the snake. A node v is represented
in these data structures as a pair (i, opt(v)), where spine(v) = ui. These data structures
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support three operations (on a set of elements S): insert(x′, y′) inserts a new pair (x′, y′)
into S such that x′ ≤ x for all (x, y) ∈ S; remove(x′) removes from S all pairs (x, y) such
that x ≥ x′; min returns the pair (x, y) ∈ S with the smallest value of y. A data structure
supporting those operations is standard.

I Lemma 16. A set S of pairs (x, y) can be maintained in linear space, so that insert,
remove, min operations take amortised constant time.

This data structure is used in our setting as follows: when we begin to process a snake
u1, . . . , us, we insert into S1 each child u of us, whenever spine(u) 6= u (so spine(u) = uj

for some j); this can be done in linear time using RadixSort. We also initialize S2 as empty.
After processing ui we create a pair (j, opt(ui)), where spine(ui) = uj , insert it into S2 and
remove from S1, S2 elements with first coordinate less or equal to i. To calculate minad(ui)
we take minima from S1, S2 and return the minimum of their second coordinates.

Note that insert(x′, y′) assumes x′ ≤ x for all (x, y) ∈ S. This is guaranteed for S1 as we
sort the pairs by their first coordinate before inserting, for S2 this requires a simple proof.

4 Application: approximation of the smallest TSLP

In the string case, the algorithm transforming the LZ77 representation into a grammar [25,
8, 26, 19] (with a O(log(n/`)) size increase, where ` is the size of the LZ77 representation
and n the length of the text) has profound implications. On one hand, this is still the
best approximation algorithms for the smallest SLP construction, in particular it returns
a grammar at most quadratic in size of the smallest one, which is for instance usually good
enough for computational complexity considerations. On the other hand, this algorithm is
used as a first step in algorithms processing LZ77 compressed text, see for instance [16].

In this section we show a similar result for our factorisations of trees: We give an algorithm
that transform a tree factorisation of size ` into a TSLP of size O(`r + `r log(n/`g)), where
r is the maximal arity on nodes in the tree and n the size of the tree. In particular, the
approximation ratio is O(rg log(n/(rg))), which matches a recent best known bound [20]; we
call our algorithm FactToG. This algorithm generalises the approach of [19] from the string
case to tree case.

I Theorem 17. FactToG runs in linear time and returns a TSLP of size O(rg+rg log(n/rg)),
where n is the size of the input tree T , g the size of the smallest TSLP for T and r the
maximal arity of nodes in T .

4.1 Idea
FactToG repeatedly applies two operations: leaf compression and unary nodes compression.
Given a tree T leaf compression deletes all leaves in T and relabels their parents in a consistent
way: the new label f ′ of the node v uniquely determines the previous label of v (say f), on
which positions v had leaf-children (say i1, i2, . . . , i`) and what were their labels (say c1, . . . ,
c`). The “reverse” of leaf compression corresponds to a TSLP rule of a form

f ′(y1, . . . , yi1−1, yi1+1, . . . , yi2−1, yi2+1, . . . , yi`−1, yi`+1, . . .)→
f(y1, . . . , yi1−1, c1, yi1+1, . . . , yi2−1, c2, yi2+1, . . . , yi`−1, c`, yi`+1, . . .) . (1a)

Unary nodes compression chooses some neighbouring unary nodes (say labelled with a, b)
deletes the lower of them and relabels the remaining one (say with c); the new label uniquely
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35:10 LZ77 Factorisation of Trees

determines the original labels. The corresponding TSLP rule is

c(y)→ a(b(y)) . (1b)

These operations are iterated until a single-node tree is obtained.
We want to perform several unary nodes compression in parallel. As pairs of unary

nodes may overlap, we choose a set of non-overlapping pairs. For appropriate choice the leaf
compression followed by (parallel) unary nodes compression reduces the size of the tree by a
constant factor. We call this a phase of FactToG. One phase can be implemented in linear
time, assuming that RadixSort for grouping nodes; this yields a total linear running time.

As we end FactToG when the tree is reduced to a single node, the TSLP rules produced
on the way yield an TSLP generating the input tree. It remains to bound its size in terms
of the smallest TSLP for the input tree, thus yielding a bound on the approximation ratio.
To this end we use the 1-BFS-factorisations: firstly, we show that the size of the smallest
1-BFS-factorisation is O(rg), where r is the maximal arity of nodes in the input tree and g

the size of the smallest TSLP for it. Then we show that if T has a 1-factorisation of size m

then rules introduced during one phase of FactToG have size O(m) and that the resulting
tree also has a 1-factorisation of size m. As there are O(log n) phases, this yields O(rg log n)
bound on the size of the TSLP, better estimations yield the actual bound in Theorem 17.

The bound on the size of the produced rules is rather straightforward, but the construction
of a 1-factorisation of the resulting tree is involved. To this end ensure that when we perform
a compression operation on a fragment, we perform the same operation also on its definition.
In particular, each compression operation should be performed wholly within or wholly
outside a fragment (or definition of a fragment). As a result, way the factorisation of the
resulting tree is “inherited” from the original tree.

To guarantee this property on one hand we choose the pairs of unary nodes to compress
with the help of the factorisation, and on the other we modify the factorisation by “popping”
the nodes that are compressed with nodes outside the fragments: we remove such a node
from the fragment and make it a free node. This sometimes introduces new fragments, but
they are of specific form and are under control. We call the (restrictions of) fragments that
were present in the input original fragments and the created ones the introduced fragments.

Due to compression operations we cannot guarantee that we keep a BFS-factorisation.
Instead, we store an order “<” on the nodes and require that def [v] < v (as well as some
other technical conditions). The actual order is obtained in a natural way: it is the original
BFS order restricted to the nodes in the current tree.

4.2 Representation and basic operations
Factorisation. The factorisation depends on an order <, we refer to the factorisation as
(T,F , <) and call it a proper factorisation if (1) def [v] < v; (2) parent[v] < v and (3) a hole
of a fragment is not a root of the same fragment. The first condition ensures that a proper
factorisation is a generalisation of a BFS-factorisation, second ensures that the order on the
vertices is meaningful and the third that there are no useless fragments. Initially < is the
BFS order on the input tree and clearly for BFS-order the 1-BFS-factorisation is proper. We
often process the tree by considering nodes in the stored order, then we say that we traverse
the tree.

Each node v in a fragment (except for the hole), has a definition link def [v] to its definition.
We also store bitflags telling whether a node is a root or a hole of a fragment. A (T,F , <)
stores the order <.
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Popping nodes. During the algorithm we modify the factorisation by popping nodes:
Popping a unary node up. When a root v of a fragment is a unary node, we make v a free
node and its unique child a new root.
Popping a unary node down. When a parent v of a hole is a unary node, we perform
symmetrical operations: we make v a free node and make it a hole of this fragment.
Popping a nullary node. When a whole 0-fragment consist of a single nullary node v, we
turn it into a free node.
Popping a node down. When v is a parent of a hole we remove the current hole from the
fragment, make v a new hole, make v a free node and create new 0-fragments rooted in
each child of v, except the ex-hole. This generalises the popping of a unary node down.

When the variant is clear from the context, we simply refer to popping a node v. A simple
case inspection shows that popping nodes turns a proper factorisation into a proper one.

I Lemma 18. Popping a node in a proper factorisation results in a proper factorisation.

4.3 Compression operations and the algorithm
When we perform the compression operations, both the fragment and its definition should
be modified in the same way. We now explain how to ensure this.

Leaf compression Both affected nodes (the deleted leaf and its parent) should either be
both within a fragment or both outside it, the same applies to the definition of the fragment.
The following conditions ensure this:
(L1) A leaf is neither a hole nor a definition of a hole.
(L2) A leaf is not a whole fragment.
Ensuring (L1–L2) is done by PairLeaves: if a leaf is a root of a fragment (so it violates (L2)),
we turn it into a free node (so pop it). To ensure (L1) we look at each hole, if it violates (L1)
then we pop its parent from the fragment; in this way we may create 0-fragments violating
(L2), we pop nodes from such fragments as well.

I Lemma 19. PairLeaves applied to a proper factorisation returns a proper factorisation
satisfying (L1–L2). It introduces at most r free nodes per 1-fragment and 1 per 0-fragment.

Then we perform the compression CompLeaves: traverse the tree, if the node v has a leaf
child, then change its label: If this node is within a fragment, copy the label from the
definition; if it is a free node then assign it a new label. If the read node is a leaf then delete
it. The new order is a restriction of the order to the nodes that were not deleted.

I Lemma 20. CompLeaves applied to a proper factorisation satisfying (L1–L2) returns
a proper factorisation. The size of created rules is twice the number of removed free leaves.

Unary nodes compression. Since we replace pairs of nodes with new ones, this compression
boils down to pairing (of unary nodes): for each node we should determine, whether it is
a top (top) or bottom one (bottom) in a pair or perhaps that it is unpaired (none). We
construct a pairing satisfying the following properties, which are a slight modifications of
conditions for a similar algorithm for in the string case [19]:
(P1) There are no two neighbouring unary nodes that are both unpaired.
(P2) If a root of a fragment is unary then it is not paired with its parent, if a node above

the hole is unary then it is paired with its parent;
(P3) v and def [v] are paired in the same way (so either both are unpaired, both are top-nodes

in a pair or both bottom nodes in a pair).
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(P1) guarantees that compression of chosen pairs decreases the length of each sequence of
unary nodes by a constant factor, (P3) says that the fragment is paired exactly in the same
way as its definition and (P2) ensures that pairing for a fragment is done within this fragment,
in particular that we can inherit the factorisation after the compression.

The computation of the pairing is technical and it is deferred to Section 4.4, let us first
give the procedure CompUnary that uses this pairing: We traverse the tree. If the read node
v is top and within a fragment then we replace its label with the label of its definition; if it
is top and a free node then we assign it a fresh label. If the read node v is a bottom node,
then let u be its unique child: we change father of u to current father of v and delete v.

I Lemma 21. CompUnary applied to a proper factorisation satisfying (P1)–(P3) returns
a proper factorisation. The size of introduced rules is at most twice the number of free unary
nodes removed from the tree.

FactToG first computes an optimal 1-factorisation. Then it transforms this factorisation
into a TSLP in phases, until the tree is reduced into a single node. In each phase it first
computes the pairing for the unary nodes and replaces those pairs and then modifies the
factorisation so that the leaves compression can be applied and applies the leaves compression.

4.4 Pairing unary nodes
Removing circular references. Imagine a unary root of a fragment v has def [v] = parent[v].
Then no pairing satisfying (P1–P3) can be devised, as all nodes in this fragment should be
paired in the same way (i.e. all as top or all as bottom nodes). However, all nodes in this
fragment are labeled with the same (unary) label, thus we can pop the root and change the
definition of this fragment: each node has the definition two nodes up, instead of one.

Such circular reference can be more complex: it could be that def `[v] = parent[v] for
some ` > 1, which again makes the pairing impossible. Thus, in some sense, there are many
sequences of nodes involved in this circular reference. The solution is in the same spirit as
above: we isolate (in some fragment) the unary nodes with such a circular reference and
create a new 1-fragment from them. Then we change their definition so that it goes two
nodes up. The details of the procedure and the actual properties guaranteed after it are left
for the full version.

I Lemma 22. UnaryPreproc runs in linear time and pops O(1) nodes per fragment.

Pairing of unary nodes. For the pairing, we first pair the free nodes, so that if a fragment
has a unary root then the two free nodes above are paired and if the parent of its hole is
unary then the two nodes below are paired. Then we traverse the tree: for a node v we copy
the pairing from its definition, with some exceptions: If v is a root and its definition is paired
as bottom then we pop v and set its status as none, similarly, when v is father of a hole and
its definition is top then we pop it and set its pairing as none. In this way we may violate
(P1) (as neighbour of v is also paired as none), by case inspection and O(1) additional pops
we can find appropriate pairing.

I Lemma 23. PairUnary applied to a proper factorisation returns a proper factorisation and
a pairing satisfying (P1)–(P3). It introduces O(1) new free nodes per fragment.

4.5 Analysis
Size of the factorisation. Using Lemma 5 and known properties of the TSLP we can show
that the smallest 1-factorisation for T has O(g) 1-fragments and O(rg) 0-fragments and free
nodes, where r is the maximal arity of nodes in T .
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Size of the tree. One phase of FactToG reduces the size of the tree by a constant factor: if
there are no unary nodes in the tree then we remove all leaves and so halve the size. If there
are only unary nodes, then by (P1) there are no two consecutive unpaired ones, so the size
of the tree also drops by 1/4. The general argument is a mix of the two above.

I Lemma 24. FactToG applied to a tree T returns a tree of size at most 3|T |
4 .

Running time. The construction of the 1-BFS-factorisation takes linear time. All sub-
procedures run in linear time, combined with Lemma 24 this yields a total linear running
time.

Size of rules and popped letters. The size of new rules is covered by the number of removed
free nodes, see Lemma 20, 21, so it is enough to count the number of introduced free nodes.
From Lemmata 19 and 22 this is O(r) per 1-fragment and O(1) per 0-fragment per phase.

Introduced fragments. We now bound the number of letters popped from introduced
fragments. On one hand we bound the number of introduced 0-fragments and on the other
we give an amortised analysis for introduced 1-fragments.

When we introduce a 0-fragment, we associate it with the 1-fragment of which it used
to be part of. It can be shown that introduced 1-fragments have no associated 0-fragments,
furthermore, when new 0-fragment are associated with an original 1-fragment F then F has
no fragments associated with it. Thus at any point there are O(rg) introduced 0-fragments.

We also associate introduced 1-fragments with original 1-fragments; this association is
involved and described in the full version. We can amortise the number of nodes they pop.

I Lemma 25. At any point there are O(rg) introduced 0-fragments. Introduced 1-fragments
pop in total amortised O(g) nodes per phase.

Size of the constructed TSLP. Combining the lemmata above we get an upper bound
of O(rg + rg log(n)) on the size of the constructed TSLP. In a more detailed analysis we
separately consider the computation before and after the moment in which the current tree
has size rg. We apply the above analysis to the first part: there are only O(log(n/(rg)))
phases and so the size of constructed part of SLP is O(rg log(n/rg)). In the second step we
use a simple fact [20] that any reasonable grammar for a tree of size rg has size O(rg), which
yields the total size O(rg + rg log(n/rg)) and so also the claimed approximation ratio.

5 Open problems/Future work

String LZ77 can be constructed in LOGSPACE and is used for instance in approximation of
the construction of the smallest SLP in the streaming model [9]. Can a similar construction
be performed also for the LZ77 for trees?

In case of strings, the LZ77 compressed representation can be directly translated into
an SLP [8, 25], yielding an approximation algorithm for SLP construction. Can a similar
construction be carried out also for the tree variant of LZ77? This would allow to translate
several known algorithms for TSLP to the case of tree factorisations.
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