
Space-Efficient Plane-Sweep Algorithms
Amr Elmasry1 and Frank Kammer2

1 Department of Computer Engineering and Systems, Alexandria University,
Alexandria, Egypt
elmasry@alexu.edu.eg

2 Institut für Informatik, Universität Augsburg, Augsburg, Germany
kammer@informatik.uni-augsburg.de

Abstract
We introduce space-efficient plane-sweep algorithms for basic planar geometric problems. It is
assumed that the input is in a read-only array of n items and that the available workspace
is Θ(s) bits, where lgn ≤ s ≤ n · lgn. Three techniques that can be used as general tools
in different space-efficient algorithms are introduced and employed within our algorithms. In
particular, we give an almost-optimal algorithm for finding the closest pair among a set of n
points that runs in O(n2/s + n · lg s) time. We also give a simple algorithm to enumerate the
intersections of n line segments that runs in O((n2/s2/3) · lg s+k) time, where k is the number of
intersections. The counting version can be solved in O((n2/s2/3) · lg s) time. When the segments
are axis-parallel, we give an O((n2/s) · lg4/3 s + n4/3 · lg1/3 n)-time algorithm that counts the
intersections and an O((n2/s) · lg s · lg lg s + n · lg s + k)-time algorithm that enumerates the
intersections, where k is the number of intersections. We finally present an algorithm that runs
in O((n2/s+ n · lg s) ·

√
(n/s) · lgn) time to calculate Klee’s measure of axis-parallel rectangles.

1998 ACM Subject Classification E.1 Data Structures F.2.2 Nonnumerical Algorithms and
Problems, I.1.2 Analysis of Algorithms, I.3.5 Geometric Algorithms

Keywords and phrases closest pair, line-segments intersection, Klee’s measure

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.30

1 Introduction

Because of the rapid growth of the input data sizes in current applications, algorithms that
are designed to efficiently utilize space are becoming even more important than before. One
other reason to run a space-efficient algorithm is the limitation in the memory sizes that can
be deployed to modern embedded systems. Therefore, many algorithms have been developed
with the objective to optimize the time-space product.

Several models of computation have been considered for the case when writing in the
input area is restricted. The objective of a space-efficient algorithm is to optimize the amount
of extra space needed to perform its task. In the multi-pass streaming model [19] the input is
assumed to be held in a read-only sequentially-accessible working space, and the goal would
be to optimize the number of passes an algorithm makes over the input. In the read-only
word RAM [16]—the model that we consider in this paper—the input is assumed to be stored
on a read-only randomly-accessible working space and arithmetic operations on operands
that fit in one word are assumed to take constant time each.

Throughout the paper, it is assumed that n is the number of items of the input, each
stored in a constant number of words, and that the available workspace is Θ(s) bits, where
lgn ≤ s ≤ n lgn. Since a single cursor, which is necessary to iterate over the input, already
needs Θ(lgn) bits, there is no hope to solve any of the problems with less workspace. In

© Amr Elmasry and Frank Kammer;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 Space-Efficient Plane-Sweep Algorithms

addition, and as usual on a word RAM, it is assumed that operations on the input coordinates
can be performed in constant time each. We emphasize that this assumption is not essential
for our algorithms to work, but only scales with their running times.

Next, we survey some of the major results known for the read-only random-access model.
Pagter and Rauhe [21] gave an asymptotically-optimal algorithm for sorting n elements
that runs in O(n2/s + n lg s) time. Beame [5] established a matching Ω(n2) lower bound
for the time-space product for sorting in the stronger branching-program model. Elmasry
et al. [15] introduced space-efficient algorithms for basic graph problems. Concerning
geometric problems, Chan [9] presented an algorithm for the closest-pair problem with
integer coordinates in the word RAM model, and his algorithm can be made to work in the
read-only model. Darwish and Elmasry [14] gave an optimal planar convex-hull construction
algorithm that runs in O(n2/s+ n lg s) time. Konagaya and Asano [17] gave an algorithm
for reporting line-segments intersections that runs in O((n2/

√
s) ·
√

lgn+ k) time, where k
is the number of intersections. Recently, Korman et al. [18] gave space-efficient algorithms to
construct triangulations and Voronoi diagrams whenever s = Ω(lgn · lg lgn) bits of working
space are available. Asano et al. [3] considered space-efficient plane-sweep algorithms for
Delaunay triangulation and Voronoi diagram. However, they only considered the case where
s = Θ(logn) bits, and both algorithms run in O(n2) time for this case.

As a building block for our algorithms we use the adjustable navigation pile [2]; an
efficient priority-queue-like data structure that uses O(s) bits, where lgn ≤ s ≤ n lgn, in
the read-only random-access model of computation. Given a read-only input array of n
elements and a specified value, an adjustable navigation pile can be initialized in O(n) time.
Subsequently, the elements that are larger than the given value can be streamed in sorted
order in O(n/s+ lg s) time per element. Thus, it is possible to stream the next k elements
starting with a specified value in sorted order in O((n/s + lg s) · k + n) time, and all the
elements of the array can be streamed in sorted order in O(n2/s+ n lg s) time.

Another ingredient that we use in some of our algorithms is a rank-select data structure [12].
A rank-select data structure can be built on a bit vector of length n using O(n) time and
o(n) extra bits, and supports in O(1) time the queries rank(i), which returns the number of
1-bits in the first i positions of the bit vector, and select(j), which returns the index of the
j-th 1-bit in the bit vector. In accordance, one can sequentially scan the entries of the bit
vector that have 1-bits in O(1) time per entry.

In this paper we give space-efficient plane-sweep algorithms that solve planar geometric
problems where one moves a line across the plane and maintains the intersection of that
line with the objects of interest. Many geometric problems have been solved using this kind
of algorithm [7, 8, 13]. We assume that the sweep line moves over the plane from left to
right. Typically, a plane-sweep algorithm uses a priority queue (event queue) to produce the
upcoming events in order and a balanced binary search tree (status structure) to store and
query the objects that cross the sweep line in order. The status structure is updated only
at particular event points. Since Θ(n) objects might be part of the search tree, a typical
plane-sweep algorithm needs Θ(n lgn) bits, which is true for the standard algorithms of all
problems considered here. In contrast to Asano et al. [3], all our algorithms allow a trade-off
between time and space and work for all values of s where lgn ≤ s ≤ n lgn.

In Section 2 we introduce a general technique that we call the divide-and-compress
technique relying on splitting the input array, and later employ it in our algorithms. In
Section 3 we give a simple algorithm that enumerates intersections among n line segments and
runs in O((n2/s2/3) · lg s+ k) time, where k is the number of intersections. Our algorithm is
asymptotically faster than that of Konagaya and Asano for all values of s. We point out that



A. Elmasry and F. Kammer 30:3

the same approach can be used to count the number of intersections in O((n2/s2/3) · lg s) time.
In Section 4 we give an algorithm for finding the closest pair among n points whose running
time is O(n2/s+n lg s). To obtain this result, we combine new ideas with the classical plane-
sweep and divide-and-conquer approaches for solving the closest-pair problem. A lower bound
of Ω(n2−ε) was shown by Yao [22] for the time-space product of the element-distinctness
problem, where ε is an arbitrarily small positive constant. This lower bound applies for the
closest-pair problem, indicating that our algorithm is close to optimal. In Section 5 we give
an algorithm for counting the intersections among n axis-parallel line segments that runs in
O((n2/s) · lg4/3 s+ n4/3 · lg1/3 n) time. The idea is to partition the plane as a grid and to
run local plane sweeps on parts of the plane with truncated segments. In Section 6 we sketch
a so-called batching technique to represent the sweep line for special plane-sweep algorithms
using fewer bits than usual, and then utilize this technique in Section 7 for enumerating
the intersections among n axis-parallel line segments in O((n2/s) · lg s · lg lg s+ n lg s+ k)
time, where k is the number of intersections. In Section 8 we show how to calculate Klee’s
measure (the area of the union) for n axis-parallel rectangles in O((n2/s) · lgn+ n lg s) time
if the corners of the rectangles are stored in sorted order. In Section 9 we introduce another
general technique that we call the multi-scanning technique where we partition the plane
and run several plane sweeps interleaved. We use this technique to calculate Klee’s measure
in O((n2/s+ n lg s) ·

√
(n/s) · lgn) time if the corners of the rectangles are unsorted. We

conclude the paper in Section 10 with some comments.

2 A Divide-and-Compress Technique: Splitting the Input Array

We call a problem decomposable if any partitioning of the input into subsets allows us to
compute a solution for the input by computing the partial solutions for these subsets as well as
for the unions of all pairs of subsets and by combining these partial solutions. We also assume
that the time needed to combine the results is bounded by the time to compute the partial
solutions. Examples of such problems that we deal with in this paper are the axis-parallel
line-segments intersections problem (Section 3) and closest-pair problem (Section 4). For the
closest-pair distance, the overall solution is the minimum among the partial solutions for the
subproblems. For the enumeration of the axis-parallel line-segments intersections, the overall
solution is the union of the non-overlapping partial solutions. The general line-segments
intersections problem is also decomposable, and can be handled using the same approach
with slight modifications.

The following technique divides the instance in smaller parts and so compresses the
necessary workspace used to solve a decomposable problem. Assume that the available
workspace is enough to only handle a subset of the input that comprises O(r) elements at a
time, for some parameter r smaller than the number n of elements in the input array. Split
the array into dn/re batches B1, . . . , Bdn/re of at most r consecutive elements each (the last
batch may have less) and proceed as follows: For i = 1, . . . , dn/re and j = i+ 1, . . . , dn/re,
apply the underlying algorithm within Bi ∪Bj . Compute the overall answer by combining
the partial results. As we try all pairs of subproblems, the algorithm correctly explores all
the possible subproblems Bi ∪ Bj for some i and j, and accordingly produces the output
correctly for decomposable problems.

The number of the subproblems handled in sequence is Θ(n2/r2). Let the time needed
to solve a subproblem of size O(r) be t(r) + k′ where k′ is the size of the output. Thus,
the overall time spend by the algorithm is O((n2/r2) · t(r) + k) where k is the size of whole
output.

ISAAC 2016



30:4 Space-Efficient Plane-Sweep Algorithms

I Lemma 1. Suppose we know how to solve a decomposable problem P of size n using
s′ = Θ(f(n)) bits in O(n2/g(s′) + n lg s′) time, where f, g : IN → IR are functions with
lgn ≤ f(n) ≤ n lgn. For any s where lgn ≤ s ≤ s′, we can solve any instance I of P of size
n in O(n2/g(s)+(n2/f−1(s))·lg s) time with O(s) bits. In particular, when f(n) = O(n/ lgn)
and g(s) = O(s), we can solve I in O(n2/g(s)) time and O(s) bits.

Proof. By definition of P, we can solve instances of P that are of size r = df−1(s)e using s
bits in t(r) = O(r2/g(s) + r lg s) time. By applying the above construction, we can solve I
in O((n2/r2) · t(r)) = O(n2/g(s) + (n2/r) · lg s) = O(n2/g(s) + (n2/f−1(s)) · lg s) time. If
f(n) = O(n/ lgn), then f−1(s) = Ω(s lg s), and we can solve I in O(n2/g(s) + n2/s). If in
addition g(s) = O(s), the claimed time and space bounds follow. J

3 Line-Segments Intersections

Given a set of n line segments in the plane, the line-segments-intersections problem is to
enumerate all the intersection points among these line segments. The counting version of the
problem is to produce the number of these intersections. An optimal algorithm to enumerate
all the intersections that runs in O(n lgn+ k) time was given by Balaban [4], where n is the
number of segments and k is the number of intersections returned. Chazelle [11], improving
a result of Agarwal [1], showed how to count the intersections among n line segments in
O(n4/3 lg1/3 n) time, and how to report k bichromatic intersections in O(n4/3 lg1/3 n + k)
time, i.e., given sets of red and blue segments, to report all intersections between a red and a
blue segment. All these algorithms require a linear number of words, i.e., O(n lgn) bits.

If the available workspace is Θ(s) bits with lgn ≤ s ≤ n lgn, we give next a straightforward
application of the divide-and-compress technique. We can apply the reporting algorithms
on batches of size O(r) line segments, where we choose r = Θ(f−1(s)), i.e., r = Θ(s/ lg s).
First we apply Balaban’s algorithm for each batch separately, then we apply a bichromatic-
intersections algorithm on every pair of batches (coloring one of them red and the other blue).
Note that we cannot apply Balaban’s algorithm on pairs of batches since the partial solutions
will be overlapping (intersections among the segments of a batch will show up in several
partial solutions), and hence combining the partial solutions would be problematic. Thus, the
running time t(r) on r segments is O(r4/3 ·lg1/3 r). The reported intersections are the union of
the non-overlapping intersections found by solving the subproblems. Hence, the overall time
for this algorithm is O((n2/r2) · t(r) + k) = O((n2/r2/3) · lg1/3 r+ k) = O((n2/s2/3) · lg s+ k)
time, where k is the number of reported intersections.

I Theorem 2. Given a read-only array of n elements and Θ(s) bits of workspace, where
lgn ≤ s ≤ n lgn, the planar line-segments-intersections enumeration problem can be solved
in O((n2/s2/3) · lg s+ k) time, where k is the number of intersections returned. The counting
version can be solved in O((n2/s2/3) · lg s) time.

4 Closest Pair

Given a set of n points in the plane, the planar closest-pair problem is to identify a pair of
points that are closest to each other.

Assume for the moment that the available workspace is Θ(s) bits, where
√
n · lgn ≤ s ≤

n lgn. In a first step, we produce the points in sorted order according to their x-coordinate
values using an adjustable navigation pile and partition them into groups having ds/ lgne
successive points each (except possibly the last group). Partition the plane in vertical regions,



A. Elmasry and F. Kammer 30:5

called vertical stripes, where each region contains one group—if necessary, rotate the plane
slightly. More exactly, choose the vertical regions such that the vertical lines separating the
vertical stripes, called the vertical separators, pass through a point. We deal with the vertical
separators in our workspace by storing, for each of them, O(lgn) bits of the index of the
corresponding point in the input array. Since there are at most m = d(n/s) · lgne vertical
stripes, references to the x-coordinate values of all the vertical separators can be stored
in O((n/s) · lg2 n) bits, which is O(s) as long as s = Ω(

√
n · lgn). The entities of all the

separators can then be simultaneously stored within the available workspace. Additionally, all
the points of a vertical stripe can fit in the available workspace. Thus, a standard closest-pair
algorithm [13] can be applied to identify the closest pair among the points of each vertical
stripe one after the other. We then find the pair with the minimum closest distance among
all the vertical subproblems, and call this minimum distance δ.

To find a closest pair that is spread over two different stripes, we use a standard idea from
the divide-and-conquer algorithm for the closest-pair problem. In a second step, we produce
the points in sorted y-coordinate order using another adjustable navigation pile, but retain
only the points that lie within a horizontal distance δ from any of the vertical separators.
Call these points the candidate points. We consider the candidate points in the y-coordinate
order in groups having 8m points each (except the last group that may have less points). Call
the horizontal regions containing these groups the horizontal stripes. Note that references to
the points of a horizontal stripe can be stored in O((n/s) lg2 n) = O(s) bits, which can all
fit in the available workspace. We can then apply a standard closest-pair algorithm within
the working storage to identify the closest pair among the candidate points of every two
consecutive horizontal stripes in order. Let δ′ be the minimum closest distance among all
the horizontal subproblems. Finally, we return min(δ, δ′) as the closest-pair distance.

We prove next the correctness of the algorithm. We only have to show that the restriction
to the points close to the vertical separators in the second step is correct. We slightly
generalize the proof for the standard divide-and-conquer algorithm for the closest-pair
problem. Since the distance between any pair of points within a vertical stripe is at least δ,
any point that is at horizontal distance more than δ from all the vertical separators can not
be closer than δ to any other point. We then only need to proceed with the candidate points
that lie within a horizontal distance δ from any of the vertical separators. Fix a candidate
point p. Given a specific vertical separator, for the candidate points above p to be closer
than δ to p they must lie together with p within a 2δ × δ rectangle centered at the vertical
separator. Note that there could be at most 8 points above p within this rectangle whose
distances to p are less than δ, since 2 rows of 3 circles of diameter δ can cover the whole
rectangle and there can be at most one point in the two left and the two right circles as well
as at most two points in the middle circles. Since there are m vertical separators, the number
of candidate points P above p to be checked for possibly having a distance less than δ from
p is at most 8m; no other point above p can be at distance less than δ from p. (Actually, it
suffices to check only 5 candidate points above p for each separator [13, Exercise 33.4-2].)
Obviously, the points in P must be consecutive in the y-coordinate values. Since we store 8m
candidate points per stripe, the points in P lie in only two horizontal stripes, the horizontal
stripe that spans p and the horizontal stripe above it. We conclude that we need to only
consider the mutual distances among the points of each two consecutive horizontal stripes.

We can produce the points in sorted order in both coordinates in O(n2/s+ n lg s) time
using the adjustable navigation pile [2]. The time needed to execute the standard closest-pair
algorithm for all the stripes is O(n lg s) [13]. The check whether each point is close to one
of the separators or not runs in O(n lgn) = O(n lg s) time using a binary search among

ISAAC 2016



30:6 Space-Efficient Plane-Sweep Algorithms

b b

b

bbb
b

b b

b
b

b bb

bb
b

b

b b

b

b b
b

b b

b

b

b
b

b

Figure 1 Counting axis-parallel line segments in three phases. Each stripe contains 12 points and,
for clarity reasons, all stripes have the same size. The black dots on the crossings of two segments
show the intersection points that are counted in each phase.

the x-coordinates of the separators for each point. Hence, the overall running time of the
algorithm is O(n2/s+ n lg s).

Assume now that we have Θ(s) bits available, where lgn ≤ s <
√
n · lgn. Let r = s2/ lg2 s.

As s = Θ(
√
r · lg r), we can apply the above algorithm on instances of size Θ(r). In such a

case, the running time for each of these instances would be t(r) = O(r2/s+ r lg s) = O(r2/s).
We then divide the input into dn/re batches of points and apply the divide-and-compress
technique, compute the closest pair within every pair of batches and return the overall closest
pair. The space needed is indeed O(s), and the time consumed is O((n/r)2t(r)) = O(n2/s).

I Theorem 3. Given a read-only array of n elements and Θ(s) bits of workspace, where
lgn ≤ s ≤ n lgn, the planar closest-pair problem can be solved in O(n2/s+ n lg s) time.

It is known that the closest-pair algorithm can be generalized from two to higher dimen-
sions [13] to run in O(n lgd−1 n) time in d dimensions. Applying the divide-and-compress
technique in a similar way as described above, we can solve the closest-pair problem in d
dimensions with Θ(s) bits of workspace in O(n2/s+ n lgd−1 s) time, where lgn ≤ s ≤ n lgn.

5 Counting Axis-Parallel Line-Segments Intersections

Given a set of n axis-parallel (horizontal or vertical) line segments in the plane, we want to
count the intersection points among these line segments.

Assume for the moment that the available workspace is Θ(s) bits, where n2/3 · lgn ≤ s ≤
n lgn. First, we produce the endpoints of the line segments in sorted order according to their
x-coordinate values using an adjustable navigation pile, and consider them in order in groups
having ds/ lgne points each (except possibly the last group that may have fewer points). As
in the previous section, these groups define the vertical stripes and vertical separators. Since
there are d(n/s) · lgne = O(n1/3) vertical stripes, references to the x-coordinate values of all
the separators can be stored within the workspace. We associate a line segment to a stripe if
at least one of its two endpoints lies inside the stripe. If we consider the line segments of
a vertical stripe, or more exactly, their positions in the input array, they can all fit in the
workspace. Thus, we can apply a standard line-segments-intersections counting algorithm to
each vertical stripe one after the other, and add these counts together. See the left side of
Fig. 1.

Subsequently, we produce the points in sorted order according to their y-coordinate
values using another adjustable navigation pile, and partition the plane in horizontal stripes
(analogous to the definition of the vertical stripes) such that each has ds/ lgne points (except



A. Elmasry and F. Kammer 30:7

possibly the last group that may have less points). It follows that the O(n1/3) references
to the so-called horizontal separators can be simultaneously stored in the workspace. In a
similar fashion as above, we apply a line-segments-intersections counting algorithm to each
horizontal stripe one after the other, and add these counts to the accumulated count. To
avoid counting intersections twice, we modify the access to the horizontal segments such
that further computations consider the segments to be truncated. Each new endpoint lies on
the closest vertical separator to the old endpoint intersecting the segment. Note that the
intersections of the truncated parts of the horizontal segments with vertical segments have
already been accounted for while dealing with the vertical stripes. See the middle of Fig. 1.

Let Ri,j be the cell formed by the intersection of the ith horizontal stripe with the jth
vertical stripe. A line segment spans a cell if it crosses two of the cell’s boundaries. It
remains to account for the intersections among these spanning segments. The number of
these intersections for each cell is the product of the numbers of its spanning horizontal and
vertical segments. We show next how to count the spanning horizontal segments for each
cell. The treatment for the vertical segments is similar. See the right side of Fig. 1.

A line segment is interior to a cell if both its endpoints lie inside the cell. For each cell
Ri,j , we store the count bi,j of horizontal segments beginning in the cell, the count fi,j of
horizontal segments finishing in the cell, and the count ti,j of the horizontal segments interior
to the cell. Since there are O(n2/3) cells, all these values can be stored in O(n2/3 · lgn) bits,
which is O(s) when s ≥ n2/3 · lgn. For every horizontal segment, we locate the starting and
ending cells using binary search among the separators, and increment the corresponding
counters in accordance. We then scan the cells of every horizontal stripe sequentially while
calculating ei,j the number of horizontal segments entering Ri,j , i.e., the number of segments
that have a non-empty intersection with Ri,j and Ri,j−1; this is done using ei,0 = 0 and
ei,j = ei,j−1 + bi,j−1 − fi,j−1. We finally obtain the number of horizontal segments spanning
Ri,j as ei,j − fi,j + ti,j . The time needed to produce the endpoints in sorted order in
both coordinates using the adjustable navigation pile is O(n2/s + n lg s) [2]. The time
needed to execute the standard segments-intersection counting algorithm for all the stripes
is O(n4/3 · lg1/3 n). The time needed to perform binary search among the separators is
O(n lg s). The time needed to count the intersections of the spanning segments of all the
cells is constant per cell and sums up to O(n2/3). It follows that the overall running time of
the algorithm is O(n4/3 · lg1/3 n).

Assume now that we have Θ(s) bits available, where lgn ≤ s < n2/3 · lgn. Let r =
s3/2/ lg3/2 s. Since s = Θ(r2/3 lg r), we can apply the above algorithm on instances of
Θ(r) elements. We divide the input array into dn/re batches of consecutive segments
and apply the divide-and-compress technique. First apply the algorithm on instances
for every batch individually, then on instances for every pair of batches. Using these
computed counts, the overall count can be easily calculated. The running time for each
instance would be t(r) = O(r4/3 · lg1/3 s). The overall time consumed in this case is
O((n/r)2 · t(r)) = O((n2/s) · lg4/3 s).

I Theorem 4. Given a read-only array containing the endpoints of n line segments and Θ(s)
bits of workspace, where lgn ≤ s ≤ n lgn, counting the planar axis-parallel line-segments
intersections can be done in O((n2/s) · lg4/3 s+ n4/3 · lg1/3 n) time.

6 A Batching Technique: Processing Sweep-Line Events in Batches

We now show that, if the given objects are axis-parallel, one may reduce the working storage
of the status structure to Θ(n) bits by processing the events in batches.

ISAAC 2016



30:8 Space-Efficient Plane-Sweep Algorithms

For a parameter m to be set later, suppose our plane is divided into m vertical and
horizontal stripes such that each stripe contains O(n/m) local objects, where an object is
local for a stripe if it starts or ends within the stripe. As before, the boundaries of the
stripes are called separators. The intersection of a horizontal stripe with a vertical stripe
is called a cell. To apply the batching technique, we need a plane-sweep instance with the
following two properties: (1) All the events of the event queue are on vertical separators,
i.e., they result from so-called horizontally spanning objects. (2) All the objects of the status
structure start and end on horizontal separators, i.e., they are so-called vertically spanning
objects. Assume the available workspace is Θ(s) bits, where n ≤ s ≤ n lgn. By setting
m = d(n/s) · lgne, we can store references to all local objects of a stripe and references to
the coordinates of the separators in the working storage. Because of properties (1) and (2),
it is enough to update the status structure only once per vertical stripe with a batch of
objects. To ’represent’ the status structure, we split the vertical stripe to m cells formed
by the intersections with the horizontal stripes. Recall that there are O(n/m) vertically
spanning objects that are in a cells of the vertical stripe. We store their positions in an
array using a total of O((n/m) · lgn) = O(s) bits. In addition, we store for each of the m
cells a bit vector of O(n/m) bits indicating whether each of these objects spans the cell or
not. Over and above, for each bit vector of a cell, we build a rank-select data structure that
allows us to scan the vertical spanning objects of the cell in constant time per object. The bit
vectors and the rank-select structures are enough to represent the status structure. Thus, the
sweep line can be stored in a total of O(s) bits. We use an adjustable navigation pile as our
event queue to produce the events and the spanning objects in order. Since s ≥ n, the time
to produce all the events in order throughout the procedure is O(n lg s). When the sweep
line moves to a new vertical stripe, we update the representation of the status structure as
follows: The vertical spanning objects in the new stripe are produced by the navigation pile.
For each such object, the cells that it spans are allocated in O(m) time per object by simply
comparing the object coordinates with the horizontal separators. The bit-vectors entries and
the rank-select structures are updated accordingly. The time to update the status structure
(build a new one) is O(n). Throughout the algorithm, the total time to update the status
structure is O(n ·m) = O((n2/s) · lgn) = O((n2/s) · lg s).

It remains to show how to allocate an event point within the status structure representing
the sweep line. We would be satisfied with only identifying the cell that contains this event
point within the vertical stripe. We do that using binary search against the m horizontal
separators, consuming O(lgm) = O(lg lg s) time per event point.

I Lemma 5. Let I be a plane-sweep instance for which (1) and (2) holds. Using the batching
technique, a sweep can be performed on a plane with n objects, using a data structure that
can be stored in Θ(s) bits, where n ≤ s ≤ n lgn. The sweep makes a total of O((n/s) · lg s)
stopovers, and the data structure can be rebuilt in O(n) time per stopover plus a total of
O(n lg s) time, and queried in O(lg lg s) time per event. Handling all events at each stopover,
we can run a plane-sweep algorithm on I in O((n2/s) · lg s · lg lg s+ n · lg s) total time.

7 Enumerating Axis-Parallel Line-Segments Intersections

Assume for the moment that the available workspace is Θ(s) bits, where n ≤ s ≤ n lgn.
We use the same ideas as in Section 5. As before, we split the plane into m = d(n/s) · lgne

horizontal and vertical stripes where each except the last contains dn/me line segments. We
enumerate the intersections among the local parts of the segments within the stripes by
applying a standard line-segments-intersection enumeration algorithm.



A. Elmasry and F. Kammer 30:9

By truncating the segments, we assume from now on that all the endpoints lie on the
boundaries of the cells and the segments span the cells they cross. Note that each horizontal
line segment that spans a cell must intersect all the vertical segments spanning the same
cell. By applying the ideas of the batching technique, we store the vertical spanning line
segments that lie in the current vertical stripe and build a status structure that consumes
Θ(s) bits in O(n) time. Using this data structure it is possible to enumerate the vertical
segments that span a given cell in time proportional to the number of the reported segments.
For each horizontal segment, we check if it spans any of the cells of the sweep line. We do
that using binary search for each horizontal segment against the m horizontal separators.
After every binary search for a horizontal segment, we query the status structure to find
the vertical segments spanning the same cell, and so their intersections with the horizontal
segment are computed and reported. After locating the crossing cells of all the horizontal
segments with the sweep line, the sweep line is advanced to the next vertical stripe.

The total time needed to execute the standard algorithm locally within all the stripes is
O(n lg s), which matches the time bound to build the status structure of all vertical stripes
using the batching technique. The time to perform binary search for each of the horizontal
segments against the m cells of the status structure is O(n lgm). Hence, we can compute
all intersection points of a vertical stripe in O(n lgm + k′) time, where k′ is the number
of these intersections. Since we repeat these actions for every vertical stripe as the sweep
line advances, the total time is O(n ·m · lgm+ k) = O((n2/s) · lg s · lg lg s+ k), where k is
the number of intersections returned. Since we can partition the plane into stripes using a
navigation pile in O(n2/s+ n lg s) time, the total time consumed by the whole algorithm is
O((n2/s) · lg s · lg lg s+ n lg s+ k).

Assume next that we have Θ(s) bits of workspace, where lgn ≤ s < n. Let r = s. We can
then apply the above algorithm on instances of size Θ(r). In such a case, the running time for
each instance would be t(r)+k′ = O((r2/s)·lg s·lg lg s+r lg s+k′) = O((r2/s)·lg s·lg lg s+k′),
where k′ is the number of intersections. We then divide the input into dn/re batches
of segments and apply the divide-and-compress technique on pairs of batches, a batch
of vertical segments with a batch of horizontal segments. The total time consumed is
O((n/r)2 · t(r) + k) = O((n2/s) · lg s · lg lg s + k), where k is the number of intersections
returned.

I Theorem 6. Given a read-only array containing the endpoints of n line segments and Θ(s)
bits of workspace, where lgn ≤ s ≤ n lgn, enumerating the planar axis-parallel line-segments
intersections is done in O((n2/s) · lg s · lg lg s+ n lg s+ k) time, where k is the number of
intersections returned.

8 Measure of Axis-Parallel Rectangles

We consider the problem of computing the measure of a set of n axis-parallel rectangles, i.e.,
the size of the area of the union. The problem was posed by V. Klee, and thus called Klee’s
measure problem. Bentley [6] described an O(n lgn)-time algorithm that can be implemented
with Θ(n lgn) bits of working space. Bentley’s algorithm sweeps a vertical line from left to
right across the rectangles and maintains the intersection of the rectangles and the sweep
line. Another algorithm to compute the measure was presented by Overmars and Yap [20].
A generalization of the algorithm to d dimensions was given by Chan [10].

Assume that the available workspace is Θ(s) bits, where lgn ≤ s ≤ n lgn. To compute
the measure of a set of n axis-parallel rectangles, we use Bentley’s algorithm as a subroutine.
In this section, we restrict ourselves to the case where the corners of the rectangles are stored
sorted by their x-coordinates. This restriction is dropped in the next section.

ISAAC 2016



30:10 Space-Efficient Plane-Sweep Algorithms

We split the plane into m = Θ((n/s) · lgn) horizontal stripes, where each stripe consists
of Θ(s/ lgn) rectangle corners and accordingly fit in the available workspace. A rectangle is
spanning a stripe if its vertical segments cross the two separators of the stripe. We process the
stripes in sorted y-coordinate order, one after the other. By using an adjustable navigation
pile, we produce and store the rectangles cornered within each stripe in sequence. Before
processing a stripe and storing the rectangles, we truncate those rectangles such that they
are shrunk to their intersection with the stripe. We would then run Bentley’s algorithm on
these rectangles. However, we need to also take into consideration the rectangles spanning
the stripe. We show next how to do that efficiently.

We horizontally scan the stripe and keep track of the spanning segments and the corners.
We accumulate as a global variable the width W of the union of the spanning rectangles so
far. To do that, we maintain z as the difference between the number of scanned spanning
segments that are left boundaries of a rectangle and the number of scanned spanning segments
that are right boundaries. Whenever z becomes positive, we record this coordinate as x1.
Whenever z returns back to zero, we record this coordinate as x2; we have just passed over a
spanning area, and accordingly update W by adding to it the value x2 − x1. Whenever we
meet a corner, we update its x-coordinate value as follows. If z is positive (the corner is in
a spanning area), first set the x-coordinate of this corner to x1. Either way, whether z is
positive or zero, we subtract the current value ofW from the x-coordinate of the corner. This
process of relocating the corners is called simplifying the rectangles in [10]. After finishing
the scan, we apply Bentley’s algorithm to the relocated corners and calculate the measure
within the current stripe. We also multiply W by the width of the stripe to get the area
covered by the spanning rectangles, and add this area to the calculated measure. The total
measure is the sum of the measures within all the stripes.

The time to sequentially scan the segments and simplify the rectangles within each stripe
is O(n) (as the segments are already sorted), and the time for applying Bentley’s algorithm
is O((s/ lgn) · lg s). The total time to process all the m stripes is O((n2/s) · lgn+ n lg s).

I Theorem 7. Given a read-only array storing the corners of n axis-parallel rectangles in
sorted x-coordinate order, and the available workspace is Θ(s) bits, where lgn ≤ s ≤ n lgn,
the measure (area of the union) can be computed in O((n2/s) · lgn+ n lg s) time.

9 A Multi-Scanning Technique: Partitioning the Plane

In this section we introduce a technique to replace one global sweep with many local sweeps,
and apply it to the measure problem if the input is not sorted. The idea is to perform
alternating vertical and horizontal sweeps on parts of the plane to identify cells, each
containing a set of objects that fit in the working storage. Once identified, we apply a local
algorithm within each cell. By partitioning the plane into a grid of cells, we combine the
local solutions for the cells together to obtain the final outcome. The details come next.

We partition the plane into m = d
√

(n/s) · lgne horizontal stripes, where each stripe
consists of O(n/m) corners. We process the horizontal stripes one after the other in sorted y-
coordinate order using an adjustable navigation pile. Once the two separators of a horizontal
stripe H are determined, we initialize an adjustable navigation pile YH for the stripe that
allows us to stream the corners within H ordered by their y-coordinates. We start sweeping
over the plane in sorted x-coordinate order using another adjustable navigation pile XH that
is initialized over the whole input. For this horizontal sweep, we are interested only in the
corners in H as well as the vertical segments spanning H—to find the spanning segments, we
have to take all corners of the plane into consideration. Whenever the number of corners in



A. Elmasry and F. Kammer 30:11

H produced by XH is ` = ds/ lgne (except for the last cell that may have less corners), we
have reached a vertical separator that identifies, as a right boundary, a cell V within H. The
corners of a cell can be stored in O(s) bits and hence fit in the working storage. During this
horizontal sweep over V, we calculate the horizontal width Wh of the area covered by the
vertically spanning rectangles, and in the meantime simplify these corners of V (relocate the
x-coordinates), as explained in the previous section, while storing them. We temporarily
pause the horizontal sweep, and start a vertical sweep within H after initializing YH using
the value of the horizontal separator between H and the stripe above it. During this vertical
sweep, we calculate the vertical width Wv of the area covered by the horizontally spanning
rectangles, and simplify the stored corners of V (this time, relocate the y-coordinates). Since
the corners within V fit in the working storage, we compute Klee’s measure of the parts of the
simplified rectangles within the cell V using Bentley’s algorithm. We add the areas covered
by the spanning vertical and the spanning horizontal rectangles to adjust the measure, and
subtract the intersection area Wh ×Wv that has been added twice. We repeatedly proceed
with the horizontal sweep using XH to identify and partially process a cell, then alternately
initialize YH and perform a vertical sweep within H to finish the processing of the cell. After
all the cells of a horizontal stripe are processed, we repeat the same actions for the next
horizontal stripes in sequence. Since we correctly calculate the measure within every cell,
the overall sum of all the local measures is what we are looking for.

Concerning the running time, we consider the time to produce the segments by the
navigation piles. Recall that XH sweeps over all the n corners, whereas YH sweeps only over
the O(n/m) corners of H. The navigation piles X for the horizontal sweeps repeatedly process
all the input for every horizontal stripe. Since we have a total of m such sweeps, the total time
consumed by the X navigation piles is O((n2/s+ n lg s) ·m). The navigation piles Y for the
vertical sweeps process the O(n/m) corners of a horizontal stripe in one sweep. Therefore, the
total time for each of these vertical sweeps is O((n/s+ lg s) · n/m+ n). It is straightforward
to verify that n/s+ lg s = Ω(m) for all considered values of n and s (it is either true that
n/s > m or otherwise lg s = Ω(m)). The total number of vertical sweeps done within each
horizontal stripe is O((n/m)/`), which is O(m) since m = d

√
(n/s) · lgne. It follows that the

total time of the vertical sweeps within one horizontal stripe is O(n2/s+ n lg s). Multiplying
by the number of horizontal stripes m, the total time consumed by the Y navigation piles is
O((n2/s+n lg s) ·m), matching the bound for the X piles. The time needed by the extended
local version of Bentley’s algorithm within each cell is O(` · lg `), resulting in a total of
O(n · lg s) time for all the calls to Bentley’s algorithm. The time for the navigation piles is
dominating.

I Theorem 8. Given a read-only array containing the corners of n axis-parallel rectangles,
and the available workspace is Θ(s) bits, where lgn ≤ s ≤ n lgn, the measure can be computed
in O((n2/s+ n lg s) ·

√
(n/s) · lgn) time.

10 Concluding Comments

We have given space-efficient plane-sweep algorithms for some basic geometric problems.
We believe that the techniques we introduce cover a range of ideas to handle many other
plane-sweep algorithms in a space-efficient manner. Another question is if it is possible to get
around with the extra logarithmic factors in the running times of the problem of enumerating
the general and the axis-parallel line-segments intersections. It also remains open if it is
possible to solve the measure problem more efficiently when the input is not sorted.

ISAAC 2016



30:12 Space-Efficient Plane-Sweep Algorithms

References
1 Pankaj K. Agarwal. Partitioning arrangements of lines II: Applications. Discrete Comput.

Geom., 5(6):533–573, 1990.
2 Tetsuo Asano, Amr Elmasry, and Jyrki Katajainen. Priority queues and sorting for read-

only data. In Proc. 10th International Conference on Theory and Applications of Models
of Computation (TAMC 2013), volume 7876 of LNCS, pages 32–41, 2013. doi:10.1007/
978-3-642-38236-9_4.

3 Tetsuo Asano, Wolfgang Mulzer, Günter Rote, and Yajun Wang. Constant-work-space
algorithms for geometric problems. J. Comput. Geom., 2(1):46–68, 2011.

4 Ivan J. Balaban. An optimal algorithm for finding segments intersections. In Proc.
11th Symposium on Computational Geometry, pages 211–219, 1995. doi:10.1145/220279.
220302.

5 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM
J. Comput., 20(2):270–277, 1991. doi:10.1137/0220017.

6 Jon Louis Bentley. Algorithms for Klee’s rectangle problems, 1977. Unpublished
manuscript.

7 Jon Louis Bentley and Thomas Ottmann. Algorithms for reporting and counting geomet-
ric intersections. IEEE Trans. Computers, 28(9):643–647, 1979. doi:10.1109/TC.1979.
1675432.

8 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA,
2008.

9 Timothy M. Chan. Closest-point problems simplified on the RAM. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pages 472–473,
2002. URL: http://dl.acm.org/citation.cfm?id=545381.545444.

10 Timothy M. Chan. Klee’s measure problem made easy. In Proc. 54th Anual IEEE
Symposium on Foundations of Computer Science (FOCS 2013), pages 410–419, 2013.
doi:10.1109/FOCS.2013.51.

11 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom.,
9(2):145–158, 1993.

12 David Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Waterloo, Ontario,
Canada, 1996.

13 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

14 Omar Darwish and Amr Elmasry. Optimal time-space tradeoff for the 2D convex-hull
problem. In Proc. 22nd Annual European Symposium on Algorithms (ESA 2014), volume
8737 of LNCS, pages 284–295, 2014. doi:10.1007/978-3-662-44777-2_24.

15 Amr Elmasry, Frank Kammer, and Torben Hagerup. Space-efficient basic graph algorithms.
In Proc. 32nd Annual Symposium on Theoretical Aspects of Computer Science (STACS
2015), LIPIcs, pages 288–301, 2015. doi:10.4230/LIPIcs.STACS.2015.288.

16 Greg N. Frederickson. Upper bounds for time-space trade-offs in sorting and selection. J.
Comput. Syst. Sci., 34(1):19–26, 1987. doi:10.1016/0022-0000(87)90002-X.

17 Matsuo Konagaya and Tetsuo Asano. Reporting all segment intersections using an arbitrary
sized work space. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 96-A(6):1066–1071, 2013. URL: http://search.ieice.org/bin/
summary.php?id=e96-a_6_1066.

18 Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth,
and Yannik Stein. Time-space trade-offs for triangulations and Voronoi diagrams. In Proc.
14th Algorithms and Data Structures Symposium (WADS 2015), 2015.

http://dx.doi.org/10.1007/978-3-642-38236-9_4
http://dx.doi.org/10.1007/978-3-642-38236-9_4
http://dx.doi.org/10.1145/220279.220302
http://dx.doi.org/10.1145/220279.220302
http://dx.doi.org/10.1137/0220017
http://dx.doi.org/10.1109/TC.1979.1675432
http://dx.doi.org/10.1109/TC.1979.1675432
http://dl.acm.org/citation.cfm?id=545381.545444
http://dx.doi.org/10.1109/FOCS.2013.51
http://dx.doi.org/10.1007/978-3-662-44777-2_24
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.288
http://dx.doi.org/10.1016/0022-0000(87)90002-X
http://search.ieice.org/bin/summary.php?id=e96-a_6_1066
http://search.ieice.org/bin/summary.php?id=e96-a_6_1066


A. Elmasry and F. Kammer 30:13

19 J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theor. Comput.
Sci., 12(3):315–323, 1980. doi:10.1016/0304-3975(80)90061-4.

20 Mark H. Overmars and Chee-Keng Yap. New upper bounds in Klee’s measure problem
(extended abstract). In Proc. 29th Annual Symposium on Foundations of Computer Science
(FOCS 1988), pages 550–556, 1988. doi:10.1109/SFCS.1988.21971.

21 Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In Proc. 39th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pages 264–
268, 1998. doi:10.1109/SFCS.1998.743455.

22 Andrew Chi-Chih Yao. Near-optimal time-space tradeoff for element distinctness. SIAM
J. Comput., 23(5):966–975, 1994. doi:10.1137/S0097539788148959.

ISAAC 2016

http://dx.doi.org/10.1016/0304-3975(80)90061-4
http://dx.doi.org/10.1109/SFCS.1988.21971
http://dx.doi.org/10.1109/SFCS.1998.743455
http://dx.doi.org/10.1137/S0097539788148959

	Introduction
	A Divide-and-Compress Technique: Splitting the Input Array
	Line-Segments Intersections
	Closest Pair
	Counting Axis-Parallel Line-Segments Intersections
	A Batching Technique: Processing Sweep-Line Events in Batches
	Enumerating Axis-Parallel Line-Segments Intersections
	Measure of Axis-Parallel Rectangles
	A Multi-Scanning Technique: Partitioning the Plane
	Concluding Comments

