
Assigning Weights to Minimize the Covering
Radius in the Plane∗

Eunjin Oh1 and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
jin9082@postech.ac.kr

2 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
heekap@postech.ac.kr

Abstract
Given a set P of n points in the plane and a multiset W of k weights with k ≤ n, we assign
a weight in W to a point in P to minimize the maximum weighted distance from the weighted
center of P to any point in P . In this paper, we give two algorithms which take O(k2n2 log4 n)
time and O(k5n log4 k + kn log3 n) time, respectively. For a constant k, the second algorithm
takes only O(n log3 n) time, which is near-linear.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Weighted center, facility location, weight assignment, combinatorial op-
timization, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.58

1 Introduction

Consider a set of robots lying at different locations in the plane. Each robot is equipped
with a locomotion module so that it can move to a nearby facility to recharge its battery and
return to its original location. We want to place a recharging facility for the robots such that
the maximum travel time of them to reach the recharging facility is minimized. Then the
Euclidean center of the robot locations may not be a good location for the recharging facility
if the robots have huge differences in their speeds. For instance, consider three robots, each
lying on a different corner of an equilateral triangle. If one of them has a much smaller speed
compared to the speeds of the other two robots, the best location is very close to the corner
where the low-speed robot lies. Hence, the recharging facility must be located at a weighted
center of the robots by considering their speeds as weights of their placements.

In the weighted center problem, each input point p ∈ P is associated with a positive
weight and the weighted distance between an input point and a point of the plane is defined
to be their distance divided by the associated weight of p. Then the point of the plane that
minimizes the maximum weighted distance to input points is the center of the weighted input
points, which we call the weighted center.

Dyer [8] studied the weighted center problem for a set of weighted points in the plane and
gave a linear-time algorithm to compute their weighted center. Clearly, the weighted center
coincides with the (unweighted) center if the associate weight is 1 for every input point.

∗ This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of
Korea.

© Eunjin Oh and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 58; pp. 58:1–58:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 Assigning Weights to Minimize the Covering Radius in the Plane

Imagine now that we are allowed to reassign the locomotion modules of the robots. Or,
if the mobile robots are identical, except their speeds, we are allowed to relocate the robots.
A relocation of robots (or a reassignment of locomotion modules) may change the weighted
center and the maximum travel time for mobile robots to reach the weighted center. In other
words, a clever assignment of robots (or their locomotion modules) to given locations may
decrease the minimum of the objective function.

In this paper, we formally define this relocation problem and present algorithms for it.
The weight assignment problem is defined as follows: given an input consisting of a set P of
n points in the plane and a multiset W = {w1, . . . , wk} of k weights of positive real values
with k ≤ n, find an assignment of the weights in W to input points such that the maximum
weighted distance from the weighted center to input points is minimized. We assume that
every input point of P has the default weight 1. We assign the k weights to k points of P
such that every weight is assigned to a point and each point gets one weight in W or the
default weight 1, which we call an assignment of weights of W to P .

We regard an assignment of weights as a function. To be specific, for an assignment f of
weights, f(p) denotes the weight of W assigned to point p ∈ P . We use c(f) to denote the
weighted center of P with the assignment f , and call the maximum weighted distance from
c(f) to input points the covering radius of the assignment f and denote it by r(f).

Obviously, there are
(
n
k

)
different combinations of selecting k points from P and k!

different ways of assigning the k weights to a combination, and therefore there are Θ(nk)
different assignments of weights. Our goal is to find an assignment f of weights of W to the
points of P that minimizes the covering radius r(f) over all possible assignments of weights.

Related Work. As mentioned earlier, Dyer [8] studied the weighted center problem for a
set of weighted points in the plane. He reformulated the problem as an optimization problem
with linear inequalities and one quadratic inequality. Then he gave a linear-time algorithm
to compute their weighted center using the technique by Megiddo [12]. Later, Megiddo [13]
gave a linear-time algorithm for the same problem using a different technique.

In contrast, to our best knowledge, no algorithm is known for the weight assignment
problem while there are works on several related problems. In the inverse 1-center problem
on graphs, we are given a graph and a target vertex, and we are to increase or decrease the
lengths of edges of the graph so that the target vertex becomes a center of the modified
graph. The goal is to minimize the modification of the lengths. This means that we give
additive weights to edges of the graph. Cai et al. [6] showed that this problem is NP-hard on
a general directed graph. Recently, Alizadeh and Burkard [3] gave an O(n2r)-time algorithm
for this problem on a tree, where r is the compressed depth of the tree. A variant of this
problem is the reverse 1-center problem, in which we are to decrease the lengths of edges
of the graph under a given budget. This problem is also known to be NP-hard even on a
bipartite graph [5], and there is an O(n2 logn)-time algorithm on a tree by Zhang et al. [15].

Our weight assignment problem is closely related to the weight balancing problem which
was studied by Barba et al. [4]. The input consists of a simple polygon, a target point inside
the polygon, and a set of weights. The goal is to put the weights on the boundary of the
polygon so that the barycenter (center of mass) of the weights coincides with the target
point. They showed the existence of such a placement of weights under the condition that
no input weight exceeds the sum of the other input weights. They also gave an algorithm to
find such a placement in O(k + n logn) time, where k is the number of the weights and n is
the number of the vertices of P . Our problem can be considered as a discrete version of this
problem, but with a different criteria (minimizing the covering radius), in the sense that we
place the weights on predetermined positions.

E. Oh and H.-K. Ahn 58:3

Our Result. In this paper, we present two algorithms that compute an assignment f of
weights minimizing r(f). The first algorithm returns an optimal assignment in O(k2n2 log4 n)
time using O(kn) space. The second algorithm assumes that all weights in W are at most
1, and returns an optimal assignment in O(k5n log4 k + kn log3 n) time using O(kn) space,
which is faster than the first algorithm when k is sufficiently small (k = o(n1/3)). Moreover,
it takes only O(n log3 n) time when k is a constant.

Another merit of our algorithms is that they are based on useful geometric intuition and are
easy to implement though they use parametric search, the optimization technique developed
by Megiddo [10]. The technique is an important tool for solving many geometric optimization
problems efficiently, but algorithms based on it are often not easily implemented [2]. A main
difficulty lies in computing the roots of the polynomials exactly whose signs determine the
outcome of the comparisons made by the algorithm. However, as we will see later, in our
algorithms, such a root is a covering radius of at most three weighted points and it can be
computed without resorting to complicated methods.

2 Preliminaries

One way to deal with our problem is to find the weighted centers for all possible assignments
of weights and choose the one with the minimum radius. Although there are Θ(nk) different
assignments of weights, there are only O(k3n3) different weighted centers. This is because a
weighted center is determined by at most three weighted points. That is, given an assignment
of weights, there always exist at most three weighted points of P whose center coincides with
the center of the whole weighted points. Thus the number of all possible weighted centers
is at most the number of all possible 6-tuples (p1, p2, p3, w1, w2, w3) such that pi ∈ P and
wi ∈W ∪ {1} for i = 1, 2, 3, which is O(k3n3). Moreover, this bound is asymptotically tight
by the following lemma. A proof of the following lemma can be found in the full version of
this paper.

I Lemma 1. There exist a set of n points and a set of k weights such that the number of all
possible weighted centers is Ω(k3n3).

2.1 Deciding Feasibility for a Weighted Center of Three Points
As noted above, the weighted center and the covering radius of a weight assignment are
determined by at most three weighted points. But not every three weighted points define
such a center and its covering radius. Here we show how to test this for three weighted points
efficiently.

Let W ′ be the union of W and the multiset consisting of n− k − 3 numbers of weight 1.
Consider three points from P and an assignment of three weights from W ′ to the points. We
first test whether the three weighted points define a point in the plane at the same weighted
distance from them. If such a point does not exist, there is no weighted center of the three
weighted points. Otherwise, there is only one such point which is the weighted center of them.
Let c denote the weighted center and r denote the covering radius of the three weighted
points. Let 〈p1, . . . , pn−3〉 be the sequence of the points in P , except the three points, in the
increasing order with respect to the Euclidean distance from c. Let 〈w1, . . . , wn−3〉 be the
sequence of the weights inW ′, except the three weights, in the increasing order, The following
lemma directly gives us an O(n)-time algorithm to decide whether the three weighted points
determine the weighted center and the covering radius of an assignment of weights. A proof
of the following lemma can be found in the full version of this paper.

ISAAC 2016

58:4 Assigning Weights to Minimize the Covering Radius in the Plane

I Lemma 2. There exists an assignment f of weights such that c(f) = c and r(f) = r if
and only if d(pi, c)/wi ≤ r for 1 ≤ i ≤ n− 3.

It is possible that two weighted points p and q determine the weighted center of the whole
weighted points. In this case, the weighted center lies in the line passing through p and q. To
handle this case, we consider two points from P and an assignment of two weights from W

to the points. We compute the weighted center and decide whether the two weighted points
determine the weighted center and the covering radius using Lemma 2.

We need to sort the points in P repeatedly for each weighted center determined by a
combination of three points (or two points) from P and three weights (or two weights) from
W while it suffices to sort the weights in W just once. Thus, the total running time is
O(k3n4 logn).

Note that this algorithm returns all possible weighted centers. Thus it can be used for
the problem with some different optimization criteria other than the minimization of the
covering radius. For example, we can find the assignment f of weights such that the center
c(f) is the closest to a given point in the same time.

3 A Fast Algorithm using O(kn) Space

In this section, we give an O(k2n2 log4 n)-time algorithm for finding an assignment f of
weights that minimizes r(f). This algorithm does not consider all possible weighted centers.
Instead, it uses parametric search due to Megiddo [10]. To apply this technique, we need to
devise a decision algorithm which is used as a subprocedure of the main algorithm.

3.1 A Decision Algorithm
Let r be an input of the decision algorithm. The decision algorithm decides whether there is
an assignment f of weights with r(f) ≤ r. In other words, it decides whether there are a
point c and an assignment f of weights such that d(p, c)/f(p) ≤ r for all points p ∈ P . If
this is the case, we call such a point c an r-center with respect to f .

Instead of considering all Θ(k3n3) combinations of three points in P and three weights
in W , this algorithm considers all O(kn) point-weight pairs. Our algorithm is based on the
following lemma. A proof of the following lemma can be found in the full version of this
paper.

I Lemma 3. For an assignment f of weights with r(f) ≤ r, there is an r-center c with
respect to f satisfying d(p′, c)/f(p′) = r for some point p′ ∈ P .

By the above lemma, there is a point p ∈ P and a weight w ∈ W ∪ {1} such that the
circle centered at p with radius wr contains an r-center c with respect to some assignment f
of weights if r(f) ≤ r. Thus our strategy is to find an r-center, if it exists, lying on such a
circle with respect to some weight assignment f satisfying that f(p) = w.

For each pair of a point p ∈ P and a weight w ∈ W ∪ {1}, we consider the circle C
centered at p with radius wr. For a point c ∈ C, we check whether there exists an assignment
f of weights such that the disk centered at q with radius f(q)r contains c for all points
q ∈ P \ {p}.

To this end, for each point q ∈ P\{p}, we compute k+1 concentric circles centered at q with
radius w1r, w2r, . . . , wk+1r, where w1, w2, . . . , wk+1 are weights inW ∪{1}. Then we compute
the intersections of these circles with C and sort them along C in O(kn log(kn)) = O(kn logn)
time. (In a degenerate case, there can be more than one circle passing through the same

E. Oh and H.-K. Ahn 58:5

p wr

q

w4r

C

q′

w3r

w1r w2r

Figure 1 We compute the points marked with squares for all points in q ∈ P \ {p} and sort them
along C.

intersection point and we treat their intersection points as distinct points lying in the same
position. Details can be found in the full version of this paper. In the following, we assume
that exactly one circle passes through one intersection point.) See Figure 1 for an illustration.

Now, we have O(kn) intersection points sorted along C. These intersection points
subdivide the circle C into O(kn) pieces, which we call intervals on C. We say an assignment
f of weights is feasible for an interval if for a point c in the interval, d(q, c)/f(q) is at most
r for all points q ∈ P . Note that f is feasible for any point in the interval if f is feasible
for a point in the interval. Therefore, for any point c lying in an interval, the set of feasible
assignments of weights remains the same. We can test in O(n logn) time whether there
exists a feasible assignment for an interval on C by slightly modifying Lemma 2.

Instead of applying this test repeatedly for each interval on C, which takes O(kn2 logn)
time in total, we can do this in O(kn logn) time in total for all intervals on C as follows.
Consider the intervals one by one in clockwise order along C. Note that for any two
consecutive intervals, there is only one disk centered at a point in P with radius rw for some
w ∈W that contains one interval but does not contain the other interval. We use this fact
in the following lemma.

I Lemma 4. We can decide whether there is a feasible assignment of weights or not for
every interval on C in O(kn logn) time in total.

Proof. We first show how to check the existence of a feasible assignment for an interval µ in
O(kn) time. Then we show how we do this for all intervals on C efficiently.

We sort the weights in W ∪ {1} in the increasing order and denote the sorted list by
〈w1, . . . , wk+1〉. Let `0 be the smallest index with w`0 = 1, and c be a point in µ. For each
point q in P \ {p}, let π(q) be the smallest index such that d(q, c)/wπ(q) ≤ r and let π(p)
be the index indicating w. The indices π(q) for all points q in P can be computed in O(kn)
time in total. Then, we sort the points in P in the increasing order with respect to π(·) and
denote the sorted list by 〈q1, . . . , qn〉.

Consider the simple case that k = n. Then there exists a feasible assignment for µ if and
only if π(q`) ≤ ` for all indices 1 ≤ ` ≤ n − 1. This is because for every point q in P , we
have d(q, c)/wj ≤ r for all indices j ≥ π(q). Thus, we can check the existence of a feasible
assignment for µ by comparing π(q`) and ` for all indices 1 ≤ ` ≤ n, which can be done in
O(n) time.

ISAAC 2016

58:6 Assigning Weights to Minimize the Covering Radius in the Plane

For the case that k < n, a similar property holds: there exists a feasible assignment for µ
if and only if

π(q`) ≤ ` for all indices 1 ≤ ` ≤ `0 − 1,
π(q`) ≤ `0 for all indices `0 ≤ ` ≤ `0 + n− k − 1, and
π(q`) ≤ `− n+ k + 1 for all indices `0 + n− k ≤ ` ≤ n.

Thus, we can check the existence of a feasible assignment for µ in O(kn) time.
To check the existence of a feasible assignment for the interval µ′ next to µ in clockwise

order along C, we do not need to compute all such indices and compare them again. Recall
that there is exactly one disk C ′ centered at a point q ∈ P \ {p} with radius rw for some
w ∈W that contains either µ or µ′. If C ′ contains µ but does not contain µ′, π(q) increases
by one. If C ′ contains µ′ but does not contain µ, π(q) decreases by one. Note that π(q`)
remains the same for all points q` ∈ P \ {q} for both cases.

To use this property, we maintain 2(k + 1) pointers U1, . . . , Uk+1 and L1, . . . , Lk+1. For
an index 1 ≤ i ≤ k+ 1, the pointer Ui points to q` with the largest index ` among the points
such that π(q`) is equal to i. Similarly, for an index 1 ≤ i ≤ k + 1, the pointer Li points to
q` with the smallest index ` among the points such that π(q`) is equal to i.

Note that we already know whether π(q) increases or decreases by one when we move
from µ to µ′. Here, we have to update not only π(q) but also the pointers. Moreover, we
have to reorder 〈q1, . . . , qn〉 in the increasing order with respect to π(·).

We show how to do this for the case that π(q) increases by one. The other case can
be handled analogously. We first find the point qu that the pointer Uπ(q) points to. Then
we swap the positions for q and qu on the sequence 〈q1, . . . , qn〉 and let Uπ(q) point to q.
This does not violate the property that π(q`) ≤ π(q`+1) for all indices 1 ≤ ` < n since
π(q) = π(qu). Then we update π(q) to π(q) + 1 and update the pointers accordingly.

Here, we do not need to compare π(q`) and the index again for a point q` in P \ {q, qu}.
Thus to check the existence of a feasible assignment for µ′, it suffices to compare π(q`) and
the index for q` = q, qu. This can be done in constant time, which implies that each update
can be done in the same time. Since there are O(kn) intervals on C, updating the information
takes O(kn) time. Therefore, the running time of the procedure is dominated by the time for
sorting the intersection points along C and computing the intervals, which is O(kn logn). J

With the argument in this section, the following lemma holds.

I Lemma 5. Given a radius r > 0, we can decide in O(k2n2 logn) time using O(kn) space
whether there exists an assignment f of weights with r(f) ≤ r or not.

3.2 An Overall Algorithm
For ease of presentation, we first show how to compute an optimal solution in O(k2n2 log3 n)
time using O(k2n2) space. At the end of this section, we show how to reduce the space into
O(kn) at the expense of increased time complexity by an O(logn) factor.

To obtain an optimal solution, we apply parametric search [10] using the decision algorithm
in Section 3.1. Let r∗ be the minimum of r(f) over all possible assignments f of weights.

We consider the arrangement A(r) of the circles Cp,w(r) for all point-weight pairs (p, w),
where Cp,w(r) is the circle centered at p with radius rw. Let C(r) be the set of such circles
Cp,w(r) over all point-weight pairs (p, w). Here, r > 0 is a variable.

As r becomes larger, the combinatorial structure of A(r) changes. To be specific, the
combinatorial structure of A(r) changes O(k3n3) times. To see this, we observe that there
exists a vertex of A(r) which is an intersection of three circles Cpi,wi(r) (or two circles) in
C(r) for i = 1, 2, 3 when A(r) changes. Moreover, for any three point-weight pairs (pi, wi) for

E. Oh and H.-K. Ahn 58:7

i = 1, 2, 3 (or i = 1, 2), there exist at most two radii r such that the common intersection
of Cpi,wi

(r) is not empty. This is because the trajectory of the intersections between two
increasing circles forms a hyperbolic curve, and two hyperbolic curves cross at most twice.
(Note that Cpi,wi is a circle, not a disk.)

These radii partition the real value space R into intervals such that for any value r in
the same interval the combinatorial structure of A(r) remains the same. We search the
interval where r∗ lies using the decision algorithm in Section 3.1. There are Θ(k3n3) such
radii, but we do not consider all of them. Instead, we search for the interval containing r∗
in O(logn) iterations. In each iteration, we consider O(k2n2) radii and reduce the search
space (intervals). Moreover, in each iteration, we apply the decision algorithm O(logn) times,
which leads to the running time of O(k2n2 log3 n). Details are described in the following
lemma and its proof.

I Lemma 6. The combinatorial structure of A(r∗) can be computed in O(k2n2 log3 n) time
using (k2n2) space.

Proof. Given a radius r > 0, we first introduce a simple way to compute the arrangement
A(r). Later, this will be used for computing A(r∗) efficiently. For a point p ∈ P and a
weight w ∈W ∪ {1}, we compute the intersections of Cp,w(r) and Cpi,wi

(r) for all points pi
in P \ {p} and all weights wi ∈ W \ {w} ∪ {1}. Each circle Cpi,wi(r) intersects Cp,w(r) at
most twice for any fixed radius r > 0. Let Ip,w(r) be the set of all such intersection points.
We sort the points in Ip,w(r) along Cp,w(r). Once this is done for all points p and all weights
w ∈W ∪ {1}, we can construct A(r).

Here, computing the combinatorial structure of A(r) is equivalent to sorting the points in
Ip,w(r) along Cp,w(r) for all point-weight pairs (p, w). We apply this procedure to compute
the combinatorial structure of A(r∗) without computing r∗ explicitly. To sort the points
in Ip,w(r∗) along Cp,w(r∗), we compare the relative positions for two points in the set
O(kn logn) times since the number of points in the set is O(kn).

Suppose that we want to compare the relative positions for two points u1(r∗), u2(r∗) in
the set along Cp,w(r). As r increases, the relative positions between u1(r) and u2(r) change
at most once. Moreover, they change when Cp,w(r) and the two circles defining u1(r) and
u2(r) meet at exactly one point. This happens at most twice. Let r1 and r2 be such two
radii with r1 ≤ r2. Then we decide whether r∗ ≤ r1, r1 ≤ r∗ ≤ r2, or r2 ≤ r∗ using the
decision algorithm in Section 3.1. With this, we can decide the relative positions between
u1(r∗) and u2(r∗) without computing r∗ explicitly. Thus, we can compare two points in
Ip,w(r∗) in O(k2n2 logn) time. Since we do this O(kn logn) times, we can sort the points in
O(k3n3 log2 n) time. Since there are O(kn) point-weight pairs (p, w), the total running time
is O(k4n4 log2 n).

Here, we apply the decision algorithm in Section 3.1 twice for each comparison, once
with r = r1 and once with r = r2. We reduce the running time of the overall algorithm by
reducing the number of executions of the decision algorithm. Suppose that we want to do
m comparisons which are independent to each other. As we did in the previous procedure,
we compute at most two radii from each comparison where the relative positions of the two
points change. Then we have at most 2m radii. We sort them and apply binary search to
compute the smallest interval containing r∗. After applying the decision algorithm O(logm)
times, we can complete m comparisons.

In our problem, comparisons performed on two different circles are independent to
each other. In each circle Cp,w(r), we have O(logn) sets each of which consists of O(kn)
comparisons that are independent to each other. Indeed, Cole [7] gave a parallel algorithm to

ISAAC 2016

58:8 Assigning Weights to Minimize the Covering Radius in the Plane

sort m elements in O(logm) time using O(m) processors. Note that comparisons performed
in different processors are independent to each other.

Thus, we sort the points in Ip,w(r∗) in O(log(kn)) = O(logn) iterations and in each
iteration we apply O(kn) comparisons. We compute the whole combinatorial structure of
A(r∗) in O(logn) iterations and in each iteration we apply O(k2n2) comparisons. This can
be done in O(T (k, n) log2 n + k2n2 log2 n) time, where T (k, n) is the running time of the
decision algorithm. J

Now, we have the combinatorial structure of A(r∗) while r∗ is not known yet. The
following lemma gives us a procedure to compute r∗ in O(k2n2 log2 n) time.

I Lemma 7. Given the combinatorial structure of A(r∗), an optimal weight assignment and
its covering radius r∗ can be computed in O(k2n2 log2 n) time.

Proof. In this proof, we use the notation defined in Lemma 6. We say that three circles
Cpi,wi(r) for i = 1, 2, 3 define a radius r′ if they intersect at one point for r = r′. We already
showed that there are at most three circles Cpi,wi

(r) for i = 1, 2, 3 that define r∗. Thus, in
the set Ip1,w1(r∗) sorted along Cp1,w1(r∗), a point corresponding to Cp2,w2(r∗) and a point
corresponding to Cp3,w3(r∗) are consecutive. Note that when we sort the points in Ip1,w1(r∗),
we cannot decide whether two points coincide or not. Instead, we give an arbitrary order for
such points.

Let R be the set of radii r defined by three circles Cpi,wi
(r∗) for i = 1, 2, 3 such that the

point corresponding to Cp2,w2(r∗) and the point corresponding to Cp3,w3(r∗) are consecutive
in the set Ip1,w1(r∗). Since there are O(k2n2) edges in the arrangement A(r∗), there are the
same number of such radii.

We sort the radii on R and apply binary search on it using the decision algorithm in
Section 3.1 and find the smallest radius of R for which the decision algorithm returns “yes”.
Then the smallest radius is r∗. J

Since we maintain the whole combinatorial structure of the arrangement A(r), we use
O(k2n2) space in the previous algorithm. We can reduce the space complexity to O(kn) by
computing only some partial information about the combinatorial structure of A(r). However,
this increases the running time of the algorithm by an O(logn) factor.

I Lemma 8. We can compute an interval containing r∗ such that the combinatorial structure
of A(r) remains the same for any r in the interval in O(k2n2 log4 n) time using O(kn) space.

Proof. Here, we modify the algorithm in Lemma 6 as follows. Recall that in each iteration
of the previous algorithm, we consider all point-weight pairs (p, w) and perform O(kn)
comparisons for sorting the intersection points in each Ip,w. In this algorithm, we do this in
O(logn) subiterations of an iteration as follows.

We maintain an interval u containing r∗. Initially, u is set to [−∞,+∞]. As we apply
the algorithm, the interval becomes a smaller subinterval. In each subiteration, we consider
O(kn) radii corresponding to each comparison for a point-weight pair (p, w) and discard the
radii which lie outside the interval u. Then we choose the median of them. We do this for all
point-weight pairs (p, w), and we have O(kn) medians in total. Then we sort the medians
and apply binary search to compute the interval between two consecutive medians containing
r∗ in O(T (n, k) logn) time, where T (n, k) is the running time of the decision algorithm. In
total, each subiteration takes O(T (n, k) logn+ k2n2) time using O(kn) space.

Now, we show that in O(logn) subiterations, we complete O(k2n2) comparisons. In the
ith subiteration, we discard (1/2 + 1/4 + . . .+ 1/2i)|R| radii in total, where |R| = O(k2n2) is

E. Oh and H.-K. Ahn 58:9

the number of radii. Note that we discard the radius corresponding to some comparison once
we complete the comparison. In O(logn) subiterations, we discard all radii, which means
that we complete O(k2n2) comparisons.

In this algorithm, each iteration takes O(T (n, k) log2 n) time. Since we have O(logn)
iterations in total as the algorithm in Lemma 6, the running time of this algorithm is
O(T (n, k) log3 n). J

Once we have an interval u containing r∗ such that the combinatorial structure of A(r)
remains the same for any r in the interval, the procedure described in the proof of Lemma 7
can also be improved.

I Lemma 9. Given an interval containing r∗ such that the combinatorial structure of A(r)
remains the same for any r in the interval, an optimal assignment and its covering radius r∗
can be found in O(k2n2 logn) time.

Proof. We consider a point-weight pair (p, w) first. Instead of computing the whole arrange-
ment, we compute the edges and the vertices lying on Cp,w(r∗). This takes O(kn logn) time
because we already have the smallest interval u containing r∗. Then we apply the algorithm
in Lemma 7 on the edges and vertices lying on Cp,w(r∗). The algorithm returns the minimum
radius r in u such that the decision algorithm with input r answers “yes”. We do this for all
point-weight pairs (p, w). Then we have O(kn) radii one of which is exactly r∗. We again
apply binary search on these radii to find the minimum radius r over such radii that make
the decision algorithm return “yes”. Clearly, the minimum radius is exactly r∗. J

I Theorem 10. Given a set P of n points in the plane and a multiset W of k weights with
k ≤ n, an assignment f of weights that minimizes r(f) can be found in O(k2n2 log4 n) time
using O(kn) space.

4 A Faster Algorithm for a Small Set of Weights

We can improve the algorithm in Section 3 for the case that k is sufficiently small compared
to n. In this algorithm, we restrict input weights to be at most 1.

Let f∗ be an optimal assignment of weights, that is, r(f∗) = r∗, and let c∗ be the weighted
center of P with respect to f∗. A point p in P is called a determinator if d(p, c∗)/f∗(p) = r∗.
We already observed that there exist two or three determinators for any point set P . Moreover,
if there exist exactly two determinators, then the two determinators and c∗ are collinear.

The algorithm in this section is based on the observation that if f∗(p) = 1 for a
determinator p, then d(p, c∗) ≥ d(p′, c∗) for any point p′ in P . The following lemma provides
a more general observation. A proof of the following lemma can be found in the full version
of this paper.

I Lemma 11. Let f∗ be an optimal assignment of weights with minimum number of de-
terminators. If a determinator p is the ith closest point of P from c∗, it is assigned the ith
smallest element in W ′, where W ′ is the union of W and the multiset consisting of n− k
numbers of weight 1.

Combining this with Lemma 2, we have the following corollary.

I Corollary 12. There exists an optimal assignment f∗ of weights that maps the ith closest
point of P from c(f∗) to the ith smallest element in W ′, where W ′ is the union of W and
the multiset consisting of n− k numbers of weight 1.

ISAAC 2016

58:10 Assigning Weights to Minimize the Covering Radius in the Plane

Lemma 11 reduces the number of candidates for a determinator with its weight compared
to the algorithm in Section 3. Recall that the algorithm considers each of O(kn) point-weight
pairs as a determinator and its weight.

We consider three different cases. The first case is that every determinator is assigned
weight 1. The second case is that every determinator is assigned a weight strictly less than 1.
The third case deals with all remaining situations.

Case 1: Every determinator is assigned weight 1. By Lemma 11, the determinators are
the farthest points of c∗ among all points in P in this case. This means that the (unweighted)
center of P coincides with the weighted center c(f∗) with the assignment f∗. After computing
the (unweighted) center of P in O(n) time [11], it suffices to check whether the center is
valid or not by using the procedure by Lemma 2. Therefore, this case can be handled in
O(n) time in total, excluding the time for sorting the weights in W .

Case 2: Every determinator is assigned a weight smaller than 1. By Lemma 11, a
determinator is one of the k closest points from c∗. This is related to the concept of the
order-k Voronoi diagram. The order-k Voronoi diagram is a generalization of the standard
Voronoi diagram. It partitions the plane into regions such that every point in the same region
has the same k closest sites. The complexity of the order-k Voronoi diagram of n point sites
is O(kn) [9]. There are a number of algorithms to compute the order-k Voronoi diagram
with different running times [1, 14]. Among them we use the algorithm in [14], which runs in
O(n logn+ nk2c log∗ k) ≤ O(n logn+ nk log k) time using O(kn) space.

In terms of the order-k Voronoi diagram, Lemma 11 can be interpreted as follows. All
determinators are sites corresponding to the cell of the order-k Voronoi diagram of P
containing c∗. To use this observation, we consider each cell of the order-k Voronoi diagram
of P . For each cell, we assign the k weights in W to the k sites corresponding to the cell
by applying the algorithm in Section 3 to the sites. This takes O(k4 log4 k) time. Then
we check whether the weighted center is valid or not. To this end, it suffices to check the
distance from the center to the farthest point of the center by Lemma 2. This can be done
in O(logn) time once we have the farthest-point Voronoi diagram of P . In total, this takes
O(k5n log4 k + T (n, k) + kn logn) time, where T (n, k) is the running time for computing the
order-k Voronoi diagram of P .

Case 3: The remaining cases. Here, we apply parametric search. We first apply the
procedures that deal with Case 1 and Case 2. Let rU be the minimum radius of the results of
the two procedures. To handle Case 3, we give a decision algorithm that returns “yes” with
input 0 < r ≤ rU if and only if there exist an assignment f of weights and a point c ∈ R2

such that d(p, c)/f(p) ≤ r for all points p ∈ P and d(q, c) = r for some point in q ∈ P . In
other words, the decision algorithm returns “yes” if and only if there is an assignment with
covering radius r one of whose determinators is assigned weight 1. For a radius r, we call
such a point c a center with radius r.

The following lemma enables us to apply parametric search. A proof of this lemma can
be found in the full version of this paper.

I Lemma 13. If an optimal solution belongs to Case 3, then the decision problem for any
input r with r∗ ≤ r ≤ rU returns “yes.”

Decision Algorithm for Case 3. Given a covering radius r, the decision algorithm first
computes the intersection I of the disks D(p, r) for all points p ∈ P , where D(p, r) is the disk

E. Oh and H.-K. Ahn 58:11

centered at p with radius r. If the answer for the decision problem is “yes”, then a center
with r lies in the intersection I. Moreover, a center with r lies on the boundary of I by the
definition.

Thus the decision algorithm searches the boundary of I and checks whether there exists
a center on the boundary of I. Here, we follow the framework of the algorithm in Section 3.
That is, we consider O(kn) circles Cp,w(r) for all points p ∈ P and all weights w ∈W ∪ {1},
where Cp,w(r) is the circle centered at p with radius rw. Then we compute O(kn) intersection
points of each of the circles with the boundary of I and sort them along the boundary of I
in O(kn logn) time. We apply the procedure in the proof of Lemma 4, which checks whether
there exists a center with radius r lying on the boundary of I in O(kn) time. Thus the
decision algorithm takes O(kn logn) time.

Overall Algorithm for Case 3. As we did in the decision algorithm, we first compute the
intersection I(r∗) of the disks D(p, r∗) for all points p ∈ P . Here, we are not given r∗.
Instead of computing the intersection explicitly, we compute its combinatorial structure.

I Lemma 14. The combinatorial structure of the intersection of the disks D(p, r∗) for all
points p ∈ P can be computed in O(n logn + T (n) logn) time, where T (n) is the running
time of the decision algorithm.

Proof. As we increase the radius r from 0 to rU , the combinatorial structure of the intersection
of the disks D(p, r) may change. We have two types of events where the combinatorial
structure changes: an arc of a disk starts to appear in the structure or an existing arc of a
disk disappears from the structure. At both types of events, such an arc becomes a point
which is a degenerate arc. Moreover, this point is a vertex of the farthest-point Voronoi
diagram of P .

To use this fact, we compute the farthest-point Voronoi diagram of P in O(n logn) time.
Then for each vertex v of the diagram, we compute the Euclidean distance between v and its
farthest point in P . There are O(n) distances, and we sort them in the increasing order.

Then we apply binary search on the distances using the decision algorithm to find the
smallest interval containing r∗. This can be done in O(T (n) logn) time.

Therefore, for any radius on the interval, the combinatorial structure of the intersection
of the disks remains the same. J

Now we have the combinatorial structure of the intersection I(r∗). As we did in the
algorithm of Section 3, we sort the intersections of O(kn) circles Cp,w(r∗) for all point p ∈ P
and all weight w ∈W with the boundary of I(r∗) without explicitly computing r∗. This can
be done in O(kn logn+ T (n) log2 n) time, where T (n) = O(kn logn) is the running time of
the decision algorithm, in a way similar to Lemma 6. Then we find an optimal solution in a
way similar to Lemma 7 in O(kn) time if it belongs to Case 3. In total, Case 3 can be dealt
in O(kn log3 n) time using O(kn) space.

Combining the three cases, we have the following theorem.

I Theorem 15. Given a set P of n points in the plane and a multiset W of k weights smaller
than or equal to 1 with k ≤ n, we can compute an assignment f of weights that minimizes
r(f) in O(k5n log4 k + kn log3 n) time using O(kn) space.

5 Concluding Remarks

We would like to mention that the approach in this paper also works under any convex
distance function, including the Lp metric for p ≥ 1. For the L1 or the L∞ metric, the

ISAAC 2016

58:12 Assigning Weights to Minimize the Covering Radius in the Plane

optimal weighted center is not necessarily unique though. If the weight assigned to an input
point p is subtracted from the distance between p and a point of the plane, the running times
of the algorithms can be improved by an O(logn) factor.

References
1 Pankaj K. Agarwal, Mark de Berg, Jiří Matousěk, and Otfried Schwarzkopf. Constructing

levels in arrangements and higher order voronoi diagrams. SIAM Journal on Computing,
27(3):654–667, 1998.

2 Pankaj K. Agarwal and Micha Sharir. Computer Science Today: Recent Trends and De-
velopments, chapter Algorithmic techniques for geometric optimization, pages 234–253.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

3 Behrooz Alizadeh and Rainer E. Burkard. The inverse 1-center location problem on a tree.
Technical Report 2009-03, Graz University of Technology, 2009.

4 Luis Barba, Otfried Cheong, Jean-Lou De Carufel, Michael Gene Dobbins, Rudolf Fleischer,
Akitoshi Kawamura, Matias Korman, Yoshio Okamoto, János Pach, Yuan Tang, Takeshi
Tokuyama, Sander Verdonschot, and Tianhao Wang. Weight balancing on boundaries and
skeletons. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry
(SoCG 2014), pages 436–443, 2014.

5 Oded Berman, Divinagracia I. Ingco, and Amedeo Odoni. Improving the location of min-
imax facilities through network modification. Networks, 24(1):31–41, 1994.

6 Mao-Cheong Cai, X. G. Yang, and J. Z. Zhang. The complexity analysis of the inverse
center location problem. Journal of Global Optimization, 15(2):213–218, 1999.

7 Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.
8 Martin Dyer. Linear time algorithms for two- and three-variable linear programs. SIAM

Journal on Computing, 13(1):31–45, 1984.
9 Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE Trans. Com-

puters, 31(6):478–487, 1982.
10 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial al-

gorithms. Journal of the ACM, 30(4):852–865, 1983.
11 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related prob-

lems. SIAM Journal on Computing, 12(4):759–776, 1983.
12 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal

of the ACM, 31(1):114–127, 1984.
13 Nimrod Megiddo. On the ball spanned by balls. Discrete & Computational Geometry,

4(6):605–610, 1989.
14 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings

of the Fifteenth Annual Symposium on Computational Geometry (SoCG 1999), pages 390–
399, 1999.

15 Jianzhong Zhang, Zhenhong Liu, and Zhongfan Ma. Some reverse location problems.
European Journal of Operational Research, 124(1):77–88, 2000.

	Introduction
	Preliminaries
	Deciding Feasibility for a Weighted Center of Three Points

	A Fast Algorithm using O(kn) Space
	A Decision Algorithm
	An Overall Algorithm

	A Faster Algorithm for a Small Set of Weights
	Concluding Remarks

