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Abstract
We consider the classic all-pairs-shortest-paths (APSP) problem in a three-dimensional envir-
onment where paths have to avoid a set of smooth obstacles whose surfaces are represented
by discrete point sets with n sample points in total. We show that if the point sets represent
ε-samples of the underlying surfaces, (1 ± O(

√
ε))-approximations of the distances between all

pairs of sample points can be computed in O(n5/2 log2 n) time.
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1 Introduction

Computing shortest distances between pairs of points is one of the classic problems in
Computational Geometry. The problem is well-understood in (geometric) graphs and in the
Euclidean plane [11]. Computing exact shortest paths among obstacles in three-dimensional
Euclidean space, however, was shown to be NP-hard [7]. Subsequently, authors have
considered special cases such as exact distances on a convex polyhedron [16] or approximate
distances on a general, possible weighted polyhedron [2], see also the survey by Bose et al. [6].

We consider a set of smooth obstacles in R3 given as an ε-sample, i.e., a point set on the
union of the obstacles’ boundaries locally dense enough to faithfully capture curvature and
folding. As usual, ε is a sampling parameter unknown to the algorithm [4, 14]. In line with
previous approaches (see [15] and the references therein), we assume that ε is upper-bounded
by a constant ε0 > 0 which only depends on the algorithm but neither on the input size nor
on the curvature or folding of the underlying surface. We obtain the following result:

I Theorem 1. There is a global and shape-independent constant ε0 > 0 such that it holds
for ε ≤ ε0: Given an ε-sample S of a set of smooth obstacles in R3, we can compute
(1±O(

√
ε))-approximations of all

(
n
2
)
distances in O(n5/2 log2 n) time, where n := |S|.

In general, shortest paths among obstacles alternate between geodesic subpaths on
obstacles and straight-line segments in free space. The standard approach to computing such
free-space geodesics would be to compute both geodesic distances and visibility edges between
each pair of points, model these distances by a weighted graph G with vertices corresponding
to the sample points on the obstacles, and then to combine the results using an all-pairs
shortest path algorithm on G. Due to the complexity of visibility maps in three-dimensional
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60:2 Approximate Shortest Distances Among Smooth Obstacles in 3D

space, this approach would lead to an at least cubic runtime. We will alleviate this problem
by simultaneously restricting the degree of G and locally bounding the length of the edges.

Related Work

A free-space geodesic is modeled by two types of edges in G that correspond to either
geodesics on obstacles or straight-line segments in free space. For the geodesics on obstacles,
we note that exact shortest path computations on general polyhedra are considered complex
and challenging. We refer to recent surveys [3, 6, 11] for a detailed discussion and focus on
two approximation algorithms: the best algorithm currently known for weighted polyhedra is
the algorithm by Aleksandrov et al. [3], while the algorithm by Scheffer and Vahrenhold [14]
works on (unweighted) 2-manifolds in IR3. The efficiency of the algorithm by Aleksandrov
et al. depends on the triangles obeying a “fatness” condition. In general, however, the
aspect ratio and, hence, the runtime can be arbitrarily large. Both algorithms result in a
shortest-path graph of quadratic size. Exploring this structure in combination with a visibility
graph (see below) as part of a shortest-path algorithm leads to at least cubic runtime.

The second type of edges of a free-space geodesic corresponds to straight-line segments
connecting points on obstacles by crossing the free space; these bridge edges are obtained by
computing visibility information between points on the obstacles. Despite recent advances
in algorithms for “realistic terrains” [12], the complexity of the visibility map of a three-
dimensional surface is quadratic in the worst case—see [12] and the references therein. As
discussed above, a visibility map of quadratic size leads to a cubic overall running time.
A subquadratic complexity currently can be obtained only under standard assumptions
about the fatness of the triangles and the (bounded) ratio of shortest and longest edges; in
particular the latter assumption is infeasible in the case we are considering.

2 Outline of the Algorithm

To simplify the exposition, we will assume that the obstacles’ boundary consists of exactly
one surface Γ. Since even in that case straight-line segments, i.e., bridge edges, may be
needed on a free-space geodesic to bridge cavities in the manifold z bounded by Γ, it is easy
to see that our algorithm easily generalizes to multiple non-intersecting obstacles.

From a high-level perspective, our algorithm proceeds by first constructing a weighted
graph G :=

(
Ssub, Eloc ∪ Ebri

)
on a subset Ssub ⊆ S of sample points where the edges in Eloc,

called local edges, represent approximate free-space geodesic distances between points on Γ
and the edges in Ebri represent straight-line segments avoiding Γ; in either case, the weight
of an edge denotes the length of the respective connection. The algorithm then approximates
the free-space geodesic distances L?Γ (s1, s2) for all s1, s2 ∈ Ssub by computing exact all-pairs
shortest paths in G and extends these results to compute approximate distances L (·, ·)
between all points in S. The algorithm is given below and will be discussed in the following.

As sketched above, the main challenge in obtaining an algorithm with subcubic running
time lies in working with a shortest-path graph with bounded or at least sublinear degree. As
we will detail below, we can obtain such a graph by first avoiding to compute approximate
free-space geodesic distances between all pairs of points. Instead, we will compute such
distances only for points within a locally bounded distance of each other. These distances
will be represented by the set Eloc of local edges connecting points in a carefully coarsened
subsample Ssub ⊆ S. We then compute a set Ebri of bridge edges such that Ebri is a
superset of the visibility graph of Ssub w.r.t. (the sample points of) Γ. In both cases, we can
simultaneously guarantee a sublinear node degree and a good approximation quality.
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Algorithm 1 Approximating Geodesic Distances.
1: function APX3DGeodesicDistances(S)
2: ψ(·)← ControlFunction(S); . Setup approximation using Lemma 4 [9, 14]. . .
3: afs(·)← APXLocalFeatureSize(S); . . . . and algorithm by Aichholzer et al. [1]
4: δ ← maxs∈S ψ(s)

afs(s) ; . Lower-bound local feature size
5: Ssub ← CoarsenSample(S, δ, afs(·)); . Use Algorithm 2
6: Eloc ← ComputeLocalEdges(Ssub, δ, afs(·)); . Use Algorithm 3
7: Ebri ← ComputeBridgeEdges(Ssub, S, δ, afs(·)); . Use Algorithm 5
8: G←

(
Ssub, Eloc ∪ Ebri

)
; . Assemble graph G

9: return APXDistancesFromGraph(S, G); . Expand result from Ssub to S

In the remainder of this section, we consider both types of edges in turn and show how
to efficiently compute them. We then discuss how to combine local and bridge edges into a
graph G that is sparse enough to be traversed efficiently. Finally, we analyze the resulting
algorithm w.r.t. to its running time and approximation quality.

2.1 Computing Local Edges
The situation we are facing is similar to the construction of spanner graphs approximating
the full Euclidean graph. One way of constructing a spanner graph is by means of the
well-separated pair decomposition [10]. Informally, this approach connects (representative
points of) clusters that are “far away” from each other, where the notion of “far away”
depends on the radius of the clusters. Doing so, the intra-cluster distances are approximated
by the length of the edge connecting the representatives.

We proceed along similar lines: we consider only edges between points that are at bounded
distance from each other where the notion of “bounded” depends on the sampling density and
the curvature and folding of Γ at the points in question. This allows us to relate Euclidean
and geodesic distances and thus to upper-bound the approximation quality of the geodesic
distances computed. A naive implementation of this approach, however, might lead to a linear
number of edges per point. To avoid such situations, we need to ensure that only few “short”
edges are constructed per point; this will be done by applying a standard preprocessing step
in which the sample is coarsened appropriately without affecting the sampling quality [14].

In contrast to the construction of the spanner graph, the construction steps sketched
do not guarantee a linear number of edges to be sufficient to obtain a good approximation
quality. What we can show, however, is that by considering only edges for points whose
Euclidean distance is upper-bounded as sketched above, we obtain a graph with O(n3/2)
edges which still results in the desired approximation quality.

2.1.1 Characterizing and Approximating the Sampling Density
To measure the density of a point sample, it is customary to consider the local feature size
lfs(·) that is defined as the distance function to the medial axis of Γ [4]. To formalize notation,
a discrete subset S of Γ ⊂ R3 is an ε-sample of Γ if for every point x ∈ Γ there is a sample
point s ∈ S such that its distance |xs| to s is upper-bounded by ε · lfs(x). The local feature
size lfs(·) is c-Lipschitz for c = 1, i.e., lfs(x) ≤ lfs(y) + c|xy| = lfs(y) + |xy|, x, y ∈ R3.

In [14], we show that |x1x2| for x1, x2 ∈ Γ is an (1 +O(ε))-approximation of the geodesic
distance LΓ (x1, x2) on Γ between x1 and x2 if |x1x2| ≤

√
ε · min{lfs(x1), lfs(x2)}. Put

differently, if points are “close enough” to each other, their Euclidean distance approximates
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their geodesic distance. While we use this upper bound in [14] to prove the approximation
quality of the geodesic distances computed, the discussion above suggests that our algorithm
needs to actually evaluate these expressions to compute the radii of the locally bounded
neighborhoods mentioned above and thus to be able to exclude points at larger distance from
comparison. Unfortunately, neither ε nor lfs(·) can be computed exactly as Γ is unknown.

What we can do, however, is to compute an approximate upper bound afs(·), the
approximate local feature size, for lfs(·) such that lfs(s) ≤ O(1) · afs(s) for all s ∈ S.
Furthermore, we compute a so-called control function ψ (·) such that ψ (s) ≤ O(ε) · lfs(s) for
all s ∈ S. Finally, we compute an approximate lower bound δ := maxs∈S(ψ (s) /afs(s)) for ε.

We follow Aichholzer et al. [1] and apply the distance from s ∈ S to the closest pole.

I Definition 2 ([4]). The poles of some s ∈ S are the two vertices of the Voronoi cell VorS (s)
of s in the Voronoi diagram of S which are farthest from s, one on either side of Γ (note that
Γ is the boundary of a 2-manifold, hence the inside and outside are well-defined). A pole ps
of s is called an outer pole if it lies outside Γ, and an inner pole otherwise.

Aichholzer et al. observed that this distance is the desired approximate upper bound
afs(s) for the local feature size lfs(s), i.e., that lfs(s) ≤ 1.2802 · afs(s) holds. Obviously, we
can compute the (Voronoi diagram and the) poles and, hence, afs(·) in quadratic time. While
the algorithm only needs to know the values of afs(·) for all points in S, the analysis will use
a version of this function lifted to Γ ⊂ IR3. For this analysis, we can assume that we can
extend the domain of afs(·) to Γ– if needed, pointwise – such that lfs(x) ≤ 1.2802 · afs(x)
holds for all x ∈ Γ (note that lfs(·) is defined for each point x ∈ Γ).

I Observation 3. afs(·) is 1-Lipschitz and can be computed in O(n2) time.

We then obtain the approximate lower bound δ for ε using a control function:

I Lemma 4 ([14]). We can compute in time O(n2) a control function ψ : S −→ R+ such
that: (1) ∀s ∈ S : ψ (s) ≤ 1.19 · ε · lfs(s), (2) ∀s ∈ S : ∀x ∈ Vor (s) ∩ Γ : |xs| ≤ ψ (s), and (3)
ψ is 1

18 -Lipschitz.

In line with the above argumentation, for s1, s2 ∈ S we show |s1s2| ≤ (1 + O(
√
ε)) ·

L?Γ (s1, s2) if |s1s2| ≤ 1
3 ·
√
δ ·min {afs(s1), afs(s2)} holds, i.e., the above approximation scheme

still yields meaningful results for sample points s1, s2 ∈ S “close enough” to each other.
In our previous work [15], we proved:

I Lemma 5 ([15, Lemma 23]). There is a global and shape-independent constant ε0 such
that for all ε ≤ ε0, the approximate lower bound δ for ε satisfies 1

δ ∈ O(
√
n).

2.1.2 Coarsening the Sample

It remains to discuss how to avoid high-degree nodes in the distance graph, or, equivalently,
to avoid connecting points to “too many” other points that fulfill the above distance criterion.
For this, we use the control function implied by Lemma 4 to compute a coarsened subsample
Ssub ⊆ S in which the following two conditions hold:
1. For each point x ∈ Γ, there is a sample point s ∈ Ssub, such that |xs| ≤ O(δ) · afs(s).
2. For any two sample points s 6= s′ ∈ Ssub, |ss′| ≥ O(δ) · afs(s) holds.
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Algorithm 2 Compute a coarsened subsample Ssub ⊆ S (see [9, 14]).
1: function CoarsenSample(S, δ, afs(·))
2: Ssub ← ∅; β ← 0.1; . Fix constant in “big-oh”-notation for later analysis
3: while S 6= ∅ do
4: s← arbitrary point in S;
5: Ssub ← Ssub ∪ {s};
6: S ← S\Bβ·δ·afs(s)(s); . Br(x): ball with radius r centered at x
7: return Ssub;

Algorithm 3 Compute the set Eloc of local edges.
1: function ComputeLocalEdges(Ssub, δ, afs(·))
2: Eloc ← ∅;
3: for all (s1, s2) ∈ Ssub × Ssub do
4: if |s1s2| ≤ 1

3 ·
√
δ ·min {afs(s1), afs(s2)} then

5: e← (s1, s2); weight(e)← |s1s2|; Eloc ← Eloc ∪ {e};
6: return Eloc;

2.1.3 Intermediate Summary: Computing Local Edges
Summarizing the above discussion, we first coarsen the subsample using Algorithm 2 and
then construct local edges between all points that are close enough—see Algorithm 3.

I Lemma 6. Let S be an ε-sample and Eloc the set of local edges computed for a coarsened
subsample Ssub ⊆ S according to Algorithm 2 and 3. Then, the following properties hold:
(LE1) The length of a local edge is a (1±O(

√
ε))-approximation of the geodesic distance of its

endpoints. More precisely, for all s1, s2 ∈ S such that |s1s2| ≤ 1
3 ·
√
δ ·min {afs(s1), afs(s2)}

holds, we have L?Γ (s1, s2) ≤ (1 +O(δ)) · |s1s2| ≤ (1 +O(
√
ε)) · |s1s2|.

(LE2) Local edges can be asymptotically longer than the sampling density (described in terms
of afs(·) and δ) by a factor of Θ(

√
δ), i.e., they connect points that are relatively “far

away” from each other similar to cluster centers in a well-separated pair decomposition.
(LE3) Each sample point s ∈ Ssub is incident to at most O(

√
n) local edges.

Proof.
(LE1) (Omitted due to space constraints.)
(LE2) Fix a point s ∈ Ssub and let x be any point in VorSsub(s). By Lemma 7 there is

some s′ ∈ Ssub such that |xs′| ≤ 1.17 · δ · afs(s′). Since afs(·) is Lipschitz, it follows that
|xs′| ≤ 1.2 · δ · afs(x). Since x ∈ VorSsub(s), we have |xs| ≤ |xs′| ≤ 1.2 · δ · afs(x). Again,
since afs(·) is Lipschitz, we conclude that |xs| ≤ Θ(δ) · afs(s). Now, consider any local
edge (s1, s2) ∈ Ssub × Ssub. By construction, the maximum length νmax of any such
edge is νmax := 1

3 ·
√
δ ·min{afs(s1), afs(s2)}. Even if afs(s1) = max{afs(s1), afs(s2)}, the

fact that afs(·) is Lipschitz, together with the small distance of s1 and s2, implies that
νmax ≥ afs(s1) ·Θ(

√
δ). Thus, νmax ·Θ(

√
δ) ≥ |xs1|. The same argument applies to s2.

(LE3) [Sketch] As afs(·) is 1-Lipschitz, we can show afs(s′) ≥ (1− 1
3 · δ) · afs(s) ≥ 1

2 · afs(s)
for s′ ∈ B 1

3 ·
√
δ·afs(s)(s). Algorithm 2 guarantees |ss′| ≥ 0.1 · δ · afs(s) for all s, s′ ∈ Ssub,

s 6= s′. A standard packing argument yields |B 1
3 ·
√
δ·afs(s)(s) ∩ Ssub| ≤ 1

δ . As all sample
points connected to s by local edges lie inside B 1

3 ·
√
δ·afs(s)(s), we can upper-bound the

number of local edges incident to s by 1
δ ∈ O(

√
n); see Lemma 5. J
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I Lemma 7. For each x ∈ Γ, there is a s′ ∈ Ssub with |xs′| ≤ 1.17 · δ · afs(s′).

Proof. Let q ∈ S be the sample point closest to x. We distinguish between two cases:

1. q ∈ Ssub: We define s′ := q. By definition, δ = maxp∈S ψ(p)
afs(p) ≥

ψ(s′)
afs(s′) . Since, by

Lemma 4, |xs′| ≤ ψ (s′), we have |xs′| ≤ ψ(s′)
afs(s′) · afs(s′) ≤ δ · afs(s′).

2. q ∈ S \ Ssub: Define s′ ∈ Ssub to be the sample point that was processed by Algorithm 2
when q was excluded from further consideration (Line 6). With β = 0.1, this implies
that |s′q| ≤ 0.1 · δ · afs(s′). As afs(·) is 1-Lipschitz, we get afs(q) ≤ (1 + 0.1 · δ) · afs(s′).
Since q is the sample point closest to x, we have |xq| ≤ δ · afs(q) (see above). The
triangle inequality implies then |xs′| ≤ |xq| + |qs′| ≤ δ · afs(q) + 0.1 · δ · afs(s′) ≤
0.1 · (1 + 0.1 · δ) · δ · afs(s′) + δ · afs(s′) ≤ 1.17 · δ · afs(s′) (since δ2 < δ). J

2.2 Computing Bridge Edges
The second type of edges used in our construction is the set Ebri of bridge edges. While we
would ideally compute the visibility graph of Ssub w.r.t. Γ, we cannot do so as the exact
geometry of Γ is unknown. We thus compute Ebri as a superset of the edges in the visibility
graph making sure that the additional edges that may intersect the interior of Γ do so not
too deep; this will enable us to bound the approximation error.

2.2.1 Computing Approximate Visibility Information
As the exact nature of Γ is unknown, we cannot compute the visibility map of s′ ∈ Ssub w.r.t.
Γ. Neither can we use a polyhedral reconstruction of Γ as the visibility map of s′ w.r.t. such a
reconstruction may have quadratic complexity [12, Sec. 2.1]. To circumvent this problem, we
refrain from reconstructing Γ at all. Instead, we discretize Γ by a set of carefully constructed
cubes corresponding to all points in S and compute the visibility maps w.r.t. theses cubes.

For this, we require that the visibility information obtained in this way approximates
the true visibility information. First, we require that the cubes indeed cover Γ (recall that
Γ is the boundary of a manifold z, not z itself) such that no obstacles are ignored or
holes appear, and, second, we require that the cubes do not cover too much of the space
outside Γ in the sense that they block visibility rays that Γ does not block. To fulfill these
requirements, we compute, for each s′′ ∈ Ssub, a cube that is centered at s′′ and contains a
ball of radius 2 · δ · afs(s′′) (intuitively, this means that the cubes are large enough to overlap
with “neighboring” cubes and thus cover Γ). We then push all cubes towards the interior of
z such that they do not protrude from z and thus block visibility rays that z would not
block. Based upon Amenta and Bern’s [4] observation that for any point s ∈ S the vector
from s towards one of its poles approximates the respective surface normals in s, we push
the cubes along the vector from s towards its inner pole—see Algorithm 4.

Algorithm 4 Compute centers of the cubes pushed towards the interior of the manifold z.
1: function ComputeCubeCenters(S, δ, afs(·))
2: for all s ∈ S do
3: ps ← inner pole of s;
4: s↓ ← s+ 15 · δ · afs(s) ·

−→sps

|sps| ;
5: S↓ ← S↓ ∪

{
s↓
}
;

6: return S↓;
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s′

π

c

s↓

C

Figure 1 Left: Construction of a skewed cube c ∈ C(π, s′) inside a pyramid. The base of c is the
ball with center in s and a radius of 2 · δ · lfs(s) w.r.t. the `∞-metric. Thus B2·δ·lfs(s)(s) ⊂ c. The
sides of c are slanted outwards from the back face by the same angle as the aperture of π, see cube
c. Finally, c is pushed in the interior of the solid z bounded by Γ by pushing s′ into the direction of
ps by 15 · δ · afs(s) where ps is the inner pole that corresponds to s. Middle: Cross-section of the
pyramid during the sweep. Right: Projection of the cubes.

For technical reasons, when computing the visibility information of a point s′ ∈ Ssub, we
cover the space with a constant number of pyramids with apex at s′ and compute the visibility
information for each pyramid separately. After we have identified all cubes intersecting a
pyramid π with apex s′ (this takes linear time per each of the O(1) pyramids), we perform
a top-down sweep (in decreasing z-order) over all cubes crossing π and all sample points
in Ssub inside the cone and maintain only the cross-section of the sweeping plane with the
scene. Whenever we encounter a sample point, we locate this point in the cross-section and
check its visibility from s′. To ensure that maintaining the cross-section is not too costly, we
do not work with the axis-aligned cubes we just computed. Instead, we approximate the
scene by a set of carefully skewed cubes such that their cross-section with the sweeping plane
can be maintained efficiently and their geometry does not induce too many events where the
combinatorial nature of the cross-section changes.

More precisely, for a a pyramid π with apex s′, we construct for each sample point
s ∈ Ssub \ {s′} a skewed cube c := cs such that the following properties hold—see Figure 1:
1. The front and back face of the cube c are parallel to the base of π.
2. The sides of c are slanted outwards from the back face by the same angle as π’s aperture.

(Here, we need that we are working with a constant number of pyramids per point.)
3. The cube c is centered at s↓.

For fixed s′ ∈ Ssub and π, we denote the set of all skewed cubes intersecting π by C(π, s′).
We define the visible neighborhood V (π, s′) of s′ w.r.t. π as the union of all points from
Ssub ∩ π that are visible from s′ w.r.t. C(π, s′).

I Lemma 8. For fixed s′ ∈ Ssub and π, we can compute V (π, s′) in O(n log2 n) time.

Proof. We perform a standard space-sweep in which we process the points and the skewed
cubes’ front faces in radial order from the top to the bottom face of the pyramid—see
Figure 1 (middle). The important fact to note is that, by construction, the visible silhouette
of the set of these cubes is exactly the projection of the set of their front faces onto the base
of the pyramid–see Figure 1 (right). The sweep-line structure maintained by the algorithm
is a segment tree T over the x-coordinates of the projections of these front faces. Whenever
we encounter the top edge of a front face f , we add f to the set of obstacles currently active
but inserting its x-interval into the sweep-line structure. At each node of T whose extent is
covered by f , we insert f into a list of faces sorted by their distance to s′. Analogously, we
remove a face from T once we encounter its bottom edge. Because of the way the skewed
cubes have been constructed, i.e., because the aperture of the pyramid and the slanting angle
of the cube coincide, the intersection of the sweeping plane and the skewed cubes changes
only at the top and bottom edges of the cubes. Whenever we encounter a sample point s, we

ISAAC 2016
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query T with the x-coordinate of s. At each node of T visited, we check the sorted list of
faces to see whether there is any face currently stored in T that blocks s from s′. If no such
face is found along the root-to-leaf path in T , s can be seen from s′, otherwise s is blocked.
The running time is easily seen to be O(n log2 n), as preprocessing takes O(n logn) time and
all update and query operations take at most O(logn) time per node visited. J

Finally, we define the visibility neighborhood of s as V (s′) :=
⋃
π∈Π V (π, s′).

I Corollary 9. For each s′ ∈ Ssub, we can compute V (s′) in O(n log2 n) time.

2.2.2 Bounding the Degree of the Approximate Visibility Graph
Summarizing the above, we would like to connect each s′ ∈ Ssub with all s ∈ V (s′) by bridge
edges. This approach can result in |V (s′)| ∈ Θ(n). The final challenge thus is to compute an
approximation of V (s′) that results in sublinear-degree vertices in the visibility graph.

I Definition 10 ([13]). Let X ⊂ R3 be a discrete point set and let x be an arbitrary point
in X. An approximate neighborhood AH (x) := AH ζ (x) of x w.r.t. X is defined as a subset
of X \ {x}, such that there exists a set of cones C(x) := Cζ (x), with apex at x and an
angular radius of ζ that covers R3, such that a point x′ ∈ X \{x} belongs to the approximate
neighborhood AH (x) := AH ζ(x) iff there is a cone C ∈ C (x) such that x′ is the point in
C ∩X minimizing the distance from its orthogonal projection onto the axis of C to x.

I Lemma 11 ([13]). For ζ > 0, approximate neighborhoods, each one of size Θ
(
ζ−2), for

all points from X can be computed in overall time O
(
|X|/ζ2 · log2 (|X|)

)
Stated in terms of Lemma 11, we compute the set Ebri of bridge edges (see Section 2.2) in

the weighted graph G = (Ssub, Eloc ∪ Ebri) as follows: we iterate over all s′ ∈ Ssub, compute
V (s′) and then, for ζ :=

√
δ > 0, approximate neighborhoods for the points in V (s′).

As a technicality, we wish to guarantee that bridge edges are not of local nature. Hence,
we just consider edges that are longer than local edges (see Section 2.1.3). Thus, for s′ ∈ Ssub,
we define A(s′) as the

√
δ-approximate neighborhood of s′ w.r.t. V (s′) \B 1

3 ·
√
δ·afs(s′)(s′).

I Corollary 12. For s′ ∈ Ssub, we can compute A(s′) in O(max{n log2 n, n/δ log2 n}) time.

Algorithm 5 Compute the set Ebri of bridge edges.
1: function ComputeBridgeEdges(Ssub, S, δ, afs(·))
2: Ebri ← ∅;
3: S↓ ← ComputeCubeCenters(S, δ, afs(·)); . Use Algorithm 4
4: for s′ ∈ Ssub do
5: Π← ComputePyramids(s′, S↓); . See Figure 1
6: V (s′)← ComputeVisibleNeighborhood(s′, π, Ssub, S↓); . Use Corollary 9
7: A(s′)← APXVisibleNeighborhood(s′, δ,V (s′)); . Use Lemma 11
8: for x ∈ A(s′) do
9: e← (s′, x); weight(e)← |s′x|; Ebri ← Ebri ∪ {e};

10: return Ebri ;

We show that Ebri fulfils the requirements outlined at the beginning of Section 2.2.1:

I Lemma 13. Let S be an ε-sample and Ebri the set of edges computed for a coarsened
subsample Ssub ⊆ S according to Algorithm 2 and 5. Then, the following properties hold:
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(BE1) Ebri is a superset of the visibility edges of Ssub w.r.t. Γ: for s ∈ Ssub, Ebri contains
all edges (s, s′) such that s′ ∈ Ssub and ss′ ∩z◦ = ∅ (z is the solid bounded by Γ).

(BE2) Let (s, s′) ∈ Ebri such that ss′ ∩z◦ 6= ∅. The intersection is not too deep, hence, the
shortcut taken not too short. More formally, for each edge (s, s′) ∈ Ebri and for any point
x ∈ ss′ ∩z, there is a sample point sx ∈ Ssub such that |xs| ≤ 18 · δ ·min{afs(x), afs(sx)}.

(BE3) Each sample point s ∈ Ssub is incident to at most O(
√
n) bridge edges.

Proof.
(BE1) We guarantee that each skewed cube cs lies inside the solid z bounded by Γ. In

order to do this, we first show that c lies inside a ball with radius 3.82 · δ · afs(s) and
centered in s↓, where s denotes the sample point corresponding to c. Furthermore, we
show s↓ ∈ z and that the distance between s↓ and Γ is lower-bounded by 9 · δ · afs(s↓).
Finally, the triangle inequality implies (BE1). We omit the details due to space constraints.

(BE2) See Section 3.1.2 for the proof.
(BE3) For each s′ ∈ Ssub, i.e., for each node of G, we use the algorithm by Ruppert and

Seidel [13], to compute an approximate
√
δ-neighborhood for s′ w.r.t. V (s′) and connect

s′ to one representative per cone. With ζ :=
√
δ, the nodes of G thus are incident to

O(ζ−2) = O(δ−1) edges. Using again Lemma 5, we observe that δ−1 ∈ O(
√
n). J

Combining Lemma 6 and Lemma 13, we see that the weighted graph G = (Ssub, Eloc∪Ebri)
has a sublinear node degree and is well-suited to approximate the sought geodesic distances
since the edges are either bridge edges, i.e., (approximate) visibility edges, or local edges,
whose lengths are approximations of the geodesic distances of their endpoints.

2.3 Approximating All Distances / Runtime Analysis
We have described how to construct a weighted graph G :=

(
Ssub, Eloc ∪ Ebri

)
on the

coarsened set of sample points. While we can now use Dijkstra’s algorithm to compute
shortest distances in this graph, i.e., between points in Ssub, we also need to discuss how to
compute distances between all sample points in S and not only between those in Ssub.

The main idea is borrowed from the construction of spanner graphs based upon well-
separated pair decompositions [10]. If a sample point s has been excluded from Ssub because
it was found to lie inside a ball Bβ·δ·afs(s′)(s′) of some sample point s′ ∈ Ssub, the distances
to/from s′ are good enough approximations of the distances to/from s as long as the
destination is “far away”; otherwise, we use the Euclidean distance as an approximation.

Algorithm 6 Deriving an approximation L (·, ·) of L?Γ (·, ·) from G.
1: function APXDistancesFromGraph(S, G)
2: Compute shortest path distances LG(s1, s2) for all s1, s2 ∈ Ssub.

. Use Dijkstra’s algorithm from each point in Ssub;
3: for all s ∈ S do
4: νs ← sample point in Ssub closest to s; . νs = s for all s ∈ Ssub

5: for all s1, s2 ∈ S do
6: if |s1s2| ≤ 1

3 ·
√
δ ·min{afs(s1), afs(s2)} then

7: L (s1, s2)← |s1s2|; . Approximate by Euclidean distance
8: else
9: L (s1, s2)← LG(νs1 , νs2); . Approximate using closest points in Ssub

10: return L (·, ·);
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We now have collected all ingredients needed to analyze the running time of Algorithm 1.

I Lemma 14. Algorithm 1 has a running time of O(n5/2 log2 n).

Proof. To recall Algorithm 1: we first compute a control function (Lemma 4) and approximate
the local feature size (Observation 3). Based upon these results, we can (asymptotically)
lower-bound the local feature size. Since we need the poles for this, we construct the Voronoi
diagram of all points, which can be done in O(n2) time. In the next phase of the algorithm,
we work with a coarsened subsample Ssub which can be constructed in O(n2) time as well
(Algorithm 2). Since we compute the set of local edges by iterating over all pairs of points in
Ssub (Algorithm 3), this step takes O(n2) time as well. Computing the set of bridge edges
takes O(n ·max{n log2 n, n/δ log2 n}) ≤ O(n5/2 log2 n) time (Corollary 12, Lemma 5). The
running time of the final step (Algorithm 6) is dominated by the Θ(n)-fold invocation of
Dijkstra’s algorithm on a graph with O(n) vertices and O(n3/2) edges (Lemma 6 (LE3),
Lemma 13 (BE3)). Using an efficient priority queue implementation, the running time for this
step is O(n5/2 logn). Hence, the overall running time of Algorithm 1 is O(n5/2 log2 n). J

3 Analysis of the Approximation Quality

I Lemma 15. L (·, ·) is an (1±O(
√
ε))-approximation of L?Γ (·, ·).

To prove Lemma 15, we first relate the value of δ to ε (Lemma 16). In Subsection 3.1, we
then show L (·, ·) ≥ (1−O(

√
ε)) · L?Γ (·, ·). Finally, we show L (·, ·) ≤ (1 +O(

√
ε)) · L?Γ (·, ·)

(see Subsection 3.2). This concludes the proof of Lemma 15 and, hence, of Theorem 1.

I Lemma 16. δ ∈ O(ε).

Proof. We combine Lemma 4 and Aichholzer et al.’s observation that lfs(s) ≤ 1.2802 · afs(s)
holds for all s ∈ S [1, Lemma 5.1]: δ = maxs∈S ψ(s)

afs(s) ≤ maxs∈S ε/(1−ε)·lfs(s)
1.2802−1·lfs(s) ≤ O(ε). J

3.1 Lower-Bounding the Approximation Quality
To ensure L (s1, s2) ≥ (1−O(

√
ε))L?Γ (s1, s2) for all s1, s2 ∈ S, we consider a shortest path φ

in the distance graph G between νs1 and νs2 . We then construct a curve γ between s1

and s2 in the free space Λ := IR3 \z such that |γ| ≤ (1 + O(
√
ε)) · |φ|, or, equivalently,

(1 − O(
√
ε)) · |γ| ≤ |φ| holds. To show that |γ| ≤ (1 + O(

√
ε)) · |φ| holds, we separately

consider the local edges and the bridges edges on φ.

3.1.1 Lower-Bounding the Approximation Quality of Local Edges
Lemma 19 gives the lower bound for the length of local edges. In a previous paper [14], we
proved a corresponding lower bound for edges whose lengths are related to ε and lfs(·):

I Lemma 17 ([14, Lemma 20]). For x, y ∈ Γ with |xy| ≤
√
ε ·min{lfs(x), lfs(y)}, we have

LΓ (x, y) ≤ (1 +O(ε)) · |xy|, where LΓ (x, y) is the geodesic distance of x and y on Γ.

Lemma 17 cannot be applied directly to a local edge (p, q) ∈ Eloc, since |pq| depends on
δ and afs(·) instead of ε and lfs(·). To extend this result to local edges, we can show that a
similar statement also applies to free-space geodesic distances in our case:

I Lemma 18. For x, y ∈ Λ with |xy| ≤
√
ε · min{lfs(x), lfs(y)}, we have L?Γ (x, y) ≤ (1 +

O(ε)) · |xy|.
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Lemma 18 allows us to iteratively construct the curve γ discussed above by connecting
points on Γ and in Λ. We use γ to prove Lemma 19 (proof omitted due to space constraints):

I Lemma 19. For s1, s2 ∈ S with |s1s2| ≤ 1
3 ·
√
δ ·min{afs(s1), afs(s2)}, we have L?Γ (s1, s2) ≤

(1 +O(
√
ε)) · |s1s2|, i.e., L (s1, s2) ≥ (1−O(

√
ε)) · L?Γ (s1, s2).

3.1.2 Lower-Bounding the Approximation Quality of Bridge Edges
Lemma 26 gives the lower bound for the length of bridge edges. In a nutshell, we ensure that,
given some (s, q) ∈ Ebri , for each x ∈ sq ∩ z there is a sx ∈ Ssub such that |xsx| ≤ O(ε) ·
min{afs(s), afs(q)}. Applying Lemma 19 multiple times yields L?Γ (s, q) ≤ (1 +O(

√
ε)) · |sq|.

To ensure the existence of sx for x ∈ sq∩z, we ensure that x lies not “too deep” inside z,
see (BE2). For this, we consider the restricted Delaunay triangulation of S w.r.t. Γ.

I Definition 20 ([5]). Let t be the triangle induced by three sample points s1, s2, s3 ∈ S. t is
an element of the restricted Delaunay triangulation T iff VorS(s1)∩VorS(s2)∩VorS(s3)∩Γ 6= ∅.

I Theorem 21 ([5, Theorem 19]). T is homeomorphic to Γ for ε < 0.06.

I Definition 22. For t ∈ T with corners s1, s2, s3 ∈ S let t↓ be the triangle that is induced
by s↓1, s

↓
2, and s

↓
3 (see Algorithm 4 for a definition of ·↓). We define T↓ := {t↓ | t ∈ T}.

For each constructed visibility edge, we can show that the skewed cubes cover T↓:

I Lemma 23. For each s ∈ S and π ∈ Π, we have T↓ ⊂
⋃
c∈C(π,s) c.

We formalize the space ∆ “between” T↓ and Γ as follows: For each t = 4(s1, s2, s3) ∈ T
with s1, s2, s3 ∈ S and ζ ∈ [0, 1], we define tζ := 4(s1+ζ(s↓1−s1), s2+ζ(s↓2−s2), s3+ζ(s↓3−s3)).
Also, for x ∈ Γ and ζ ∈ [0, 1], we define xζ := x + ζ(µ1(x) − x). Finally, we denote
∆ :=

(⋃
t∈T,ζ∈[0,1] tζ

)
∪
(⋃

x∈Γ,ζ∈[0,1] xζ

)
.

Assume now that there were some x ∈ sq ∩ z not “between” T↓ and Γ, i.e., sq were
penetrating z “too deeply”. Theorem 21 and the construction of T↓ then would imply the
existence of some intersection point y of sq and some t ∈ T↓. Lemma 23 would then imply y
to lie in one of the skewed cubes used during the construction of the visibility edge between
s and q—a contradiction to the correctness of the space-sweep algorithm.

More formally, Theorem 21 implies there is a homeomorphism µ1 : Γ → T . By con-
struction, there is a continuous and surjective function µ2 : T → T ↓. Thus, µ := µ2 ◦ µ1 is
surjective and continuous. This construction of µ implies that T ↓ has the same genus as Γ,
i.e., has no extra holes. Note that it is not guaranteed that triangles from T ↓ are intersection
free. Using elementary manipulations, we can show:

I Lemma 24. For each x ∈ ∆, there is an sx ∈ Ssub such that |xsx| ≤ 18 · δ · afs(sx).

As µ is surjective and continuous, z \∆ is bounded by a subset of T↓. Combining this
with Lemmas 24 and 23 implies that sq does not penetrate z “too deeply”:

I Lemma 25. For each x ∈ sq ∩z there is a sx ∈ Ssub with |xsx| ≤ 18 · δ · afs(x).

Proof. Assume that there is some x ∈ sq ∩z such that there is no sx ∈ Ssub with |xsx| ≤
18 ·δ ·afs(sx). The contraposition of Lemma 24 implies x ∈ z\∆. As µ : Γ→ T↓ is surjective
and continuous, T↓ has the same genus as Γ, i.e., has no holes. Thus, there exists some
y ∈ sq ∩ T↓. This implies for all π ∈ Π, there is some cube c ∈ C(π, s) such that sq ∩ c 6= ∅.
Analogously, we obtain for all π ∈ Π, there is some cube c ∈ C(π, q) such that sq ∩ c 6= ∅. As
(s, q) ∈ Ebri , this is a contradiction to the correctness of the space-sweep algorithm. J
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I Lemma 26. For (s, q) ∈ Ebri, we have L?Γ (s, q) ≤ (1 +O(
√
ε)) · |sq|.

Combining Lemmas 19 and 26 yields the lower bound for all edges.

3.2 Upper-Bounding the Approximation Quality
To ensure L (s1, s2) ≤ (1+O(

√
ε)) ·L?Γ (s1, s2) for all s1, s2 ∈ S, we again distinguish whether

|s1s2| ≤ 1
3 ·
√
δ ·min{afs(s1), afs(s2)} holds. If this is the case, we have L (s1, s2) = |s1s2|,

which is trivially upper-bounded by (1 +O(
√
ε)) · L?Γ (s1, s2).

If |s1s2| > 1
3 ·
√
δ · min{afs(s1), afs(s2)}, Lemma 7 yields |s1νs1 | ≤ O(δ) · afs(νs1) and

|s2νs2 | ≤ O(δ) · afs(νs2). This implies L?Γ (νs1 , νs2) ≤ (1 +O(
√
δ)) · L?Γ (s1, s2). As νs1 , νs2 ∈

Ssub, we can show the required upper bound for L (s1, s2) by applying Lemma 25.

I Lemma 27. For all s1, s2 ∈ Ssub, L (s1, s2) ≤ (1 +O(
√
ε)) · L?Γ (s1, s2).

Thus, L (s1, s2) ≤ (1 +O(
√
ε)) · (1 +O(

√
δ)) · L?Γ (s1, s2) ≤ (1 +O(

√
ε)) · L?Γ (s1, s2).

I Corollary 28. For all s1, s2 ∈ S, L (s1, s2) ≤ (1 +O(
√
ε)) · L?Γ (s1, s2).

In conclusion, the discussion in this section consitutes a proof of Lemma 15, i.e., we have
shown that L (·, ·) is a (1 ± O(

√
ε))-approximation of L?Γ (·, ·). Together with Lemma 14,

where we showed the running time of our algorithm to be in O(n5/2 log2 n), this constitutes
a proof of our main result (Theorem 1).
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