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Abstract
Given a string X[1, n] and a position k ∈ [1, n], the Shortest Unique Substring of X covering k,
denoted by Sk, is a substring X[i, j] of X which satisfies the following conditions: (i) i ≤ k ≤ j,
(ii) i is the only position where there is an occurrence of X[i, j], and (iii) j − i is minimized. The
best-known algorithm [Hon et al., ISAAC 2015] can find Sk for all k ∈ [1, n] in time O(n) using
the string X and additional 2n words of working space. Let τ be a given parameter. We present
the following new results. For any given k ∈ [1, n], we can compute Sk via a deterministic
algorithm in O(nτ2 log n

τ ) time using X and additional O(n/τ) words of working space. For
every k ∈ [1, n], we can compute Sk via a deterministic algorithm in O(nτ2 logn) time using X
and additional O(n/τ) words and 4n+ o(n) bits of working space. For both problems above, we
present anO(nτ logc+1 n)-time randomized algorithm that uses n/ logc n words in addition to that
mentioned above, where c ≥ 0 is an arbitrary constant. In this case, the reported string is unique
and covers k, but with probability at most n−O(1), may not be the shortest. As a consequence of
our techniques, we also obtain similar space-and-time tradeoffs for a related problem of finding
Maximal Unique Matches of two strings [Delcher et al., Nucleic Acids Research 1999].
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1 Introduction

We consider a string X[1, n] with characters from an ordered alphabet Σ of cardinality σ.
The ith character, i ∈ [1, n], is denoted by X[i], and X[i, j], 1 ≤ i ≤ j ≤ n, is the substring
X[i] X[i+ 1] . . .X[j]. We denote by |X[i, j]| the length (j − i+ 1) of the substring X[i, j]. A
suffix starting at i is the string X[i, n] and a prefix ending at i is the string X[1, i]. A right

∗ The work of Arnab Ganguly was supported by National Science Foundation Grants CCF–1218904 and
CCF–1527435.

† The work of Wing-Kai Hon was supported by MOST Grant 105-2918-I-007-006 and MOST Grant
102-2221-E-007-068-MY3.

© Arnab Ganguly, Wing-Kai Hon, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 34; pp. 34:1–34:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


34:2 Space-Time Trade-Offs for the Shortest Unique Substring Problem

extension of X[i, j] is a string X[i, j′], where j′ > j. A substring X[i, j] covers a position k iff
i ≤ k ≤ j. A substring X[i, j] is unique iff X[i, n] is the only suffix having X[i, j] as a prefix.
A substring X[i, j] is repeating iff there exists i′ 6= i such that X[i, j] is a prefix of X[i′, n].

I Definition 1 (Shortest Unique Substring Covering k). A substring X[i, j] is a shortest unique
substring covering a position k iff (i) X[i, j] covers k, and (ii) there does not exist a substring
X[i′, j′] that covers k and satisfies j′ − i′ < j − i.

We now present the following problems that will be discussed in the rest of the paper.
Throughout this paper, we will use Sk to denote any shortest unique substring of X covering
k. Note that there may be multiple choices of Sk.

I Problem 2 (Single k). Given X[1, n] and a position k ∈ [1, n], find any Sk.

I Problem 3 (All k). Given X[1, n], find any Sk for every k ∈ [1, n].

Previous Works and Our Contribution. To the best of our knowledge, the formal defin-
itions presented in Problems 2 and 3 were introduced by Pei et al. [19]. They also listed
several potential applications, for e.g., document searching on the internet. Arguably, the
most important applications lie in the field of Computational Biology. A few of them are
(see [19] and references therein): finding unique DNA signatures between closely related
organisms, aiding polymerase chain reaction (PCR) primer design, genome mapability, and
next-generation short reads sequencing.

For Problem 2, Pei et al. [19] presented an O(n) time and Θ(n) space (in words) solution.
For the second problem, their method incurred a time of O(n · h), where h is a variable
which for most practical purposes can be taken to be a constant. In the worst-case, however,
h is O(n); therefore, their solution takes O(n2) time, the space remains at Θ(n) words.
This is the first drawback of their approach. More importantly though, their solution is
intrinsically based on the Suffix Tree of the string X. A suffix tree [11] ST of a string S[1,m]
is a compacted trie on the set of all non-empty suffixes of the string S. The suffix tree has m
leaves (one per each suffix), and at most (m − 1) internal nodes. The leaves in the suffix
tree are arranged from left-to-right in the lexicographic order of the corresponding suffix
they represent. The space occupied is Θ(m) words, or equivalently Θ(m logm) bits. (We
assume the standard Word-RAM model of computation, where the size of a machine word is
Θ(logm) bits. Also, all logarithms are in base 2.)

Unfortunately, for most practical purposes, the suffix tree of a string S occupies space
much larger (15-50 times) compared to the |S| log |ΣS | bits of space needed by S. Here, ΣS
is the alphabet from which the characters in S are drawn. (Typically, ΣS = {1, 2, . . . , |ΣS |}.)
The space occupancy issue becomes more profound in the case when strings are much larger
in comparison to the size of the alphabet. An example is the DNA, in which the alphabet
has size four, but the lengths of the strings (such as in Human Genome) are typically in the
billions. Even with a space-efficient implementation, such as in [16], a suffix tree occupies 40
Gigabytes, whereas the input Human Genome occupies only 700 Megabytes. Since a primary
application of the Shortest Unique Substring (SUS) problem involves DNA, this presents a
serious bottleneck, as has been corroborated by the experimental results of Ileri et al. [14],
who were unable to run the algorithm of Pei et al. [19] for massive data sizes.

To alleviate the running time of O(n2) for Problem 3, Ileri et al. [14] introduced an O(n)-
time and Θ(n)-word algorithm. More importantly, their algorithm is more space-efficient
than the algorithm of Pei et al. [19]. They showed that their algorithm not only saves space
by a factor of 20, but also attains a speedup by a factor of 4. The space efficiency is achieved
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by replacing the suffix tree with a combination of the Suffix Array, its inverse, and the
LCP array of the string X. The suffix array [11] of S[1,m] is an array SAS [1,m] such that
SAS [i] = j iff S[j,m] is the ith lexicographically smallest suffix. The inverse suffix array
SA−1

S [1,m] is an array such that SA−1
S [j] = i iff SAS [i] = j. The Longest Common Prefix

(LCP) array [11] of S is an array LCP[1,m] such that LCP[m] = −1 and for i < m, LCP[i]
equals the length of the LCP of the suffixes starting at SAS [i] and SAS [i+ 1]. Hon et al. [13]
achieved further space improvements by introducing an in-place framework. Specifically,
their algorithm needs space 2n words in addition to that needed for storing the string X.
Remarkably, the time needed to compute Sk for every k still remains O(n). Furthermore,
they argued that 2n words is the minimum space needed to store Sk values explicitly, as we
need to store the start position and length of each Sk.

Despite all the efforts that have been invested into the SUS problems, the current best
solution of Hon et al. [13] still uses 2n words of space in addition to the space needed by
the input string X. Therefore, an important question is whether we can solve the problems
using o(n) words of additional space. We consider the following sub-linear space setting. In
addition to the input string X of length n, a parameter τ is provided. The task is to find Sk
using space O(n/τ) words in addition to the space needed for storing X. In this setting, we
present the following solutions for Problems 2 and 3.

For any given k ∈ [1, n], we can compute Sk via a deterministic algorithm in O(nτ2 log n
τ )

time using O(n/τ)-words of additional working space.
For every k ∈ [1, n], we can compute Sk via a deterministic algorithm in O(nτ2 logn)
time using O(n/τ)-words and 4n+ o(n)-bits of additional working space.

We assume τ = ω(1). Otherwise, we can simply use the algorithm of Hon et al. [13]. Thus,
we present the first algorithm which needs o(n) words of additional space for computing
SUS. We also present a randomized algorithm which reduces the above running time to
O(nτ logc+1 n) by using an additional n/ logc n words, where c ≥ 0 is any arbitrary constant.
Each computed Sk is unique and covers k, but with probability at most n−O(1), may not
be the shortest. Note that in this case, even by choosing c = 0, our space requirements are
strictly better (in the asymptotic sense) than that of Hon et al. [13]. By choosing τ = logn,
our algorithm achieves a space-factor improvement of O(logn), while matching the best
known running time of O(n) within poly-logarithmic factors.

We remark that our techniques imply (almost) the same results (compact space and
succinct index) attained by Belazzougui and Cunial [2] for a related problem of finding the
shortest unique prefix of every suffix of X. Our techniques also imply the first sub-linear
space algorithm for the related problem of finding Maximal Unique Matches (MUM) of two
strings [6].

Roadmap. We first present the two deterministic algorithms in Sections 2 and 3 respectively.
Section 4 introduces the randomized algorithms. A brief discussion on the MUM problem [6]
is presented Section 5.

2 Deterministic Algorithm for Single k

We begin with the following key observation.

I Observation 4. Sk is either the shortest unique prefix of a suffix that starts at a position
i ≤ k, or is the smallest right extension till k of such a prefix.

With this key intuition, we define LSi as the shortest unique prefix of the suffix X[i, n].

ISAAC 2016



34:4 Space-Time Trade-Offs for the Shortest Unique Substring Problem

I Observation 5. LS1 is defined, whereas LSi for i > 1 may not be defined. If LSi is not
defined, then for any i′ > i, LSi′ is also not defined.

For any i ≤ k, we define LSki as LSi if LSi covers k; otherwise, LSki is the right extension of
LSi up to the position k, i.e., LSki = LSi ◦ X[i+ |LSi|, k], where ◦ denotes concatenation. By
this definition, Sk is a minimum length LSki , where i ≤ k and LSi is defined. Moving forward,
we will represent Sk by two integers: the starting position of Sk and the length |Sk|.

We first present the general idea behind the previous works. Once we know LSi for
every i ≤ k, where defined, we first compute LSki . Following this, Sk is computed simply by
selecting a LSki of minimum length. Specifically, start at i = 1, and compute the longest
repeating prefix of X[i, n]. Using the inverse suffix array and the LCP array, this can be
easily computed. If the length of this prefix is (n− i+ 1), then clearly LSi is not defined.
Otherwise, compute LSki from LSi, and repeat the process with (i+ 1). Finally, compute the
minimum length LSki , once we reach an i such that either LSi is not defined, or i > k.

In our case, we cannot construct the entire suffix array and LCP array, as it will violate
our space constraints. Also, storing all the LSi or LSki values is not an option, as in the
worst-case the space will become Θ(n) words. Therefore, we will compute LSi for a carefully
chosen set of O(n/τ) suffixes. Based on this, we present the following crucial lemma.

I Lemma 6. Let Ii = {i, i+ τ, i+ 2τ, . . . }, i ∈ [1, τ ], be a set of at most dn/τe suffixes. For
every i′ ∈ Ii, we can compute LSi′ in O(nτ log n

τ ) time using X and additional O(n/τ) words
of working space.

Using the above lemma, we prove the following theorem, which presents our first result.

I Theorem 7. For any given k ∈ [1, n], we can find Sk in O(nτ2 log n
τ ) time using X and

additional O(n/τ) words of working space.

Proof. Initialize S = n and sp = 1. Using Lemma 6, we first compute LSj for every j ∈ Ii by
choosing i = 1. Use LSj to compute LSkj for every j ∈ I1. Assign S = minj∈Ii{S, |LSkj |}. If
S is updated, then assign sp to the corresponding j. Repeat the process with i = 2, 3, . . . , τ .
Now, it remains to find LSj for all suffixes with j ∈ [n − τ + 2, n]. To find LSj and LSkj
for these suffixes simply use a brute-force approach. Since there are τ − 1 suffixes, each of
length at most τ − 1, the time needed is O(nτ2). At each step, update S and sp accordingly.
Finally, Sk is given by S and sp. Clearly, the claimed time and space bounds are met. J

2.1 Proof of Lemma 6
The central idea behind the proof is the use of a sparsification technique introduced by
Hon et al. [12]. In particular, we create a sampled suffix tree STi by using a set of roughly
n/τ regularly spaced suffixes, where the first suffix starts at position i. Now, we match the
string X in STi, starting with the position j = 1 if i > 1, and with j = 2 otherwise. Using
STi, we can find the longest repeating prefix of every sampled suffix w.r.t the positions
j, j + τ, j + 2τ, . . . . Then the process is repeated with every value of j ∈ [1, τ ], where j 6= i.
Finally, we use the longest repeating prefix of each sampled suffix, and extend it by one
character to find LSi′ for each i′ ∈ Ii. We now present the details.

Pre-process: Consider every substring of X of length τ that starts at a position which lies
in the set Ii = {i, i+ τ, i+ 2τ, . . . }. We first create a compacted trie T of these substrings,
and ignore the last substring, say X′i, of X if it has length less than τ . While creating T , for
every node u, store in a balanced binary search tree (BST) the first characters that label
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the edges starting from u. This BST will allow us to efficiently select a correct edge (or
create a new one) when a new string is inserted. Since the number of strings considered is
at most dn/τe, the number of nodes in T is at most 2dn/τe. Likewise, at any moment, the
number of nodes in all the BSTs combined is at most 2dn/τe, implying a search or insert
operation requires O(log n

τ ) time. Clearly, the space needed to create T is O(n/τ), and the
time required is O(n + n

τ log n
τ ). Note that each τ -length substring corresponds to a (not

necessarily unique) leaf in T , where the leaves are numbered according to the lexicographic
order of the substring they represent. We create a new (compressed) string Xτi by mapping
each τ -length substring of X starting at a position in Ii to the corresponding leaf number.
(We ignore the string X′i and the characters before i while creating Xτi .) Let Σi denote the
alphabet of Xτi . Note that Στi = {1, 2, . . . , |Στi |}, where |Στi | ≤ dnτ e is the number of leaves in
T . Also note that for any two integers p, q ∈ Στi , p < q iff the string corresponding to leaf p
in T is lexicographically smaller than the one corresponding to q.

Construct a suffix tree STi of Xτi $, where $ is a unique special character. Since |Xτi | ≤
dn/τe, the number of nodes in STi is at most 2dn/τe. Append X′i to the label (ignoring $) on
each edge from a leaf to its parent. We remark that the edge labels are not explicitly written,
but are obtained using two pointers to the start and end positions of the label in X. Each
non-root node u in STi has a suffix link pointing to a node Ψ(u), such that the string (over
Σ) obtained by concatenating the edge labels from root to Ψ(u) is same as the string from
root to u with the first τ characters truncated. By using the algorithm of Farach-Colton [8],
constructing STi along with the suffix links requires O(n/τ) time and space. Now, consider
the set Eu of outgoing edges of a node u. We will order them from left-to-right according
to the lexicographic order of the τ -length substring of X represented by the first character.
Since the lexicographic rank of the τ -length strings can be compared directly in O(1) time
based on its leaf index in T (i.e., based on its representative in Στi ), we can order the edges in
all such sets Eu in

∑
uO(|Eu| log |Eu|) = O((n/τ) log n

τ ) time using O(n/τ) space. Each leaf
in STi corresponds to a suffix of X with starting position in Ii, where leaves are numbered
from left-to-right in lexicographic order of the suffix they represent. For the pth leftmost
leaf, denoted by `p, let SAi[p] be the suffix array value, i.e., the starting position in Ii of the
corresponding suffix. Summarizing, the time needed to construct STi is O(n+ n

τ log n
τ ), and

the space usage is O(n/τ) words. We create a compacted trie STi(u) with the edges in Eu
by mapping the edge labels over Στi to the corresponding τ -length string over Σ. Call this
the navigation trie of node u. Note that each leaf in STi(u) corresponds to a unique child
of u in STi. As before, the edge labels are obtained using two pointers to X. The outgoing
edges of a node in the navigation trie are ordered based on the lexicographic order of the first
character from Σ, such that given a character x ∈ Σ, we can find the outgoing edge (if any)
beginning with x in O(log n

τ ) time. The number of nodes in all navigation tries combined is
at most 2dn/τe. Since the first τ -length strings labeling the outgoing edges of a node are
distinct, all navigation tries can be created in O(n+ n

τ log n
τ ) time.

Equip STi with the data structures in [3, 4], such that in O(1) time, we can (i) find
lca(u, v) i.e., the Lowest Common Ancestor (LCA) of two nodes u and v, and (ii) find
levelAncestor(u,W ) i.e., the ancestor of u which has node-depth W . Likewise, equip all
navigation tries with these data structures. Using these, given two leaves `k and `k′ in STi,
we can easily find their LCA in a particular navigation trie in O(1) time. For any node u in
STi, let path(u) denote the string formed by concatenating the edge labels over Σ from root
to u. Likewise, for any node u∗ in a navigation trie STi(u), let path(u∗) be the string path(u)
appended with the edge labels from u to u∗. Store |path(u)| (resp. |path(u∗)|) at each node
u in STi (resp. u∗ in STi(u)). The space and time required for these pre-processing steps

ISAAC 2016
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can both be bounded by O(n/τ). With the aid of these pre-processing steps, in O(1) time,
we can find lcp(`k, `k′) i.e., the Longest Common Prefix (LCP) of path(`k) and path(`k′).

Query: Initially, each node u∗ in every navigation trie is unmarked; also, assign ∆(u∗) = 0.
Starting with j = 1 (if i > 1, and with j = 2 otherwise), we match successive symbols of the
string X[j, n] in STi as follows. Suppose, we are at a node u in STi. Find the correct edge
(if any) in STi(u) to traverse using the character X[j + |path(u)|]. Now, use the characters
starting from X[j + |path(u)|+ 1] to traverse STi(u) until either we reach a leaf `∗ (which
corresponds to a child u′ of u in STi), or we find a mismatch. In the first case, mark the
leaf `∗, set ∆(`∗) = |path(`∗)|, and repeat the process from u′. Otherwise, suppose we find a
failure on an edge to a node v∗ in STi(u) after successfully matching D characters starting
from u. Mark the node v∗, and store ∆(v∗) = max{∆(v∗), |path(u)|+D}. Follow the suffix
link of u to the node Ψ(u). We have the following two cases to consider.

If D < τ , then use the string X[j+ |path(u)|, j+ |path(u)|+D−1] and traverse STi(Ψ(u)).
Then, we resume matching from the reached position using X[j + |path(u)|+D,n].
If D ≥ τ , then v∗ is a leaf in STi(u) and represents a child v of u in STi. Use the string
X[j + |path(u)|, j + |path(u)|+ τ − 1] and traverse STi(Ψ(u)). At this point, we are on
an edge from a node w∗ to a leaf node in STi(Ψ(u)). The desired position to resume
matching on this edge is given by (D − |path(w∗)|+ 1).

In either case, we compare at most τ characters. Observe that on following a suffix link we
truncate τ characters starting from j, and are now trying to match X[j+ τ, n]. Therefore, the
total time needed to mark a node for j, j + τ, j + 2τ, . . . is O(n log n

τ ). Repeat this process
for every value of j ∈ [1, τ ], j 6= i. The total time needed is O(nτ log n

τ ).
We initialize an array LS of length |Ii| as follows. Assign LS[1] = lcp(`1, `2), and LS[p] =

max{lcp(`p−1, `p), lcp(`p, `p+1)}, where p ∈ [2, |Ii| − 1]. Finally, LS[|Ii|] = lcp(`|Ii|−1, `|Ii|).
Now, for each leaf `p in STi, we find its nearest marked ancestor `∗p. This is easily achieved in
O(n/τ) time and space by traversing STi and the navigation tries using lca and levelAncestor
queries. Simply assign LS[p] = 1 + max{LS[p],∆(`∗p)}. If LS[p] = |path(`p)|, then assign
LS[p] = n+ 1. (This implies that LS value for the position SAi[p] is not defined.) Clearly,
LS[p] and SAi[p] together give us LSSAi[p]. The time needed is O(n/τ).

3 Deterministic Algorithm for All k

I Observation 8 ([13, 14]). |LSk| ≤ |LSk+1| + 1, k ∈ [1, n − 1], where LSk and LSk+1 are
defined. S1 is the same as LS1. For any k ∈ [2, n], if Sk is the right extension of some LSk′ ,
k′ < k, then (i) Sk−1 ends at the position (k − 1), and (ii) Sk = Sk−1 ◦ X[k].

Assume that Sk−1, k > 1, is computed, where S1 = LS1 is known. We want to compute Sk.
The following are immediate from the above observation. If Sk−1 does not end at (k − 1),
then Sk is simply the shortest LSk′ that covers k. (Note that such an LSk′ must exist.)
Otherwise, Sk−1 ends at (k− 1), and Sk is simply the shorter of: (i) the shortest LSk′ , k′ ≤ k,
that covers k, if such a string exists, and (ii) Sk−1 ◦ X[k]. Thus the focus is to compute the
shortest LSk′ that covers k, if such a string exists. We prove the following theorem.

I Theorem 9. We can compute Sk for every k ∈ [1, n] in O(nτ2 logn) time using X and
additional O(n/τ) words and 4n+ o(n) bits of working space.

Following are a couple of well-known results that will be needed.



A. Ganguly, W.-K. Hon, R. Shah, and S. V. Thankachan 34:7

I Fact 10 (Munro [18]). Consider a binary string B[1,m]. By using a data structure
occupying o(m) bits, in O(1) time, we can find (i) rank(i, c) = |{j ≤ i | B[j] = c}| and
(ii) select(j, c) = mini{i | rank(i, c) = j}, where c ∈ {0, 1}. The data structure can be
constructed in O(m) time using o(m) bits of working space in addition to the string B.

I Fact 11 (Fischer and Heun [9]). Consider an array A of m integers. By using a data
structure occupying 2m + o(m) bits, in O(1) time, we can find rmqA(i, j) i.e., a position
t ∈ [i, j] such that A[t] = min{A[t′] | t′ ∈ [i, j]}. The data structure can be constructed in
O(m) time using 2m+ o(m) bits of working space in addition to the array A.

Proof of Theorem 9. The key idea is to compute LSj for all values of j, where defined,
and then store it in a compact way. Specifically, use Lemma 6 to compute LSj for every
j ∈ Ii = {i, i + τ, i + 2τ, . . . }, first by choosing i = 1. Store these values explicitly, and
initialize |I1| empty binary strings B1, B2, . . . , B|I1|. Compute LSj for every j ∈ I2. For
each j ∈ I2, append (|LSj | + 1 − |LSj−1|) many 1s followed by a 0 to the binary string
Bdj/τe. (Note that (j − 1) ∈ I1, and LSj−1 has already been computed.) Now, compute
LSj for every j ∈ I3. For each j ∈ I3, append (|LSj | + 1 − |LSj−1|) many 1s followed by
a 0 to the binary string Bdj/τe. Delete the LSj values computed for j ∈ I2. Repeat the
process with i = 4, 5, . . . , τ . Suppose r is the last position such that LSr is defined. We
will ignore LSr+1, LSr+2, . . . , LSn while creating the binary strings. Now, we create a binary
string B = B1B

′
1B2B

′
2 . . . B

′
|I1|−1B|I1|, where B′p, p ∈ [1, |I1| − 1], is the string containing

(LSpτ+1 + 1− LSpτ ) many 1s followed by a 0. Delete the binary strings B1 through B|I1|. If
r > n− τ + 1, compute LSj for j ∈ [n− τ + 1, r] in O(nτ2) time using a brute-force approach.
For each j ∈ [n− τ + 2, r], append (|LSj |+ 1−|LSj−1|) many 1s followed by a 0 to the binary
string B. Finally, construct the rank-select structure of Fact 10 over B.

Since we will make τ calls to Lemma 6, the time required is O(nτ2 log n
τ ). Note that

r + |LSr| ≤ n + 1. By Observation 8, for any r′ < r, we have r′ + |LSr′ | ≤ r′ + 1 +
|LSr′+1|. By Observation 5, LSr′′ is not defined for any r′′ > r. It immediately follows that∑r−1
p=1(|LSp+1|+ 1− |LSp|) ≤ n. Observe that B is a binary string which is a concatenation

of (|LSp+1|+ 1− |LSp|) many 1s followed by 0 for all values of p from 1 to (r− 1). Therefore,
the total length of B is at most 2n. Then, |LSk| = |LS1|+ rank(select(k − 1, 0), 1)− k + 1,
where k ∈ [1, r]. By storing |LS1| and the position r explicitly in d2 logne = o(n) bits, LSk
can be retrieved in O(1) time. Since at any point we are storing LSj values for at most
3dn/τe choices of j, the working space needed is O(n/τ) words and 2n+ o(n) bits.

Now, we build an RMQ data structure over a conceptual array A. The length of A is the
number of zeroes inB i.e., |A| = r ≤ n, andA[p] = |LSp| = |LS1|+rank(select(p−1, 0), 1)−p+1.
Using Fact 11, we can construct this data structure using 2n+ o(n) bits of additional space.

Summarizing, the working space needed at any point is O(n/τ) words and 4n+ o(n) bits.
We return to the task of computing the shortest LSk′ , k′ ≤ k, that covers k. First locate

the smallest position k′′ ≤ k, such that LSk′′ covers k. This is achieved in O(logn) time via a
binary search using LS1, B and its associated rank-select structure. If k′′ does not exist, then
we are done. Otherwise, k′ = rmqA(k′′, k). The total time needed for all such computations
is O(n logn), and the claimed space and time bounds are met. J

I Corollary 12. Suppose, we can compute LS1, LS2, . . . , LSn in that order. We can store
|LSk|, k ∈ [1, n], in total 2n+ o(n) bits, such that a particular |LSk| value can be accessed
in O(1) time. (This is the same result as obtained by Belazzougui and Cunial [2].) Also,
by maintaining an additional 2n + o(n)-bit structure, for any k, in O(logn) time, we can
compute the shortest LSk′ , k′ ≤ k, that covers k, or verify that no such k′ exists. The total
time (in addition to that for computing every LSk value) to construct this 4n + o(n) data
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structure is O(n). The working space required is 4n+ o(n) bits. Using this, we can compute
Sk for every k ∈ [1, n] in an additional O(n logn) time and O(1) space.

4 Randomized Algorithm

We prove the following theorem in this section.

I Theorem 13. For a string X of length n, any given k ∈ [1, n], and any arbitrary constant
c ≥ 0, we can find Sk in O(nτ logc+1 n) time using X and additional n/ logc n+O(n/τ)-words
of working space. By using additional 4n+ o(n) bits, we can compute Sk for all values of k
in O(nτ logc+1 n) time. Each Sk computed is correct with probability at least 1− n−O(1).

4.1 Proof of Theorem 13
The key idea to reduce the time from O(nτ2 log n

τ ) is to modify Lemma 6 so that we can
carry out the same task in time O(n logc+1 n) time, with n/ logc n words of additional space.
In this context, we present the following lemma.

I Lemma 14. Let Ii = {i, i + τ, i + 2τ, . . . }, i ∈ [1, τ ], be a set of at most dn/τe suffixes.
For each i′ ∈ Ii, we can compute LSi′ correctly with high probability in O(n logc+1 n) time
using X and additional n/ logc n+O(n/τ)-words of working space.

Here and henceforth, by high probability, we mean that each computed LSi′ is unique, but
with probability at most n−O(1), may not be the shortest. Likewise, each computed Sk is
unique and covers k, but with probability at most n−O(1), may not be the shortest.

We observe that in Lemma 6 the nτ -factor in the time complexity is due to matching X
in the sampled suffix tree STi by passing the string τ times, each time with a different choice
of j ∈ [1, τ ], j 6= i. Each such pass costs us O(n log n

τ ) time. The idea is to reduce this by
speeding up (i) the time to find the correct outgoing edge of a node, and (ii) the time to
update the ∆ value of a node in a navigation trie. We will show that (i) can be achieved in
O(logc n) time, with a slight probability of a false positive using Rabin-Karp Fingerprint [15]
and perfect hashing [10]. For achieving (ii), the rough idea is to use randomization to binary
search on the navigation trie, along the path containing the longest repeating prefix. This
will cost us O(logc+1 n) time. We begin by revisiting a couple of important results.

I Fact 15 (Rabin-Karp Fingerprint [15]). Let S be a string, and p > |S| be a prime number.
Choose q ∈ Fp uniformly at random. The fingerprint of S is

Φ(S) =
|S|−1∑
k=0

S[k]qk mod p

The following are a few well-known properties of fingerprints [5]. The probability of Φ(S) =
Φ(S′) for two distinct strings S and S′ is at most m−λ+1, where m = |S| = |S′|, p ∈ Θ(mλ),
and λ ≥ 4 is a constant. The factor λ may be amplified by a constant number of computations.
For two strings S and S′, where m = |S|, we have (i) Φ(SS′) = Φ(S) + Φ(S′)qm mod p,
(ii) Φ(S) = Φ(SS′) − Φ(S′)qm mod p, and (iii) Φ(S′) =

(
Φ(SS′) − Φ(S)

)
q−m mod p.

Therefore, for these three equations, given the value of qm mod p and the FP values on right,
we compute the FP value on the left in O(1) time.

I Fact 16 (Probabilistic z-fast Trie, Theorem 4.1, Belazzougui et al. [1]). Consider the
compacted trie T of a set of t strings. Each string has length at most m. Given any string S,
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by using a probabilistic data structure, we can find the deepest node u (called the exit node)
in T such that path(u) is a prefix of S. The chances of an error is at most m−λ, where λ > 0
is an arbitrary constant. The space occupied by the probabilistic data structure is O(t) words,
and the time required is O(log(m+ t)).

The main technique behind Fact 16 is to associate each node u in the trie with a signature
function. Specifically, the signature function is based on path(u). If two strings are distinct,
then their signatures match with very low probability. Now, given the signature of each
prefix of S, the overall idea is to carry out a binary search on the signature of each node to
locate the desired node. Furthermore, given the compacted trie, and the signature of every
prefix of each of the t strings, the data structure of Fact 16 can be constructed in O(t) time.

I Lemma 17. Consider the compacted trie T of a set of t suffixes of a string Y having length
m. Given a string S and fingerprint of every logcm prefix, by maintaining an m/ logcm+O(t)
word data structure, we can find the deepest point (possibly, on an edge) such that the string
formed by concatenating edge labels from root to this point is a prefix of S. The time required
is O(logc+1 m), and the probability of an error is at most m−O(1). The data structure can be
constructed in O(m+ t(log t+ logcm)) time using m/ logcm+O(t) words of space.

Proof. We will use a different signature function as that of Belazzougui et al. [1]. (See [5]
for a similar usage.) Specifically, each node w is labeled with the fingerprint (FP) of path(w).
Each edge in T is labeled by a substring of Y . We maintain two pointers sp and ep to the
start and end position in Y , and store the value of qsp mod p. Here, p and q are defined as
in Fact 15. Also, at each node w, we store the value of q|path(w)| mod p. To compute this
simply sort the edges based on sp and the nodes w based on path(w) in O(t log t) time. The
time needed is O(m+ t log t), and the space occupied at any point is O(t) words.

Now, compute the FP of each of the prefixes of Y ending at the positions 1, 1 + logcm, 1 +
2 logcm, . . . in O(m) time using Fact 15. The space needed to compute and store this
information is at most (1 + m/ logcm) words. Using these, we can compute the FP of a
prefix of an edge label in O(logcm) time by simply finding the nearest prefix of Y whose FP
has been stored and then walking at most logcm characters in Y . Also, by pre-processing
the trie with levelAncestor queries [4], we can find the FP of a prefix of any of the t suffixes
in O(log t+ logcm) time as follows. Binary search using levelAncestor queries and |path(u)|
stored at each node u on the path from root to the leaf corresponding to the suffix. This
binary search enables us to find the edge position corresponding to the prefix whose FP value
we want to find. Then, the desired FP value is obtained using the edge pointers. Therefore,
we can construct the z-fast trie of Fact 16 in O(t(log t+ logcm)) time given T and the FP
of each prefix of Y . The space at any point is bounded by m/ logcm+O(t) words.

We return to our original task. Use the z-fast trie and the FP of each prefix of S to find
the exit node u. Then, use the character S[1 + |path(u)|] to select an outgoing edge (u, v) of
u. If no such edge exists, then the desired location is given by the node u. Otherwise, the
desired location lies on the edge (u, v). Using the FP of a prefix of S[|path(u)|+ 1, path(v)],
we binary search on the edge (u, v) to find the desired location. Each prefix computation
needs O(logcm) time. Thus, the total time required is O(logc+1 m). Since the number of
FP comparisons is O(logm), the probability of a false positive is O( logm

mλ
) = m−O(1). J

Proof of Lemma 14. Construct the suffix tree STi for each suffix starting at a location lying
in the set Ii = {i, i+ τ, i+ 2τ, . . . }. Now, create the navigation trie STi(u) of every node u.
The total time needed is O(n+ n

τ log n
τ ). Each edge in STi or a navigation trie has pointers

sp and ep to X. Use Lemma 17 to compute and store (i) q|path(w)| mod p for each node w in
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STi, and (ii) qsp mod p for each edge. Likewise, we compute and store the values for each
node and edge in every navigation trie. We maintain an array Aj which stores the values qj
mod p, qj+τ mod p, qj+2τ mod p, . . . . Initially, the array is maintained for j = 2 if i = 1,
and for j = 1, otherwise. As described in Lemma 17, the total time needed is O(n). The
construction space and that needed for storage are both bounded by O(n/τ) words.

Using Fact 15, we compute and store Φ(X[1, i]) for every i ∈ {1, 1+logc n, 1+2 logc n, . . . }
in O(n) time. The space needed is 1 + n/ logc n words. Compute the FP of the first τ -
characters of the edge label in STi; this is achieved in O(logc n) time. Use a perfect hash
function [10] at each node for selecting the correct outgoing edge based on the computed FP.
The total time and space needed to incorporate this information is O((n/τ) logc n). Finally,
we maintain the probabilistic z-fast trie of Fact 16 for each navigation trie. This can be
created as described in Lemma 17. Incorporating the probabilistic data structure for all
navigation tries requires O(n+ n

τ (log n
τ + logc n)) time.

Summarizing, the space needed to maintain the data structure comprising of STi, the
navigation tries and their adjoining z-fast tries is n/ logc n+O(n/τ) words. Moreover, the
data structure is constructed in O(n+ n

τ (log n
τ +logc n)) time using n/ logc n+O(n/τ) words.

Now, we start matching X in STi starting with j = 1 if i > 1, and with j = 2, otherwise.
To traverse STi, suppose we are at a node u, and have read up to position j′ in X. Use
Φ(X[j′ + 1, j′ + τ ]) to select a correct outgoing edge (if any). This is achieved in O(logc n)
time first by computing the FP using the array Aj , and then using perfect hashing. Similarly,
we can traverse every τ characters on an edge in STi in O(logc n) time. We do this until we
find a failure, or reach a child v of u. In the latter case, we mark v’s corresponding leaf `∗ in
STi(u), update ∆(`∗), and continue matching from v. In the former case, use Lemma 17 to
mark the correct node w∗ in STi(u) and update ∆(w∗) in O(logc+1 n) time. Now, follow the
suffix link of u. The correct position to start matching in an outgoing edge of Ψ(u) in STi
can be found in O(logc n) time. Continue, until the entire string X has been processed. The
total time needed is O(nτ logc+1 n). Now, we repeat the process with (j + 1) if i 6= (j + 1),
and with (j + 2), otherwise. The array Aj can be updated in O(n/τ) time to Aj+1 or Aj+2,
as the case is. The number of times this process is repeated is (τ − 1). Finally, for each
i′ ∈ Ii, we can compute LSi′ as described in Section 2.1 in O(n/τ) time. Hence, the total
time needed is O(n logc+1 n+ n

τ (log n
τ + logc n)) = O(n logc+1 n).

Note that if two strings are identical, then their FP values are necessarily the same.
Hence, each LSi′ is definitely unique, but may not be the shortest. The number of queries to
a z-fast trie, or a FP comparison are both bounded by O(n logn). Therefore, the probability
of an error is n−O(1) (achieved by appropriately choosing λ in Facts 15 and 16). J

Wrapping Up. As in Theorem 7, we will invoke Lemma 14 by rotating the choices of
i ∈ [1, τ ]. Finally, we compute the LSj values for j ∈ [n− τ + 2, n] as follows. Maintain the
FP of every logc n prefix of X[n− τ + 2, n]. Now to find LSj , binary search at each position
(other than j) of X with the suffix starting at j to find the longest repeating prefix. The FP
of a prefix of any of these suffixes (resp. of a suffix in X) is obtained in O(logc τ) time (resp.
O(logc n) time). The number of binary search operations is O(log τ). Thus, the overall time
is bounded by O(nτ(logc n) log τ) = O(nτ logc+1 n).

The discussion in this section and the techniques used in proving Theorems 7 prove the
first part of Theorem 13 for computing Sk for a single k. The latter part of the theorem is a
consequence of Corollary 12, which follows from the proof of Theorem 9. However, one needs
to be a little more careful while carrying out the steps in Theorem 9 because the relation
|LSi| ≤ |LSi+1|+ 1 in Observation 8 maybe violated due to false positives in FP matches.
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Since no false negatives occur in FP matches, each computed LSi′ for any i′ is definitely
unique. Therefore, we can simply start from the rightmost i′ where |LSi′ | ≤ |LSi′+1|+ 1 is
violated and set |LSi′ | = |LSi′+1|+ 1 for each successive i′ from right to left. Observe that the
total number of changes to the binary strings B1 through B|I1| (see the proof of Theorem 9)
is at most 2n for each invoking of Lemma 14. Therefore, the total time needed to affect
these changes is O(nτ). Finally, the binary string B is again computed in O(n) time. The
rest of the steps remain the same as in the proof of Theorem 9. This completes the proof of
Theorem 13.

5 Maximal Unique Matches Problem

Let X1 and X2 be two strings of length n1 and n2 respectively, where n = n1 + n2. Each
character is drawn from a totally ordered alphabet Σ. We assume that X1 and X2 terminate
in two special characters $1 and $2 that does not appear anywhere else.

I Definition 18 (Maximal Unique Match). A Maximal Unique Match (MUM) of two strings
X1 and X2 is a string S that satisfies the following two properties: (i) S appears uniquely in
each string X1 and X2, and (ii) a left or right extension of S in X1 does not appear in X2.

I Problem 19. Given two strings X1 and X2, the task is to find the set S of all their maximal
unique matches. Each match is represented by its starting position in X1 and its length.

To the best of our knowledge, Problem 19 was formulated by Delcher et al. [6]. The main
motivation was its importance in aligning whole genome sequences consisting of millions
of nucleotides. They presented a software known as MUMmer 1.0. Further improvements
by Delcher et al. [7] and then by Kurtz et al. [17] lead to MUMmer 2.0 and MUMmer 3.0
respectively. The chief component of all these softwares (and underlying algorithm) is the
(generalized) suffix trees (GST) – a compacted trie storing all the suffixes of X1 and X2, and
occupying Θ(n) words. The following is the key observation.

I Observation 20. Given two strings X1 and X2 and their GST, a string S is an MUM
iff
(a) There exists a node v in the GST such that S = path(v). Moreover, v has exactly two

children (leaves), each labeled by a suffix from X1 and X2.
(b) There does not exist a node u which simultaneously satisfies: (i) u has a suffix link to v,

and (ii) u has exactly two children (leaves) that are labeled by suffixes from X1 and X2.

The GST of X1 and X2 can be built in O(n) time using the algorithm of Farach-Colton [8],
and leads to a simple O(n)-space and O(n)-time algorithm for Problem 19. The basic idea
to reduce the space is to build a GST only on n1/τ suffixes of X1 and n2/τ suffixes of X2 at
a time. This reduces the space to O(n/τ) words. By rotating the choice of n2/τ suffixes in
X2 roughly τ times, we will be able to determine the candidate set (i.e., a set containing the
MUMs) among the n1/τ suffixes of X1. Using the next set of n1/τ suffixes of X1, we will
be able to remove the incorrect choices from the candidate set. This idea, coupled with the
techniques for the SUS problem, leads to the following theorem.

I Theorem 21. Given X1 and X2, we can compute the set S (i) in O(nτ2 log n
τ ) time

using additional O(n/τ) words of working space, and (ii) correctly with high probability in
O(nτ logc+1 n) time using additional n/ logc n+O(n/τ) words of working space.
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