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Abstract
We study the problem of routing traffic for independent selfish users in a congested network to
minimize the total latency. The inefficiency of selfish routing motivates regulating the flow of the
system to lower the total latency of the Nash Equilibrium by economic incentives or penalties.
When applying tax to the routes, we follow the definition of [8] to define ePoA as the Nash total
cost including tax in the taxed network over the optimal cost in the original network. We propose
a simple tax scheme consisting of step functions imposed on the links. The tax scheme can be
applied to routing games with parallel links, affine cost functions and single-commodity networks
to lower the ePoA to at most 4

3 − ε, where ε only depends on the discrepancy between the links.
We show that there exists a tax scheme in the two link case with an ePoA upperbound less than
1.192 which is almost tight. Moreover, we design another tax scheme that lowers ePoA down to
1.281 for routing games with groups of links such that links in the same group are similar to each
other and groups are sufficiently different.
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1 Introduction

We study the problem of routing traffic for independent selfish users in a congested network
to minimize the total cost (latency). In many settings, it is very expensive or impossible
to regulate the traffic precisely. In the absence of regulation, users usually only focus on
minimizing his own cost measured by the total time needed to traverse his chosen route.
Many works focus on the degradation in network performance measured by comparing
the cost of the Nash equilibrium flow and the cost of the optimal setting. The ratio of
total cost of Nash Equilibria to the minimum possible cost is defined to be the Price of
Anarchy (PoA). Therefore one could consider PoA as an index of the inefficiency of the lack
of regulation in a network of selfish behavior. In [25], it is proven that the PoA is ≤ 4
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affine latency functions, and the upper bound 4
3 is tight in a well-known example called the

Pigue’s example [20]. There are many well-known works on the selfish routing game, such as
[22, 23, 24, 21, 6, 18].

The inefficiency of selfish routing motivates regulating the flow of the system to lower the
total latency of the Nash Equilibria by economic incentives or penalties. Marginal cost pricing
is an ancient idea proposed in [20]. Marginal cost taxes may induce the minimum-latency flow
as a flow at a Nash equilibrium, assuming all network users choose the routes to minimize
the sum of latency and tax [2]. One major research is to lower price of anarchy to 1 for users
having different sensitivity to tax in a single-commodity network [10], with an upper bound
of tax with complexity O(n3). Several further researches improved the result above, such as
generalizing the result for single commodity to multi-commodity [12, 15] and generalizing
the result for giving an tax upperbound with complexity O(n) [11]. In [4], optimal tax
with constraints can be derived in certain circumstances. Another similar concept is the
coordination mechanisms introduced in [7]. Coordination Mechanisms have been used to
improve the PoA in scheduling problems for parallel and related machines [7, 14, 17] as well
as for unrelated machines [1, 5].

In the above researches, the system is efficient only if the tax is returned to the users,
otherwise dis-utility for users due to large tax may exist. In [16], an PoA upperbound of 2 is
given if tax is included as a part of the cost. The bound becomes 5/4 particularly for affine
latency case. On the other hand, it has been proven [9] that marginal tax could not help
reduce total cost if tax is considered as a part of the cost for affine cost functions. It is also
proven [8] that continuous tax functions yield no improvement to the total latency.

In the above modelings, the total flow r is specified as a part of the game. However,
there are situations that the total flow is unknown beforehand, thus finding a good tax
scheme becomes more difficult. Christodoulou et al. [8] studied this type of problem for
single-commodity routing games with affine cost functions. They designed a tax scheme such
that the PoA is at most 4

3 − ε over all possible amount of flow, where ε is a constant that
approaches 0 when the number of links go to infinity. In this work, arbitrary tax function
is allowed as along as the sum of tax and the original cost (latency) function is monotone
increasing.

In our work, we focus on step-function congestion tolls. This type of tax scheme has
been studied by transport economists to model the effects of the traffic lights on traffic
regulations [13, 19]. Compared to arbitrary tax schemes, the step-function congestion tolls is
more feasible in transportation regulations. This motivates us to investigate the possibility
of improving ePoA using only step-function congestion tolls in settings similar to [8].

Our Result: We provide a simple tax scheme consisting of step functions imposed on the
links. The tax scheme is applied to routing games with parallel links, affine cost function,
single-commodity networks to lower the ePoA below 4

3−ε, where ε depends on the discrepancy
between the links but not the number of links. Moreover, we consider a special case in which
all links can be clustered into several groups. The latency function is similar among links in
the same group and are sufficiently different between links in different groups. Each group
could be seen as different transportation methods. For example, all freeway may belong to
one group, and all local roads and railroad may each belong to another group. In this case,
we propose a tax scheme which reduces ePoA to 1.281.

The rest of the paper is organized as follows. In Section 2 we describe the basic routing
game model and the type of tax scheme that we will use. In Section 3 we define the parameters
in the tax scheme more formally and prove some essential results on the relationship between
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the ePoA and the imposed tax. In Section 4 we show that step function tolls perform equally
well to previous optimal (arbitrary) tax scheme for networks with two parallel links. In
Section 5 we propose a tax scheme for 4

3 − ε ePoA. In Section 6 we give an 1.281 upperbound
of ePoA for networks with groups of similar links.

2 Model

We consider single-commodity congestion games on networks, defined by a directed traffic
network G = (V,E, l), with vertex set V , edge set E, and cost function (or latency function
such as [25]) set l. l is the set of cost function le for each link e ∈ E. There is only a start
node and an end node in V , while each link e ∈ E connects the start node directly to the
end node, and we denote all links E = {e1, e2, . . . , em}. r is defined to be the rate of traffic
or the total flow, which is independent of the network G. Unlike some previous works, r is
not part of the game. We aim to lower the ePoA for any value of r, instead of choosing a
different tax scheme for different value at r. A flow is a function that maps every link e ∈ E
to a non-negative real number. Given G and r, we call a flow feasible if Σe∈Efe = r.

le is the cost function of link e ∈ E, which is non-decreasing, non-negative and affine.
Therefore we order the links by an increasing order of the constant of the latency of the links.
Without loss of generality, we let lei(f) = ai · f + bi and bi ≤ bj for any i, j > 0 such that
i < j.

The concept of User Equlibrium [3] is adopted as Nash Equilibrium in this work. Formally,
a flow f feasible for traffic network G and total rate r, is at User Equilibrium if and only
if for every e1, e2 ∈ E with fe1 > 0, le1(f) ≤ lim

ε→0
le2(f + ε1e2 − ε1e1). It has been proven

that for the case where all discontinuity is lower semicontinuous, the User Equilibrium
exists as a theorem in [3]. The definition follows an equivalent definition in [25] when the
latency function is continuous. We call the flow at Nash Equilibrium, or User equilibrium
simply the Nash flow in the rest of the paper. The cost of flow f in traffic network G is
C(f,G) = Σe∈Efe · le(fe). We use Copt(r,G) to denote the minimum cost of any flow feasible
at rate r, or the cost of the optimal flow. Therefore the optimal flow is the flow that minimizes
the cost of flow for given (G, r), which would be referred to as OPT. Moreover, we say that a
flow uses j links when there are j links with non-zero flow-value. We use CN (r,G) to denote
the cost of the Nash flow at rate r, while the uniqueness of the Nash equilibrium is guaranteed
in theorem in [3]. When the context is clear, we may omit G, using C(f) for C(f,G), Copt(r)
for Copt(r,G), CN (r) for CN (r,G). The Price of Anarchy is defined as PoA(r) = CN (r)

Copt(r) ,
and PoA = maxr>0PoA(r). It should be noted that the PoA defined here is not a function
of r as in most previous works. The PoA in our work is the worst case of PoA(r) among
any r-value for a particular network G. In the remainder of the paper, we focus on single
commodity, parallel-link networks G = (V,E, l), where E consists of m links {e1, · · · , em},
and cost function of link ei is of the form lei(f) = ai · f + bi.

2.1 Tax
On each edge, the original cost function before imposing the tax is lei

(f) = ai · f + bi, the
tax-modified cost function becomes l̂ei(f) = âi · f + b̂i, and â = a. The tax scheme used in
our work adds tax b̂j − bj to the cost for users using link j, where b̂j is a function of total
flow r.

b̂j = bj +
∑
i>j

(bi − bi−1) · hi · u(r − wi), (1)

ISAAC 2016
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where hi < 1 and wi are constants to be chosen, and u is the unit step function. Note
that to guarantee the existence of User Equilibrium, the unit step function is defined to be
lower-semicontinuity. One point to be noted is that under this form of tax, the Nash flow
accounting tax on any link is non-decreasing while total rate r increases. This is a desired
property, which makes taxing feasible and efficient, since rerouting existing traffic when total
traffic increases may be very costly if at all possible.

For the taxed network, we consider adding tax to be a modification to the original network.
Therefore, we call Ĝ the tax-modified network obtained by imposing tax on G. All notations
for the taxed network Ĝ is denoted with a hat, such as the expression b̂j defined above. We
specify that the ĈN (r) is the total cost of the Nash equilibrium flow of the tax modified
network at rate r, where the cost of each edge and the Nash flow are both affected by the
tax. We formally define ePoA = maxr>0ePoA(r) = maxr>0 ˆPoA(r) = maxr>0

ĈN (r)
Copt(r) .

3 Useful Inequalities on the PoA and Tax

Before proving the main results, we need to prove some lemmas on the cost of the Nash
equilibrium and OPT.

I Definition 1. We follow notations in previous works. Given a traffic network G, let
λj = 1/aj , γj = bj/aj , Λj = Σj

i=1λi, Γj = Σj
i=1γj and rj = Σj−1

i=1 (bi+1 − bi)Λi. We also
define uj = rj/rj−1 and vj = Λj/Λj−1.

Intuitively, rj is the amount of flow at which the (j + 1)-th edge starts to have non-zero
Nash flow. PoA is locally maximized at each rj . The tax schemes we design also seeks to
reduce PoA near these values.

Cost of the Nash flow and the OPT on this type of traffic network has been well studied,
and closed-form expressions were given [8]. We restate some essential results in Lemma 2.

I Lemma 2 ([8]). The Nash flow uses link j for r > rj and the OPT uses link j for r > rj/2.
If the OPT uses exactly j links at rate r then

Copt(r) = 1
Λj

(r2 + Γjr)− Cj , where Cj =
( j∑
h=1

h∑
i=1

(bh − bi)2λhλi

)
/(4Λj).

If the Nash flow uses exactly j links at rate r then

CN (r) = 1
Λj

(r2 + Γjr).

If s < r and OPT uses exactly j links at s and r then

Copt(r) = Copt(s) + 1
Λj

((r − s)2 + (Γj + 2s)(r − s)).

If s < r and the Nash flow uses exactly j links at s and r then

CN (r) = CN (s) + 1
Λj

((r − s)2 + (Γj + 2s)(r − s)).

Directly from Lemma 2, we know that both the OPT and the Nash flow start to use links
with the same b-value simultaneously because ri = rj if bi = bj .
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I Lemma 3. Given a traffic network G, if there exists an index i such that bi = bi+1, we can
find a network G′ having one less link than G such that CN (r,G) = CN (r,G′), Copt(r,G) =
Copt(r,G′) for all r.

Using Lemma 3, given a traffic network G, we can replace all links with the same b values
by one link and let the cost of the Nash and the OPT remain the same. Furthermore, if we
apply tax in the new game, we can apply the same tax on every corresponding links in the
old game, as a result, we only consider traffic networks such that bi 6= bj ,∀i 6= j in the rest
of the paper.

Informally, the tax scheme we design works in the following way. For every flow value ri
which corresponds to a local maximum in the PoA-r curve, we add a set of step functions
which reduces the tax in the flow range [αri, βri] if the original PoA at flow ri is greater
than a certain threshold. This set of step functions has no effect on PoA when the total
flow is less than αri but increases PoA marginally when the total flow is greater than βri.
A tax scheme can be described by a set of parameters (T,A,B), where T is the threshold,
A = {α1, · · · , αm}, B = {β1, · · · , βm} describes the range of flow in which PoA is supressed.
When the tax is imposed on a flow value ri, a step function are added onto the original
cost functions for the first i links, where the heights and positions of those step functions
are chosen such that the Nash flow on these i links stop increasing when the total flow r is
between [αri, βri], causing the Nash flow to use new links. The detailed definition of the tax
scheme being used is the following:

I Definition 4. Given a traffic network G, let Gj be an identical network of G with links e1
to ej−1 removed. Let fj be the Nash flow on a given a network Gj and rate r, let CNj(r) be
the cost of fj on Gj .

I Definition 5. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1
for 1 ≤ i ≤ m, Let A = {α1, · · · , αm}, B = {β1, · · · , βm}, S(T ) be the set of all index i such
that PoA(ri) > T and Ĝ be the network obtained from applying tax(T,A,B) to G. The
parameters hj and wj in equation (1) (Section 2.1), which correspond to the heights and the
locations of the step functions are chosen as following,

hj =
{ (

CNj((βj−αj)·rj)
(βj−αj)·rj

− ĈN (αj ·rj)
αj ·rj

)
/(bj − bj−1), if j ∈ S(T )

0, otherwise.
wj =αj · rj .

We also set two parameters, hmax = maxihi, vmin = mini∈S(T )vi.

Follow the definition, we can describe the cost of the Nash flow on Ĝ with Lemma 6.

I Lemma 6. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1 for
1 ≤ i ≤ m, and tax(T,A,B) imposed on G,

ĈN (r) = ĈN (αj · rj) + CNj(r − αj · rj) for r ∈ [αj · rj , βj · rj ] and j ∈ S(T ).

If the Nash flow uses j links on Ĝ at rate r,

ĈN (r) = 1
Λj

(r2 + r · Γ̂j(r)) for r /∈ (αj · rj , βj · rj)∀j ∈ S(T ),

where Γ̂j(r) = Σj
i=1b̂i(r)/âi = Σj

i=1b̂i(r)/ai. If the Nash flow uses exactly n links on Gj at
rate r,

CNj(r) = 1
Λj+n−1 − Λj−1

(r2 + (Γj+n−1 − Γj−1) · r).

ISAAC 2016



61:6 An Improved Tax Scheme for Selfish Routing

Proof. Equations can be derive directly from Lemma 2. J

In this paper, all tax schemes are designed in a way that after the tax is being applied,
the ePoA is determined by the Nash/OPT costs at total flow αiri or βiri for some i. In
order to have a good estimate of the ePoA, we first derive Theorem 7 which gives us a good
estimate of the original PoA at total flow αiri and βiri. In this theorem, the first inequality
gives a good upper bound on PoA at βiri and the second inequality gives a good upper
bound on the PoA at αiri. All upper bounds are described using parameters Λj since these
values play an important role in determining the PoA [8].

I Theorem 7. If the Nash flow uses exactly j links and the OPT uses exactly h links at rate
r then

PoA(r) ≤ max
{ 4r

4r − rj−1
,

r2Λ−1
j + r · rj(Λ−1

j−1 − Λ−1
j )

r2Λ−1
j−1 − Σhi=j(r − ri/2)2 · (Λ−1

i−1 − Λ−1
i )

}
.

If the Nash flow uses exactly j-1 links and the OPT uses exactly h links at rate r then

PoA(r) ≤ max
{ 4r

4r − rj−1
,

r2Λ−1
j−1

r2Λ−1
j−1 − Σhi=j(r − ri/2)2 · (Λ−1

i−1 − Λ−1
i )

}
.

The proof is omitted due to space constraints.
In the PoA-r curve, local maximum only exists at r = rj . The following lemma gives an

upper bound on PoA which will be used to show that PoA in the region [βiri, αi+1ri+1] is
bounded by the PoA of this region’s two endpoints.

I Lemma 8. Given a traffic network G, if the Nash flow uses exactly j links at rate s and t
for s < t, then

PoA(r) ≤ max{PoA(s),PoA(t)},∀r ∈ [s, t] .

Most of our proof relies on Theorem 7 and Lemma 8, first with Lemma 8 to bound the
PoA for total flow far away from the peak values ri, then with Theorem 7 to provide a good
bound for total flow close to these peak values.

As previously mentioned, the step functions that decrease PoA near ri will increase PoA
when the total flow is greater than βiri. Lemma 9 shows that our tax will only increase the
total cost by a constant factor.

I Lemma 9. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1 for
1 ≤ i ≤ m, let Ĝ be the traffic network obtained by imposing tax(T,A,B) on G, then

ĈN (r)
CN (r) ≤ 1 + hmax

vmin
, for r such that r /∈ (αj · rj , βj · rj) for all j ∈ S(T ).

Proof. For total flow r ∈ [rj−1, rj ] and r /∈ (α · ri, β · ri) for all i ∈ S(T ), let k be the largest
i ∈ S(T ) such that i < j, from Lemma 2,

ĈN (r)
CN (r) ≤

r + Γ̂j−1(r)
r + Γj−1

= 1 +
∑j−1
i=1 (b̂i(r)− bi)λi
r + Γj−1

.

The largest possible tax added to a link when r ∈ [rj−1, rj ] is hmax · bk, and only link 1 to
k-1 have non-zero tax added rate r,

ĈN (r)
CN (r) ≤ 1 +

∑k−1
i=1 hmax · bkλi
r + Γj−1

≤ 1 + hmax · bkΛk−1

rj−1 + Γj−1
= 1 + hmax · bkΛk−1

bj−1Λj−1
.
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Since k < j, bk ≤ bj−1 and Λk ≤ Λj−1,

ĈN (r)
CN (r) ≤ 1 + hmax

Λk/Λk−1
= 1 + hmax

vk
≤ 1 + hmax

vmin
. J

4 The ePoA for Two-Link Networks

In this section, we study the networks with two parallel links. In this special case, we give
an upperbound of ePoA for the step function tolls which is 1.192. This result shows that
applying step function tolls is as powerful as arbitrary tax scheme proposed in [8]. In fact,
when the total flow is between 0 and βr1, our step function tax is exactly identical to the
tax scheme in [8]. When the total flow is greater than βr1, the previous tax scheme remove
the previously added step-function tax and does not impose tax on any link. In this paper,
removing the step functions is not allowed. We prove that even though these step functions
only increase PoA when the total flow is greater than βr1, the influence is marginal and
the maximum value always happen at total flow βr1. The proof is omitted due to space
constraints.

I Theorem 10. Given a two link traffic network G, there always exist a pair of α ∈ ( 1
2 , 1), β ∈

(1,∞) such that if tax(T = 1.192, {α}, {β}) is imposed, then ePoA ≤ 1.192.

5 Upperbound of the ePoA for Multiple Parallel-Link Networks

In this section we consider parallel-link networks. Given a traffic netowrk G, we con-
sider that ratio between two adjacent peak values ri

ri−1
. Let ε = min(mini>1ui, 2) − 1 =

min(mini>1
ri

ri−1
, 2)− 1. We prove that the ePoA has an upper bound less than 4

3 −
1
3 ( ε3 )3.

Notice that in this case, ε only depends on the discrepancy between the links and is independ-
ent of the number of links in the network. The main result of this section is the following
theorem.

I Theorem 11. Given a traffic network G, and tax(T = 4
3 − ( ε3 )3, {α1 = · · · = αm =

1− 2( ε3 )3}, {β1 = · · · = βm = 1 + 3( ε3 )3}) is imposed. Then

ePoA <
4
3 −

1
3( ε3)3.

Notice that rj

rj−1
is less than bj

bj−1
and increases when the difference between aj and aj−1

increases, and thus is a good indicator of the discrepancy between the links.
In order to prove Theorem 11, we need the following lemmas. Intuitively, we first use

Lemma 14 and 15 to prove that the PoA of the original network is at most T when the total
flow is αrj of βrj . Combining with Lemma 8 and 9, we know that ePoA≤ T (1 + hmax

vmin
) for

all r /∈ (αrj , βrj). Lemma 16 shows that when the total flow is between αrj and βrj , the
ePoA is also bounded. Plug in the value of hmax and vmin from Lemma 12 and 13 to finish
the proof. For the constants T , αi, βi chosen, we can bound all related parameters needed in
Theorem 11 with some straightforward calculations.

I Lemma 12. Given a traffic network G, a constant T such that T > 4+4ε
3+4ε .

vmin = mini∈S(T )vi = mini∈S(T )
Λi

Λi−1
>

(2ε− ε2)T
4− 3T .

ISAAC 2016
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Proof. By definition of set S, PoA(ri) > T for all i ∈ S(T ). From Theorem 7,

PoA(rj) ≤ max
{ 4rj

4rj − rj−1
,

r2
jΛ−1

j−1

r2
jΛ
−1
j−1 − Σj≤i≤h(rj − ri/2)2 · (Λ−1

i−1 − Λ−1
i )

}
.

Since rh > rh−1 > · · · > rj+1 ≥ (1 + ε)rj ≥ (1 + ε)2rj−1 and Λ−1
h > 0,

PoA(rj) ≤ max
{4 + 4ε

3 + 4ε ,
4

3 + (2ε− ε2)Λj−1/Λj

}
.

From condition of T,

T < PoA(rj) ≤
4

3 + (2ε− ε2)Λj−1/Λj
∀j ∈ S(T ). J

I Lemma 13. hj ≤
(

1
vj−1 (βj − αj) + (1− αj)

)
· rj

rj−rj−1
.

I Lemma 14. Given a traffic network G, constants T and α such that α ≤ T+(T 2−T )
1
2

2 ,
4α·rj

4α·rj−rj−1
≤ T and 1 < T < 4

3 , then PoA(α · rj) ≤ T .

I Lemma 15. Given a traffic network G, constants T and β such that 2 > β ≥ T
4(T−1) and

1 < T < 4
3 , then PoA(β · rj) ≤ T .

I Lemma 16. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1
for 1 ≤ i ≤ m, and tax(T,A,B) imposed on G,

ePoA(r) ≤max
{
ePoA(αj · rj), (βj − αj)

Λj
Λj − Λj−1

+ (1− βj + αj)
}

for r ∈ [αj · rj , βj · rj ] and j ∈ S(T ).

The Proof of Lemma 13 to 16 are omitted due to space constraints.

Proof of Theorem 11. Let α = α1 = · · · = αm = 1− 2( ε3 )3, β = β1 = · · · = βm = 1 + 3( ε3 )3.
First consider the case when total flow r /∈ (α·rj , β ·rj) ∀j ∈ S(T ). Since β ·rj < α·rj+1 ∀j,
we can apply the result of Lemma 8,

PoA(r) ≤ max
{
maxi/∈S(T )PoA(ri),maxi∈S(T )PoA(α · ri),maxi∈S(T )PoA(β · ri)

}
.

From Lemma 14, 15 and the definition of S(T ), all terms above are bounded by the threshold
T,

PoA(r) ≤ T for r /∈ (α · rj , β · rj) ∀j ∈ S(T ).

ePoA(r) is bounded by PoA(r) times the ratio between cost of the Nash flow on Ĝ and G,
From Lemma 9,

ePoA(r) = PoA(r) · ĈN (r)
CN (r) ≤ T (1 + hmax

vmin
) for r /∈ (α · rj , β · rj) ∀j ∈ S(T ). (2)

We then consider ePoA(r) when total flow r ∈ [α · rj , β · rj ], and j ∈ S(T ). From Lemma 16,

ePoA(r) ≤ max
{
ePoA(α · rj), (β − α) Λj

Λj − Λj−1
+ (1− β + α)

}
.
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For the second term above, since j ∈ S(T ), the ratio of Λj and Λj−1 is bounded, from
Lemma 12,

(β − α) Λj
Λj − Λj−1

+ (1− β + α)

≤ (β − α) vmin
vmin − 1 + (1− β + α)

≤ (5( ε3)3) ·
(2ε− ε2)( 4

3 − ( ε3 )3)
(2ε− ε2)( 4

3 − ( ε3 )3)− 3( ε3 )3)
+ (1− 5( ε3)3)

<
4
3 − ( ε3)3 = T.

From previous case, we know that ePoA(α · rj) ≤ T (1 + hmax

vmin
), therefore

ePoA(r) ≤ T (1 + hmax
vmin

) for r ∈ [α · rj , β · rj ] if j ∈ S(T ). (3)

Combine (2) and (3), we have an upperbound of ePoA(r) for all r > 0,

ePoA ≤ T (1 + hmax
vmin

).

From Lemma 12 and 13,

ePoA <
4
3 −

ε3

27

(
1− (

2(2ε− ε2)( 4
3 −

ε3

27 ) + 3ε3/9
(2ε− ε2)( 4

3 −
ε3

27 )− ε3/9
) · ε+ ε2

9(2− ε)

)
<

4
3 −

ε3

81 . J

6 Networks with Groups of Similar Links

In previous sections, we have given an upperbound of ePoA when it is strictly less than 4
3 .

In this section, we study a special case in which the links can be classified int many groups.
Links in the same group all have similar ri and thus similar cost functions. This special case
is closely related to the case in which there are many types of transportation methods, or
just many types of roads (such as freeways and local roads). We give an upper bound of
ePoA for a specific case of groups of similar link defined below.

I Definition 17. A traffic network Gc is a network with clustered latencies if and only if
there exists N intervals [L1, R1], . . . , [LN , RN ], and Ri

Li
<= 1.05 for i ∈ [1, 2, . . . , N ], and

Li+1
Ri
≥ 20 and any rj for j ≥ 2 is in one of the intervals [Li, Ri].

The main result of this section is ePoA≤ 1.281 for a traffic network Gc with clustered
latencies. Before proving the main result, we introduce the following transformation, and
several lemmas.

I Definition 18. Given any traffic network Gc with clustered latencies, we define the
aggregated network of Gc, Ga as the following. For all ri inGc, inside a certain interval [Lk, Rk],
we re-label the index i to be k1, k2, . . . , knk

so that Lk ≤ rk1 ≤ rk2 ≤ · · · ≤ rknk
≤ Rk. An

intermediate network Gtemp is obtained by increasing the constant of the cost functions
bki

to b̃ki
= bknk

for all i < nk. Now all links ei with ri in the same interval in Gc has
the same b-value, which is bknk

. Thus, by Lemma 3, these links can be merged through a
transformation of graph without changing either the Nash flow or the OPT. After the merge,
the resulting network is Ga. The transformation Tr is the combination of increasing the
constants of links in Gc to get Gtemp, and merging edges of Gtemp to get Ga.
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I Lemma 19. In a traffic networks G1 with rj−1 and rj where , bj−1 is increased to bj , and
the two links are merged to index inew, as stated in Definition 18 then the position of rinew

is betweeen (rj−1, rj).

Proof. By the basic equation in Definition 1, rj = Σj−1
i=1 (bi+1 − bi)Λi.

rj − rinew = (bj − bj−1)(Λj−1 − Λj−2) > 0
rinew − rj−1 = (bj − bj−1)(Λj−1) > 0

Thus, rj−1 ≤ rinew
≤ rj . J

Following Definition 18, with Lemma 19 used recursively, we see that the resulting rk
after merging all links in section k lies in [Lk, Rk]. Therefore, after the transformation, the
resulting traffic network Ga has min rj+1

rj
≥ 20, which is directly from the fact that Li+1

Ri
≥ 20.

The ratio of the optimal cost between the network after the transformation and before the
transformation is less than the ratio of the largest b̂i

bi
≤ 1.05. The formal lemma and proof

are below.

I Lemma 20. For any traffic network Gc with clustered latencies and its corresponding
aggregated network Ga, Copt(r,Ga)

Copt(r,Gc) ≤ 1.05.

The following lemma is similar to Lemma 9, for a slightly different situation.

I Lemma 21. In a traffic network G with rate r and ri+1
ri
≥ 20, where constants T , αi < 1,

βi > 1. When tax(T,A,B) is imposed on the network G. We have

ĈN (r)
CN (r) ≤ 1 + hmax

20× s (4)

for any s satisfying αj × rj ≥ r ≥ s× rj, and s× rj ≥ βj−1rj−1, s ≤ 1. Similarly, we have

ĈN (r)
CN (r) ≤ 1 + hmax

vj
(5)

for αj+1 × rj+1 ≥ r ≥ βj × rj.

We now introduce the tax scheme and upper bound the corresponding ePoA for an
aggregated network. The tax scheme chooses different values of αi, βi, with different regions
of vi.

I Lemma 22. For any traffic network Gc with clustered latencies and its corresponding
aggregated network Ga, there exists a tax scheme Ga such that ePoA of Ga ≤ 1.22 when the
tax is applied to Ga.

Proof. The tax scheme tax(1.198, A, B), where αj , βj are decided according to the value
of v in Table 1 satisfies the requirement.

The proof is omitted due to space constraints. J

With Lemma 20 and 22 we prove the main theorem in this section by simply multiplying
1.22 and 1.05.

I Theorem 23. The ePoA is at most 1.281 for a traffic network with clustered latencies.
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Table 1 Corresponding α, β with different values of v, note that tax is not imposed in case 0.

cases vj αj βj

0 [0, 2.95] any any
1 [2.95, 3] 0.985 1.51
2 [3.0, 3.2] 0.981 1.51
3 [3.2, 3.5] 0.964 1.51
4 [3.5, 4.0] 0.9428 1.5108
5 [4.0, 4.8] 0.9175 1.524
6 [4.8, 7.0] 0.89 1.55
7 [7.0, 11.0] 0.87 1.79
8 [11.0,∞] 0.83 1.90

Proof. For any traffic network Gc with clustered latencies and its corresponding aggregated
network Ga, with Lemma 20 and 22 we know that ePoA of Ga ≤ 1.22, and Copt(r,Ga)

Copt(r,Gc) ≤ 1.05.
We view the transformation Tr on Gc as tax T1, and the tax imposed on Ga as tax T2. The
final tax scheme imposed on Gc is T1 + T2. While the tax scheme imposed on Ga is T2. Now
we prove the theorem

ePoA = ĈN (r,Gc)
Copt(r,Gc)

= ĈN (r,Ga)
Copt(r,Ga) ·

Copt(r,Ga)
Copt(r,Gc)

≤ 1.22 · 1.05 = 1.281 J

A point to be noted is that the lower bound of PoA is proved in [8] to be 1.191 for two
edge network, therefore that proving ePoA ≤ 1.22 is clearly close to optimal since additional
tax is further accounted while in [8] the tax could be retrieved and that rj+1

rj
is ∞, where in

Lemma 22 the restriction is much stricter, while only increasing the ePoA by less than 3
percent.

7 Open Problems

The goal of this work is to design a taxing scheme with unit step function which is able to be
applied to general networks. In the case of parallel links in our study, we have demonstrated
different possible approaches to bound the ePoA. We have proved a tight upperbound of
the two link case in Section 4, given an upperbound of ePoA less than 4

3 depending on the
discrepancy between links in Section 5, and give an upperbound when the links are clustered
while the discrepancy between links in each cluster are not limited in Section 6. However, it
remains an open question whether there is a upperbound less that 4

3 independent of both
the discrepancy between the links and the number of links in the network. A combination of
the previous methods could be a possible approach.
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