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Abstract
One of the important tasks in the analysis of spatio-temporal data collected from moving entities
is to find a group: a set of entities that travel together for a sufficiently long period of time.
Buchin et al. [2] introduce a formal definition of groups, analyze its mathematical structure, and
present efficient algorithms for computing all maximal groups in a given set of trajectories. In
this paper, we refine their definition and argue that our proposed definition corresponds better
to human intuition in certain cases, particularly in dense environments.

We present algorithms to compute all maximal groups from a set of moving entities according
to the new definition. For a set of n moving entities in R1, specified by linear interpolation in a
sequence of τ time stamps, we show that all maximal groups can be computed in O(τ2n4) time.
A similar approach applies if the time stamps of entities are not the same, at the cost of a small
extra factor of α(n) in the running time. In higher dimensions, we can compute all maximal
groups in O(τ2n5 logn) time (for any constant number of dimensions).

We also show that one τ factor can be traded for a much higher dependence on n by giving a
O(τn42n) algorithm for the same problem. Consequently, we give a linear-time algorithm when
the number of entities is constant and the input size relates to the number of time stamps of
each entity. Finally, we provide a construction to show that it might be difficult to develop an
algorithm with polynomial dependence on n and linear dependence on τ .
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1 Introduction

Nowadays, inexpensive modern devices with advanced tracking technologies make it easy to
track movements of an entity. This has led to the availability of movement data for various
types of moving entities (human, animals, vehicles, etc.). Since a tracking device typically
returns a single location at each time stamp, each moving entity will be represented by a
moving point. Data may consist of just one trajectory tracked over a period of time, or a
whole collection of trajectories that are all tracked over the same time period. Note that for
the latter case, the locations of each trajectory are not necessarily collected at the same time
stamps. It is common to denote the number of trajectories (or moving entities) by n and
the number of time stamps used for each trajectory by τ . Hence, the input size is Θ(τn).
Depending on the application, one of n or τ can be much larger than the other.

To analyze moving object data, a number of methods have been developed in recent times.
These methods perform similarity analysis or compute a clustering, outliers, a segmentation,
or various patterns that may emerge from the movement of the entities (for surveys see [3, 15]).
These methods are often based on geometric algorithms, because the data is essentially
spatial.

One particular type of pattern that has been well-studied is flocking [1, 4, 5]. Intuitively,
a flock is a subset of the entities moving together (or simply being together) over a period of
time. Other names for this and closely related concepts with slightly different definitions
are herds [6], convoys [8], moving clusters [9], mobile groups [7], swarms [11], and groups [2].
Buchin et al. [2] introduce a model called the trajectory grouping structure which not only
defines groups, but also the splitting of a group into subgroups and its opposite, merging.
The algorithmic problem of reporting all maximal groups that occur in the trajectories is
solved in O(τn3 + N) time, where N ∈ O(τn4) is the output size (the summed size of all
groups reported). The algorithm also considers times in between the τ time stamps where
the locations are recorded as relevant. In between these time stamps, locations are inferred
by linear interpolation over time.

In this paper we continue the study of such groups, but we propose a refined definition
to the one by Buchin et al. [2]. We motivate why it captures our intuition better and present
algorithms to compute all maximal groups.

Previous definition of a group. The definition of a group by Buchin et al. [2] relies on
three parameters: one for the distance between entities, one for the duration of a group, and
one for the size of a group. We review their definitions next.

For a set of moving entities X , two entities x and y are directly ε-connected at time t if
the Euclidean distance between x and y is at most ε at time t, for some given ε ≥ 0. Two
entities x and y are ε-connected in X at time t if there is a sequence x = x0, ..., xk = y, with
{x0, ..., xk} ⊆ X and for all i, xi and xi+1 are directly ε-connected at time t.

In [2], a group for an entity inter-distance ε, a minimum required duration δ, and a
minimum required size m, is defined as a subset G ⊆ X and corresponding time interval I
for which three conditions hold:
(i) G contains at least m entities.
(ii) I has a duration at least δ.
(iii) Every two entities x, y ∈ G are ε-connected in X at all times in I.

Furthermore, a group G with time interval I is maximal if there is no time interval I ′ ⊃ I
for which G is also a group, and there is no proper superset G′ ⊃ G that is also a group
during I [2].
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Figure 1 In the definition by [2], x and y are ε-connected during [t0, t2].
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Figure 2 Entities in G = {a, h} are ε-connected using entities not in G.

Refined definition of a group. One issue with the previous definition is that it does not
correspond fully to our intuition. Two entities x and y may form a (rather small) maximal
group in an interval I even if they are always far apart, as long as there are always entities
of X in between them to make x and y ε-connected in X . These entities in between are not
part of the maximal group, but they do cause x and y to be ε-connected by the previous
definition. This can have counter-intuitive effects especially in dense crowds. To avoid such
issues, we refine the definition of a group. In particular, we replace condition (iii) above by:
(iii’) Every two entities x, y ∈ G are ε-connected in G during I.

We define maximal groups in the same way as before.

We give two examples that show the difference in these definitions.
First, consider a number of stationary entities S and two entities x and y, see Figure 1.

Entity x starts (at time t0) to the North of S and moves around its perimeter to the East.
Entity y starts (at t0) to the South and also moves around the perimeter to the East. After
encountering (at t1) each other at the East side, both continue together eastward, away from
the stationary entities in S (ending at t2). By the definition in [2], x and y form a maximal
group in the interval [t0, t2]. By our refined definition, they form a maximal group during
[t1, t2], starting when x and y are at distance ε and actually encounter each other.

Second, the previous definition can even see groups of entities that were never close, see
Figure 2. Here, {a, h} is a maximal group in the interval I = [t1, t3] using the definition
in [2]. At each time, a and h are ε-connected, but through different subsets of entities. By
choosing the coordinates carefully, we can ensure that no supergroup of {a, h} is also a group
in the same time interval, and hence {a, h} will be maximal. Although a and h move in the
same direction with the same speed, intuitively they do not form a group because they are
too far apart and separated by other entities that move in the opposite direction. With our
refined definition, we do not consider {a, h} a group in the interval I, and hence also not a
maximal group.

Results and Organization. We have refined the previous definition for a group of moving
entities by Buchin et al. [2] and gave two examples and argue why our refined definition can
give an intuitively plausible group. From now on, we will use the term “group” to denote a
group of entities that comply with our refined definition.

In the following section, we show that for a set X of n moving entities in R1 with τ time
stamps each, the number of maximal groups by the refined definition is O(τn3), which is
tight in the worst case.

ISAAC 2016
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In Section 3, we present algorithms to compute all maximal groups in R1. First we
consider the case where all trajectories have their vertices at the same time and begin with a
basic algorithm for that runs in O(τ3n6) time. Subsequent improvements lead to a running
time of O(τ2n4). When the time stamps of trajectories are not the same, we show that our
algorithm runs in O(τ2n4α(n)) time.

Next, for moving entities in Rd (d > 1), we model entities and their inter-distance into
graphs and show that all maximal groups can be computed in O(τ2n5 logn) time, regardless
the uniformity of the time stamps in the trajectories. We show how to achieve this bound in
Section 4.

In Section 5, we consider situations where the value of n is significantly smaller than τ ,
which is typical in real-life moving entity datasets. We give an O(τ2nn4) time algorithm for
entities that move in any constant dimension.

Finally, we show an exponential bound on the number of maximal groups that can contain
any given time t in the last section.

2 Preliminaries

Let X be a set of n entities moving in R1, given by locations at τ time stamps. A trajectory
of an entity in X can be expressed by a piecewise-linear function which maps time to a
point in R1. If R1 is associated with the vertical axis and time with the horizontal axis of a
2-dimensional plane, the trajectories of entities in X are polylines with τ vertices each. We
will use the same notation to denote an entity and its trajectory. We assume that there are
no two parallel edges of trajectories.

Let dij(t) be the Euclidean distance between i ∈ X and j ∈ X at time t. When dij(t) = ε,
we say that an ε-event occurs. For any ε-event v, we denote by tv the time when v occurs
and ω(v) the function that returns the two entities that create v. We assume that no two or
more ε-events occur at the same time.

Consider an ε-event v; let ω(v) = {i, j}. If i and j are further than ε immediately before
tv, then v is a start ε-event; if they are further immediately after tv it is an end ε-event. If
there is no entity k ∈ X located strictly in between i and j at tv (so dik(tv) + djk(tv) = ε),
then we say that v is a free ε-event.

I Observation 1. The number of ε-events is O(τn2).

Let G be a group of entities in time interval I that is maximal in size. All entities in G
are pairwise ε-connected in the interval I, and hence, there are no free ε-events in G during
I. In the arrangement of trajectories from G, we define the height of a face as the length of
the longest vertical line segment inside the face. Thus, no face has height greater than ε.

It is also clear that G can begin only at a start ε-event and end only at an end ε-event.
Furthermore, we observe that if a start ε-event (or end ε-event) of G is not a free ε-event
with respect to the entities in G, then before (or after) the interval I, entities in G are still
pairwise ε-connected and we can extend the interval of G. Therefore, G can be a maximal
group only if both the start ε-event and end ε-event are free ε-events (but this is not a
sufficient condition).

I Observation 2. There can be at most one maximal group that starts and ends at a
particular pair of start ε-event and end ε-event.

I Theorem 3. For a set X of n entities, each entity moving along a piecewise-linear trajectory
of τ edges, the maximum number of maximal group is Θ(τn3).
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Proof. Any group G that starts at a start ε-event contains at most n entities. When a free
end ε-event involving G occurs, only group G ends but a subgroup of G with fewer entities
may continue longer. This can happen at most n− 1 times. Therefore, the maximum number
of maximal groups is O(τn3). Furthermore, there can be Ω(τn3) maximal groups because
the lower bound construction by van Goethem et al. [14] also works for our definition of a
group. J

The approach to compute all maximal groups is to work on the arrangement A of line
segments that are the trajectories. For a subset G ⊆ X and interval I, we can remove
entities from G that are separated at a face with height larger than ε in I (corresponding to
a free ε-event). Only if there are no such faces, the remaining entities in G can be a group.
Note that removing entities in G involves removing the corresponding trajectories from the
arrangement A, which can cause new faces that are free ε-events.

3 Algorithms for Entities in R1

In this section, first we consider the case where the trajectories have the same time stamps.
We present a basic algorithm that computes all maximal groups in O(τ3n6) time for entities
moving in R1. Then we present a more efficient algorithm that runs in O(τ2n4) time.
Furthermore, we present an O(τ2n4α(n)) time algorithm if the vertices of the trajectories
have different time stamps.

3.1 Basic Algorithm
We describe a simple algorithm to compute all maximal groups. Let Vs and Ve be the sets
of all start ε-events and all end ε-events respectively. Fix one event of each type: α ∈ Vs
and β ∈ Ve. By Observation 2, there is only one maximal group G that starts at α and
ends at β. Furthermore, observe that G necessarily contains the entities ω(α) = {a, b} and
ω(β) = {c, d}, and that if G is a maximal group on I = [tα, tβ ], then all entities in G are on
the same side at time tγ ∈ (tα, tβ) when a free ε-event γ occurs. We then use the following
approach to find G (if it exists):
1. Initialize a set G containing all entities in X .
2. Build an arrangement A induced by the trajectories of the entities in G on I.
3. A face f in A contains a free ε-event γ if (and only if) the height of f is more than ε. If

f has height larger than ε, test if (the trajectories of) a, b, c, and d, all lie on the same
side of f . If not, there is no maximal group G that starts at α and ends at β. If they
do pass on the same side, let S denote the set of entities whose trajectories lie on the
other side of f . Remove these entities of S from G, and remove their trajectories from
A. Observe that new free ε-events may appear because removal of a trajectory from A
merges two faces of A into a larger one. See Figure 3. Repeat this step until there is no
more free ε-event γ with tγ ∈ (tα, tβ).

4. Check that α and β are now free. If so, G is a maximal group on I, and hence we can
report it. If not, G is actually a group during a time interval I ′ ⊃ I. Hence, G may be
maximal in size, but not in duration. We do not report G in this case.

I Theorem 4. Given a set X of n entities in which each entity moves in R1 along a trajectory
of τ edges, all maximal groups can be computed in O(τ3n6) time using the Basic Algorithm.

Proof. The number of combination of a pair of start and end ε-events is O(τ2n4). Building
an arrangement from trajectories of entities takes O(τn2) time. Removing a trajectory e
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Figure 3 Removing trajectory p (due to the free ε-event γ) causes the ε-event π to become a free
ε-event.

and checking new faces in A takes time proportional to the zone complexity of e: O(τn).
Since there are at most n trajectories to be removed, the whole process to remove entities for
each interval I takes O(τn2) time. Therefore, the running time of the algorithm is O(τ3n6)
time. J

3.2 Improved Algorithm
The previous algorithm checks every pair of possible start and end ε-events α and β to
potentially find one maximal group. To improve the running time, we fix a start ε-event α
and consider the O(τn2) end ε-events β in increasing order. We show that we can check for
a maximal group on [tα, tβ ] in amortized O(1) time.

We build the arrangement A for all trajectories, starting from time tα, and sort the end
ε-events β, with tβ > tα on increasing time. We then consider the end ε-events β in this
order, while maintaining a maximal set G that is ε-connected in G throughout the time
interval [tα, tβ ].

Let ω(α) = {a, b} be the entities defining the start ε-event α, and let G ⊇ {a, b} be the
largest ε-connected set on [tα, tβ ]. We compute the largest ε-connected set on [tα, tβ′ ] for
the next ending event β′ as follows. Note that this set will be a subset of G.

Let S be the set of entities that separate from a and b at β. We remove all trajectories
from the entities in S from A. As before, this may introduce faces of height larger than ε.
For every such face f , we check if a and b still pass f on the same side. If not, there can
be no maximal groups that contain a and b, start at tα, and end after tβ . If a and b lie on
the same side of f , we add all entities that lie on the other side of f to S and remove their
trajectories from A. We repeat this until all faces in A that have non-empty intersection
with the vertical strip defined by [tα, tβ′ ] have height at most ε (or until we have found a
face that splits a and b). It follows that the set G′ = G \ S is the largest set containing a
and b that is ε-connected throughout [tα, tβ′ ]. If α and β′ are free with respect to G′ then
we report G′ as a maximal group.

Building the arrangement A takes O(τn2) time, and sorting the ending-events takes
O(τn2 log(τn)) time. By the Zone Theorem, we can remove each trajectory in O(τn) time.
Checking the height of the new faces can be done in the same time bound. It follows that
the total running time is O(τn2(τn2 + τn2 log(τn) + R)) where R is the total time for
removing trajectories from the arrangement. Clearly, R is bounded by the complexity of the
arrangement: O(τn2). So, the total running time is O(τ2n4 log(τn)).

Further Improvement We can avoid repeated sorting of end ε-events by pre-sorting them
in a list, and for each start ε-event, use this list. The list will contain events that do not
concern the entities involved in the start ε-event, but this can be tested easily in constant
time. Thus, we conclude:
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I Theorem 5. Given a set X of n entities in which each entity moves in R1 along a trajectory
of τ edges, all maximal groups can be computed in O(τ2n4) time.

Next, we consider finding all maximal groups when the vertices of different trajectories do
not have the same time stamps. We use the same idea as in the above algorithm: take one
start ε-event α at a time and remove trajectories to find all maximal groups containing ω(α).

We use a similar strategy to split trajectories vertically into τ cells as in [10], where
each cell now contains O(n) segments of trajectories. It follows that the complexity of each
cell is bounded by the number of possible intersections between segments: O(n2). Thus,
building the arrangement A still takes O(τn2) time. However, by the Zone Theorem for
an arrangement of line segments, removing a trajectory in each cell now takes O(nα(n))
time [13], where α(n) is the inverse Ackermann Function. Therefore, the total time to remove
trajectories in A is O(τn2α(n)) time and we obtain:

I Theorem 6. Given a set X of n entities in which each entity moves in R1 along a trajectory
of τ edges under the condition that their vertices have different time stamps, all maximal
groups can be computed in O(τ2n4α(n)) time.

4 Algorithms for Entities in Rd

In Rd (d > 1), it is harder to test whether an ε-event really connects or disconnects because
the two entities may be ε-connected through other entities in the group. This observation
immediately gives the condition for an ε-event to be free. We model our moving entities
as a graph where vertices represent entities and an edge exists if two entities are directly
ε-connected. As in Parsa [12], we can maintain the graph under edge updates, while allowing
same component queries, in O(logn) time per operation.

To compute maximal groups, we start at a start ε-event α and maintain the connected
component C throughout the sequence of sorted ε-events. At each ε-event β, we remove any
vertices that are disconnected from C and start again from α in case we remove anything.
We stop if a and b are disconnected. If α is a free ε-event when we reach β again, we report
C as a maximal group and continue.

We start at O(τn2) ε-events and for each, we process O(τn2) ε-events. We may need to
restart this process up to n − 1 times. In Rd, our approach only examine the ε-events of
entities and does not affected by whether the vertices of trajectories have the same time or
not, therefore we obtain the same result for both cases:

I Theorem 7. Given a set X of n entities moving in Rd along a trajectory of τ edges, all
maximal groups can be computed in O(τ2n5 logn) time.

5 Algorithms with Linear Dependence on τ

In many real-life situations, the number of vertices in each trajectory is much larger than
the number of moving entities. Therefore, the dependence of the algorithm on τ is more
important than the dependence on n. Next, we show a simple algorithm that is linear in τ ,
at the cost of an exponential dependence on n. In particular, our algorithm will compute all
maximal groups in O(τn42n) time.

We consider all 2n subsets of X in order of decreasing size, while maintaining the set of
maximal groups found so far (ordered by increasing starting time). For each subset G we
determine the maximal time intervals during which G is ε-connected, and for each such an
interval I we check if G is dominated by a maximal group H ⊃ G on I. If such a set does

ISAAC 2016
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not exist, G is a maximal group on I. Notice that we only need to know when the start
ε-event and end ε-event of a particular group occured. Therefore, this algorithm applies to
both cases where the time stamps of the entities are not the same.

For each subset G, we consider the ε-events generated by the entities in G. We can
compute all these O(τn2) ε-events in O(τn2 logn) time, by sorting the groups of O(n2)
ε-events between two consecutive time stamps separately, and concatenating the resulting
τ lists. We then go through the ε-events in order, and check if G is ε-connected at every
ε-event. We can easily handle every event in O(n2) time, by naively checking if the entities
in G are ε connected (we can easily improve on this, but the total running time will be
dominated by the number of sets anyway). It follows that we can compute the sequence SG
of maximal time intervals on which G is ε-connected in O(τn4) time. Note that SG contains
at most O(τ) such time intervals.

For each interval I in SG we now have to check if G is a maximal group during I. The
set G is a maximal group on I if and only if there is no maximal group H ⊃ G on a time
interval that contains I. Since we maintain the maximal groups larger than G (and the time
interval on which they are a maximal group), ordered by increasing starting time, we can
iterate through them once, and extract the maximal groups that are a superset of G. Since,
by Theorem 3 there are at most O(τn3) maximal groups, this takes at most O(τn4) time.
Let I denote the set of time-intervals corresponding to those groups, ordered by increasing
starting time. We now simply scan through SG and I simultaneously, while maintaining the
time interval in I that started earliest and has not ended yet. For every interval I in SG we
can then check if G is a maximal group on I in constant time. In total this takes O(τn3)
time. Using a similar simultaneous scan we can add the intervals on which G is maximal to
our set of maximal groups found so far.

It follows that we can compute all time intervals on which G is maximal in O(τn4) time.
Since we do this for all subsets G ⊆ X we obtain the following result.

I Theorem 8. Given a set X of n entities in which each entity moves in Rd along a trajectory
of τ edges, we can compute all maximal groups in O(τn42n) time, using O(τn3) space.

6 A Lower Bound on the Maximum Number of Maximal Groups at
some Time t

The result in the previous section shows that, when τ is large but n is small, we can improve
the dependence on τ from quadratic to linear. However, we pay for this by having an
exponential dependence on n. This naturally raises the question whether an algorithm with
linear dependence on τ , but polynomial dependence on n, is possible. While we do not know
the answer to this question, we present a construction which may indicate that such a result
is hard to obtain, if possible at all.

We show that the number of maximal groups that contain a given time t can be exponential
in n, provided that τ is sufficiently large. Without the requirement that the maximal groups
must span a single moment in time, it is easy to make a construction of trajectories that has a
number of maximal groups that is linear in τ , even with just two entities, so it is unbounded
in n. Similarly, we can easily construct trajectories that give rise to 2n − n − 1 maximal
groups (with a group size of at least m = 2) that are different in composition using roughly
2n time stamps by making these groups consecutive. The construction that we present, where
many different maximal groups occur simultaneously, is more involved, and shows that there
may be Ω(

√
2n) maximal groups simultaneously when there are Ω(

√
2n) time stamps. While

the result does not imply any lower bound for the problem of computing all maximal groups,
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Figure 4 Right half of the lower bound construction for k = 3. The times very near the start
and end ε-events of q and q′ are shown together with the bitstring of the k-max group that ends
there. At tmid, all trajectories are in a single point (the trajectories are not shown near tmid).

it suggests that it may be difficult to obtain an algorithm that is linear in τ and polynomial
in n. Several natural approaches to the problem (based on, for instance, divide-and-conquer)
appear not to work due to this construction and the result on simultaneous maximal groups.

I Theorem 9. There exists a set X of n entities in R1 whose trajectories are defined by
Θ(
√

2n) time stamps, for which the number of maximal groups at some time t is Ω(
√

2n).

Proof. We use a set of n = 2k + 2 entities, denoted p1, . . . , pk, p′1, . . . , p′k, and q and q′. We
are interested in counting the groups that contain q, q′, and for each i, exactly one of pi and
p′i. We call any such group k-max and will show that they are all maximal. A k-max group
G is encoded by a length-k bitstring where the i-th bit is 1 if pi ∈ G and it is 0 if p′i ∈ G.

We make a construction with the following properties; the half after tmid is illustrated
for k = 3 in Figure 4:
1. The trajectory of pi is the reverse of p′i, with respect to tmid (that is, mirrored in tmid),

and vice versa.
2. A k-max group starts and ends at free εq-events of q and q′.
3. A k-max group encoded by bitstring B starts a fraction after time 1 + B and ends a

fraction before time tmid + 1 +B, where B is interpreted as a binary number.
4. There are only O(1) trajectory vertices of each trajectory within one time unit.
5. Each k-max group is maximal.

At tmid, all trajectories pass through a single point to ensure they are continuous when
mirroring, and they are pairwise directly ε-connected. It is the moment in time for which
Ω(
√

2n) maximal groups exist, as we will show. After tmid, the entities q and q′ will have 2k
pairs of ε-events: an end ε-event directly followed by a start ε-event. We call these events
εq-events. Whether these εq-events are free for a k-max group G depends on the time and
the bitstring, or equivalently, which entities from p1, . . . , pk are in G.

The εq-event at a time t is free for a k-max group G if and only if the bitstring cor-
responding to time t is the same as the bitstring of G. Hence, (assuming that no earlier
ε-event ends G) G will end at the time of its bitstring, so a fraction before tmid + 1 +B. By
symmetry of pi and p′i, G will start a fraction after time 1 +B. In Figure 4, for example, at
time tmid + 4, the k-max group {p′1, p2, p3, q, q

′} ends.
The other ε-events of the trajectories are between two consecutive εq-events. These

ε-events involve the entities of p′1, . . . , p′k and the trajectories need three vertices between
εq-events. Their presence ensures that only one of pi or p′i is in a particular k-max group.
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Notice that these ε-events will also be the start or end ε-events of maximal groups that are
supersets of a k-max group.

Suppose p′i is an entity that creates a free ε-event α just before a k-max group G containing
pi ends at tmid + B. Obviously, p′i only needs to create such a free ε-event once and it
follows this is only necessary if the previous k-max group G′ that ends at tmid + B − 1 is
not containing pi. However, other k-max groups that will end after G might contain p′i.
Therefore, to prevent this ε-event becomes free in the duration of those k-max groups, we
make entities of p1, . . . , pk that are not in G to keep p′i ε-connected to all other entities. Still,
not all of them are needed to prevent α to become free, but only for each entity p′h where
h < i, because by the ordering of the bitstrings, k-max groups contain p′i and those entities
might end after α. See Figure 4: before ε-event α, only p1 prevents p′2 from creating a free
ε-event (but not p3). Two k-max groups contain p1,p′2 and one of p3 or p′3 end after α while
k-max group of {p′1, p′2, p3} ends before α.

I Claim 10. If a maximal group containing time tmid contains at least pi or p′i for all indices
i, and both pi and p′i for at least one index i, then its time interval cannot contain both time
h and tmid + h for any integer h.

Proof. Suppose for contradiction G is a maximal group which contains both pi and p′i, and
its time interval fully contains an interval [h, tmid + h] for some integer h; suppose further
that i is the smallest index for which this is the case. Let B be the bitstring that encodes
the entities with indices 1 . . . i− 1; let B− = B0111 . . . 1 be obtained from B by appending a
single 0 and k − i 1s and let B+ = B1000 . . . 0 be obtained from B by appending a single 1
and k − i 0s. Then G starts not earlier than some time between B− and B+, and ends not
later than some time between tmid +B− and tmid +B+. Refer to Figure 4. Hence, there is
no integer h such that both h and tmid + h are contained in the time interval of G. J

The claim directly implies that all k-max groups are maximal, because by Property 3
they start and end at some time h and tmid + h, but adding any other trajectories will cause
both pi and p′i to be in the group for some i.

Moreover, the ε-events created by entities of p′1, . . . , p′k are also the end ε-events of the
2k − 1 groups that have more entities than a k-max group. Let the maximal group contains
all entities end at free ε-event β at time tβ = tmid + 2k−1 + T (0 < T < 1) created by p′i.
By the simmetry of the construction and the ordering of the bitstrings, two groups of n− 1
entities not containing either p′i or pi will end at time tβ − 2k−2 and tβ + 2k−2, respectively.
Then, continuing the same process with the two groups recursively will results on other
maximal groups with different entities. Since the start and end ε-events of these groups are
always start later or end earlier than k-max groups, then these groups are maximal because
their interval will not contain interval of other maximal groups. Clearly, the number of
these maximal groups is fewer than k-max groups because their ε-events only occur between
two consecutive εq events. In Figure 4, p′1 defines β, the end ε-event for a maximal group
containing all entities. Then, maximal group that are not contain p1 or p′1 will end before or
after β, respectively.

To build the construction, all trajectories must have a constant times 2k vertices for
the ε-events of q and q′ and a constant number of vertices in between those ε-events. Each
trajectory in the construction has Θ(

√
2n) vertices. We conclude that the number of maximal

groups that contain time tmid in this construction is at least 2k = 2n/2−1 = Ω(
√

2n). J
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7 Conclusions and Future Work

In this paper we introduced a variation on the grouping structure definition [2] and argued
that it corresponds better to human intuition. The number of maximal groups that can arise
in a set of n moving entities is Θ(τn3) in the worst case. We have given an algorithm for
trajectories moving in R1 that computes all maximal groups and runs in O(τ2n4) time. In
Rd, our algorithm runs in O(τ2n5 logn) time. For the more general case where the input
trajectories do not have time-aligned vertices, the algorithm for trajectories in R1 can be
extended at the cost of an extra factor of α(n), while the same result still holds for trajectories
in Rd.

Furthermore, we presented an algorithm that has only linear dependence in τ , at the
expense of exponential dependence in n. Since collections of trajectories are often very large
in the number of time stamps and not necessarily in the number of trajectories, this algorithm
or a practical variation on it may still be useful. This algorithm is not affected by whether
or not the vertices of the trajectories are aligned in time.

The trade-off in the dependence on n and τ gives rise to interesting open problems. Most
importantly, is it possible to develop an algorithm whose running time is linear in τ and
polynomial in n? Similarly, can we realize subquadratic dependence on τ without having
exponential dependence on n? In general, what trade-offs are possible?

Future work includes implementing our algorithms and experimentally showing the
differences between the definition of groups in [2] and our refined definition, both qualitatively
and quantitatively. It would also be interesting to develop an output-sensitive algorithm
that uses considerably less time if the output is small, or under realistic input assumptions.
Finally, it would be interesting to investigate whether one can develop algorithms that take
geodesic distance into account to define direct ε-connectedness instead of the straight-line
distance, as was done for the previous definition of a group [10].
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