
A Near-Optimal Algorithm for Finding an Optimal
Shortcut of a Tree∗

Eunjin Oh1 and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
jin9082@postech.ac.kr

2 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
heekap@postech.ac.kr

Abstract
We consider the problem of finding a shortcut connecting two vertices of a graph that minimizes
the diameter of the resulting graph. We present an O(n2 log3 n)-time algorithm using linear space
for the case that the input graph is a tree consisting of n vertices. Additionally, we present an
O(n2 log3 n)-time algorithm using linear space for a continuous version of this problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Network Augmentation, Shortcuts, Diameter, Trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.59

1 Introduction

Consider a graph G = (V,E) with n vertices whose edges are assigned positive weights. The
length of a path in G is the sum of the weights of the edges in the path. For any two vertices
u and v in V , the distance between u and v in G is the length of the shortest path in G
connecting u and v. We denote the distance between u and v by dG(u, v), or simply by
d(u, v) when it is understood in the context. The diameter of G is the maximum distance
between any two vertices in G, that is, maxu,v∈V dG(u, v).

In this paper, we consider the diameter-optimal augmentation problem for trees. We are
to find a shortcut st that connects two vertices s and t of an input tree G and minimizes the
diameter of G+ st = (V,E ∪ {st}). Here, the weight of a shortcut connecting two vertices is
given in advance as an input. We assume that the weight of any shortcut can be determined
in O(1) time.

Related Work. For the case that the input graph is a path embedded in a metric space,
Große et al. [6] gave an O(n log3 n)-time algorithm that computes an optimal shortcut by
using parametric search [10]. Their decision algorithm uses the fact that for a fixed s ∈ V ,
the diameter of T + st is the maximum of four monotone functions of vertex t moving along
the path from s to an endpoint of the path.

Very recently, De Carufel et al. [4] studied the continuous version of this problem in
which the input graph G is embedded in the Euclidean plane, the weight of an edge or a

∗ This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of
Korea.

© Eunjin Oh and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 59; pp. 59:1–59:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


59:2 A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree

shortcut is the Euclidean distance between its endpoints, and shortcuts are allowed to have
their endpoints on any points of edges of G. Their goal is, by adding a shortcut to G, to
minimize the continuous diameter of the resulting graph which is the maximum distance
between any two points lying on edges and vertices. In this setting, they gave a linear-time
algorithm for this problem when G is a path. They also studied the case that G is a cycle
and showed that a single shortcut cannot decrease the continuous diameter. They gave a
linear-time algorithm for computing an optimal pair of shortcuts when G is a convex cycle.

In graphs which are not necessarily embedded in a metric space, a similar problem was
also studied. For the case that we are allowed to add more than one shortcut to an input
graph, the problem of finding a diameter-optimal set of shortcuts becomes NP-hard [11].
For a path and a cycle, an upper and a lower bounds of the achievable diameter of the
resulting graph were given by [2, 3]. For an outerplanar graph, Ishii [7] gave a constant-factor
approximation algorithm for this problem.

Another variant of this problem is to find a shortcut that minimizes the dilation of a
graph, and it was considered for graphs embedded in the Euclidean space [1, 5, 8] and in a
metric space [9].

Our Results. We consider the problem of computing an optimal (discrete) shortcut of a tree
and present an O(n2 log3 n)-time algorithm for the problem. This problem is a generalization
of the metric shortcut problem for paths [6] in the sense that the input graph is a tree and it
is not necessarily embedded in a metric space. To achieve this running time, we traverse the
tree in an Euler tour and efficiently compute the diameter of the tree with a shortcut using a
data structure. As a byproduct, we present an O(n logn)-time algorithm for computing the
diameter of an edge-weighted graph containing exactly one cycle.

In addition, we consider its continuous version and present an algorithm for computing
an optimal continuous shortcut when the input graph is a tree. Again the input graph is not
necessarily embedded in a metric space, and therefore this problem is a generalization of
the continuous Euclidean diameter problem [4]. Our algorithm takes O(n2 log3 n) time using
O(n) space.

A Lower Bound for Computation. In the discrete version, consider a path with n vertices
whose diameter is λ ∈ R. There are at most

(
n
2
)
shortcuts1 in the input graph. Consider the

case that only one shortcut has a sufficiently small weight ε > 0 and the other shortcuts have
the weight larger than λ. In this case, the shortcuts with larger weights do not decrease the
diameter while the shortcut with weight ε decreases the diameter. Thus an optimal shortcut
is the one with weight ε. However, there is no way to find the optimal shortcut unless we
check the weights of all shortcuts. So it is inevitable to spend Ω(n2) time to compute an
optimal shortcut even in a path. A similar argument also holds in the continuous diameter
problem.

Note that the algorithms in [4] and [6] assume that an input graph is embedded in a
metric space. This allows them to achieve a near-linear or a linear running time.

2 Computing the Diameter of a Unicyclic Graph

We say a graph is unicyclic if the graph contains exactly one cycle. Consider a unicyclic
graph G, where each edge e is assigned a positive weight `(e). Let γ denote the unique cycle
of G.

1 Precisely speaking, there are
(
n
2

)
− (n− 1) shortcuts for a tree.



E. Oh and H.-K. Ahn 59:3

S(v)

(a)

f(v)

v

(b)

v

u

γ
γ

f(u)

f(v)π

π′

Figure 1 (a) The gray region indicates the tree S(v) rooted at v in G\γ . (b) For any two vertices
u and v on γ, the clockwise vertex-weighted distance is δcw(u, v) = w(u) +

∑
e∈π `(e) + w(v) and

the counterclockwise vertex-weighted distance is δccw(u, v) = w(u) +
∑

e∈π′ `(e) + w(v).

In this section, we present an O(n logn)-time algorithm for computing the diameter of a
unicyclic graph. Recall that the diameter of a graph is the maximum distance between any
two vertices of the graph.

We can compute an optimal shortcut in O(n3 logn) time by applying this algorithm for
every possible shortcut. In Section 3.1 and 3.2, we give a faster algorithm for computing
an optimal shortcut. Although the faster algorithm does not directly use the algorithm in
this section, we first introduce this algorithm because the faster algorithm uses a technique
similar to the one used in this algorithm.

2.1 Computing the Weights of Cycle Vertices

Consider the subgraph G\γ of G obtained by removing the edges on γ. Each connected
component of G\γ forms a tree and contains exactly one vertex on γ. We treat each connected
component as a tree rooted at the vertex on γ. For each vertex v on γ, we use S(v) to denote
the connected component rooted at v in G\γ . See Figure 1(a). Note that S(v) may consist
of only one vertex v. In addition, we use f(v) to denote the vertex in S(v) farthest from v.
The vertex f(v) for every vertex v on γ can be computed in O(n) total time.

Now we annotate a weight w(v) to each vertex v on γ, where w(v) = dG(v, f(v)). If S(v)
consists of v alone, we set dG(v, f(v)) = 0.

Vertex-Weighted Distances for Cycle Vertices. There are two simple paths connecting
two vertices on γ. To make the description easier, we assign an arbitrary orientation to γ
and treat it as a clockwise orientation. Then the opposite orientation is a counterclockwise
orientation.

We define three vertex-weighted distances from u to v for any two distinct vertices u and
v in γ as follows. (For an illustration, see Figure 1(b).)
1. The clockwise vertex-weighted distance : δcw(u, v) = w(u) +

∑
e∈π `(e) + w(v), where π

is the simple path from u to v in the clockwise orientation along γ.
2. The counterclockwise vertex-weighted distance : δccw(u, v) = w(u) +

∑
e∈π′ `(e) + w(v),

where π′ is the simple path from u to v in the counterclockwise orientation along γ.
3. The vertex-weighted distance : δ(u, v) = min{δcw(u, v), δccw(u, v)}.

For any vertex u in γ, let δ(u, u) = δcw(u, u) = δccw(u, u) = 0.

ISAAC 2016



59:4 A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree

2.2 Computing the Diameter of a Unicyclic Graph
In this section we give an O(n logn)-time algorithm to compute the diameter of G. A
diametral pair of a graph is a pair (x, y) of vertices of the graph such that the distance
between x and y is the same as the diameter of the graph. There are two possible cases for a
diametral pair (x, y) of the unicyclic graph G:
1. Both x and y are contained in S(v) for some vertex v on γ.
2. Vertex x is contained in S(u) and vertex y is contained in S(v) for two distinct vertices u

and v on γ.
For the first case, a simple path connecting x and y is unique. And it is contained in S(v).
Therefore we can handle this case by computing the diameter and the diametral pair of S(v).
For all vertices v on γ, the diameter of S(v) can be computed in total linear time.

For the second case, there are two simple paths connecting x and y, one through the
clockwise path from u to v and one through the counterclockwise path from u to v, and we
observe that dG(x, y) = δ(u, v). Therefore, it suffices to find the vertex-weighted diameter of
γ, that is, maxu,v∈γ δ(u, v).

To handle the second case, we first compute the weight w(v) of every vertex v in γ and
annotate it to v, which takes O(n) time in total for all vertices in γ. To compute the vertex-
weighted diameter of γ, we find the maximum vertex-weighted distance λv = maxu∈γ δ(v, u)
for each vertex v in γ. By definition, the vertex-weighted diameter of γ is the maximum of
λv over all vertices v in γ.

Computing λv for a vertex v in γ. Let λ > 0 be any real number. For a vertex v in
γ, let Uλ(v) be the set of all vertices u in γ with δcw(v, u) > λ. Note that the vertices in
Uλ(v) are not necessarily consecutive along γ. Let gλ(v) be the vertex of γ with the largest
counterclockwise distance δccw(v, gλ(v)) among all vertices in Uλ(v). If Uλ(v) = ∅, we let
gλ(v) be v. Then the following observation holds as δcw(v, u) > λ for any u ∈ Uλ(v).

I Observation 1. We have δccw(v, gλ(v)) ≤ λ if and only if λv ≤ λ.

To use this observation, we map each vertex u in γ to the point pv(u) with x-coordinate
δcw(v, u) and y-coordinate δccw(v, u) in the xy-plane. Let Pv be the set of points pv(u) for
all vertices u in γ. For an illustration, see Figure 2(a). To check if λv ≤ λ, it is sufficient
to find the point with largest y-coordinate among all points of Pv lying to the right of the
vertical line x = λ. By definition, the point is pv(gλ(v)) if it exists. Otherwise, gλ(v) = v.

We use a 1-dimensional range tree on (the x-coordinates of) Pv to compute gλ(v) efficiently
for any λ > 0. To be specific, we construct the range tree on Pv with respect to the x-
coordinates of the points of Pv. Each node in the range tree corresponds to an interval on R.
For each node z, we store the largest y-coordinate of the points in Pv whose x-coordinate is
in the interval corresponding to z. We denote the value stored at node z by yz. Once we
have this range tree, we can check in O(logn) time whether λv ≤ λ.

In addition, we compute λv using the range tree on Pv. Starting from the root of the
range tree, we traverse the range tree to some leaf. Suppose that we reach an internal node
z in the range tree. The interval corresponding to z is subdivided into two subintervals
corresponding to its two children. Let λ ∈ R be a value separating the two subintervals. We
check whether λv ≤ λ or not in constant time by using the value, yz, stored in z: λv ≤ λ if
and only if yz ≤ λ. If λv ≤ λ, we move to its left child. Otherwise, we move to its right child.
In each node, we spend O(1) time. Thus in O(logn) time, we can compute two consecutive
points p1 and p2 in Pv such that λ1 ≤ λv ≤ λ2, where λ1 and λ2 are the x-coordinates of p1
and p2, respectively. See Figure 2(a).



E. Oh and H.-K. Ahn 59:5

λ1

(a)

δcw

δccw

λ1

(b)

λ1

gλ1(v) = gλ2(v)

λ2

λ2

λv

gλ1(v
′)δccw

δcw

~tv,v′

pv(v)
pv′(v)

pv(v
′)

pv′(v
′)

Figure 2 (a) The point set Pv obtained from the mapping of δcw(v, u) and δccw(v, u) for each u

in γ. We have λ1 < λv < λ2 because λ1 < δccw(v, gλ1 (v)) and δccw(v, gλ2 (v)) < λ2. Moreover, we
have λv = δccw(v, gλ1 (v)). (b) The point set Pv′ is a translated copy of Pv by ~tv,v′ , with exceptions
of pv′ (v′) ∈ Pv′ and pv(v′) ∈ Pv.

Here, we have gλ1(v) = gλ2(v). Moreover, λv is the y-coordinate of gλ1(v). Therefore, we
can compute λv in O(logn) time once we have the range tree on Pv.

I Lemma 2. Once we have the 1-dimensional range tree on the x-coordinates of Pv for a
vertex v in γ, the distance λv can be computed in O(logn) time.

Computing λv for all vertices v in γ. Instead of computing the 1-dimensional range trees
of Pv for all vertices v in γ repeatedly, we consider the vertices one by one in clockwise order
along γ and make use of the 1-dimensional range tree on Pv in computing the 1-dimensional
range tree on Pv′ , where v′ is the clockwise neighbor of v along γ.

Suppose that we have the 1-dimensional range tree on Pv. We show how to compute Pv′

using Pv for the clockwise neighbor v′ of v. Consider a vertex u 6= v, v′ in γ. Recall that
pv(u) is the point in the xy-plane with x-coordinate δcw(v, u) and y-coordinate δccw(v, u).
Let (x, y) be the x- and y-coordinates of pv(u). Then we have

pv′(u) = (x− w(v) + w(v′)− `(vv′), y − w(v) + w(v′) + `(vv′)).

Note that w(v), w(v′) and `(vv′) are independent to vertex u. This means that the point
set Pv′ \ {pv′(v), pv′(v′)} is a translated copy of the point set Pv \ {pv(v), pv(v′)} by the
translation vector ~tv,v′ = (−w(v) + w(v′)− `(vv′),−w(v) + w(v′) + `(vv′)). See Figure 2(b).

Thus, to compute Pv′ , we remove pv(v′) and pv(v) from Pv, translate the remaining
points in Pv by ~tv,v′ , and add pv′(v′) and pv′(v) to the point set. The resulting point set is
exactly Pv′ . Both removing and adding the two points can be done in O(logn) time. The
translation can be done in O(1) time by moving the x-axis and the y-axis by −~tv,v′ , instead
of translating the points.

The 1-dimensional range tree on Pv′ remains the same, except for the nodes for pv′(v′), pv′(v)
and the value each node stores. We first remove two points pv′(v′), pv′(v) from the range
tree on Pv. Then we update the values stored in the nodes of the range tree. These values
increase or decrease by the same amount in the range tree of Pv′ , and therefore we simply
maintain a global value for the range tree, the offset of the values, instead of updating each
value. We apply this offset to each value when it is used. After updating the offset, we add
two points for v and v′ to the 1-dimensional range tree in O(logn) time. The resulting tree
is the range tree on Pv′ .

ISAAC 2016



59:6 A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree

Now, we have the 1-dimensional range tree on Pv′ . By Lemma 2, we can compute λv′ in
O(logn) time. By applying this procedure for all vertices one by one along γ, we have the
following lemma.

I Lemma 3. The distances λv for all vertices v in γ can be computed in O(n logn) time.

Therefore, the following theorem holds.

I Theorem 4. The diameter of a unicyclic graph G can be computed in O(n logn) time.

3 The Diameter-Optimal Augmentation for a Tree

Let T = (V,E) be an input tree, where each edge e ∈ E is assigned a positive weight `(e). In
this section, we find a shortcut st connecting two vertices of T that minimizes the diameter
of T + st = (V,E ∪{st}). We use λ∗ to denote the diameter of T + st for an optimal shortcut
st. We assume that the weight of any shortcut can be determined in O(1) time.

3.1 A Decision Algorithm for Computing a Shortcut
We first consider a decision problem and give an algorithm to decide whether λ ≥ λ∗ or not in
O(n2 logn) time for a real number λ > 0. This decision algorithm is used as a subprocedure
in the overall algorithm, which we will describe in Section 3.2.

Basically, we consider all possible shortcuts st and check whether the diameter of the
unicyclic graph T + st is at least λ. We spend O(logn) time for each shortcut.

3.1.1 The Euler Tour of the Input Tree
We fix a vertex s of T and consider it as an endpoint of a shortcut. In addition, we treat
it as the root of T . An Euler tour of a graph is a path traversing each edge exactly once.
For trees, we assume that each edge is bidirectional, so the Euler tour of a tree is the path
through the tree that begins and ends at the root, traversing each edge exactly twice. In the
Euler tour, we visit each vertex t of T exactly deg(t) times, where deg(t) is the degree of t in
T .

Whenever we visit a vertex t in T , we compute the cycle of T + st together with the
weight w(v) for each vertex v of the cycle, and check whether the diameter of T + st is at
least λ. Let γ(s, t) be the cycle of T + st for a vertex t in T .

When we move from a vertex t to one of its children t′ in the Euler tour, the cycle
changes locally. To be specific, assume that we already have γ(s, t) and the weight w(v) of
each vertex v of γ(s, t). As depicted in Figure 3, we construct γ(s, t′) by appending tt′ and
replacing st with st′ to γ(s, t). Then the weight of t may change and we need to compute
w(t′) with respect to γ(s, t′), while the other vertices of γ(s, t′) have their weights unchanged.
The weights, w(t) and w(t′) with respect to γ(s, t′), can be computed in O(1) time once we
compute two distance values for every vertex in linear time in advance as follows.

For a vertex v of T rooted at s, let h1(v) be the distance between v and the descendant
of v farthest from v. Let h2(v) denote the second largest value among values h1(u) + `(vu)
for all children u of v. If v has exactly one child, we let h2(v) = 0. We consider the vertices
from the leaves one by one with respect to their depths, and compute h1(v) for all vertices v
in total linear time. Then, we compute the distance h2(v) in O(deg(v)) time by checking the
values h1(u) for all children u of v.

The weight w(t′) with respect to γ(s, t′) is exactly h1(t′), which can be found in constant
time. For the weight w(t) with respect to γ(s, t′), we have two cases: w(t) = h1(t) if



E. Oh and H.-K. Ahn 59:7

s

t t

t′

f(t) f(t′)

f(t)

(a) (b)

s

x

g(x)
δcw(x, t)

δcw(s, g(x))

x

g(x)

δcw(s, g(x))

δcw(x, t
′)

t′

Figure 3 When we move from vertex t to its neighbor vertex t′, tt′ is appended to the cycle
γ(s, t) and the weight w(t) = d(t, f(t)) of t with respect to the new cycle γ(s, t′) changes accordingly.
(a) h(x) = δcw(x, t) + δcw(s, g(x)) with respect to γ(s, t). (b) h(x) = δcw(x, t′) + δcw(s, g(x)) with
respect to γ(s, t′).

h1(t) > h1(t′) + `(tt′), and w(t) = h2(t) otherwise. In either case, we can compute w(t) in
constant time.

When we move from a vertex t to its parent t′′, we can obtain γ(s, t′′) and the weights of
the vertices on γ(s, t′′) in constant time analogously.

I Lemma 5. The cycle γ(s, t′) and the weights w(v) of vertices v of γ(s, t′) can be updated
in O(1) time for a traversal of edge tt′ in the Euler tour once we compute h1(v) and h2(v)
for every vertex v of T in linear time.

3.1.2 Deciding the diameter of T + st for λ
Without loss of generality, we assume that t is the counterclockwise neighbor of s in γ(s, t).
We show how to decide whether the diameter of T + st is at least λ in O(logn) time. To do
this efficiently, we maintain a list of distance values sorted in the increasing order.

The Sorted List H of distance values. For each vertex x in γ(s, t), let g(x) denote the
vertex with largest δcw(s, y) among vertices y lying in between s and x in clockwise direction
from s and satisfying δccw(x, y) > λ. If no such vertex exists, we let g(x) be null. Note
that we have δcw(x, g(x)) = w(x) + dT (x, t) + `(st) + dT (s, g(x)) + w(g(x)). Moreover, if
δcw(x, g(x)) is at most λ or g(x) is null, then we have δ(x, y) ≤ λ for every vertex y in between
s and x in clockwise direction from s. Let h(x) = w(x) + dT (x, t) + dT (s, g(x)) +w(g(x)) for
a vertex x in γ(s, t) such that g(x) is not null. We maintain h(x) for all vertices x in γ(s, t)
such that g(x) is not null and sort them in decreasing order. We denote this sorted list by H.

Once we have the sorted list H, we can check whether the diameter of T + st is at least
λ in constant time. We choose the first element of H, say h(x). Then the answer for the
decision problem is “yes” if and only if `(st) + h(x) ≤ λ. This can be checked in constant
time.

Now we show how to update the sorted list H in O(logn) time when we move from a
vertex t to a vertex t′ in the Euler tour in three phases: (1) update H, except for h(t′) and
h(t), (2) remove h(t) from H, and (3) compute h(t′) and h(t), and insert them to H. We
compute h(t) again because the value h(t) changes. Let H be the sorted list which is already
computed for the vertex t. We are to update H, that is, to construct the sorted list for t′.
Recall that in γ(s, t′), only one vertex is added to or removed from γ(s, t). Here, we consider
the case that one vertex, which is t′, is added to γ(s, t). The other case is analogous to this
case.

ISAAC 2016



59:8 A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree

First observe that h(x) increases by the same amount for all vertices x in γ(s, t′) \ {t, t′}.
Moreover, this amount is exactly `(tt′) − w(t) + w′(t′), where w(t) and w′(t′) denote the
weights of t and t′ in γ(s, t) and γ(s, t′), respectively. This means that the order for the
elements in H remains the same, except for h(t) and h(t′). Thus, we can update H, except
for h(t′) and h(t), in constant time by maintaining the offset.

For computing h(t), we observe that g(t) remains the same. However, since the weight of
t changes, the value h(t) changes accordingly. With the new weight w(t), we can update h(t)
in constant time and insert it to H in O(logn) time.

The remaining procedure is to compute h(t′). This procedure is similar to the procedure
for computing the diameter of a unicyclic graph in Section 2. To this end, we maintain a
point set and its range tree in addition to the sorted list H.

The Point Set P and Its Range Tree. We map each vertex x in γ(s, t′) to the point
p(x) ∈ R2 with p(x) = (δccw(t′, x), δcw(s, x)). Let P denote the set of p(x)’s for every vertex
x in γ(s, t′). We construct a 1-dimensional range tree on P with respect to the x-coordinates
of the points in the set. This range tree can be updated in O(logn) time as we did in
Section 2.

Once we have the range tree, we can compute h(t′) in O(logn) time as follows. We find
the point with largest y-coordinate in P among all points of P lying to the right of the
vertical line x = λ. Note that the point with largest y-coordinate is g(t′) by definition. Thus,
h(t′) is the y-coordinate of p(g(t′)) since h(t′) = w(t′) + dT (t′, t′) + dT (s, g(t′)) + w(g(t′)).
By adding h(t′) to its proper position in H, we have the sorted list H for t′.

This completes the procedure for checking if the diameter of T + st is at least λ, which
takes O(logn) time. With these arguments, the following lemma holds.

I Lemma 6. Given a tree T and a real number λ > 0, we can decide in O(n2 logn) time
whether λ∗ ≤ λ or not.

3.2 An Algorithm for Computing the Optimal Shortcut
The optimal diameter λ∗ is either the distance d(u, v) of two vertices u, v ∈ T or the sum of
two distances d(u, t) and d(s, v) of u, v, s, t ∈ T and the weight of shortcut st. We first apply
binary search on the lengths of all paths in T and find an interval of distance as described in
Section 3.2.1. Then we consider the second case in Section 3.2.2.

3.2.1 Binary Search on Distances of Two Vertices
We can compute the set D1 of distances of every two vertices in T in O(n2) time and apply
binary search on the distances using the decision algorithm in Section 3.1. This procedure
gives us an interval containing no value of D1 in its interior but containing λ∗ in O(n2 log2 n)
time. However, this procedure requires Ω(n2) space.

We show how to do this in O(n2 log3 n) time using O(n) space. We apply binary search in
O(logn) rounds. In the first round, we do the following: for each vertex v of T , we compute
the median of the distances of v to all other vertices in T . This gives us n medians in O(n2)
time using O(n) space. Then we sort these medians and apply binary search on them. Let η
be the interval obtained from the binary search. Note that η contains λ∗.

In the next rounds, we repeat the following and refine the interval containing λ∗. For
each vertex v of T , we consider the distances of v to all other vertices of T that lie in the
interval η and choose the median of them. Then we apply binary search again on these
medians and reduce η into the subinterval that contains λ∗.



E. Oh and H.-K. Ahn 59:9

In every round, for each vertex v of T , the number of distances of D1 lying in η decreases
by a constant fraction. Therefore, after O(logn) rounds, the interval η contains no distance
of D1 in its interior. This takes O(n2 log3 n) time using O(n) space.

3.2.2 Computing the Diameter with the Optimal Shortcut

Now we consider the case that λ∗ is the sum of two distances d(u, t) and d(s, v) of u, v, s, t ∈ T
and the weight of shortcut st. We observe that u and v are contained in two different subtrees
of T \γ(s,t) rooted at x and y on γ(s, t), respectively, such that y = g(x). Therefore, we have
λ∗ = h(x) + `(st). Based on this observation, we consider O(n2) candidate values one of
which is exactly λ∗ and find λ∗ among them. We use a technique similar to parametric
search [10].

We simulate the decision algorithm with λ∗ without explicitly knowing λ∗. Let D2 be
the set of candidate values that we consider. Initially, D2 is empty. We fix a vertex s in T
and traverse the vertices in an Euler tour of T as we did in the decision algorithm. Assume
that we move from t to the next vertex t′. We compute the cycle γ(s, t′) and the weights of
vertices in γ(s, t′) in constant time once we have two distance values, h1(v) and h2(v), for
every vertex v of T by Lemma 5.

Then we update the sorted list H in three phases. In the first phase, we update the
elements in H, except for h(t′) and h(t). In the second phase, we remove h(t′) from H. These
two phases are independent of input λ, so the first phase can be done even though we do not
have the explicit value of λ∗.

In the third phase, we first update the element for h(t). This update is independent
of λ because we already have g(t), thus it can be done in O(logn) time. Then we update
the element for h(t′). To do this, we maintain a point set and its range tree. Since these
structures are independent of input λ, we can update them as we did in the decision algorithm
without the explicit value of λ∗. To compute h(t′), we find the point with largest y-coordinate
in P among all points lying to the right of x = λ. This procedure is dependent of an input λ.

However, we already have the interval η from Section 3.2.1 that contains λ∗ but does
not contain any value of D1 in its interior. Moreover, the x-coordinate of each point in P
is the distance between two vertices of T . Therefore, we can find the point with largest
y-coordinate in P among all points lying to the right of x = λ∗ by choosing any distance
λ ∈ η. The third phase of the update can be done in O(logn) time.

The next step in the decision algorithm is to check whether λ ≥ `(st′) + h(x) or not for
the first element h(x) of H. This means that the value `(st′) + h(x) is a critical point in a
sense that the answer for the decision problem with input λ depends on whether λ is at least
this value or not. Thus, we add `(st′) + h(x) to D2.

We do this for all vertices s in T , and then we have O(n2) critical points one of which is
exactly λ∗. The running time of this procedure is the same as the decision algorithm, which
is O(n2 logn). Then we apply binary search on D2 and we compute λ∗.

Since we have O(n2) distances, this requires Ω(n2) space. Instead of computing the
distances in D2 simultaneously, we apply binary search in O(logn) rounds as we did in
Section 3.2.1. Then we can compute λ∗ in O(n2 log3 n) time using O(n) space.

I Theorem 7. Given a tree T , an optimal shortcut can be computed in O(n2 log3 n) time
using O(n) space.

ISAAC 2016



59:10 A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree

s t

f(s) f(t)
(a)

s t

(b)

f(v)

v

s t

(c)

f(v)

v

f(u)

u
x

us

y

ut

f(s) f(t) f(s) f(t)

Figure 4 The points marked with disks are vertices of T while the points marked with squares
are not necessarily vertices of T . (a), (b) Vertex-vertex pairs for a continuous diameter of a unicycle
graph T + st. (c) A point-point pair (x, y).

4 The Continuous Diameter-Optimal Augmentation for a Tree

In this section, we consider a continuous version of the problem. We are given a tree
T = (V,E) with positive edge-weight `(e) for each edge e ∈ E. In this problem, a subedge
e′ ⊂ e also has its weights. For a point x in e = ab, the weight of the subedge ax is represented
as an algebraic function with variable x, which is given as an input. Similarly, the weight of
the subedge bx is given as an input. Since every edge has such two functions, we have 2n
algebraic functions in total. With this weight, the length of the path between any two points
of T is defined.

In addition, for two points p ∈ e and p′ ∈ e′, the weight of the shortcut pp′ is also given
as an input. We assume that for any two edges e and e′, the weight of a shortcut pp′ can be
represented as an algebraic function with two variables p ∈ e and p′ ∈ e′. Since every pair of
edges has such a function, we have at most

(
n
2
)
algebraic functions representing the weight

of a shortcut. In the following, we assume that we can compute the minimum of the upper
envelope of any two algebraic functions with constant degree in constant time.

The continuous diameter is the maximum distance between any two points of T . Note
that if (p, p′) is a diametral pair for two points p, p′ 6∈ V then there are two simple paths
connecting p and p′ with the same length. The goal of this problem is to find two points s, t
of T such that the continuous diameter of T + st = (V,E ∪ st) is minimized.

4.1 Characterization of the Continuous Optimal Shortcut
Let st be a continuous shortcut. Let γ(s, t) be the unique cycle of T +st. For any vertex v on
γ(s, t), let f(v) be the vertex of S(v) farthest from v, where S(v) is the connected component
of T \γ(s,t) containing v. Then there are two possible cases for a continuous diametral pair of
the unicyclic graph T + st: (For an illustration, see Figure 4.)

vertex-vertex pair: (f(u), f(v)) for two vertices u, v ∈ γ(s, t) including s and t, and
point-point pair: (x, y) for two points x, y ∈ γ(s, t) \ V .

For a point-point pair (x, y), there are two simple paths connecting x and y. Moreover,
the two paths have the same length, which is half of the length of the cycle γ(s, t).

4.2 A Decision Algorithm
We consider every pair (es, et) of edges of T and check whether there exists a shortcut st
with s ∈ es and t ∈ et such that the diameter of T + st is at most µ for a real number µ. If



E. Oh and H.-K. Ahn 59:11

such a shortcut exists, we say that (es, et) is feasible. We say that a shortcut st is in (es, et)
if s ∈ es and t ∈ et. To solve the decision problem efficiently, we fix an edge es and treat an
endpoint of es as the root of the tree. Then we compute an Euler tour of T from the root
and visit every edge twice along the tour. Whenever we visit an edge et, we check whether
(es, et) is feasible.

Checking Whether an Edge Pair is Feasible. Let us and ut be the endpoints of es and et,
respectively, that do not lie on the cycle γ(s, t) for some shortcut st in (es, et). Assume that
us is the clockwise neighbor of ut in T + usut. See Figure 4(a).

Let f(v) be the vertex of S(v) farthest from v, where S(v) is the connected component
of T \γ(us,ut) containing v for a vertex v on γ(us, ut). The weight w(v) of v on the cycle is
the distance between f(v) and v.

Assume that we have the followings:
dT (us, ut), and
for every vertex v in γ(us, ut), the value h(v) which is the maximum w(u) + dT (u, us) +
dT (ut, v) +w(v) over all vertices u lying in the path between us and v in clockwise order
from v on T with dT (u, v) + w(v) + w(u) > µ.

Then we can check whether (es, et) is feasible or not in constant time as follows. Let
f(s, t) be the weight of the shortcut st in (es, et), which is an algebraic function with variables
s and t. Let fs(s) be the weight of the subedge uss, which is an algebraic function. Similarly,
let ft(t) be the weight of the subedge utt. The continuous diameter of the cycle γ(s, t) is
(dT (us, ut)−fs(s)−ft(t)+f(s, t))/2, which is half of the length of the cycle and the diameter
is an algebraic function with variables s and t.

For a vertex-vertex diametral pair, we consider h(v) value of a vertex v in γ(us, ut). We
find the maximum of h(v)’s over all vertices v in γ(us, ut). Once h(v)’s are sorted in decreasing
order, we can choose the maximum h in constant time. If h − fs(s) − ft(t) + f(s, t) ≤ µ

for some shortcut st in (es, et), then the diameter is at most µ if a diametral pair is a
vertex-vertex pair.

Thus, we check whether there is a shortcut st such that the maximum of (dT (us, ut)−
fs(s)− ft(t) + f(s, t))/2 and h− fs(s)− ft(t) + f(s, t) is at most µ. If so, we conclude that
st is feasible. Otherwise, st is not feasible. With the argument in this section, we have the
following lemma.

I Lemma 8. Once we have dT (us, ut) and h(v) for every vertex v in γ(us, ut), we can check
whether (es, et) is feasible or not in constant time.

The distance dT (us, ut) can be updated in constant time if we consider the edge et along
the Euler tour. For the values h(v)’s, we can use the algorithm in Section 3.1. The algorithm
in Section 3.1 computes exactly these values by maintaining a point set and a range tree.
Therefore, we have the following.

I Lemma 9. Given a tree T and a real number µ > 0, we can decide in O(n2 logn) time
whether µ is at most the optimal solution or not.

4.3 An Overall Algorithm
Let D1 be the set of distances between every pair of vertices in T . As we did in the algorithm
for the discrete version, we compute the interval µ containing the optimal solution µ∗ but
containing no value of D1 in O(n2 log3 n) time.

ISAAC 2016



59:12 A Near-Optimal Algorithm for Finding an Optimal Shortcut of a Tree

Then we simulate the decision algorithm in Section 4.2 with an optimal solution. This
can be done as follows without explicitly knowing an optimal solution. Since we have the
interval µ, we can apply the procedures in Section 4.2, except for the last one that compares
the maximum of the two algebraic functions with an input. Instead of applying the last
procedure, we compute the maximum and put it into the set D2, which is set to be empty
initially. Then one of the values in D1 ∪ D2 is the optimal solution. Thus, we again apply
binary search on the set D1 ∪ D2. This is similar to the algorithm for the discrete version.
This algorithm can also be analyzed analogously. Thus, we have the following theorem.

I Theorem 10. Given a tree T , the continuous optimal shortcut can be computed in
O(n2 log3 n) time using O(n) space.

References
1 Hee-Kap Ahn, Mohammad Farshi, Christian Knauser, Michiel Smid, and Yajun Wang.

Dilation-optimal edge deletion in polygonal cycles. International Journal of Computational
Geometry & Applications, 20(1):69–87, 2010.

2 Noga Alon, Andras Gyarfas, and Miklos Ruszinko. Decreasing the diameter of bounded
degree graphs. Journal of Graph Theory, 35(3):161–172, 2000.

3 F.R.K. Chung and M.R. Garey. Diameter bounds for altered graphs. Journal of Graph
Theory, 8(4):511–534, 1984.

4 Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, and Michiel Smid. Minimizing the
continuous diameter when augmenting paths and cycles with shortcuts. In Proceedings of
15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016), pages
27:1–27:14, 2016.

5 Mohammad Farshi, Panos Giannopoulos, and Joachim Gudmundsson. Improving the
stretch factor of a geometric network by edge augmentation. SIAM Journal on Computing,
38(1):226–240, 2008.

6 Ulrike Große, Joachim Gudmundsson, Christian Knauer, Michiel Smid, and Fabian Stehn.
Fast algorithms for diameter-optimally augmenting paths. In Proceedings of Automata,
Languages, and Programming: 42nd International Colloquium (ICALP 2015), pages 678–
688, 2015.

7 Toshimasa Ishii. Diameter bounds for altered graphs. Journal of Graph Theory, 74(4):392–
416, 2013.

8 Rolf Klein, Christian Knauer, Giri Narasimhan, and Michiel Smid. Exact and approxim-
ation algorithms for computing the dilation spectrum of paths, trees, and cycles. In Pro-
ceedings of the 16th International Symposium on Algorithms and Computatiom, (ISAAC
2005), pages 849–858, 2005.

9 Jun Luo and Christian Wulff-Nilsen. Computing best and worst shortcuts of graphs embed-
ded in metric spaces. In Proceedings of the 19th International Symposium on Algorithms
and Computatiom, (ISAAC 2008), pages 764–775, 2008.

10 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial al-
gorithms. Journal of the ACM, 30(4):852–865, 1983.

11 Anneke A. Schoone, Hans L. Bodlaender, and Jan van Leeuwen. Diameter increase caused
by edge deletion. Journal of Graph Theory, 11(3):409–427, 1987.


	Introduction
	Computing the Diameter of a Unicyclic Graph
	Computing the Weights of Cycle Vertices
	Computing the Diameter of a Unicyclic Graph

	The Diameter-Optimal Augmentation for a Tree
	A Decision Algorithm for Computing a Shortcut
	The Euler Tour of the Input Tree
	Deciding the diameter of T+st for lambda

	An Algorithm for Computing the Optimal Shortcut
	Binary Search on Distances of Two Vertices
	Computing the Diameter with the Optimal Shortcut


	The Continuous Diameter-Optimal Augmentation for a Tree
	Characterization of the Continuous Optimal Shortcut
	A Decision Algorithm
	An Overall Algorithm


