
The Zero-Error Randomized Query Complexity of
the Pointer Function
Jaikumar Radhakrishnan1 and Swagato Sanyal2

1 Tata Institute of Fundamental Research, India
jaikumar@tifr.res.in

2 Tata Institute of Fundemantal Research, India
swagato.sanyal@tifr.res.in

Abstract
The pointer function of Göös, Pitassi and Watson and its variants have recently been used to
prove separation results among various measures of complexity such as deterministic, randomized
and quantum query complexity, exact and approximate polynomial degree, etc. In particular,
Ambainis et al. (STOC 2016) obtained the widest possible (quadratic) separations between
deterministic and zero-error randomized query complexity, as well as between bounded-error and
zero-error randomized query complexity by considering variants of this pointer function.

However, as Ambainis et al. pointed out in their work, the precise zero-error complexity of
the original pointer function was not known. We show a lower bound of Ω̃(n3/4) on the zero-error
randomized query complexity of the pointer function on Θ(n logn) bits; since an Õ(n3/4) upper
bound was already shown by Mukhopadhyay and Sanyal (FSTTCS 2015), our lower bound is
optimal up to polylog factors. We, in fact, consider a generalization of the original function and
obtain lower bounds for it that are optimal up to polylog factors.

1998 ACM Subject Classification F.1.1 [Models of Computation] Relations between models,
F.1.2 [Modes of Computation] Probabilistic computation

Keywords and phrases Deterministic Decision Tree, Randomized Decision Tree, Query Com-
plexity, Models of Computation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.16

1 Introduction

Understanding the relative power of various models of computation is a central goal in
complexity theory. In this paper, we focus on one of the simplest models for computing
Boolean functions – the query model or the decision tree model. In this model, the algorithm
is required to determine the value of a Boolean function by querying individual bits of the
input, possibly adaptively. The computational resource we seek to minimize is the number
of queries for the worst-case input. That is, the algorithm is charged each time it queries an
input bit, but not for its internal computation.

There are several variants of the query model, depending on whether randomization
is allowed, and on whether error is acceptable. Let D(f) denote the deterministic query
complexity of f , that is, the maximum number of queries made by the algorithm for the worst-
case input; let R(f) denote the maximum number of queries made by the best randomized
algorithm that errs with probability at most 1/3 (say) on the worst-case input. Let R0(f)
be the zero-error randomized query complexity of f , that is, the expected number of queries
made for the worst-case input by the best randomized algorithm for f that answers correctly
on every input.

© Jaikumar Radhakrishnan and Swagato Sanyal;
licensed under Creative Commons License CC-BY

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. 16; pp. 16:1–16:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 The Zero-Error Randomized Query Complexity of the Pointer Function

The relationships between these query complexity measures have been extensively studied
in the literature. That randomization can lead to significant savings has been known for a
long time. Snir [10] showed a O(nlog4 3) randomized linear query algorithm (a more powerful
model than what we discussed) for complete binary NAND tree function for which the
deterministic linear query complexity is Ω(n). Later on Saks and Wigderson [9] determined
the zero-error randomized query complexity of the complete binary NAND tree function to
be Θ(n0.7536...). They also presented a result of Ravi Boppana which states that the uniform
rooted ternary majority tree function has randomized zero-error query complexity O(n0.893...)
and deterministic query complexity n. All these examples showed that randomized query
complexity can be substantially lower than its deterministic counterpart. On the other
hand, Nisan showed that the R(f) = Ω(D(f)1/3) [8]. Blum and Impagliazzo [3], Tardos [11],
Hartmanis and Hemachandra [6] independently showed that R0(f) = Ω(D(f)1/2). Thus, the
question of the largest separation between deterministic and randomized complexity remained
open. Indeed, Saks and Wigderson conjectured that the complete binary NAND tree function
exhibits the widest separation possible between these two measures of complexity.

I Conjecture 1 ([9]). For any boolean function f on n variables, R0(f) = Ω(D(f)0.753...).

This conjecture was recently refuted independently by Ambainis et al. [2] and Mukho-
padhyay and Sanyal [7]. Both works based their result on the pointer function introduced
by Göös, Pitassi and Watson [5], who used this function to show a separation between
deterministic decision tree complexity and unambiguous non-deterministic decision tree
complexity. In Section 2, we present the formal definition of the function GPWr×s, which is
a Boolean function on Θ̃(rs) bits.

Mukhopadhyay and Sanyal [7] used GPWs×s to obtain the following refutation of Conjec-
ture 1: R0(GPWs×s) = Õ(s1.5) while D(GPWs×s) = Ω(s2). While this shows that GPWs×s

witnesses a wider separation between deterministic and zero-error randomized query com-
plexities than conjectured, the separation shown is not the widest possible for a Boolean
function. Independently, Ambainis et al. modified GPWs×s in subtle ways, to establish the
widest possible (near-quadratic) separation between deterministic and zero-error randomized
query complexity, and between zero-error randomized and bounded-error randomized query
complexities.

Ambainis et al. [2] pointed out, however, that the precise zero-error randomized query
complexity (i.e. R0(GPWs×s)) was not known. One could ask if the optimal separation
demonstrated by Ambainis et al. is also witnessed by GPWs×s itself. In this work, we prove a
near-optimal lower bound on the zero-error randomized query complexity of GPWr×s, which
is slightly more general than the GPWs×s considered in earlier works.

I Theorem 2 (Main theorem). R0(GPWr×s) = Ω̃(r +
√
rs).

Such a result essentially claims that randomized algorithms cannot efficiently locate certificates
for the function. This would be true, for example, if the function could be shown to require
large certificates, since the certificate complexity of a function is clearly a lower bound on
its zero-error randomized complexity. This straightforward approach does not yield our
lower bound, as the certificate complexity of GPWr×s is Õ(r + s). In our proof, we set up a
special distribution on inputs, and by analyzing the expansion properties of the pointers,
show that a certificate will evade a randomized algorithm that makes only a small number
of queries. In fact, the distribution we devise is almost entirely supported on inputs X for
which GPWr×s(X) = 0. This is not an accident: a randomized algorithm can quickly find a
certificate for inputs X if GPWr×s(X) = 1 (see Theorem 5 below).

J. Radhakrishnan and S. Sanyal 16:3

It follows from Theorem 2 that the algorithm of Mukhopadhyay and Sanyal [7] is optimal
up to polylog factors.

I Corollary 3. R0(GPWs×s) = Ω̃(s1.5).

In addition to nearly determining the zero-error complexity of the original GPWs×s

function, our result has two interesting consequences.
(a) The above mentioned result of Mukhopadhyay and Sanyal [7] showed that R0(GPWs×s)

= Õ(D(GPWs×s)0.75). Our main theorem shows that GPWs×s cannot be used to show
a significantly better separation between the deterministic and randomized zero-error
complexities (ignoring polylog factors). However, the function GPWs2×s allows us to
derive a better separation1: R0(GPWs2×s) = O(D(GPWs2×s)2/3). Our main theorem
shows that this is essentially the best separation that can be derived from GPWr×s

by varying r relative to s, so this method cannot match the near-quadratic separation
between these measures, which was shown by Ambainis et al. [2] by considering a variant
of the GPWs×s function.

(b) GPWs×s exposes a non-trivial polynomial separation between the bounded-error and
zero-error randomized query complexities: R(GPWs×s) = Õ(R0(GPWs×s)2/3). This
falls short of the near-quadratic separation shown by Ambainis et al. [2], but note that
before that result no separation between these measures was known.

2 The GPW function

The input X to the pointer function, GPWr×s, is arranged in an array with r rows and s
columns. The cell X[i, j] of the array contains two pieces of data, a bit bij ∈ {0, 1} and a
pointer ptrij ∈ ([r]× [s]) ∪ {⊥}.

Let A denote the set of all such arrays. The function GPWr×s : A → {0, 1} is defined as
follows: GPWr×s(X) = 1 if and only if the following three conditions are satisfied.
1. There is a unique column j∗ such that for all rows i ∈ [r], we have bij∗ = 1.
2. In this column j∗, there is a unique row i∗ such that ptri∗j∗ 6= ⊥.
3. Now, consider the sequence of locations (pk : k = 0, 1, . . . , s− 1), defined as follows: let

p0 = (i∗, j∗), and for k = 0, 1, . . . , s − 2, let pk+1 = ptrpk
. Then, p0, p1, . . . , ps−1 lie in

distinct columns of X, and bpk
= 0 for k = 1, 2, . . . , s − 1. In other words, there is a

chain of pointers, which starts from the unique location in column j∗ with a non-null
pointer, visits all other columns in exactly s− 1 steps, and finds a 0 in each location it
visits (except the first).

Note that GPWr×s can be thought of as a Boolean function on Θ(rs log rs) bits.

Upper Bound

The pointer function GPWr×s, as defined above, is parameterized by two parameters, r and
s. Göös, Pitassi and Watson [5] focus on the special case where r = s. Mukhopadhyay
and Sanyal [7] also state their zero-error randomized algorithm with Õ(s1.5) queries for this
special case; however, it is straightforward to extend their algorithm so that it applies to the
function GPWr×s and yields the following upper bound.

I Theorem 4. R0(GPWr×s) = Õ(r +
√
rs).

1 In [1], a similar separation between R(GPWs2×s) and D(GPWs2×s) is mentioned.

FSTTCS 2016

16:4 The Zero-Error Randomized Query Complexity of the Pointer Function

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0 1

⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

Figure 1 Input to GPWr×s for r = 5, s = 5.

Mukhopadhyay and Sanyal also gave a one-sided error randomized query algorithm that
makes Õ(s) queries on average but never errs on inputs X, where GPWs×s(X) = 1. Again a
straightforward extension yields the following.

I Theorem 5. There is a randomized query algorithm that makes Õ(r + s) queries on each
input, computes GPWr×s correctly on each input with probability at least 1/3, and in addition
never errs on inputs X where GPWr×s(X) = 1.

Theorem 2, thus, completely determines the deterministic and all randomized query com-
plexities of a more general function GPWr×s.

2.1 The distribution
To show our lower bound, we will set up a distribution on inputs in A. Let V be the locations
in the first s/2 columns, i.e., V = [r]× [s/2]; let W be the locations in the last s/2 columns,
i.e., W = [r] × ([s] \ [s/2]). In order to describe the random input X, we will need the
following definitions.

Pointer chain

For an input in A, we say that a sequence of locations p = 〈`0, `1, `2, . . . , `k〉 is a pointer
chain, if for i = 0, 1, . . . , k−1, ptr`i

= `i+1; the location `0 is the head of the p and is denoted
by head(p); similarly, `k is the tail of p and is denoted by tail(p). Note that ptr`k

is not
specified as part of the definition of pointer chain p; in particular, it is allowed to be ⊥.

Random pointer chain

To build our random input X, we will assign the pointer values of the various cells of X
randomly so that they form appropriate pointer chains. For a set of locations S we build
a random pointer chain on S as follows. First, we uniformly pick a permutation of S, say
〈`0, `1, . . . , `k〉. Then, we set ptr`i

= `i+1 (for i = 0, 1, . . . , k− 1). We will make such random
assignments for sets S consisting of consecutive locations in some row of W . We call the
special (deterministic) chain that starts at the first (leftmost) location of S, visits the next,
and so on, until the last (rightmost) location, a path. Given two pointer chains p1 and p2 on
disjoint sets of locations S1 and S2, we may set ptrtail(p1) = head(p2), and obtain a single
pointer chain on S1 ∪ S2, whose head is head(p1) and tail is tail(p2). We will refer to this
operation as the concatenation of p1 and p2.

J. Radhakrishnan and S. Sanyal 16:5

. . .

Segment

Bands

width (wj) = s/(20 · 2j · 2K)

r

s/2
log s−3 log log s

Wj

Figure 2 Bands and segments inside block Wj .

We are now ready to define the random input X. We will assume that r >> log s, because
otherwise

√
rs = Õ(s), and Theorem 2 follows from the certificate complexity lower bound of

Ω̃(r + s) on R0(GPWr×s) (see the sentence following Assumption 6 below). First, consider
W . For all ` ∈W , we set b` = 0. To describe the pointers corresponding to W , we partition
the columns of W into K := log s− 3 log log s blocks, W1, . . . ,WK , where W1 consists of the
first s/(2K) columns of W , then W2 consists of the next s/(2K) columns, and so on. V W1 W2 . . . WK


The block Wj , will be further divided into bands; however, the number of bands in different
Wj will be different. There will be 20 ·2j bands in Wj , each consisting of wj := s/(20 ·2j ·2K)
contiguously chosen columns (note that wj � log s by our choice of K). See Figure 2.

Each such band will have r rows; the locations in a single row of a band will be called a
segment; we will divide each segment into two equal parts, left and right, each with wj/2
columns.

We are now ready to specify the pointers in each segment of Wi. In the first half of each
segment we place a random (uniformly chosen) pointer chain; in the right half we place a
path starting at its leftmost cell and leading to its rightmost cell. See Figure 3. Once all
pointer chains in all the segments in a given row are in place, we concatenate them from left
to right. All pointers in the last column of W are set to ⊥. In the resulting input, each row
of W is a single pointer chain with head in the leftmost segment of W1 and tail in the last
column of W . This completes the description of X for the locations in W .

Next, we consider locations in V . Let q := 500 log s/
√
r. Notice that by our assumption,

q < 1. Independently, for each location ` ∈ V :
with probability q, set b` = 0 and ptr` to be a random location that is in the left half of

FSTTCS 2016

16:6 The Zero-Error Randomized Query Complexity of the Pointer Function

tail head

random pointer chain path

Figure 3 A segment consists of a random pointer chain concatenated with a path.

some segment in W (that is, among all locations that fall in the left half of some segment,
pick one at random and set ptr` to that location);
with probability 1− q, set b` = 1 and ptr` = ⊥.

This completes the description of the random input X.

3 The lower bound for GPWr×s

We will consider algorithms that are given query access to the input bits of GPWr×s. A
location ` ∈ [r]× [s] of an input X ∈ A is said to be queried if either b` is queried, or some
bit in the encoding of ptr` is queried. By number of queries, we will always mean the number
of locations queried. A lower bound on the number of locations queried is clearly a lower
bound on the number of bits queried.

It can be shown that the certificate complexity of GPWr×s is Ω(r+s); hence R0(GPWr×s)
= Ω(r + s). It remains to show that any zero-error randomized query algorithm for GPWr×s

must make Ω(
√
rs/polylog(s)) queries in expectation. We will assume that there is a

significantly more efficient algorithm and derive a contradiction.

I Assumption 6. There is a zero-error randomized algorithm that makes at most
√
rs/(log s)5

queries in expectation (taken over the algorithm’s coin tosses) on every input X.

If r < (log s)3 (say), then this assumption immediately leads to a contradiction because
R0(GPWr×s) = Ω(s). So, we will assume that r ≥ (log s)3.

Consider inputs X drawn according to the distribution described in the previous section.
Since with probability 1− o(1) every column of X has at least one zero (see Lemma 10 (a)),
GPWr×s(X) = 0 with probability 1− o(1); thus, the algorithm returns the answer 0 with
probability 1− o(1). Taking expectation over inputs X and the algorithm’s coin tosses, the
expected number of queries made by the algorithm is at most

√
rs/(log s)5. Using Markov’s

inequality, with probability 1− o(1), the algorithm stops after making at most
√
rs/(log s)4

queries. By truncating the long runs and fixing the random coin tosses of the algorithm, we
obtain a deterministic algorithm. Hence we have the following.

I Proposition 7. If Assumption 6 holds, then there is a deterministic algorithm that (i)
queries at most

√
rs/(log s)4 locations, (ii) never returns a wrong answer (it might give no

answer on some inputs), and (iii) returns the answer 0 with probability 1 − o(1) for the
random input X.

J. Radhakrishnan and S. Sanyal 16:7

Fix such a deterministic query algorithm Q. In the next section, we formally establish the
following.
I Lemma 8 (Stitching lemma). With probability 1− o(1) over the choices of X, there is an
input X ′ ∈ A that differs from X only in locations not probed by Q such that GPWr×s(X ′) = 1.
Thus, with high probability, Q(X ′) = Q(X) = 0. This contradicts Proposition 7 (ii). This
immediately implies Theorem 2.

4 The approach

In this section, we will work with the algorithm Q that is guaranteed to exist by Proposition 7.
For an input X ∈ A to GPWr×s, let GX = (V ′,W ′, E) be a bipartite graph, where V ′ is the
set of columns of V and W ′ is the set of all bands in all blocks of W . The edge set E(GX) is
obtained as follows. Recall that pointers from V lead to segments in W . Each such segment
contains a pointer chain. For a location ` in such a chain, let pred(`) denote the location `′
that precedes ` in the chain (if ` is the head, then pred(`) is undefined); thus, ptr`′ = `. We
include the edge (j, β) (connecting column j ∈ V ′ to band β ∈W ′) in E(GX) if the following
holds:

There is a location v in column j and a segment p in some row of band β such that
(c1) ptrv ∈ p, that is, ptrv is non-null and points to a location in the left half of segment p

(notice that this implies that bv = 0);
(c2) pred(ptrv) is well defined and is not probed by Q;
(c3) Q makes fewer than |p|/4 probes in segment p. (Note that this implies that there is a

location in the right half of p that is left unprobed by Q and that is not the last location
of the segment.)
In the next section, we will show the following.

I Lemma 9 (Matching lemma). With probability 1 − o(1) over the choice of X, for every
subset R ⊆ V ′ of at most s/(

√
r(log s)4) columns, there is a matching in GX that saturates

R.
In this section, we will show how Lemma 9 enables us to modify the input X to obtain an
input X ′ for which GPWr×s(X ′) = 1, thereby establishing Lemma 8 (the stitching lemma).
I Lemma 10.
(a) With probability 1− o(1), each column j of the input X has a location ` such that b` = 0.

(b) With probability 1 − o(1), there is a column j ∈ [s/2] such that Q does not read any
location ` in column j with b` = 0.

Proof.
(a) All the bits in the columns in [s] \ [s/2] are 0. We show that with high probability, each

column in V ′ has a 0. The probability that a particular column in V ′ does not have any
0 is (1− 500 log s/

√
r)r ≤ s−Ω(

√
r). Thus the probability that there is a column j ∈ V ′

which does not have any 0 is at most (s/2) · s−Ω(
√

r) = o(1).
(b) By Proposition 7, Q makes t ≤ s

√
r/(log s)4 queries. For i = 1, 2, . . . , t, let Ri be the

indicator variable for the event that in the i-th query, Q reads a 0 from V . Then, the
expected number of 0’s read by Q in V is (we assume that Q does not read the same
location twice)

t∑
i=1

E[Ri] ≤ t · 500 log s/
√
r ≤ 500s/(log s)3.

FSTTCS 2016

16:8 The Zero-Error Randomized Query Complexity of the Pointer Function

By Markov’s inequality, with probability 1− o(1), the number number of 0’s read by Q
is less than s/2. It follows, that there is a column in V in which Q has read no 0. J

Proof of Lemma 8. Assume that the high probability events of Lemmas 9 and 10 hold.
This happens with probability 1− o(1). We will now describe a sequence of modifications
to the input X at locations not queried by Q to transform it into an input X ′ such that
GPWr×s(X ′) = 1. Let j∗ ∈ V ′ be the column in V guaranteed by Lemma 10 (b). Define
A0 = {col1, . . . , colN} ⊆ V ′\{j∗} to be the set of columns in V ′\{j∗} that are not completely
read by Q (i.e. each column in A0 has a location unread by Q). Let `i be a location in the
column coli that is unread by Q. We first make the following changes to X, with the aim of
starting a pointer chain at column j∗ that passes through col1, col2, . . . , colN .
(i) For each unread location ` in the column j∗, set b` to 1. From the definition of j∗, the

bits of the read locations are already 1.
(ii) Let `∗ be the first unread location of j∗ (i.e. the location with the least row index). Set

ptr`∗ to `1.
(iii) For each unread location ` 6= `∗ in column j∗, set ptr` to ⊥. From the definition of j∗,

the pointers of the read locations are already ⊥.
(iv) For i = 1, . . . , N − 1, set b`i to 0 and ptr`i

to `i+1.
(v) Set b`N

to 0.
Clearly, the locations modified are not probed by Q. Notice that the current input has the
pointer chain p0 = (`∗, `1, . . . , `N) and the head `∗ of the chain lies in the all-ones column
j∗. Furthermore, all locations on the chain except `∗ have 0 as their bit. We now show how
to further modify our input and extend p and visit the remaining columns through locations
with 0’s. The columns in W are already neatly arranged in pointer chains. The difficulty is in
ensuring that we also visit the set of columns in V ′ that are completely read by Q, for we are
not allowed to make any modifications there. Let A1 denote these completely read columns
in V ′. Since Q makes at most

√
rs/(log s)4 queries, we have that |A1| ≤ s/(

√
r(log s)4).

Lemma 9 implies that there exists a matching M in GX that saturates A1. Order the
elements of A1 as d1, . . . , dL in such a way that for all i = 1, . . . , L− 1,M(di) <M(di+1)
(where we order the bands in W from left to right), that is, the band that is matched with
di lies to the left of the band that is matched to di+1.

We will now proceed as follows. For i = 1, . . . , L, we modify the input (at locations not
read by Q) appropriately to induce a pointer chain pi. This pointer chain in addition to
visiting a contiguous set of columns in W , will visit column di. By concatenating these
pointer chains in order with the initial pointer chain p0 we obtain the promised input X ′ for
which GPWr×s(X ′) = 1.

To implement this strategy, recall that there is an edge in GX between the column di

and the bandM(di). From the definition of GX , it follows that there is a location qi in di

and a segment Si in bandM(di) such that
(s1) ptrqi

leads to the left half of Si;
(s2) pred(ptrqi

) is not probed by Q;
(s3) Q makes fewer than |Si|/4 queries in segment Si.
First, let us describe how p1 is constructed. Let a1 = ptrq1 and b1 = pred(a1) (by (s2) b1
is not probed by Q); let c1 be a location in the second half of S1 that is not probed by Q
and that is not the last location of S1 (by (s3) there is such a location). Now, we modify
the input X by setting ptrb1 = q1. Then, p1 is the pointer chain that starts at the head of
the leftmost segment of W1 in the same row as S1 and continues until location c1. That
is, starting from its head, it follows the pointers of the input until b1. Then it follows the

J. Radhakrishnan and S. Sanyal 16:9

ci−1

column ki−1

aibi

•

qi 0

ci

column ki

column di

V left half
ofM(di)

right half
ofM(di)

Figure 4 Construction of pointer chain pi.

pointer leading out of b1 into q1, thereby visiting column d1. After that, it follows the pointer
out of q1 and comes to a1, and keeps following the pointers until c1.

In general, suppose p1,p2, . . . ,pi−1 have been constructed. Suppose tail(pi−1) appears
in column ki−1. Then, pi is obtained as follows. Let ai = ptrqi

and bi = pred(ai); let ci be a
location in the second half of Si that is not probed by Q and that is not the last location of
Si. We modify the input by setting ptrbi

= qi. Then pi is the pointer chain with its head in
the same row as ai and in column ki−1 + 1 (note that since tail(pi−1) is not in last column
of segment Si−1, column ki−1 + 1 is still in the same band as Si−1); the pointer chain pi

terminates at location ci. See Figure 4. Note that pi entirely keeps to one row (the row of
Si), except for the diversion from bi to qi, when it visits column di and returns to ai. When
i = L, we let the pointer chain continue until the last column of W .

In obtaining the pointer chains p1,p2, . . . ,pL, we modified X at location b1, b2, . . . , bL.
Finally, we concatenate the pointer chains p0,p1, . . . ,pL; this requires us to modify X at
locations `N = tail(p0), c1, c2, . . . , cL−1, which were left unprobed by Q. The resulting input
after these modifications is X ′.

The pointer chain obtained by this concatenation visits each column other than j∗ exactly
once, and the bit at every location on it, other than its head, is 0. Hence, GPWr×s(X ′) =
1. J

5 Proof of the matching lemma

We will show that every subset R ⊆ V ′ of at most s/(
√
r(log s)4) columns has at least |R|

neighbors in W ′. Then, the claim will follow from Hall’s theorem.
Observe that with high probability every column in V ′ has Ω(

√
r log s) pointers leaving

it. We expect these pointers to be uniformly distributed among the at most log s blocks in
W ; in particular, we should expect that every column in V ′ sends Ω(

√
r) pointers into each

block. We now formally establish this.

I Claim 11. Let Vj be the j-th column of V ′ and Wj′ the j′-th block of W ; then,

Pr[∀j, j′ : |ptr(Vj) ∩Wj′ | ≤ 400
√
r] = o(1).

FSTTCS 2016

16:10 The Zero-Error Randomized Query Complexity of the Pointer Function

Proof. Fix a location in ` ∈ Vj . Let χ` be the indicator variable for the event ptr` ∈ Wj′ .
Then, the number of pointers from Vj into Wj′ is precisely

∑
`∈Vj

χ`. Since

Pr[χ` = 1] ≥ 500 log s√
r
× 1

log s = 500√
r
,

the expected number of pointers from column Vj into Wj′ is at least 500
√
r. Our claim

follows from the Chernoff bound and the union bound (over choices of j and j′). Here, we
use the following version of the Chernoff bound (see Dubhashi and Panconesi [4], page 6): for
the sum of r independent 0-1 random variables Z`, each taking the value 1 with probability
at least α,

Pr[
∑

`

X` ≤ (1− ε)αr] ≤ exp(−ε
2

2 αr).

Since we assume r = Ω((log s)3)), in our application αr �
√
r ≥ log s. J

Suppose j is such that 2j ≤ |R| < 2j+1. Then, we will show that R has the required
number of neighbors among the bands of the block Wj .

I Claim 12. For a set R ⊆ V ′ and a block Wj, consider the set of bands of Wj into which
at least 2

√
r pointers from R fall, that is, Bj(R) := {b ∈ Wj : |ptr(R) ∩ b| ≥ 2

√
r}. Then,

for j = 1, . . . ,K and for all R such that 2j ≤ |R| < 2j+1, we have

Pr[|Bj(R)| ≤ 2|R|] = o(1).

Proof. We will use the union bound over the choices of j and R. Fix the set R. We may,
using Claim 11, condition on the event that there are at least 400

√
r|R| pointers from R to

Wj . Fix 400
√
r|R| of these pointers. Now, the number of pointers that fall outside Bj(R) is

at most 20 · 2j · 2
√
r ≤ 100

√
r|R|. That is, if |Bj(R)| < 2|R|, then there is a set T of 2|R|

bands into which more than 400
√
r|R| − 100

√
r|R| = 300

√
r|R| pointers from R fall. We will

show that it is unlikely for such a set T to exist. For a fixed T , the probability of this event
is at most(

400|R|
√
r

300|R|
√
r

)(
2|R|

20 · 2j

)300
√

r|R|

≤ 2−100
√

r|R|.

Using the union bound to account for all choices of R and the
(20·2j

2|R|
)
choices of T , and

using the fact that
√
r � log s, we conclude that the probability that Bj(R) fails to be large

enough is at most

log s−3 log log s∑
j=0

2j+1−1∑
m=2j

(
s/2
m

)(
20 · 2j

2m

)
2−100

√
rm = o(1). J

In order to show that with high probability the set R has the required number of neighbors,
we will condition on the high probability event of Claim 12, that is, |Bj(R)| > 2|R|. Let B
be the set of such bands b that receive at least 2

√
r pointers. For each b ∈ B, let P (b) be a

set of 2
√
r locations in the columns in R whose pointers land in b. If in at least |R| of the

2|R| such bands b, there is a pointer from P (b) satisfying the conditions (c1)–(c3), then we
will have obtained the required expansion. Fix a pointer out of P (b) (which by definition of
P (b) lands in band b), and consider the following events.

J. Radhakrishnan and S. Sanyal 16:11

E1: The pointer leads to the same segment as a previous pointer (assume the locations in
P (b) are totally ordered in some way).

E2: The pointer leads to the first entry of the pointer chain in its segment (so, that location
has no predecessor).

E3: At least wj/8 entries of the segment that the pointer lands in are probed by Q.
E4: The predecessor of the location where the pointer lands is probed by Q.
Consider the pointers that emanate from P (b) and land in some band b ∈ B. Let n1 be the
number of those pointers for whom E1 holds; let n2 be the number of those pointers for whom
E2 holds; let n3 be the number of those pointers for whom E3 holds but E1 does not hold; let
n4 be the number of those pointers for whom E4 holds but E1, E2 and E3 do not hold.

If the claim of our lemma does not hold, then it must be that in at least |R| of the 2|R|
bands of B, all pointers that fall there fail to satisfy at least one of the conditions (c1)–(c3);
that is, one of E1, . . . , E4 holds for all 2

√
r of them. This implies that

n1 + n2 + n3 + n4 ≥ 2
√
r|R|. (1)

To prove our claim, we will show that with high probability each ni on the left is less than√
r|R|/2. In the following, we fix a set R and separately estimate the probability that one

of the quantities on the left is large. To establish the claim for all R, we will use the union
bound over R. In the proof, we use the following version of the Chernoff-Hoeffding bound,
which can be found in Dubhashi and Panconesi ([4], page 7).

I Lemma 13 (Chernoff-Hoeffding bound). Let X :=
∑

i∈[n]Xi where Xi, i ∈ [n] are inde-
pendently distributed in [0, 1]. Let t > 2eE[X]. Then

P[X > t] ≤ 2−t.

I Claim 14. Pr[n1 ≥
√
r|R|/2] ≤ 2−r|R|/2.

Proof. The probability that a pointer from P (b) falls on a segment of a previous pointer is
at most 2

√
r/r. Thus, the expected value of n1 is at most 8|R|. We may invoke lemma 13

and conclude that

Pr[n1 ≥
√
r|R|/2] ≤ 2−

√
r|R|/2. J

Recall that the number of blocks is K = log s− 3 log log s and the width of each band in the
j-th block is wj = s/(20 · 2j · 2K).

I Claim 15. Pr[n2 ≥
√
r|R|/2] ≤ 2−

√
r|R|/2.

Proof. A pointer falls on head of random pointer chain in a segment with probability at
most 2/wj . Thus,

E[n2] ≤
(

2
wj

)
4
√
r|R| ≤ 320|R|

√
r

(log s)2 .

Again, our claim follows by a routine application of Lemma 13. J

I Claim 16. Pr[n3 ≥
√
r|R|/2] = 0.

Proof. If n3 ≥
√
r|R|/2, then the total number of locations read by Q is at least

n3
wj

8 ≥
(√

r|R|
2

)
· wj

8 ≥
(√

r2j

2

)(
s

8 · 20 · 2j log s

)
�

√
rs

320 log s .

This contradicts our assumption that Q makes at most
√
rs/(log s)4 queries. J

FSTTCS 2016

16:12 The Zero-Error Randomized Query Complexity of the Pointer Function

I Claim 17. Pr[n4 ≥
√
r|R|/2] ≤ 2−r|R|/2.

Proof. Let us first sketch informally why we do not expect n4 to be large. Recall that in
our random input we place a random pointer chain in the left half of each segment. Once a
pointer has landed at a location in this segment, its predecessor is equally likely to be any of
the other locations in the segment. So the first probe into that segment has probability about
one in wj/2− 1 of landing on the predecessor, the second probe has probability about one in
wj/2−2 of landing on the predecessor, and so on. Since we assume E3 Q makes at most wj/8
probes in this segment. So, conditioned on the previous probes being unsuccessful, there are
still wj/2−wj/8− 1 possibilities for the location of the predecessor; so the probability of the
probe landing on the predecessor is at most 1/(wj/2− wj/8− 1). This implies that in order
for n4 to be at least

√
r|R|/2 the query algorithm Q must make Ω(wj

√
r|R|/2) queries; but

this is more than the number of probes Q is permitted.
In order to formalize this intuition, fix (condition on) a choice of pointers from V . Let

us assume that the algorithm makes t probes. For i = 1, 2, . . . , t, define indicator random
variables χi as follows: χi = 1 iff the following conditions hold.

Suppose the i-th probe is made to a segment p in band b ∈ B . Let ` be the location
where the first pointer (among the pointers from P (b) to p) lands. Then, the i-th probe
of Q is made to the predecessor of ` in the random pointer chain in b.
Fewer than wj/8 of the previous probes were made to this segment.

Observe that if more than one pointer land on p, then except for the first amongst them
(according to the ordering on the locations in P (b)), event E2 does not hold for the remaining
pointers, and hence by definition event E4 does not hold either.

Define Z =
∑t

i=1 χi. Note that Z is an upper bound on n4, and we wish to estimate
the probability that Z ≥

√
r|R|/2. The key observation is that for every choice σ of

χ1, χ2, . . . , χi−1, we have

Pr[χi = 1 | χ1, χ2, . . . , χi−1 = σ] ≤ 1
3wj/8− 1 ≤

4
wj
. (2)

Thus,

E[Z] ≤
(

4
wj

)
t ≤

(
4
wj

)
(log s)−4√rs ≤ (log s)−2√r|R|.

The variables χi are not independent, but it follows from (2) that Lemma 13 is still applicable
in this setting. We conclude that

Pr[Z ≥
√
r|R|/2] ≤ 2−

√
r|R|/2.

Since, the above bound holds for each choice of pointers from V , it holds in general. J

Finally, to establish the required expansion for all sets R, we use the union bound over
all R. The probability that some set R has fewer than |R| neighbors is at most

4
s/(
√

r(log s)4)∑
k=1

(
s/2
k

)
2−
√

rk/2 ≤
∑
k≥1

sk2−
√

rk/2 ≤
∑
k≥1

s−k = o(1),

where we used our assumption that r � (log s)2. This completes the proof of the matching
lemma.

Acknowledgment. We thank Sagnik Mukhopadhyay for useful discussions.

J. Radhakrishnan and S. Sanyal 16:13

References
1 Scott Aaronson. A query complexity breakthrough. Shtetl-Optimized. URL: http://www.

scottaaronson.com/blog/?p=2325.
2 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris

Smotrovs. Separations in query complexity based on pointer functions. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 800–813, 2016.

3 Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes (extended ab-
stract). In 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 118–126, 1987.

4 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

5 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
tition number. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1077–1088, 2015.

6 Juris Hartmanis and Lane A. Hemachandra. One-way functions, robustness, and the non-
isomorphism of np-complete sets. In Proceedings of the Second Annual Conference on
Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19,
1987, 1987.

7 Sagnik Mukhopadhyay and Swagato Sanyal. Towards better separation between determin-
istic and randomized query complexity. In 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2015, December 16-18,
2015, Bangalore, India, pages 206–220, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.206.

8 Noam Nisan. CREW prams and decision trees. SIAM J. Comput., 20(6):999–1007, 1991.
9 Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity

of evaluating game trees. In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 29–38, 1986.

10 Marc Snir. Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci.,
38:69–82, 1985.

11 Gábor Tardos. Query complexity, or why is it difficult to seperate NPA ∩ coNPA from PA

by random oracles A? Combinatorica, 9(4):385–392, 1989.

FSTTCS 2016

http://www.scottaaronson.com/blog/?p=2325
http://www.scottaaronson.com/blog/?p=2325
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.206

	Introduction
	The GPW function
	The distribution

	The lower bound for GPW-r*s
	The approach
	Proof of the matching lemma

