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Abstract
In this paper, we consider the distributed version of Support Vector Machine (SVM) under
the coordinator model, where all input data (i.e., points in Rd space) of SVM are arbitrarily
distributed among k nodes in some network with a coordinator which can communicate with all
nodes. We investigate two variants of this problem, with and without outliers. For distributed
SVM without outliers, we prove a lower bound on the communication complexity and give a
distributed (1− ε)-approximation algorithm to reach this lower bound, where ε is a user specified
small constant. For distributed SVM with outliers, we present a (1− ε)-approximation algorithm
to explicitly remove the influence of outliers. Our algorithm is based on a deterministic distributed
top t selection algorithm with communication complexity of O(k log (t)) in the coordinator model.
Experimental results on benchmark datasets confirm the theoretical guarantees of our algorithms.
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1 Introduction

Training a Support Vector Machine (SVM) [5] in a distributed setting is a commonly
encountered problem in the big data era. This could be due to the fact that the data set is
too large to be stored in a centralized site (e.g., bioinformatics data [15]), or simply because
the data set is collected in a distributed environment (e.g., wireless sensor network data [22]).
In many scenarios, large volume data transmission between different sites could be rather
expensive and time consuming. In some applications, this may not even be allowed due to
privacy concerns. Thus efficient distributed SVM algorithms are needed to minimize the
communication cost and meanwhile preserve the quality of solution.

In recent years, a significant amount of effort has been devoted to this problem ([9, 3, 12,
14, 4, 16, 8, 18, 6]), and a number of distributed SVM algorithms with different strength
have been developed. However most of them are still suffering from various limitations, such
as high communication complexity, sub-optimal quality of solution, and slow convergence
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rate. For instance, one type of extensively studied algorithms in recent years are the family
of incremental construction algorithms [9, 3].

Such algorithms often have good performance in practice and some other nice features
related to robustness and decentralization; but they generally do not have theoretical
guarantee on the communication complexity, and some of them even have no quality guarantee
on their solutions. Another type of popular algorithms are those which parallelize existing
centralized algorithms ([12, 14, 4]). These algorithms typically focus on enhancing the ability
of dealing with extremely large size data sets, but in general have no quality guarantee on
communication complexity. There are also another family of algorithms called distributed
stochastic gradient descent algorithms [20]; the main issue of such algorithms is that their
running time (or number of iteration) is mostly sub-optimal, and they do not have a guarantee
on communication cost. Very recently, there is an interesting result [2] which presents a
similar lower bound on communication cost. However their lower bound applies only to those
coreset-based algorithms, not the general algorithms, whereas the lower bound result in this
paper is applicable to any distributed SVM algorithm.

From a geometric point of view, training an SVM can be interpreted as finding a
hyperplane that separates two classes of points while maximizing the separating margin. It
is also well known to be equivalent to computing the polytope distance of the two point
sets. Recent research [10] shows that we can find an (1− ε)-approximation of the polytope
distance using Gilbert algorithm with a running time linearly depending on the input size.
Roughly speaking, Gilbert algorithm is a gradient descent procedure that in each step greedily
computes an optimal direction along which the primal solution should improve.

In this paper we present a distributed SVM algorithm that is theoretically guaranteed to
have the lowest possible communication cost together with a guaranteed near-optimal solution,
based on the classical Gilbert algorithm [11]. Comparing to previous distributed SVM
algorithms, our algorithm has several advantages. (1) Our algorithm has a communication
complexity which is theoretically guaranteed to reach the lower bound; (2) it does not make
any assumption on the input data and its distribution; (3) its running time is only linearly
dependent on the input size; and (4) it produces a (1− ε)-approximation for the problem
which is sparse (i.e., the number of support vectors is small).

Since SVM is well known to be sensitive to outliers, we also consider the case of distributed
SVM with outliers. We show that it is possible to explicitly avoid the influence of outliers
in distributed settings by using a combinatorial tool called Random Gradient Descent
(RGD) tree [7] to achieve a (1− ε)-approximation on the quality of solution and meanwhile
significantly reduce the communication cost. An underlying technique used for reducing the
communication cost is an algorithm for the distributed selection problem (i.e., finding the
t-th smallest number from a set of numbers distributed in k sites). This problem has been
extensively studied in the past ([17, 21, 13]). The best result (in terms of communication
cost) is a randomized algorithm [13] which has a communication complexity of O(k log (t)).
The best deterministic algorithm has a communication complexity of O(k log2 (t)). In this
paper we give a deterministic algorithm with communication complexity O(k log (t)) in the
coordinator model.

In this paper We will concentrate on one-class SVM first since it captures the main
difficulty of the problem, and then extend the results to two-class SVM (in the full version
of this paper). We also performed experiments on benchmark datasets to evaluate the
performance of the algorithms (in the full version of the paper).
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Figure 1 One-class SVM is equivalent to
the polytope distance problem. ρ is the poly-
tope distance, H is the separating hyperplane,
with distance to o exactly ρ.
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Figure 2 One step of the Gilbert Al-
gorithm, updating xi to xi+1.

2 Preliminaries

2.1 Equivalence between SVM and Polytope Distance
In this section, we give several definitions which will be used throughout the paper.

I Definition 1. (One-class SVM): Given a point set P ⊆ Rd, find a hyperplane H separating
the origin o and P such that the separating margin (i.e., the distance between o and H) is
maximized.

It is well known that this problem is equivalent to the following problem of computing the
polytope distance:

I Definition 2. (Polytope distance): Given a point set P ⊆ Rd, compute the shortest
distance between the origin o and a point p in the polytope conv(P ) (i.e., the convex hull of
P ).

I Lemma 3 ([10]). Given a point x which realizes the polytope distance of P ⊆ Rd, the
hyperplane H passing x and orthogonal to ox is the maximum separating hyperplane of P .
In other words, the polytope distance problem is equivalent to the one-class SVM problem.

Figure 1 provides an intuitive explanation of the equivalence between one-class SVM
and polytope distance. Notice that the polytope distance problem can be formulated as
a standard convex quadratic optimization problem, thus can be solved optimally using
standard techniques in O(n3) time. However this approach is mostly impractical because
of the high time complexity. Actually in many applications, a near-optimal approximate
solution is sufficient. Thus it is desirable to design efficient approximation algorithms. A
(1− ε)-approximation of the polytope distance can be defined as follows.

I Definition 4. ((1 − ε)-approximation of polytope distance): x ∈ conv(P ) achieves a
(1− ε)-approximation of the polytope distance problem, if

‖x‖ − p|x ≤ ε‖x‖,∀p ∈ P

where p|x := 〈p,x〉
‖x‖ is the signed length of the projection of p onto vector ox.

In the rest of this paper, we also call the point x, rather its distance to o, as the approximation.
This is only for ease of discussion, and does not affect the solution at all (since we can get
the actual distance by simply computing the distance between x and o).

ISAAC 2016
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2.2 Gilbert Algorithm
Gilbert algorithm can be used to find a (1 − ε)-approximation of the polytope distance
problem. Roughly speaking, Gilbert algorithm starts with an initial solution x1 being the
closest point of P to the origin. In step i, the algorithm finds the point pi ∈ P that has the
smallest projection distance to vector oxi, and picks the point on the line segment [pi, xi]
that is closest to the origin as xi+1. Figure 2 illustrates one step of Gilbert algorithm.

Algorithm 1 Gilbert Algorithm
1: INPUT : A d dimensional point set P , the origin o.
2: OUTPUT : A (1− ε)-approximation of the polytope distance of P to o.
3: Initialize i to be 1. Find the point p1 that is closest to o, let x1 = p1
4: In step i, let pi+1 be the point that has the smallest p|xi , let xi+1 be the point that is

closest to o on line segment [xi, pi+1].
5: Return xi+1 when it is a (1− ε)-approximation. Otherwise goto Line 4 with i = i+ 1.

Despite its simplicity, it has been shown [10] that Gilbert algorithm can actually find
such a (1− ε)-approximation in O( 1

ε ) steps. Formally, we have the following theorem.

I Theorem 5 ([10]). Gilbert algorithm succeeds after at most O( 1
ε ) steps.

Since each step of the algorithm involves only computing the projection of all points in
P to a specific direction, which can be done in linear time, Gilbert algorithm has a total
running time linearly depending on n = |P | which is the number of input points.

Besides the fast running time, Gilbert Algorithm (and its variants) has also many other
properties that make it a good SVM solver.
1. The algorithm works for arbitrary kernels. Since the algorithm only requires the compu-

tation of projection distance, which can be obtained by scalar product, we only need one
kernel evaluation at each time when a projection distance is computed. This also implies
that our proposed algorithms can be trivially kernelized.

2. The result is sparse, or in other words, the number of support vectors is small. In the
kernelized version, the solution xi is a linear combination of input points, and we can
easily observe that xi involves at most one more point in each step, so the total number
of support vectors is O( 1

ε ).

3 Communication Complexity of Distributed SVM

In a distributed setting, the point set P is arbitrarily distributed among k nodes. Based on
different modes of communication, there are different models to be considered. In this paper
we mainly study the widely used coordinator model which contains an extra coordinator
node, and all other nodes are only allowed to communicate with the coordinator. The
algorithm itself can be easily modified for a more general communication model, e.g., network
of general topology. Such generalization will at most induce an additional O(D) (where D is
the diameter of the network) [1] increase on the communication complexity.

We are interested in determining the minimum amount of communication that is needed to
find a (1− ε)-approximation of the polytope distance problem. We define the communication
cost as the number of points needed to be transfered between nodes, where transferring one
d-dimensional point (together with an optional O(d) constants) takes O(1) communication.
This way of defining the communication cost simplifies the proof of Theorem 6. Below is our
lower bound result.
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I Theorem 6. A (1− ε)-approximation of the distributed polytope distance problem requires
Ω(kd) communication for any ε <

√
17−4
16d .

We prove Theorem 6 by giving a reduction from the following k-OR problem.

I Definition 7 (k-OR). Given k players with each holding an n-bit binary vector, find the
bitwise OR of all k vectors.

An example of the k-OR problem can be like the following: Player 1 holds vector
(1, 0, 0, 1, 0), Player 2 holds (0, 0, 0, 1, 1), and Player 3 holds (1, 1, 0, 0, 1). Then the output
should be the vector (1, 1, 0, 1, 1), where each bit is just the OR of the same bit of all players’
vectors. For the communication complexity of this problem we have the following result.

I Lemma 8 ([19]). k-OR problem requires Ω(nk) communication in the coordinator model.

Proof of Theorem 6. We prove Theorem 6 by reducing the k-OR problem to the problem
of finding an ε-approximation of distributed polytope distance.

Given an instance of the k-OR problem with k players each holding an n-bit binary
vector, construct an instance of distributed polytope distance in d = n dimensional space
with k nodes as follows:

For player i, for j = 1, · · · , d, if the j’th bit of his vector is 0, add point ej to node i’s
point set; otherwise add point λej to its point set, where ej = (0, · · · , 0︸ ︷︷ ︸

j-1

, 1, 0, · · · , 0︸ ︷︷ ︸
d-j

) is the

d-dimensional point whose only non-zero entry is the j’th coordinate with value 1, and λ is a
constant smaller than 1 to be determined later.

In this construction, each node holds exactly d points, and there are kd points in total.
Since for the j’th point there are only two possible positions to place it, i.e., ej or λej , there
will be points from different nodes sharing the same position. This does not affect the proof,
since we can add a small enough perturbation to points sharing the same location.

I Definition 9 (Configuration). A configuration C of an instance of the polytope distance
problem constructed as above is a size d point set, where the i’th point is λei if there is
at least one λei in the point sets of all nodes; otherwise the i’th point is set to be ei. The
order of a configuration C is the number of λe it contains.

It is easy to see that a configuration encodes the solution of the corresponding k-OR problem.
So if we can find out the configuration based on an ε-approximation solution of the distributed
polytope distance problem, we can solve the k-OR problem, thus proving Theorem 6. The
following lemma ensures that we can indeed achieve that.

I Lemma 10. If ε <
√

17−4
16d , it is possible to determine the configuration purely based on an

ε-approximation of the distributed polytope distance problem with λ satisfying 1
2−
√

1
4 −

εd
1−ε <

λ < min{
√

1− d(1− (1− ε)2), ( 1
2 +

√
1
4 −

εd
1−ε )}.

Notice that ε <
√

17−4
16d guarantees that 1

4 −
εd

1−ε > 0, 1 − d(1 − (1 − ε)2) > 0, as well as
1
2 −

√
1
4 −

εd
1−ε <

√
1− d(1− (1− ε)2). Thus such a λ always exists. Denote the polytope

distance of a configuration C as ρ(C), the order of C as order(C). We call the set of
configurations with the same order d′ as an order-d′ layer of configurations. We prove
Lemma 10 in two steps:

Claim 1: order(Ci) = order(Cj) =⇒ ρ(Ci) = ρ(Cj); order(Ci) > order(Cj) =⇒
ρ(Ci) < (1− ε)ρ(Cj).

ISAAC 2016
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Claim 2: a solution x can’t be an ε-approximation for more than one configuration in
the same layer.

Proof of Claim 1. Consider a configuration C = {p1, p2, · · · , pd} with order d′. This means
that there are d− d′ points with their only non-zero coordinate as 1, and d′ points with their
non-zero coordinate as λ. Suppose that the point x = α1p1 + α2p2 + · · ·+ αdpd on conv(C)
is the closest point to the origin. We observe that for i ∈ [1, d], we have 0 < αi < 1. This
can be proved by contradiction as follows. First of all, since x is on conv(C), we naturally
have 0 ≤ αi ≤ 1 and

∑
i αi = 1. Suppose that there exists an αl = 0. This means that the

l’th coordinate of x is 0, and thus x is on the simplex spanned by C − {pl}. Notice that in
this case, we have opl perpendicular to the simplex spanned by C − {pl}. Thus, ∠oxpl < π

2
and ∠oplx < π

2 , which means that the projection of o onto xpl is within the line segment
xpl, resulting in a point closer to o than x, contradicting the fact that x is the closest point
to o. Then α < 1 follows immediately.

The above observation guarantees that the closest point to o is always within conv(C),
instead of on the boundary. Now let us compute ρ(C).

We partition the points of C into two subsets based on their non-zero coordinates. C1
contains points whose non-zero coordinates are 1, and Cλ contains the rest. By the symmetry
of the dimensions, we can safely assume that C1 contains the first d − d′ points, and Cλ
contains the latter d′ points without loss of generality. Now let a = 1

(d−d′)λ+d′ 1
λ

, and consider

the point x = (λa · 1, · · · , λa · 1︸ ︷︷ ︸
d−d′

,
a

λ
· λ, · · · , a

λ
· λ︸ ︷︷ ︸

d′

). It is clear that (1) x is within the boundary

of conv(C), since (d−d′)λa+d′ aλ = 1; and (2) the projection distance of any point in C onto
ox is λa

‖x‖ . Thus ox is perpendicular to the subspace spanned by C. Combining the above two
facts, we know that x is the closest point to o on conv(C), and ρ(C) = ‖ox‖ =

√
1

(d−d′)+ d′
λ2

.
Since ρ(C) depends only on the order of the configuration, we have proved the first half of
Claim 1.

Since each layer of configuration has the same polytope distance, we let ρd′ denote the
polytope distance for order-d′ layer. Now for the second half of Claim 1, let us consider two
consecutive layers with order d′ and d′ + 1. Then we have

ρd′+1

ρd′
=

√
d+ ( 1

λ2 − 1)d′

d+ ( 1
λ2 − 1)(d′ + 1)

≤
√
d− (1− λ2)

d
(1)

<

√
d− (1−

√
1− d(1− (1− ε)2)2)

d

= 1− ε (2)

in which inequality (1) holds because of 1
λ2 − 1 > 0. Using (2), we immediately have

ρd′+t
ρd′

< (1− ε)t < 1− ε. Thus the second part of Claim 1 is proved. J

Proof of Claim 2. In order to prove Claim 2, we first make another observation of the ε-
approximation x of configuration C = {p1, · · · , pd} of order d′. Since x is an ε-approximation,
by definition it has to be on conv(C). So x takes the form of x =

∑
αipi, and

∑
αi = 1.

Also by definition, we have pi|x > (1− ε)‖x‖. Together with the definition of pi|x, we have

αi ≥
{

(1− ε)‖x‖2 , if pi = ei
1−ε
λ2 ‖x‖2 , otherwise.
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Then we have for pi = ei,

αi = 1−
∑
j 6=i

αj

≤ 1− (
∑

j 6=i,pj=ej

(1− ε)‖x‖2 +
∑

j 6=i,pj=λej

(1− ε)
λ2 ‖x‖2)

= 1− ((d− d′ − 1)(1− ε)‖x‖2 + d′
1− ε
λ2 ‖x‖

2)

= ( 1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ))‖x‖2. (3)

Now, suppose that x is an ε-approximation for two configurations C1 and C2 in the same
layer. Since all configurations in the same layer have the same order, this indicates that they
have the same number of points whose non-zero coordinate is 1 and the same number of
points whose non-zero coordinate is λ. This means that C1 and C2 differs by at least two
points, with different non-zero coordinate. Denote the index of such pair of points as i and j.
W.O.L.G., assume that in C1 the i’th point p(1)

i = ei, and the j’th point p(1)
j = λej . Then in

C2, the i’th point p(2)
i = λei, and the j’th point p(2)

j = ej . Since x is an ε-approximation of
C1, it has to take the form of x =

∑
αip

(1)
i „ and p(1)

i = ei, following (3) we have

αi ≤ ( 1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ))‖x‖2.

Since x is also an ε-approximation of C2, it has to satisfy

λαi
‖x‖

= p
(2)
i |x ≥ (1− ε)‖x‖.

Together we have

1− ε
λ
‖x‖2 ≤ αi ≤ ( 1

‖x‖2 − ((d− d′ − 1)(1− ε) + d′
1− ε
λ2 ))‖x‖2,

which means that

1− ε
λ
≤ 1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ).

However, since 1
2 −

√
1
4 −

εd
1−ε < λ < 1

2 +
√

1
4 −

εd
1−ε , and ‖x‖

2 ≥ ρ2
d′ = 1

(d−d′)+ d′
λ2

, we always
have

1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ) ≤ (d− d′) + d′

λ2 − ((d− d′ − 1)(1− ε) + d′
1− ε
λ2 )

= d− (d− 1)(1− ε) + ε( 1
λ2 − 1)d′

≤ d− (d− 1)(1− ε) + ε( 1
λ2 − 1)d

= 1− ε+ εd

λ2

<
1− ε
λ

,

which is a contradiction. Therefore x cannot be an ε-approximation for two configurations of
the same layer. J

ISAAC 2016
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Now we are ready to prove Lemma 10. At the coordinator, pre-compute all possible
ρd′ , with d′ = (0, 1, · · · , d). Compare the polytope distance of the ε-approximation x to
every segment [ρ, 1

1−ερ]. If ‖ox‖ falls within the segment corresponding to ρd′ , then Claim 1
guarantees that the configuration that we want is in the layer with order d′; Then for all
configurations C in that layer, check if x is an ε-approximation for C by testing whether
for all p ∈ C, p|x ≥ (1 − ε)‖x‖. Since x is an ε-approximation, so there is at least one
configuration C that will pass the test; and Claim 2 guarantees that there is only one such
C. Return C as the desired configuration. This completes the proof for Lemma 10

Lemma 10 means that if we solve the approximate version of the distributed polytope
distance problem, we can solve the k-OR problem. Hence the communication complexity of
the approximate distributed SVM is Ω(kd), proving Theorem 6. J

Now we are ready to give the distributed version of Gilbert Algorithm (i.e., Algorithm 2)
in the coordinator model.

Algorithm 2 Distributed Gilbert Algorithm
1: INPUT : A d dimensional point set P arbitrarily distributed among k nodes.
2: OUTPUT(by the coordinator) : A (1− ε)-approximation of the polytope distance of P

to o.
3: Initialize i = 1; All nodes send to the coordinator its closest point to o; The coordinator

picks the global closest point to o as p1;
4: In step i, the coordinator sends xi to all nodes; upon receiving xi, each node picks one

of its points that has the smallest p|xi and send back to the coordinator; the coordinator
picks the point that has the smallest p|xi based on the points it received; Denote this
point as pi+1 and find xi+1 as in non-distributed version.

5: Return xi+1 when it is a (1− ε)-approximation. Otherwise go to Line 4 with i = i+ 1.

In each step of Algorithm 2, the coordinator sends the current solution xi to all k nodes.
Upon receiving xi, each node computes the smallest projection distance onto vector oxi
based on its own share of points, and return it to the coordinator. The coordinator picks the
point that has the smallest projection distance onto vector xi among all returned points, and
uses it as pi+1. Each step of the algorithm involves one round of communication between the
coordinator and all k nodes. Thus the communication of each step is O(k). By Theorem 5,
we have the following theorem.

I Theorem 11. The communication complexity of Algorithm 2 is O(kε ) in the coordinator
model.

In the construction of the proof of Theorem 6 we can take ε = Θ( 1
d ), resulting in a

communication cost of Θ(kd) for Algorithm 2. Suppose that there exists an algorithm with
asymptotically smaller communication cost than Algorithm 2, it will also solve k-OR problem
using o(kd) communication, contradicting Lemma 8. So there doesn’t exist an algorithm
that computes a (1 − ε) approximation with asymptotically smaller communication than
Algorithm 2.

4 Robust Distributed SVM

In this section we present an algorithm for explicitly avoiding the influence of outliers in the
distributed SVM problem. We first consider the following problem.
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I Definition 12 (Distributed One-class SVM with Outliers). Given P as a point set of size n
in d dimensional space that is arbitrarily distributed among k nodes, and γ as the fraction
of outliers in P , find the subset P ′ ⊆ P of size (1− γ)n so that the margin separating the
origin and P ′ is maximized.

Notice that in this problem setting, there are two factors that need to be considered when
evaluating the quality of the approximation result: the width of the margin, and the number
of outliers accurately pruned out. Thus we need a new definition of approximation.

I Definition 13. For two constants ε, δ > 0, a margin M is an (ε, δ)-approximation, if the
width of M is larger than or equal to (1− ε)ρ, and the number of outliers identified by M is
no more than (1 + δ)γ|P |.

In this problem, we aim to prune out exactly γn points (as outliers) so that the rest
of the points can be separated from the origin by the largest possible margin. In this
scenario, Gilbert algorithm may perform arbitrarily bad. This is because in each step, Gilbert
algorithm finds the point that has the minimum projection distance and there is a possibility
that this point happens to be an outlier. As a gradient descent procedure, Gilbert algorithm
does not have the ability to recover from the negative impact of picking an outlier. To avoid
this problem, a key observation is that Gilbert algorithm does not need to always identify
the point with the minimum projection distance; it is actually sufficient to find one point (to
maintain a fast convergence rate) as long as its projection distance is one of the w smallest for
some w to be determined later. Based on this observation, Ding and Xu [7] has developed a
new framework, called Random Gradient Descent (RGD) tree, to explicitly deal with outliers
using Gilbert algorithm.

4.1 RGD Tree: Explicitly Avoiding the Influence of Outliers in SVM
Roughly speaking, RGD tree is a modified version of Gilbert algorithm. In each step, it
randomly samples w points from the t > 1 points which have the smallest projection distances,
and considers each of the w points as if it is the point with smallest projection distance. This
results in a computation tree with a branching factor of w. The value w is chosen to have
the property that there is a high probability that the w chosen points contain at least one
point that is not an outlier. Together with the fast convergence rate of Gilbert algorithm, we
can have a node in the RGD tree whose path to the root contains only points that are not
outliers with high probability. Then this path is the desired computation path of Gilbert
algorithm in an outlier-free environment.

The following theorem from [7] guarantees the performance of the RGD tree:

I Theorem 14. With high probability (larger than 1− µ), there exists at least one node in
the resulting RGD tree which yields an (ε, δ)-approximation, with running time linear in n
and d.

4.2 Extending RGD Tree to Distributed Settings
Given the fact that RGD tree is a variant of Gilbert algorithm, it can be naturally extended
to distributed settings. One simple solution is to let the coordinator send the current
solution (xi) to each distributed node for them to compute and return its own t points
with the smallest projection distance to oxi. However such a naive approach will incur
large communication cost, because now each step will need O(kt) communication, instead
of O(k) communication as in the no-outlier case. Actually the problem of finding the t-th

ISAAC 2016
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smallest number in a distributed setting has been extensively studied ([17, 21, 13]). [13]
gives a randomized algorithm that has communication complexity of O(k log (t)), and a
deterministic algorithm with communication complexity O(k log2 (t)). In this paper we give
a deterministic algorithm with communication complexity O(k log (t)) in the coordinator
model. Formally, consider the following problem.
I Definition 15. (Distributed t-selection): Given n distinct numbers distributed among k
nodes, find the t-th smallest number.
In this problem, we only consider distinct numbers, since we can use any tie-breaker to
distinguish duplicated numbers. Then we have the following result.
I Lemma 16. Distributed t-selection can be solved deterministically with O(k log (t)) transfers
of numbers in the coordinator model.

To prove Lemma 16, we give an algorithm (Algorithm 3) with the claimed communication
complexity.

Before analyzing the communication complexity of Algorithm 3, we first show its Correct-
ness. The algorithm acts like the classical linear-time selection algorithm. The coordinator
computes two “weighted” medians of medians (ml̂h

and ml̂h+1
) for all distributed nodes,

and tell them to discard certain portion of its numbers based on the location of the t-th
smallest number. In Line 11, case 1 means that the t-th smallest number is smaller than the
first “weighted” median ml̂h

, so it is safe to discard all numbers no smaller than ml̂h
; case 2

means that the t-th smallest number is between ml̂h
and ml̂h+1

, so it is safe to discard all
numbers no larger than ml̂h

and all numbers no smaller than ml̂h+1
; Similarly, we can show

for Case 3. We also update the value of t if numbers smaller than the t-th smallest number
are discarded. The algorithm either finds the t-th smallest number during the loop of Lines
6 to 12, or finds it by the coordinator in a non-distributed fashion (when there are fewer
numbers left). Thus we have the correctness of Algorithm 3.

For communication complexity, we have the following lemma (proof of Lemma 16 is left
in the appendix due to space limit).
I Lemma 17. Each iteration of Lines 6 to 12 will discard at least a fraction of 1

4 of the
current numbers holden by all nodes.

Now we are ready to present the distributed version of the RGD tree algorithm (i.e.,
Algorithm 4), and the analysis of its communication complexity.

The RGD tree has O(wh) nodes (which is constant w.r.t. n and d). To generate one node,
we need O(k log (t)) communication. Notice that each time we draw the sample Sv, there are
O(w) extra communication. Thus on average each node in the sample (i.e., its associated
point belongs to the sample) is only charged O(1) extra communication, which does not
change asymptotically the O(k log (t)) communication incurred by applying Algorithm 3.
This leads to the following theorem.
I Theorem 18. The communication complexity of Algorithm 4 is O(whk log (t)).

4.3 Extension to Two-Class SVM
We will briefly explain the reasons why an extension to two-class SVM is straight forward.
More details are left to the full version of the paper. Finding the polytope distance between
two point sets is equivalent to finding the polytope distance between the Minkowski difference
of the two point sets and the origin. Taking the Minkowski difference will increase the size of
the problem from O(n) to O(n2), however using the tricks in [7] and [10] we can achieve the
same running time and communication performance as the one-class case.
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Algorithm 3 Deterministic distributed t-selection algorithm
1: INPUT : n distinct numbers arbitrarily distributed among k nodes, a natural number t.

2: OUTPUT(by the coordinator) : the t-th smallest number of the n numbers.
3: (Pre-process:) For each node, if it holds more than t numbers, do a local sorting and

keep the smallest t numbers and discard the rest.
4: (Pre-process:) The coordinator sends a distinct number l ∈ [1, k] to each node as their

label.
5: repeat
6: For each node, send to the coordinator a message containing a triple (ml, nl, l), where

ml is the median of the numbers stored in the node, nl is the # of numbers in the
node, and l is its label.

7: Upon receiving messages from all nodes, the coordinator first sorts the messages in
ascending order of their ml. Suppose in the new order we have ml̂1

< ml̂2
< · · · < ml̂k

.

8: Let ml̂0
= −∞. The coordinator computes a value h such that

∑
l:ml≤ml̂h

nl <
1
2
∑
l nl

and
∑
l:ml≤ml̂h+1

nl ≥ 1
2
∑
l nl

9: The coordinator sends a pair (ml̂h
,ml̂h+1

) to all nodes.
10: Upon receiving (ml̂h

,ml̂h+1
) from the coordinator, each node sends to the coordinator

a triple (al, bl, l), where al is the # of its numbers smaller than ml̂h
, bl is the # of its

numbers smaller than ml̂h+1
, l is its label.

11: After receiving all (a, b, l) messages from all nodes, the coordinator checks which of the
following cases will happen (notice that since ml̂h

< ml̂h+1
we always have

∑
a <

∑
b):

1. t− 1 <
∑
a;

2.
∑
a < t− 1 <

∑
b;

3. t− 1 >
∑
b;

4. t− 1 =
∑
a;

5. t− 1 =
∑
b.

For case 4, output ml̂h
and halt; for case 5, output ml̂h+1

and halt; otherwise, send i
to all nodes for cases i. For case 2, update t to be t−

∑
a; for case 3, update t to be

t−
∑
b.

12: For each node, if it receives a “1” from the coordinator, discard all numbers larger
than ml̂h

; if it receives a “2”, discard all numbers smaller than ml̂h
and numbers larger

than ml̂h+1
; otherwise discard all numbers smaller than ml̂h+1

13: until
∑
nl = O(k)

14: All nodes send their numbers to the coordinator.
15: Now the numbers are no longer distributed, and the coordinator simply outputs the t-th

smallest number.
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Algorithm 4 Distributed RGD tree
1: INPUT : A d dimensional point set P arbitrarily distributed among k nodes, with a

fraction γ of it being outliers; three parameters 0 < µ, δ < 1, h = 2( 1
ε (Dρ +1))2 ln (Dρ + 1).

2: OUTPUT(by the coordinator) : An RGD tree with each node associated with a
candidate for an approximation solution to the One-class SVM with outliers problem.

3: The coordinator randomly select a point from P as x. Initialize the tree at root x.
4: Recursively grow the tree in the following manner:
5: For a node v associated with point xv, if its height is h, it becomes a leaf; Otherwise, do

the following:
1. Let t = (1 + δ)γ|P |. The coordinator finds the point pt whose projection distances to

oxv are the t’th smallest using Algorithm 3;
2. Take a random sample Sv of size w = (1 + 1

δ ) ln µ
h in the following manner: the

coordinator randomly take a label of the nodes, and ask the node with this label for a
random point of its holdings whose projection distance is smaller than the projection
distance of pt. Repeat until the coordinator has a sample Sv of size w. For each point
s ∈ Sv, create a child of v in the RGD tree and associate it with point xsv which is
the point on line segment [sxv] closest to o.
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