
A Sidetrack-Based Algorithm for Finding the k

Shortest Simple Paths in a Directed Graph∗

Denis Kurz1 and Petra Mutzel2

1 Department of Computer Science, TU Dortmund, Germany
denis.kurz@tu-dortmund.de

2 Department of Computer Science, TU Dortmund, Germany
petra.mutzel@tu-dortmund.de

Abstract
We present an algorithm for the k shortest simple path problem on weighted directed graphs
(kSSP) that is based on Eppstein’s algorithm for a similar problem in which paths are allowed
to contain cycles. In contrast to most other algorithms for kSSP, ours is not based on Yen’s
algorithm [19] and does not solve replacement path problems. Its worst-case running time is on
par with state-of-the-art algorithms for kSSP. Using our algorithm, one may find O(m) simple
paths with a single shortest path tree computation and O(n+m) additional time per path in well-
behaved cases, where n is the number of nodes and m is the number of edges. Our computational
results show that on random graphs and large road networks, these well-behaved cases are quite
common and our algorithm is faster than existing algorithms by an order of magnitude.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases directed graph, k-best, shortest path, simple path, weighted graph

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.49

1 Introduction

The k shortest path problem in weighted, directed graphs (kSP) asks for a set of k paths from
a source s to a target target t in a graph with n nodes and m edges. Every path that is not
output by an algorithm should be at least as long as any path in the output. Algorithms for
this problem can be useful tools when it is hard to specify constraints that a solution should
satisfy. Instead of computing only one shortest path, kSP algorithms generate k paths, and
the user can then pick the one that suits their needs best. The best known algorithm for this
problem runs in time O(m+n logn+ k log k) and is due to Eppstein [4]. In the initialization
phase, the algorithm builds a data structure that contains information about all s-t paths
and how they interrelate with each other, in time O(m+ n logn). This can be reduced to
O(m + n) if the shortest path tree (SP tree) can be computed in time O(m + n). In the
enumeration phase, a path graph is constructed. The path graph is a quaternary min-heap
where every path starting in the root correlates to an s-t path in the original graph. We
require O(k log k) time for the enumeration phase if we want the output paths to be ordered
by length. If the order in which the paths are output does not matter, Frederickson’s heap
selection algorithm [7] can be used to enumerate the paths after the initialization phase in
time O(k).

The k shortest simple path problem (kSSP), introduced in 1963 by Clarke, Krikorian and
Schwartz [2], seems to be more expensive, computationally. In contrast to kSP, the computed

∗ This work was partially supported by the German Research Foundation, RTG 1855.

© Denis Kurz and Petra Mutzel;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 49; pp. 49:1–49:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 Sidetrack-Based Algorithm for Directed k Shortest Simple Paths

paths are required to be simple, i.e., they must not contain a cycle. The extra effort may be
well-invested if many of the k shortest paths are non-simple and we are only interested in
simple paths. The algorithm by Yen [19] used to have the best theoretical worst-case running
time of O(kn(m+ n logn)) for quite some time. Gotthilf and Lewenstein [9] improved upon
this bound recently. They observed that kSSP can be solved by solving O(k) all pairs
shortest path (APSP) instances. Using the APSP algorithm by Pettie [13], they obtain a
new upper bound of O(kn(m+ n log logn)). Vassilevska Williams and Williams [18] showed
that, for constant k, an algorithm for kSSP with running time O(n3−ε) for some positive
ε (truly subcubic) would also yield algorithms with truly subcubic running times for some
other problems, including APSP. A recent survey of the field is due to Eppstein [5]. The
kSSP on undirected graphs seems to be significantly easier. Katoh et al. [11] proposed an
algorithm that solves kSSP on undirected graphs in time O(k(m+ n logn)).

A subproblem occurring in Yen’s algorithm is the (restricted) replacement path problem.
Given a shortest s-t path p in a graph, it asks for a set of paths as follows. For each i < |p|,
the set has to include a shortest simple path that uses the first i − 1 edges of p, but not
the ith. This problem has to be solved O(k) times to find the k shortest simple paths using
Yen’s algorithm. In the original version of Yen’s algorithm, the replacement paths are found
using O(|p|) shortest path computations, resulting in time O(n(m+ n logn)). Hershberger
et al. [10] compute one SP tree rooted in s and one reversed SP tree rooted in t, respectively.
They use these two trees to find a replacement path in constant time per edge on p, cutting
down the time required to find all replacement paths to O(m + n logn) when Dijkstra’s
algorithm is used. However, the paths generated this way are not guaranteed to be simple.
Such non-simple paths can be detected in constant time and repaired by falling back to Yen’s
replacement path computation for the path edge in question. Since they do not provide an
upper bound for the number of non-simple paths that may occur using this method, the
worst-case running time is again O(n(m+ n logn)).

Some approaches reuse one fixed reversed SP tree T0 rooted in t and computed during
the initialization of their kSSP algorithm, in contrast to O(1) SP trees per replacement path
instance. Pascoal [12] noticed that the replacement path that deviates from p at node v
might be one that uses an edge (v, w) to an unused successor w of v and then follows the
path from w to t in T0. Therefore, they test whether the shortest such path is simple, and
fall back to a full shortest path computation if it is not. Although they do not describe in
detail how this check is done, it can be done in time O(m+n) per replacement path instance
by partitioning the nodes into blocks as described by Hershberger et al. [10]. Feng [6] uses
the reversed SP tree to partition V into three classes. For each edge (u, v) on p for which
we want to compute a replacement path, red nodes have already been used to reach v via
p. A yellow node v is a non-red upstream node of some red node in T0, i.e., the path from
v to t in T0 contains a red node. All other nodes are green. They then do shortest path
computations from v using Dijkstra’s algorithm like Yen. However, they are able to restrict
the search to yellow nodes, resulting in a significantly smaller search space. Feng does not
provide upper bounds on the size of this search space, resulting again in a worst-case running
time of O(n(m+ n logn)) for each replacement path instance.

The fact that the upper time bound for exact kSSP algorithms has not been improved for
a long time inspired research on inexact approaches. This line of research so far spans three
publications that all use the notion of a detour of a path, which is the (connected) subpath of a
replacement path that diverts from a reference path. It was started by Roditty and Zwick [15]
who proposed a Monte Carlo O(m

√
n logn) algorithm for the replacement path problem on

directed graphs with small integer weights. They also proposed a framework that solves

D. Kurz and P. Mutzel 49:3

kSSP by O(k) computations of second shortest simple paths in appropriate subgraphs, which
in turn is solved by their replacement path algorithms. Roditty [14] enhanced this framework
to allow for approximate kSSP algorithms when an approximation algorithm for the second
shortest path subproblem is used. They also provided such an 3

2 -approximation algorithm,
leading to a 3

2 -approximation algorithm for kSSP with running time in O(k
√
n(m+ n logn)).

An α-approximation algorithm guarantees that the i-th output path is at most α times
as long as an actual i-th shortest path. The algorithm for approximate second shortest
simple paths distinguishes between short and long detours. This approach was extended
by Bernstein [1] from two to O(logn) classes of detours, which are handled in increasing
order. This way, they were able to obtain an algorithm that gives (1 + ε) approximations
in O(ε−1 log2 n log(nC/c)(m + n logn) time, where c, C are the minimum and maximum
edge cost, respectively, giving the first (approximation) algorithm that breaks the O(m

√
n)

barrier. See Frieder and Roditty [8] for an experimental study of Bernstein’s algorithm.

Our contribution. We propose an algorithm that was derived from Eppstein’s notion of a
path graph [4]. Our algorithm achieves the same worst-case running time as Yen’s algorithm.
Like Yen, we rely on shortest path (tree) computations. In contrast to Yen-based algorithms,
however, our algorithm may draw O(m) simple paths from one SP tree computation. If
the underlying graph is acyclic, the revised algorithm at the end of this paper requires
O(n logn+ k(m+ n)) without further modifications. Alternatively, one could test whether
the graph is acyclic and then use Eppstein’s algorithm. However, this method fails if the
graph has just a single cycle, in which case our algorithm appears to be a good choice. As
most other kSSP algorithms, our algorithm works on multigraphs without modification.
After some definitions in Section 2, we propose a simplified version of our algorithm with
running time O(km(m+ n logn)) in Section 3. In Section 4, we show how this running time
can be reduced to O(kn(m+n logn)), and how to improve the running time in practice even
further. Finally, we present the results of our computational studies in Section 5 to prove
the efficiency of our algorithm.

2 Definitions

Let G = (V,E) be a directed graph with node set V and edge set E. Let s, t ∈ V be source
and target nodes, respectively. We assume an implicit edge weight function c : E → R+

0
throughout this paper. We denote the number of nodes |V | by n and the number of edges |E|
by m. A path connecting v to w in G, or v-w path, is an edge sequence p = (e1, e2, . . . , er),
ei = (vi, wi), with v = v1, w = wr and wi = vi+1 for 1 ≤ i < r. For the sake of simplicity, we
only consider combinations of G, s and t such that there exists an s-v path and a v-t path
in G for every v ∈ V . A node u is said to be on the path p, denoted by u ∈ p, if u = w or
u = vi for some i. If vi 6= vj 6= w for 1 ≤ i, j ≤ r, p is a simple path. The prefix (e1, . . . , ei)
is a v-wi path and denoted by pi. The length c(p) of the path p is the sum of edge weights of
its edges. If every v-w path is at least as long as p, it is called a shortest v-w path. We write
G− p to denote the induced subgraph G[{v ∈ V | v /∈ p}].

The k shortest simple path problem (kSSP) is an enumeration problem. Given a directed
graph G = (V,E) with source node s ∈ V , target node t ∈ V , edge weights c, and some
k ∈ N, we want to compute a set P comprising k simple paths from s to t in G such that
c(p) ≤ c(p′) for every pair p ∈ P , p′ /∈ P of simple paths. We obtain the k shortest path
problem (kSP) if we do not require the computed paths to be simple.

A shortest path tree (SP tree) T of G is a subtree of G with node set V such that each
v ∈ V has exactly one outgoing edge, which lies on a shortest v-t path, or no outgoing edges

ISAAC 2016

49:4 Sidetrack-Based Algorithm for Directed k Shortest Simple Paths

if no such edge exists. We denote the latter case by v /∈ T . Our algorithm will compute
several SP trees, the first of which we call initial SP tree T0. An edge e /∈ T is called sidetrack
w.r.t. T ; we will omit T in most cases. For a sidetrack e = (v, w), the sidetrack cost δT (e) is
defined as (c(e) + d(w))− d(v), where d(u) is the length of the unique u-t path in T . The
sidetrack cost is therefore the difference between the length of a shortest v-t path and the
length of a shortest v-t path that starts with e. The sidetrack set DT (v) of a node v ∈ V is
the set of all sidetracks w.r.t. T with tails on the unique v-t path in T . When sidetracks are
organized in heaps, we use sidetrack costs for comparison.

Let p = (e1, . . . , ek), p′ = (f1, . . . , fl) be two s-t paths, and i∗ = max{i | ej = fj for 1 ≤
j < i}. Then, with respect to p, i∗ is the deviation index, the tail of ei∗ is the deviation node
dev(p′), and ei∗ is the deviation edge of p′. As is usual for kSSP algorithms, we will discover
paths in a hierarchical fashion. We manage a candidate set, i.e., a set of candidate paths that
have been found, but have not been determined to be one of the k shortest simple paths.
Any path p that is extracted from the candidate set will be part of the solution; candidate
paths that are found not to be part of the solution are discarded. A range of new candidate
paths is derived from p. Any derived path p′ is added to the candidate set. We call p the
parent path of p′. When p is omitted, the terms deviation node and edge are w.r.t. the
parent path of p′. By removing the deviation edge of p from p, p is split into its prefix path
pref(p) := pi∗ starting in s, and its suffix path suff(p) ending in t. The initial s-t path p0 in
T0 has no parent path and thus no deviation edge. We define its suffix path to be p0 itself.

We generalize Eppstein’s representation [4] for paths. Eppstein represents paths as
sequences of sidetracks, all w.r.t. the same SP tree. In our representation, every sidetrack e
in a sidetrack sequence may be associated with a different SP tree Te. The path represented
by a sidetrack sequence (e1, . . . , er) can then be reconstructed as follows. Starting in s, we
follow the initial SP tree T0 until we reach the tail of e1. After reaching the tail of ei, we
traverse ei and follow Tei

until we reach the tail of ei+1, or, in case i = r, until we reach
t. Note that Eppstein’s representation is the special case where Te = T0 for each e in a
sidetrack sequence, and that both Eppstein’s sidetrack sequences and our generalized ones
may represent non-simple paths. The distance from a node v to t in a SP tree Te associated
with a sidetrack e is denoted by de(v).

3 Basic Algorithm

In this section, we propose a simplified way to enumerate the k shortest simple paths. We
describe in Section 4 some modifications to achieve our proclaimed running time guarantee.

We initialize an empty priority queue Q that is going to manage candidate paths. The
key of a path in Q is its length. We compute the initial SP tree T0 and push its unique s-t
path, represented by an empty sidetrack sequence, to Q. We now process the paths in Q
in order of increasing length until we found k simple paths. Let (e1, . . . , er) be a sidetrack
sequence extracted from Q, and p the path that is represented by this sequence. Although
the first path that is pushed to Q is always simple, we will eventually push non-simple paths
to Q, too. Therefore, we first have to determine whether p is simple in a pivot step. This
check can be done by simply walking p and marking every visited node.

We first describe how to handle the simple case. We start by outputting p. Let u be the
head of er, and T = Ter

. For every sidetrack e = (v, w) with v ∈ suff(p), we discover a new
path p′ represented by the sequence (e1, . . . , er, e). We set dev(p′) = v, and push p′ to Q. By
choosing Te = T , we simply reuse the SP tree that is also associated with the last sidetrack
in the sequence representing p. The length of p′ can easily be computed as c(p) + δT (e). If

D. Kurz and P. Mutzel 49:5

s

v1

v2

v3

v4

t

a

b

c

d

(a) Example graph

()

(a) (c)

(c′)(a, b) (a, c)

(a, b, c) (a, b, d)

(b) Sidetrack sequences

Figure 1 Example for the basic algorithm. In Figure 1a, the thick, solid edges belong to T0. In
Figure 1b, every sidetrack is associated with T0 except for c′, which is associated with the SP tree
T1 comprising the edges b and d. An arrow from sequence p to sequence p′ indicates that p is the
parent path of p′.

der
(w) is undefined because T does not contain a w-t path, we simply ignore e. Apart from

these dead ends, we add one path for each sidetrack in DT (u) to Q. Note that sidetracks
emanating from t can safely be ignored.

Consider the example in Figure 1. The sidetrack sequence (a) with Ta = T0 represents a
simple path p that passes the nodes s, v2, v1, v3, t in this order. The suffix of this path is its
v2-t subpath, and the sidetracks b, c have tails on this suffix. Therefore, when (a) is extracted
from Q, p is output and the sequences (a, b) and (a, c) with Ta = Tb = Tc are pushed to Q.

Now assume we extracted a non-simple path p represented by the sidetrack sequence
(e1, . . . , er). We try to extend the concatenation of pref(p) and er to a simple s-t path. Let
er = (v, w). Any valid extension avoids the nodes of pref(p) after v. We are only interested
in shortest extensions. Therefore, we compute a new SP tree T and distances d, but in
G− pref(p) instead of G to make sure that nodes of the prefix path of p are not used again.
If w /∈ T , pref(p) cannot be extended to a simple s-t path, and we discard p. Otherwise,
we push the sequence (e1, . . . , er) to Q again. In this new sequence, we associate T with
er instead of Ter

from the old sequence. The sequence represents a path p′ obtained by
concatenating the simple prefix path of p, the edge er, and the w-t path in T that, by
construction, avoids all nodes of pref(p). The suffix itself is simple because it is a shortest
path in a subgraph of G. Hence, p′ is simple. The length of p′ is c(pref(p)) + c(er) + d(w).

Consider again the example in Figure 1. The sidetrack sequence (a, c) with Ta = Tc = T0
represents a non-simple path p that visits the nodes s, v2, v1, v3, v2, v1, v3, t in this order.
The deviation node of p is v3, its deviation edge c, and its prefix path is (a, (v2, v1), (v1, v3)).
We compute a new SP tree T in G− pref(p), which only consists of the edge d. Therefore, T
does not contain a v2-t path, and p is discarded. In contrast, assume the sequence (c) with
Tc = T0 was just extracted from Q. It represents almost the same path as the sequence above,
but it skips the first visit of v2. Again, v3 is the deviation node and c the deviation edge.
The prefix path comprises the nodes s, v1 and v3. After removing them temporarily, a new
SP tree T1 is computed, consisting only of the edges b and d. The sequence (c) with Tc = T1
is pushed to Q. This new sequence represents the simple path ((s, v1), (v1, v3), c, b, d), where
c is the last sidetrack in the extracted sequence, and (b, d) is the unique v2-t path in T1.

Finally, when (c) with Tc = T1 is extracted, the represented path is output. The sidetracks
emanating from its prefix are (v2, v1) and (v4, v3). Since v1, v3 /∈ T1, these sidetracks are
ignored and no new path is pushed to Q.

ISAAC 2016

49:6 Sidetrack-Based Algorithm for Directed k Shortest Simple Paths

I Lemma 1. The above algorithm computes the k shortest simple s-t paths of a weighted,
directed graph G = (V,E).

Proof. The algorithm uses the same idea of shortest deviations as existing kSSP algorithms
or Eppstein’s kSP algorithm. We only have to show that a non-simple path p is processed
before its simple enhancement p′, resulting from the suffix repair in the non-simple case, is
actually needed. The set of nodes that are forbidden when the SP tree for p is computed is a
proper subset of the node set that the SP tree for p′ may not use. The suffix of p is therefore
not longer than that of p′, and p is extracted from Q (and subsequently, p′ is pushed) before
we need to extract p′. J

This basic form of our algorithm requires too many computations of SP trees:

I Lemma 2. The running time of the above algorithm is O(km(m+ n logn)).

Proof. While processing a non-simple path, at most one new path is pushed to Q, which is
always simple. Thus, the parent of a non-simple path is always simple. We have to process
at most k simple paths, each of which requires O(m + n) time. Every simple path may
have O(m) sidetracks extensions. In the worst case, all of them represent non-simple paths,
yielding O(km) SP tree computations with a total running time of O(km(m+ n logn)). The
running time for the non-simple cases clearly dominates. For every subset of E, there is
at most one permutation of this subset that represents a simple s-t path. The maximum
number of paths enumerated by the algorithm is therefore k′ := min{k, 2m}. We can limit
the size of Q efficiently to k′ using a double-ended priority queue [16]. We push O(k′m)
paths to Q and extract O(k′m) paths from it; both operations require O(log k′) time on
interval heaps. The total time spent on processing Q is O(k′m log k′) ⊂ O(km2). The pivot
step requires O(n) time for each of the O(k′m) extracted paths. J

Finally, we turn our attention to the space requirements of the above algorithm. We need
O(n) space for each SP tree that we compute. Since SP trees are never discarded and we
compute one for each non-simple extracted path, the total space for all SP trees is O(kmn).
For each simple extracted path p, we push a path to Q for each edge that has its tail on p.
These new paths are represented by an edge and a pointer to some SP tree, and therefore
require constant space. We extract up to k simple paths with O(m) sidetracks each, and
therefore require O(km) space for Q itself.

4 Improvements

We show how the number of SP tree computations can be reduced to O(kn) in the worst
case. Further, the space requirements are reduced by a factor of n.

So far, we were only able to bound the number of SP tree computations by O(m) for
each extracted simple path. This stems from the fact that there can be O(m) sidetracks
with tails on such a path, each of them requiring a subsequent SP tree computation in the
worst case. Consider two sidetrack sequences (e1, . . . , er, f1 = (u, v)), (e1, . . . , er, f2 = (u,w))
that were added when a path p represented by (e1, . . . , er) was processed. Let p1, p2 be the
paths represented by these sequences, respectively. Assume that both sequences represent
non-simple paths, and therefore both require a new SP tree. We assume w.l.o.g. that p1 is
extracted from Q before p2. When p1 is extracted from Q, we discover that it contains a cycle.
We then have to compute an SP tree T for the graph G − p′, where p′ is the shortest s-u
subpath of p. We push (e1, . . . , er, f1) back to Q, and update Tf1 = T . When p2 is extracted,
the basic algorithm computes an SP tree for the exact same graph. This computation can

D. Kurz and P. Mutzel 49:7

therefore be skipped. We check if an SP tree for this graph has already been computed,
and reuse it if it exists. In our case, we simply push (e1, . . . , er, f2) with Tf2 = T to Q. We
obtain the following result.

I Lemma 3. Excluding the time spent on Q, the algorithm proposed in Section 3 in con-
junction with SP tree reuse requires O(kn(m+ n logn)) time to process non-simple paths.

Proof. There are still O(km) many sequences in Q that represent non-simple paths, but
only O(kn) of them trigger an SP tree computation. Let p be a non-simple path extracted
from Q. The initial pivot step requires time O(n). We store in Q along with each path a
pointer to its parent path, as well as a pointer to the SP tree for G− p′ for every prefix path
p′. We can then check if an SP tree for some prefix path has already been computed, and
access it if it has, both in constant time. J

The total running time of O(km2) spent on Q is no longer dominated. Instead of using
a priority queue for the candidate paths, we organize all computed paths in a min-heap in
the following way. The shortest path is the root of the min-heap. Whenever a path p′ is
computed while a path p is processed, we insert p′ into the min-heap as a child of p. Figure 1b
shows an example of such a min-heap. We use Frederickson’s heap selection algorithm [7] to
extract the km smallest elements from this heap. The heap described above has maximum
degree m, again yielding a running time of O(km2). Let Pp be the set of paths found during
the processing of p. Instead of inserting every p′ ∈ Pp as a heap child of p, we heapify Pp to
obtain the heap Hp, using the lengths of the paths for keys again. The root of Hp is then
inserted into the global min-heap as a child of p. Note that the parent path of every path
in Hp is not its heap parent in Hp, but still p itself. Every simple path p in the min-heap
now has at most two heap successors with the same parent path as p, and at most one heap
successor whose parent is p itself. Every non-simple path has at most one simple path as
heap processor. The maximum degree of the global min-heap is therefore bounded by three
and Frederickson’s heap selection can be done in time O(km).

I Corollary 4. The algorithm proposed in Section 3 in conjunction with SP tree reuse and
Frederickson’s heap selection algorithm computes the k shortest simple s-t paths of a weighted,
directed graph G = (V,E), s, t ∈ V , in O(kn(m+ n logn)) time.

The first improvement above reduced the space required by the basic algorithm from
O(kmn) to O(kn2). We are not able to reduce the number of SP tree computations to o(kn).
However, it is not necessary to permanently store all these SP trees at the same time. Only
up to k of them can contain a simple path that eventually gets extracted from Q. We propose
to store the computed SP trees in a max priority queue S. The priority of an SP tree T in S
is max{c(p′) + c(e) + dT (w) | e = (v, e) ∈ E}, where p′ = (e1, . . . , er, f) is the path T was
computed for, and f = (u, v) for some u ∈ V . Whenever |S| exceeds k, S contains an SP
tree that will not contribute to the k shortest simple paths. This is always the SP tree with
the highest priority. It can be extracted from S in O(log k) time and therefore does not have
an impact on the worst-case running time. The space that was used to store the extracted
tree can later be used to store new SP trees. The number of SP trees stored at any point in
time never exceeds k + 1. The total space requirements are then dominated by the DT ’s,
and bounded by O(km).

Our final improvement does not change the worst-case running time or space consumption.
Instead, we will speed up an important part of the algorithm by a factor of n by using a rather
cheap test. Consider one of the k simple s-t paths p represented by sidetracks (e1, . . . , er)
with ei = (vi−1, vi), s = v0 and t = vr. When p is processed, we push the set Pp of paths

ISAAC 2016

49:8 Sidetrack-Based Algorithm for Directed k Shortest Simple Paths

to Q, with |Pp| ∈ O(m). The basic algorithm tests for each p′ ∈ Pp if p′ is simple in time
O(n), leading to a total time of O(kmn) for these tests. Let T = Ter

. By removing all ei

from T , the SP tree decomposes into a set of trees Ti such that Ti is rooted in vi. The block
i is the node set of Ti. Observe that the path p′ represented by a sequence (e1, . . . , er, e),
e = (vi, w), with vi, w in block i, j, respectively, is simple iff i < j. If i ≥ j, we follow p

until we reach vi, traverse e and follow T to reach vi again. Otherwise, the first node on p
we hit after deviating from it via e is vj . Since i < j, the vj-t subpath of p does not contain
vi, so p′ is simple. The partition of V into blocks is O(n)-time computable. We can then
collect all sidetracks deviating from p and check for each of them if their heads belong to
a smaller block than their tails in O(m) total time. We store this information along with
the corresponding sidetrack sequences in Q. The pivot turn is replaced by a constant time
lookup. All tests for simplicity then require time O(k(m+ n)) instead of O(kmn).

5 Experiments

To demonstrate the effectiveness of our algorithm, we conducted a series of experiments.
Feng [6] showed recently that their algorithm is the most efficient one in practice. We
therefore compare our sidetrack-based algorithm to Feng’s node classification algorithm.
For reference, we also include results for the most promising third contender, an algorithm
proposed by Sedeño-Noda [17]. We used all graph classes that Feng had used in their
experiments, including road graphs that are especially relevant in practice.

Sedeño-Noda kindly provided us with the implementation KCM of their algorithm.
We conducted our experiments on a desktop computer very similar to that of Feng. On
our computer, KCM was consistently slower than what is reported for KCM on Feng’s
computer [6]. On average, we required 10.4 seconds on NY and 15.94 seconds on BAY
(described in Section 5.2) using KCM; Feng reported 8.81 and 11.23 seconds, respectively. In
contrast, our implementation NC of Feng’s algorithm (without express edges) consistently
gives lower running times than those reported by Feng. We also implemented Feng’s algorithm
with express edges, which was always slower than NC. Note that Feng did not specify whether
express edges were used in their experiments. All improvements proposed in Section 4 were
used in the implementation SB of our sidetrack-based algorithm with the following exception:
Frederickson’s heap selection algorithm was used neither for NC nor for SB. This results in
an additional running time of O(km log k) for SB, but not for NC.

Shortest paths (NC) and SP trees (SB) are computed using a common implementation of
Dijkstra’s algorithm; tentative labels are managed by a pairing heap. Our implementation
of Dijkstra’s algorithm stops as soon as the label of the target node is made permanent if
only a single pair shortest path is needed, which is essential for NC. SP trees are computed
lazily. A tree is initialized without any edges, and the source node is pushed to a priority
queue that is permanently associated to the tree. Whenever a part of the tree is queried (i.e.
the distance or predecessor of some node) that has not yet been computed, we simulate the
Dijkstra algorithm using the associated priority queue until the queried part is settled. The
queue of candidate paths Q is implemented as an interval heap, a form of double-headed
priority queues, which allows us to limit its size efficiently to the number of simple paths
that have yet to be output. For SB, we use separate priority queues Qs and Qn for simple
and non-simple paths, respectively. Whenever a path has to be extracted, SB extracts from
Qn iff the shortest path in Qn is cheaper than the shortest path in Qs.

We implemented NC and SB in C++, using forward and reverse star representation for
directed graphs. The experiments ran on an Intel Core i7-3770 @ 3.40GHz with 16GB of

D. Kurz and P. Mutzel 49:9

RAM on a GNU/Gentoo Linux with kernel version 4.4.6 and TurboBoost turned off. Source
code was compiled using the GNU C++ compiler g++-4.9.3 and -O3 optimization.

5.1 Random Graphs
We first considered random graphs generated by the sprand generator provided on the website
of the Ninth DIMACS Implementation Challenge [3]. The generator draws at random a fixed
amount of edges, possibly resulting in a multigraph. For each combination of graph size
n ∈ {2000, 4000, 6000, 8000, 10 000} and linear density m/n ∈ {2, 3, 4, 7, 10, 20, 30, 40, 50},
we generated 20 random graphs, and enumerated k ∈ {200, 500, 1000, 2000} simple paths.
Edge weights were selected uniformly from {1, . . . , 10 000}. In Table 1, the median and 90%
quantile Q.9 of execution times for some densities and k = 2000 are summarized. Our results
confirm Feng’s claim that NC is usually faster than KCM on random graphs. NC seems to
struggle with very low densities of m = 2n and gets faster for graphs with densities up to
about m = 30n. On the other hand, KCM and SB display a more consistent growth. SB is
always the fastest of the three, with speedup factors ranging from 8 to 15 for lower densities,
and 7.5 to 25 for higher densities when compared to the second-fastest algorithm.

We now consider the dispersion of the three algorithms. For SB, 90% of the instances
finish within 160% of the corresponding median running times (the fastest 50%) for most
combinations of n and m. For KCM, this ratio stays below 106% for all but two combinations
of n and m. We could not find any correlation between n, m and k on the one side, and the
dispersion of running times on the other side, for KCM and SB. In contrast, NC regularly
requires more than thrice the median running time to answer 90% of the queries. Running
times are therefore much harder to predict when using NC instead of SB or KCM.

Table 2 shows the median number of Dijkstra calls. The numbers are relatively stable
across the various densities, but the Dijkstra counts for the SB algorithms is orders of
magnitudes smaller than the count for the NC algorithm. Note, however, that SB needs to
compute the complete SP tree every time. In contrast, NC only solves single pair shortest
path problems on rather small subgraphs. We also provide the number of polls, i.e., the total
number of nodes that were extracted from Dijkstra’s priority queue, for comparability. The
ratio of the number of polls of NC and SB ranges from 4.6 to 50, and suggests that saving
SP tree computations is much more beneficial than reducing the number of nodes visited to
answer single-pair shortest path queries.

Finally, the number of SP tree computations actually declines as n grows. Recall that, in
the worst case, we have to compute one SP tree for each node of each output simple path.
Table 2 shows results for k = 2000 and n ≥ 2000. Nevertheless, the median number of SP
tree computations does not exceed 65. Most simple paths therefore correspond to those
well-behaved cases where paths represented by sidetracks in already computed SP tree areas
are themselves simple most of the time.

5.2 Road Graphs
We consider road graphs of various areas in the USA called TIGER graphs, again provided
by the DIMACS website [3]. In particular, we use the road networks of New York (NY),
the San Francisco Bay Area (BAY), Colorado (COL), and Florida (FLA). For each of the
four areas, we drew 20 s-t pairs at random and enumerated k ∈ {100, 200, 300} paths. The
resulting running times are summarized in Table 3, along with the median number of polls.
With respect to the median running times, KCM is clearly dominated by NC on any input
class, which in turn is dominated by SB. SB achieves a minimum speedup of around 8 on

ISAAC 2016

49:10 Sidetrack-Based Algorithm for Directed k Shortest Simple Paths

Table 1 Median and 90% quantile Q.9 of running times in seconds for random graphs, k = 2000.

m = 2n m = 4n m = 10n m = 30n m = 50n

n Med. Q.9 Med. Q.9 Med. Q.9 Med. Q.9 Med. Q.9

2000
KCM 0.67 0.69 0.85 0.88 1.29 1.32 3.58 4.04 9.77 14.11
NC 0.99 2.51 0.48 1.25 0.39 1.25 0.47 1.50 2.15 3.84
SB 0.09 0.13 0.08 0.10 0.10 0.15 0.17 0.20 0.23 0.31

4000
KCM 1.39 1.46 1.79 1.87 2.96 3.06 15.64 16.03 32.88 33.17
NC 1.01 2.88 0.84 2.71 0.82 1.97 1.33 5.06 2.07 5.49
SB 0.11 0.12 0.09 0.13 0.12 0.19 0.19 0.22 0.26 0.36

6000
KCM 2.19 2.25 2.86 2.90 5.50 5.78 30.13 30.61 53.33 54.51
NC 3.28 6.44 0.53 1.67 0.71 3.36 2.05 7.92 2.22 9.07
SB 0.13 0.20 0.11 0.13 0.13 0.21 0.22 0.32 0.30 0.45

8000
KCM 3.04 3.06 4.08 4.14 12.37 12.60 43.36 45.31 73.11 75.00
NC 1.79 7.84 0.68 2.66 1.92 4.60 3.49 9.67 2.55 9.66
SB 0.12 0.28 0.10 0.14 0.16 0.21 0.24 0.34 0.32 0.38

10 000
KCM 3.96 3.98 5.48 5.53 15.71 15.84 55.95 57.76 92.81 94.79
NC 1.86 11.91 1.17 5.44 2.61 9.02 6.31 13.56 9.68 26.23
SB 0.13 0.18 0.14 0.24 0.17 0.21 0.25 0.30 0.36 0.48

Table 2 Median number of Dijkstra calls and polls (in millions) of NC and SB for random graphs,
k = 2000.

m = 4n m = 10n m = 30n m = 50n

n Dijkstras Polls Dijkstras Polls Dijkstras Polls Dijkstras Polls

2000 NC 16 272 1.08 14 533 0.60 13 939 0.43 14 510 2.09
SB 46 0.09 65 0.13 38 0.08 44 0.09

4000 NC 17 292 1.93 14 581 1.45 15 805 1.20 15 605 1.39
SB 25 0.10 20 0.08 21 0.08 29 0.11

6000 NC 17 499 0.86 16 652 0.70 16 544 1.52 16 444 1.13
SB 23 0.14 19 0.11 24 0.14 21 0.13

8000 NC 18 300 1.01 17 316 2.40 17 127 2.72 17 034 1.09
SB 16 0.12 17 0.13 17 0.14 17 0.14

10 000 NC 19 074 1.94 17 824 3.53 18 125 5.07 18 187 6.11
SB 16 0.15 15 0.15 10 0.10 14 0.13

D. Kurz and P. Mutzel 49:11

Table 3 Median and 90% quantile Q.9 of running times in seconds, and median number of polls
for large TIGER road graphs. KCM does not provide the number of polls and was not able to
compute the 300 shortest simple paths on FLA.

k = 100 k = 200 k = 300
Area Med. Q.9 Polls Med. Q.9 Polls Med. Q.9 Polls

NY
KCM 9.72 11.57 - 19.54 23.48 - 29.76 35.55 -
NC 2.09 12.38 3.90 3.80 24.30 6.91 5.43 36.18 9.76
SB 0.18 1.57 0.53 0.26 3.92 0.69 0.43 5.99 1.06

BAY
KCM 12.72 25.90 - 25.16 53.00 - 38.17 83.36 -
NC 5.32 17.88 15.21 9.49 34.57 28.77 14.14 51.11 38.72
SB 0.30 4.28 0.96 0.55 9.67 1.58 0.71 14.17 1.90

COL
KCM 17.13 32.99 - 34.56 71.66 - 56.77 117.12 -
NC 6.83 27.71 16.65 12.04 49.23 30.30 16.73 65.92 44.23
SB 0.17 11.80 0.44 0.22 17.43 0.44 0.29 26.64 0.44

FLA
KCM 48.51 99.06 - 95.69 215.48 - - - -
NC 29.86 70.10 54.21 58.07 132.73 106.02 85.70 193.30 157.40
SB 0.47 4.31 1.07 0.58 20.84 1.07 0.71 26.99 1.07

100 200 400 800 1600 3200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 50x50KCM

NC

SB

100 200 400 800 1600 3200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

50x100

100 200 400 800 1600 3200
0

1

2

3

4

5

6

7

8
50x200

100 200 400 800 1600 3200
0

10

20

30

40

50

100x400

100 200 400 800 1600 3200
0

20

40

60

80

100
200x400

100 200 400 800 1600 3200
0

50

100

150

200

250

300
400x400

Figure 2 Boxplots of running times in seconds for grid graphs. Plus signs represent outliers. A
red square marks the mean. The x-axis corresponds to different values of k and uses a logarithmic
scale.

ISAAC 2016

49:12 Sidetrack-Based Algorithm for Directed k Shortest Simple Paths

NY for k = 100 in comparison to NC. In 90% of the input classes, however, SB achieves a
speedup factor of more than 62, and even peaks at a speedup factor of 120. Running times
of KCM and SB are much more dispersed than in the random graph case. Still, SB answers
90% of the queries in about the same time the 50% fastest query times of NC, and sometimes
much faster. KCM was not able to finish all computations on all inputs.

5.3 Grid Graphs
We repeated Feng’s experiments on grid graphs generated by the spgrid generator pro-
vided on the DIMACS website [3]. The grids have sidelengths l, w ∈ {50, 100, 200, 400}
with l ≤ w, resulting in 10 different grids. For each grid, we generated 20 weight func-
tions by selecting uniformly from {1, . . . , 10 000} for each edge, and then enumerated
k ∈ {100, 200, 400, 800, 1600, 3200} paths. The results of our experiments on grid graphs are
summarized in Figure 2. KCM is again the slowest algorithm, but NC is not slower than
SB any more. Although NC and SB differ on some classes, there does not seem to be any
correlation to the shape or size of the grid. For example, NC is slightly faster on 50× 100
grids, but slower on 200× 400 grids although these two configurations share the same shape,
characterized by an aspect ratio of 2. On the other hand, NC loses its advantage over SB
when the grid grows from 50× 50 to 50× 200 (upper row of plots), but SB loses its advantage
over NC as it grows from 100× 400 to 400× 400 (lower row). In summary, none of the two
algorithms is clearly better than the other on grid graphs.

The algorithm proposed in this paper is not slower on any of the considered graph classes,
and even faster than state-of-the-art algorithms on random and TIGER road graphs by an
order of magnitude. Our algorithm shines on graphs where the length of shortest paths is
small in relation to the graph size because sidetrack heaps tend to be smaller.

References
1 Aaron Bernstein. A nearly optimal algorithm for approximating replacement paths and k

shortest simple paths in general graphs. In SODA 2010, pages 742–755. SIAM, 2010.
2 S. Clarke, A. Krikorian, and J. Rausen. Computing the N best loopless paths in a network.

J. SIAM, 11(4):1096–1102, 1963.
3 The Ninth DIMACS Implementation Challenge: 2005-2006. http://www.dis.uniroma1.

it/challenge9/. Accessed: 2015-11-12.
4 David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, 1998.
5 David Eppstein. K -best enumeration. arXiv: 1412.5075v1 [cs.DS], 2014.
6 Gang Feng. Finding k shortest simple paths in directed graphs: A node classification

algorithm. Networks, 64(1):6–17, 2014.
7 Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comput.,

104(2):197–214, 1993.
8 Asaf Frieder and Liam Roditty. An experimental study on approximating k shortest simple

paths. ACM J. Exp. Algorithmics, 19(1), 2014.
9 Zvi Gotthilf and Moshe Lewenstein. Improved algorithms for the k simple shortest paths

and the replacement paths problems. Inf. Process. Lett., 109(7):352–355, 2009.
10 John Hershberger, Matthew Maxel, and Subhash Suri. Finding the k shortest simple paths:

A new algorithm and its implementation. ACM Trans. Algorithms, 3(4), 2007.
11 Naoki Katoh, Toshihide Ibaraki, and H. Mine. An efficient algorithm for K shortest simple

paths. Networks, 12(4):411–427, 1982.
12 Marta M.B. Pascoal. Implementations and empirical comparison of K shortest loopless

path algorithms, 2006. 9th DIMACS Implementation Challenge Workshop: Shortest Paths.

http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/

D. Kurz and P. Mutzel 49:13

13 Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theor.
Comput. Sci., 312(1):47–74, 2004.

14 Liam Roditty. On the k shortest simple paths problem in weighted directed graphs. SIAM
J. Comput., 39(6):2363–2376, 2010.

15 Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. ACM Trans. Algorithms, 8(4):33, 2012.

16 Sartaj Sahni. Data Structures, Algorithms, and Applications in C++. McGraw-Hill Pub.
Co., 1st edition, 1999.

17 Antonio Sedeño-Noda. An efficient time and space K point-to-point shortest simple paths
algorithm. Appl. Math. and Comput., 218(20):10244–10257, 2012.

18 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In FOCS 2010, pages 645–654, 2010.

19 Jin Y. Yen. Finding the k shortest loopless paths in a network. Networks, 17(11):712–716,
1971.

ISAAC 2016

	Introduction
	Definitions
	Basic Algorithm
	Improvements
	Experiments
	Random Graphs
	Road Graphs
	Grid Graphs

