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Abstract
In a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem of
deciding whether or not a given graph has a matching cut, which is known to be NP-complete
even when restricted to bipartite graphs. It has been proved that Matching Cut is polynomially
solvable for graphs of diameter two. In this paper, we show that, for any fixed integer d ≥ 4,
Matching Cut is NP-complete in the class of graphs of diameter d. This almost resolves an open
problem posed by Borowiecki and Jesse-Józefczyk in [Matching cutsets in graphs of diameter 2,
Theoretical Computer Science 407 (2008) 574–582].

We then show that, for any fixed integer d ≥ 5, Matching Cut is NP-complete even when
restricted to the class of bipartite graphs of diameter d. Complementing the hardness results,
we show that Matching Cut is in polynomial-time solvable in the class of bipartite graphs
of diameter at most three, and point out a new and simple polynomial-time algorithm solving
Matching Cut in graphs of diameter 2.
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1 Introduction

In a graph G = (V, E), a cut is a partition V = X ∪̇Y of the vertex set into disjoint,
nonempty sets X and Y , written (X, Y ). The set of all edges in G having an endvertex in X

and the other endvertex in Y , also written (X, Y ), is called the edge cut of the cut (X, Y ). A
matching cut is an edge cut that is a (possibly empty) matching. Note that, by our definition,
a matching whose removal disconnects the graph need not be a matching cut.

Another way to define matching cuts is as follows ([13, 7]). A partition V = X ∪̇Y of
the vertex set of the graph G = (V, E) into disjoint, nonempty sets X and Y , is a matching
cut if and only if each vertex in X has at most one neighbor in Y and each vertex in Y has
at most one neighbor in X.

Graham [13] studied matching cuts in graphs in connection to a number theory problem
called cube-numbering. In [12], Farley and Proskurowski studied matching cuts in the context
of network applications. Patrignani and Pizzonia [17] pointed out an application of matching
cuts in graph drawing. Matching cuts have been used by Araújo et al. [1] in studying good
edge-labellings in the context of WDM (Wavelength Division Multiplexing) networks.

Not every graph has a matching cut; the Matching Cut problem is the problem of
deciding whether or not a given graph has a matching cut:
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Matching Cut
Instance: A graph G = (V, E).
Question: Does G have a matching cut?

This paper considers the computational complexity of the Matching Cut problem in graphs
of fixed diameter.

Previous results. Graphs admitting a matching cut were first discussed by Graham in
[13] under the name decomposable graphs. The first complexity and algorithmic results for
Matching Cut have been obtained by Chvátal, who proved in [7] that Matching Cut
is NP-complete, even when restricted to graphs of maximum degree four and polynomially
solvable for graphs of maximum degree at most three. These results triggered a lot of research
on the computational complexity of Matching Cut in graphs with additional structural
assumptions; see [5, 6, 14, 15, 16, 17]. In particular, the NP-hardness of Matching Cut
has been further strengthened for planar graphs of maximum degree four ([5]) and bipartite
graphs of maximum degree four ([15]).

On the positive side, among others, an important polynomially solvable case has been
established by Borowiecki and Jesse-Józefczyk, who proved in [6] that Matching Cut is
polynomially solvable for graphs of diameter 2. They also posed the problem of determining
the largest integer d such that Matching Cut is solvable in polynomial time for graphs of
diameter d.

Our contributions. We prove that Matching Cut is NP-complete, even when restricted
to graphs of diameter d, for any fixed integer d ≥ 4. Thus, unless NP = P, Matching Cut
cannot be solved in polynomial time for graphs of diameter d, for any fixed d ≥ 4. This
mostly resolves the open problem posed by Borowiecki and Jesse-Józefczyk mentioned above.
Actually, we show a little more: Matching Cut is NP-complete in graphs of diameter
4 and remains NP-complete in bipartite graphs of fixed diameter d ≥ 5. Complementing
our hardness results, we show that Matching Cut can be solved in polynomial time in
bipartite graphs of diameter at most 3. We also point out a new and simple approach solving
Matching Cut in diameter-2 graphs in polynomial time.

Notation and terminology. Let G = (V, E) be a graph with vertex set V (G) = V and edge
set E(G) = E. An independent set (a clique) in G is a set of pairwise non-adjacent (adjacent)
vertices. The neighborhood of a vertex v in G, denoted by NG(v), is the set of all vertices in
G adjacent to v; if the context is clear, we simply write N(v). For a subset W ⊆ V , G[W ] is
the subgraph of G induced by W , and G−W stands for G[V \W ]. The complete graph and
the path on n vertices is denoted by Kn and Pn, respectively; K3 is also called a triangle.
The complete bipartite graph with one color class of size p and the other of size q is denoted
by Kp,q. Observe that, for any matching cut (X, Y ) of G, any Kn with n ≥ 3, and any Kp,q

with p ≥ 2, q ≥ 3, in G is contained in G[X] or else in G[Y ].
Given a graph G = (V, E) and a partition V = X ∪̇Y , it can be decided in linear time if

(X, Y ) is a matching cut of G. This is because (X, Y ) is a matching cut of G if and only if
the bipartite subgraph BG(X, Y ) of G with the color classes X and Y and edge set (X, Y )
is P3-free. That is, (X, Y ) is a matching cut of G if and only if the non-trivial connected
components of the bipartite graph BG(X, Y ) are edges. A path P3 in BG(X, Y ), if any, is
called a bad P3.

A bridge in a graph is an edge whose deletion increases the number of the connected
components. Since disconnected graphs and graphs having a bridge have a matching cut, we
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Figure 1 The clause gadget G(Cj) (left) and the variable gadget G(vi) (right).

may assume that all graphs considered are connected and 2-edge connected. The distance
between two vertices u, v in a (connected) graph G, denoted dist(u, v), is the length of a
shortest path connecting u and v. The diameter of G, denoted diam(G), is the maximum
distance between all pairs of vertices in G.

The paper is organized as follows. In Section 2 we show that Matching Cut is NP-
complete when restricted to bipartite graphs of diameter d, for any fixed integer d ≥ 5.
In Section 3 we show that Matching Cut is NP-complete when restricted to graphs of
diameter 4. In section 4 we point out a new and simple polynomial time algorithm solving
Matching Cut in diameter 2 graphs, and show that Matching Cut can be solved in
polynomial time for bipartite graphs of diameter at most 3. We conclude the paper with
Section 5.

2 Matching Cut in bipartite graphs of diameter d ≥ 5

In this section we show that, for each fixed d ≥ 5, Matching Cut is NP-complete when
restricted to bipartite graphs of diameter d. We first prove this for diameter-5 bipartite
graphs by giving a polynomial time reduction from 1-IN-3 3SAT to our problem. The
NP-completeness of 1-IN-3 3SAT is proved in [18].

1-IN-3 3SAT (without negated literals)
Instance: m clauses C1, . . . , Cm over a set of n Boolean variables v1, . . . , vn such that

each clause has exactly three variables.
Question: Is there a truth assignment satisfying all clauses such that each clause has

exactly one true variable?

Suppose we are given a formula F with clauses Cj = (cj1, cj2, cj3), where cj`, 1 ≤ j ≤ m,
1 ≤ ` ≤ 3, are taken from the set of Boolean variables {v1, . . . , vn}. We will construct, in
polynomial time, a bipartite graph G(F ) of diameter 5 such that F ∈ 1-IN-3 3SAT if and
only if G(F ) has a matching cut.

For each clause Cj = (cj1, cj2, cj3) we create the 7-vertex graph G(Cj) as depicted on the
left-hand side of Figure 1.

The following property of the clause gadget G(Cj) will be used in the reduction.

I Observation 1. In any matching cut (X, Y ) of G(Cj), cj ∈ X and aj ∈ Y or vice versa.
Moreover, G(Cj) has exactly three matching cuts (X, Y ) with cj ∈ X as depicted in Figure 2.

Proof. By inspection. J

For each Boolean variable vi, 1 ≤ i ≤ n, let G(vi) be the 8-vertex graph depicted in
Figure 1, on the right-hand side.

ISAAC 2016
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Figure 2 The three matching cuts of the clause gadget: black vertices in X, white vertices in Y .

Finally, the graph G(F ) is obtained by taking all G(Cj), 1 ≤ j ≤ m, all G(vi), 1 ≤ i ≤ n,
and four new vertices g1, g2, h1, h2, and by adding edges

between cj` and {vi, v′i}, whenever in clause Cj , cj` is the variable vi, 1 ≤ j ≤ m, 1 ≤ ` ≤ 3
and 1 ≤ i ≤ n,
between {g1, g2} and {cj | 1 ≤ j ≤ m} ∪ {ri, r′i | 1 ≤ i ≤ n} (thus, {g1, g2} and
{cj | 1 ≤ j ≤ m} ∪ {ri, r′i | 1 ≤ i ≤ n} induce a complete bipartite graph K2,m+2n in
G(F )),
between {h1, h2} and {aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n} (thus, {h1, h2} and
{aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n} induce a complete bipartite graph K2,m+2n in
G(F )),
g1h1 and g2h2.

I Lemma 2. G(F ) is a bipartite graph and has diameter 5.

Proof. By construction, the vertices of G(F ) are partitioned into two disjoint independent
sets I1, I2 as follows.

I1 = {g1, g2} ∪ {aj , cj1, cj2, cj3 | 1 ≤ j ≤ m} ∪ {pi, p′i, qi, q′i | 1 ≤ i ≤ n},
I2 = {h1, h2} ∪ {bj , cj , dj | 1 ≤ j ≤ m} ∪ {vi, v′i, ri, r′i | 1 ≤ i ≤ n}.

That is, G(F ) is bipartite.
We now show that diam(G) = 5. Observe first that any vertex x is contained in a 6-vertex

cycle Z(x) containing the edge g1h1. Indeed,
x ∈ {g2, h2}: (g1, c1, g2, h2, a1, h1) is such a cycle Z(x);
x ∈ G(Cj): g1, h1 and any 4-vertex path in G(Cj) connecting cj and aj containing x

form such a cycle Z(x);
x ∈ {vi, ri, pi, qi}: (g1, ri, pi, vi, qi, h1) is such a cycle Z(x);
x ∈ {v′i, r′i, p′i, q′i}: (g1, r′i, p′i, v′i, q′i, h1) is such a cycle Z(x).

Thus, any two vertices x, y of G(F ) with Z(x) 6= Z(y) belong to a cycle in Z(x) ∪ Z(y) \
{g1h1} of length at most 10, hence dist(x, y) ≤ 5. Finally, observe that dist(pi, vk) = 5 for
any i 6= k. J

I Lemma 3. Suppose F ∈ 1-IN-3 3SAT. Then G(F ) has a matching cut.

Proof. Let b be a truth assignment satisfying all Cj = (cj1, cj2, cj3) such that exactly one of
b(cj1), b(cj2), b(cj3) is true. Partition the vertex set of G(F ) as follows. Initially, set

X = {g1, g2} ∪ {ri, r′i | 1 ≤ i ≤ n} ∪ {cj | 1 ≤ j ≤ m}∪
{cj` | 1 ≤ j ≤ m, 1 ≤ ` ≤ 3, b(cj`) = false}.

Next, extend X to other vertices of G(Cj) as indicated in Figure 2. That is, for each
1 ≤ j ≤ m,
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if b(cj1) = b(cj2) = false, then X := X ∪ {bj},
if b(cj2) = b(cj3) = false, then X := X ∪ {dj}.

Finally, extend X to other vertices of G(vi) as follows. For each 1 ≤ i ≤ n,
if b(vi) = false, then X := X ∪ {vi, v′i, pi, p′i}.

Set Y := V (G(F )) \X, or explicitly in closed form,

Y = {h1, h2} ∪ {qi, q′i | 1 ≤ i ≤ n} ∪ {aj | 1 ≤ j ≤ m}∪
{cj` | 1 ≤ j ≤ m, 1 ≤ ` ≤ 3, b(cj`) = true}∪
{bj | 1 ≤ j ≤ m, b(cj1) = true} ∪ {bj , dj | 1 ≤ j ≤ m, b(cj2) = true}∪
{dj | 1 ≤ j ≤ m, b(cj3) = true} ∪ {vi, v′i, pi, p′i | 1 ≤ i ≤ n, b(vi) = true}.

By construction of G(F ) and by definition of X and Y , it is not difficult to see that
(X, Y ) is a matching cut of G(F ).

I Claim 4. (X, Y ) is a matching cut of G(F ).

Due to the space limitation, the proof of Claim 4 is omitted. J

I Lemma 5. Suppose G(F ) has a matching cut. Then F ∈ 1-IN-3 3SAT.

Proof. Let (X, Y ) be a matching cut of G(F ). Recall that each of

C = {g1, g2} ∪ {cj | 1 ≤ j ≤ m} ∪ {ri, r′i | 1 ≤ i ≤ n},
A = {h1, h2} ∪ {aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n}

induces a K2,m+2n in G(F ), hence

C ⊂ X or C ⊂ Y, and A ⊂ X or A ⊂ Y.

We claim that all cj belong to X and all aj belong to Y , or vice versa. Suppose for a
contrary cj , aj ∈ X for some j. Then, by the facts above, C ∪A ⊂ X. (The case cj , aj ∈ Y

is completely similar.) Then, for all j, V (G(Cj)) ⊂ X (otherwise, V (G(Cj)) ∩ Y 6= ∅
and the restriction of (X, Y ) to G(Cj) would be a matching cut of G(Cj) with cj , aj ∈ X,
contradicting Observation 1.) This implies that all vi, v′i, pi, p′i, 1 ≤ i ≤ n, belong to X, too.
(This is because vi, v′i, pi, p′i and the (common) neighbor cj` of vi, v′i in G(Cj) for suitable j, `

induce a K2,3.) Therefore all vertices of G(F ) belong to X and, hence, Y = ∅, a contradiction.
Thus, all cj belong to X and all aj belong to Y , or vice versa, as claimed.

By symmetry we may assume that all cj ∈ X and all aj ∈ Y . Define a truth assignment
b as follows. For each 1 ≤ i ≤ n, b(vi) = false if vi ∈ X, and b(vi) = true if vi ∈ Y .
We claim that b satisfies all clauses Cj = (cj1, cj2, cj3) in such a way that exactly one
of b(cj1), b(cj2), b(cj3) is true: Consider an arbitrary clause Cj . By our assumption, in
G(Cj), cj ∈ X, aj ∈ Y , and thus the restriction of (X, Y ) to G(Cj) is a matching cut
of G(Cj). By Observation 1, exactly one of cj1, cj2, cj3 is in Y ; see also Figure 2. Thus,
F ∈ 1-IN-3 3SAT. J

By Lemmas 3, 5 and 2, we conclude

I Lemma 6. Matching Cut is NP-complete, even when restricted to bipartite graphs of
diameter 5.

ISAAC 2016
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Figure 3 The bipartite chain Bd of d − 3 K2,2s.

Finally, let d ≥ 6 be a fixed integer, and let Bd be a bipartite chain of d − 3 complete
bipartite graphs K2,2 as depicted in Figure 3.

Let Gd be obtained by taking G(F ) in Lemma 2 and Bd by identifying the two vertices
g1 and s1, and the two vertices g2 and s′1.

Clearly, Gd is bipartite. Recall that dist(x, g1) ≤ 3 and dist(x, g2) ≤ 3 for all vertices
x of G(F ) (cf. the proof of Lemma 2). Hence dist(x, y) ≤ d for all vertices x, y of Gd, and
dist(x, y) = d for x = pi and y = sd−2. Thus, Gd has diameter d. Observe that each vertex
of Bd is contained in a K2,3, hence in any matching cut (X, Y ) of Gd, Bd is contained in
Gd[X] or else in Gd[Y ]. Thus, G(F ) has a matching cut if and only if Gd has a matching
cut. Hence, Lemma 6 implies

I Theorem 7. For each fixed d ≥ 5, Matching Cut is NP-complete, even when restricted
to bipartite graphs of diameter d.

3 Matching Cut in graphs of diameter 4

In this section we show that Matching Cut is NP-complete when restricted to graphs
of diameter 4. The reduction is again from 1-IN-3 3SAT and is quite similar to that in
Section 2. In particular we use the same clause gadget.

Suppose we are given a formula F with clauses Cj = (cj1, cj2, cj3), where cj` ∈ {v1, . . .,
vn}, 1 ≤ j ≤ m, 1 ≤ ` ≤ 3. We will construct, in polynomial time, a graph G(F ) of diameter
4 such that F ∈ 1-IN-3 3SAT if and only if G(F ) has a matching cut.

For each clause Cj = (cj1, cj2, cj3) we create the graph G(Cj) as depicted in Figure 1, on
the left-hand side.

For each Boolean variable vi ∈ {v1, . . . , vn}, let G(vi) be the 4-cycle with vertices
vi, v′i, qi, q′i and edges viv

′
i, v′iq

′
i, q′iqi, qivi.

Finally, the graph G(F ) is obtained by taking all G(Cj), 1 ≤ j ≤ m, all G(vi), 1 ≤ i ≤ n,
and by adding edges

between cj` and vi, v′i, whenever in clause Cj , cj` is the variable vi, 1 ≤ j ≤ m, 1 ≤ ` ≤ 3
and 1 ≤ i ≤ n,
between the vertices c1, . . . , cm (thus, {c1, . . . , cm} is a clique in G(F )),
between the vertices a1, . . . , am, q1, . . . , qn, q′1, . . . , q′n (thus, {aj | 1 ≤ j ≤ m} ∪ {qi | 1 ≤
i ≤ n} ∪ {q′i | 1 ≤ i ≤ n} is a clique in G(F )).

Informally, G(F ) is obtained from the bipartite graph constructed in Section 2 by deleting
the vertices g1, g2, h1, h2, pi, p′i, ri, r′i (1 ≤ i ≤ n) and adding an edge between vi and v′i (1 ≤
i ≤ n), and making {cj | 1 ≤ j ≤ m} to a clique, and {aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n}
to a clique.

I Lemma 8. G(F ) has diameter 4.
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Proof. Let x, y be two distinct vertices of G(F ). We will see that the distance between x

and y is at most 4. First, note that G(Cj) has diameter 3, G(vi) has diameter 2, and recall
that {c1, . . . , cm}, as well as {a1, . . . , am} ∪ {qi, q′i | 1 ≤ i ≤ n} are two cliques in G(F ), and
that each vertex of {vi, v′i} is adjacent to a vertex in {qi, q′i}. Hence we need only to consider
three cases:
Case 1. x ∈ G(Cj) and y ∈ G(Ck) with j 6= k: In this case, x and y belong to a cycle of
length 8: a 4-vertex path in G(Cj) connecting cj and aj containing x and a 4-vertex path
in G(Ck) connecting ck and ak containing y form, with the edges cjck and ajak, a cycle of
length 8. Hence dist(x, y) ≤ 4.
Case 2. x ∈ G(vi) and y ∈ G(vt) with i 6= t: In this case, dist(x, y) ≤ 3 because qi, q′i, qt, q′t
are pairwise adjacent.
Case 3. x ∈ G(Cj) and y ∈ G(vi): If x 6= cj , then dist(x, aj) ≤ 2 and, as aj is adjacent
to qi, q′i, dist(aj , y) ≤ 2, hence dist(x, y) ≤ dist(x, aj) + dist(aj , y) ≤ 4. So, let x = cj . If
y ∈ {qi, q′i}, then, as y is adjacent to aj , dist(x, y) ≤ dist(cj , aj) + 1 = 4. So, it remains the
case x = cj , y ∈ {vi, v′i}. Let k and ` be such that vi = ck`. Then (y, ck`, ck, x) is a 4-vertex
path, hence dist(x, y) ≤ 3.

Finally, note that dist(b1, b2) = 4. J

I Lemma 9. Suppose F ∈ 1-IN-3 3SAT. Then G(F ) has a matching cut.

Proof. Let b be a truth assignment satisfying all Cj = (cj1, cj2, cj3) such that exactly one of
b(cj1), b(cj2), b(cj3) is true. Partition the vertex set of G(F ) as follows. Initially, set

X = {c1, . . . , cm} ∪ {cj` | 1 ≤ j ≤ m, 1 ≤ ` ≤ 3, b(cj`) = false}.

Next, extend X to other vertices of G(Cj) as indicated in Figure 2. That is, for each
1 ≤ j ≤ m,

if b(cj1) = b(cj2) = false, then X := X ∪ {bj},
if b(cj2) = b(cj3) = false, then X := X ∪ {dj}.

Finally, extend X to other vertices of G(vi) as follows. For each 1 ≤ i ≤ n,
if b(vi) = false, then X := X ∪ {vi, v′i}.

Then (X, Y ) is a matching cut of G(F ), where Y = V (G(F )) \X. We omit the proof
since it is similar to that of Lemma 3. J

I Lemma 10. Suppose G(F ) has a matching cut. Then F ∈ 1-IN-3 3SAT.

Proof. Let (X, Y ) be a matching cut of G(F ). Note that, as C = {cj | 1 ≤ j ≤ m} and
A = {aj , qj , q′j | 1 ≤ j ≤ m} are cliques in G(F ),

C ⊂ X or C ⊂ Y, and A ⊂ X or A ⊂ Y.

Similar to the proof of Lemma 5, we can show that all cj belong to X and all aj belong
to Y , or vice versa. Let C ⊂ X and A ⊂ Y , say. Then, the assignment b with b(vi) = false if
vi ∈ X, and b(vi) = true if vi ∈ Y satisfies all clauses Cj = (cj1, cj2, cj3) in such a way that
exactly one of b(cj1), b(cj2), b(cj3) is true. Hence, F ∈ 1-IN-3 3SAT. J

By Lemmas 9, 10 and 8, we conclude

I Theorem 11. Matching Cut is NP-complete when restricted to graphs of diameter 4.

With Theorem 7, Matching Cut is NP-complete when restricted to graphs of diameter
d for any fixed d ≥ 4.

ISAAC 2016
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4 Matching Cut in bipartite graphs of diameter at most 3

In this section we prove that Matching Cut can be solved in polynomial time when
restricted to bipartite graphs of diameter at most 3. To do this, we first prove a lemma that
will be useful in many cases. In particular, we will drive from this lemma a new and simple
polynomial-time algorithm solving Matching Cut in graphs of diameter 2.

4.1 A useful lemma
Given a graph G = (V, E) and two disjoint, non-empty vertex sets A, B ⊂ V . We say a
matching cut of G is an A-B-matching cut if A is contained in one side and B is contained
in the other side of the matching cut.

In general, unless NP 6= P, we cannot decide in polynomial time if G admits an A-B-
matching cut for a given pair A, B. However, there are some rules that force certain vertices
some of which together with A must belong to one side and the other together with B muss
belong to the other side of such a matching cut (if any). We are going to describe such
forcing rules. Now assume that A, B are disjoint, non-empty subsets of V (G) such that each
vertex in A is adjacent to exactly one vertex of B and each vertex in B is adjacent to exactly
one vertex of A. Initially, set X := A, Y := B and write R = V (G) \ (X ∪ Y ).

(R1) Let v ∈ R be adjacent to a vertex in A. If v is
adjacent to a vertex in B, or
adjacent to (at least) two vertices in Y \B,

then G has no A-B-matching cut.
(R2) Let v ∈ R be adjacent to a vertex in B. If v is

adjacent to a vertex in A, or
adjacent to (at least) two vertices in X \A,

then G has no A-B-matching cut.
(R3) If v ∈ R is adjacent to (at least) two vertices in X \A and to (at least) two vertices in

Y \B, then G has no A-B-matching cut.
(R4) Let v ∈ R be adjacent to a vertex in A or to (at least) two vertices in X \ A, then

X := X ∪ {v}, R := R \ {v}. If v has a unique neighbor w ∈ Y \B then A := A ∪ {v},
B := B ∪ {w}.

(R5) Let v ∈ R be adjacent to a vertex in B or to (at least) two vertices in Y \ B, then
Y := Y ∪ {v}, R := R \ {v}. If v has a unique neighbor w ∈ X \ A then B := B ∪ {v},
A := A ∪ {w}.

It is obvious that the rules (R1)–(R5) are correct. If none of (R1), (R2) and (R3) is
applicable, then each vertex v ∈ R has no neighbor in A or has no neighbor in B, and v has
at most one neighbor in X \A or has at most one neighbor in Y \B. If (R4) is not applicable,
then each vertex v ∈ R has no neighbor in A and at most one neighbor in X \A. If (R5) is
not applicable, then each vertex v ∈ R has no neighbor in B and at most one neighbor in
Y \B. Thus, the following fact holds:

I Fact 12. Suppose none of (R1)–(R5) is applicable. Then
(X, Y ) is an A-B-matching cut of G[X ∪ Y ], and any A-B-matching cut of G must
contain X in one side and Y in other side;
for any vertex v ∈ R, N(v) ∩A = N(v) ∩B = ∅ and |N(v) ∩X| ≤ 1, |N(v) ∩ Y | ≤ 1.

We say that a subset S ⊆ R is monochromatic if, for any A-B-matching cut of G, all
vertices of S belong to the same side.
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I Lemma 13. Suppose none of the rules (R1)–(R5) is applicable. Assuming each connected
component of G − (X ∪ Y ) is monochromatic, it can be decided in time O(|V |2|E|) if G

admits an A-B-matching cut.

Proof. Let Z be a connected component of G−(X∪Y ), and let (X ′, Y ′) be an A-B-matching
cut of G with A ⊆ X ′ and B ⊆ Y ′. Note, by Fact 12, then X ⊆ X ′ and Y ⊆ Y ′. Since Z is
monochromatic, we have

Z ⊆ X ′ whenever some vertex in X \A has at least two neighbors in Z.
Similarly, Z ⊆ Y ′ whenever some vertex in Y \B has at least two neighbors in Z.
If a vertex in X \A has neighbors in two connected components of G− (X ∪ Y ), then at
least one of these components is contained in X ′.
Similarly, if a vertex in Y \B has neighbors in two connected components of G− (X ∪Y ),
then at least one of these components is contained in Y ′.

Thus, we can decide if G admits a matching cut (X ′, Y ′) such that X ⊆ X ′, Y ⊆ Y ′, by
solving the following instance F (G) of the 2-SAT problem.

For each connected component C of G− (X ∪ Y ), create two Boolean variables xC , yC .
The intention is that xC is set to true if C must go to X and yC is set to true if C muss
go to Y . Then (xC ∨ yC) and (¬xC ∨ ¬yC) are two clauses of the formula F (G).
For each connected component C of G− (X ∪Y ) with |N(v)∩C| ≥ 2 for some v ∈ X \A,
(xC) is a clause of the formula F (G). This clause ensures that in this case, C must go to
X.
For each connected component C of G− (X ∪Y ) with |N(w)∩C| ≥ 2 for some w ∈ Y \B,
(yC) is a clause of the formula F (G). This clause ensures that in this case, C must go to
Y .
For each two connected components C 6= D of G− (X ∪ Y ) having a common neighbor
in X \A, (xC ∨xD) is a clause of the formula F (G). This clause ensures that in this case,
at least one of C and D must go to X.
For each two connected components C 6= D of G− (X ∪ Y ) having a common neighbor
in Y \B, (yC ∨ yD) is a clause of the formula F (G). This clause ensures that in this case,
at least one of C and D must go to Y .

I Claim 14. G admits a matching cut (X ′, Y ′) such that X ⊆ X ′, Y ⊆ Y ′ if and only if
F (G) is satisfiable.

Due to the space limitation, the proof of Claim 14 is omitted.
Note that F (G) has O(|V |) variables and O(|V |2) clauses and can be constructed in time

O(|V |2|E|). Since 2-SAT can be solved in linear time (cf. [3, 8, 11]), by Claim 14 we can
decide in time O(|V |2|E|) if G admits an A-B-matching cut. J

4.2 Diameter 2 graphs: A new, simple and faster polynomial-time
algorithm

Let G = (V, E) be a graph of diameter 2. Guess an edge ab of G, and apply rules (R1)–(R5)
for A := {a}, B := {b} as long as possible. If (R1) or (R2) or (R3) is applicable, then clearly
G has no A-B-matching cut. So let us assume that none of (R1), (R2) and (R3) was ever
applied and none of (R4) and (R5) is applicable. Then each connected component Z of
G− (X ∪ Y ) is monochromatic. To see this, let (X ′, Y ′) be an A-B-matching cut of G with
X ⊂ X ′, Y ⊂ Y ′. By Fact 12, any vertex in A ∪B is non-adjacent to any vertex in Z, any
vertex in A has neighbors only in X ∪B, any vertex in B has neighbors only in Y ∪A. Since
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G has diameter 2, therefore, N(v) ∩N(a) 6= ∅ for all v ∈ Z and a ∈ A. Thus, v must have
a neighbor in X \ A. Similarly, each vertex v ∈ Z must have a neighbor in Y \ B. Now,
suppose for a contrary that Z is not monochromatic. Then, by connectedness, there is an
edge uv in Z with u ∈ X ′ and v ∈ Y ′, say. But then u, v and a neighbor of v in X ⊆ X ′

induce a bad P3, contradicting the assumption that (X ′, Y ′) is a matching cut.
Thus, any connected component of G − (X ∪ Y ) is monochromatic. Therefore, by

Lemma 13, it can be decided in time O(|V |2|E|) if G has an A-B-matching cut. Since we
have at most |E| many choices for the edge ab, we conclude that Matching Cut can be
solved in time O(|V |2|E|2) for graphs of diameter two. We remark that the known algorithm
posed in [6] has slower running time O(|V |2|E|3). Moreover, in comparison to their algorithm,
our is much simpler.

4.3 Diameter 3 bipartite graphs
Given a connected bipartite graph G = (V, E) with a bipartition V = V1 ∪̇V2 into independent
sets V1, V2. We will use the following fact which is easy to see:

G has diameter at most 3 if and only if, for each i = 1, 2 (1)
and for every two vertices u, v ∈ Vi, N(u) ∩N(v) 6= ∅.

Let G have diameter at most 3. Since graphs having a bridge have a matching cut, we may
assume that G is 2-edge connected. Hence every matching cut of G, if any, must have at
least two edges. Our algorithm consists of two phases. In the phase 1, we will check if G has
a matching cut (X, Y ) containing two edges a1b1, a2b2 such that a1, a2 ∈ V1, b1, b2 ∈ V2 and
{a1, b2} ⊆ X and {a2, b1} ⊆ Y . In case phase 1 is unsuccessful, phase 2 will be started. In
the phase 2, we will check if G has a matching cut (X, Y ) containing two edges a1b1, a2b2
such that a1, a2 ∈ V1, b1, b2 ∈ V2 and {a1, a2} ⊆ X and {b1, b2} ⊆ Y . The fact that G has
diameter at most 3 will ensure that each of phase 1 and 2 can be performed in polynomial
time.

Phase 1. Guess two edges a1b1, a2b2 ∈ E such that a1, a2 ∈ V1 and b1, b2 ∈ V2. Set
X = A = {a1, b2}, Y = B = {a2, b1} and write R = V (G) \ (X ∪ Y ). Apply (R1)–(R5) as
long as possible, and let us assume that none of (R1), (R2) and (R3) was ever applied.

Then each connected component Z of G− (X ∪Y ) is monochromatic. Indeed, let (X ′, Y ′)
be an A-B-matching cut with X ⊆ X ′, Y ⊆ Y ′, and consider an arbitrary vertex v ∈ Z. If
v ∈ V1, then, since a1 ∈ A∩ V1 and a2 ∈ B ∩ V1, v must have, by (1), a neighbor in X and a
neighbor in Y . Similarly, if v ∈ V2, then, since b1 ∈ A ∩ V2 and b2 ∈ B ∩ V2, v must have
a neighbor in X and a neighbor in Y , too. Thus, every vertex in Z has a neighbor in X

and a neighbor in Y . Therefore, by the same argument explained in the diameter 2 case,
Z is monochromatic. Hence, by Lemma 13, we can decide in polynomial time if G has an
A-B-matching cut. Since there are at most |E|2 choices for A and B, we conclude that, in
polynomial time, phase 1 can decide if G has a matching cut (X, Y ) containing two edges
a1b1, a2b2 such that a1, a2 ∈ V1, b1, b2 ∈ V2 and {a1, b2} ⊆ X and {a2, b1} ⊆ Y .

Phase 2. In this second phase we assume that phase 1 is unsuccessful, that is, G has no
matching cut (X, Y ) containing two edges a1b1, a2b2 such that a1, a2 ∈ V1, b1, b2 ∈ V2 and
{a1, b2} ⊆ X and {a2, b1} ⊆ Y .

Guess an edge ab ∈ E such that a ∈ V1 and b ∈ V2. Set X = A = {a}, Y = B = {b} and
write R = V (G) \ (X ∪ Y ). Apply (R1)–(R5) as long as possible, and let us assume that
none of (R1), (R2) and (R3) was ever applied.
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Then, by (1), every vertex v ∈ R1 = R ∩ V1 has a neighbor in X (as a ∈ A ∩ V1) and
every vertex w ∈ R2 = R ∩ V2 has a neighbor in Y (as b ∈ B ∩ V2). Thus, assuming G has
an A-B-matching cut (X ′, Y ′) with X ⊆ X ′, Y ⊆ Y ′, then R1 must belong to X ′ and R2
must belong to Y ′. For, if v ∈ R1 was in Y ′, then the A-B-matching cut (X ′, Y ′) would
contain the edges ab and uv, where u is the neighbor of v in X ⊆ X ′, with a, v ∈ V1 and
b, u ∈ V2, contradicting the assumption that phase 1 was unsuccessful. The case of R2 is
completely similar. Therefore, G has an A-B-matching cut (X ′, Y ′) with X ⊆ X ′, Y ⊆ Y ′ if
and only if (X ∪R1, Y ∪R2) is a matching cut. As the second property can be decided in
polynomial time, and there are at most |E| choices for A and B, we conclude that phase 2
can be performed in polynomial time. Putting all together we obtain:

I Theorem 15. Matching Cut can be solved in polynomial time when restricted to bipartite
graphs of diameter at most 3.

5 Concluding remarks

In this paper we have shown that Matching Cut is NP-complete when restricted to graphs
of diameter d, for fixed d ≥ 4, and to bipartite graphs of diameter d, for fixed diameter d ≥ 5.
We also have given a polynomial-time algorithm solving Matching Cut in bipartite graphs
of diameter at most 3. It is known that Matching Cut is polynomially solvable when
restricted to graphs of diameter 2 ([6]; cf. also Section 4). Thus, it would be very interesting
to close the gap, obtaining a dichotomy theorem:

What is the computational complexity of Matching Cut in graphs of diameter 3?
What is the the computational complexity of Matching Cut in bipartite graphs of
diameter 4?

Finally, we remark that Matching Cut can be solved in linear time in planar graphs (and
in graphs with fixed genus) of fixed diameter. This is because a planar graph with diameter
d has tree-width at most 3d− 2 ([9]). (More general, a graph with diameter d and genus g

has tree-width O(gd); see [10].) In [5], it is shown that Matching Cut can be expressed
in monadic second order logic (MSOL), and it is well-known ([2]) that all graph properties
definable in MSOL can be decided in linear time for classes of graphs with bounded tree-width,
when a tree-decomposition is given. It is also well-known ([4]) that a tree-decomposition
of bounded width of a given graph can be found in linear time. Combining these facts, it
follows that Matching Cut can be solved in linear time for planar graphs (and in graphs
with fixed genus) of fixed diameter.
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