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Abstract
Given a permutation of n elements, stored as an array, we address the problem of replacing the
permutation by its kth power. We aim to perform this operation quickly using o(n) bits of extra
storage. To this end, we first present an algorithm for inverting permutations that uses O(lg2 n)
additional bits and runs in O(n lgn) worst case time. This result is then generalized to the
situation in which the permutation is to be replaced by its kth power. An algorithm whose worst
case running time is O(n lgn) and uses O(lg2 n+min{k lgn, n3/4+ε}) additional bits is presented.
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1 Introduction

Permutations are fundamental in computer science and are the subject of extensive study.
They are commonly used as a basic building block for space efficient encoding of strings [1, 8,
12, 14], binary relations [3, 2], integer functions [11] and many other combinatorial objects.

In this paper, we study the problem of transforming a permutation π to its kth power πk
in place. By “in place,” we mean that the algorithm executes while using “very little” extra
space. Ideally, we want the algorithm to use only a polylogarithmic number of additional
bits. The algorithm we present uses several new techniques that are of interest in their own
right and could find broader applications.

One interesting application of inverting a permutation in place was encountered in the
content of data ware-housing by a Waterloo company [4]. Under specific indexing schemes,
the permutation corresponding to the rows of a relation sorted by any given key is explicitly
stored. To perform certain joins, the inverse of a segment of the permutation is precisely
what is needed. This permutation occupies a substantial portion of the space used by the
indexing structure. Doubling this space requirement, to explicitly store the inverse of the
permutation, for the sole purpose of improving the time to compute certain joins may not be
practical, and indeed was not in the work leading to [4].

Since there are n! permutations of length n, the number of bits required to represent a
permutation is dlg(n!)e ∼ n lgn− n lg e+O(lgn) bits.1 Munro et al. [11] studied the space
efficient representation of general permutations where general powers of individual elements
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29:2 Raising Permutations to Powers in Place

can be computed quickly. They gave a representation taking the optimal dlg(n!)e + o(n)
bits, that can compute the image of a single element of πk() in O(lgn/lg lgn) time; and a
representation taking (1 + ε)n lgn bits where πk() can be computed in constant time. The
preprocessing for these representations as presented in [11] requires an extra O(n) words
of space, so a solution that involves building them as an intermediate step will not be
considered inplace and therefore does not apply to our current problem. For further details
on permutation representations see [6, 10, 5].

Throughout this paper, we assume that the permutation is stored in an array A[1, . . . , n]
of n words. The array originally contains the values π(1), . . . , π(n), then, afterwards, it
contains the values πk(1), . . . , πk(n). Storing A requires ndlgne = n lgn + n(dlgne − lgn)
bits. When (dlgne − lgn) is “big,” we can reduce the space required by this representation
by encoding a constant number c of consecutive elements into a single object. This object is
essentially the c digits, base n number π[i]π[i+ 1] . . . π[i+ c− 1]. Encoding these n/c objects
of size dc lgne bits each, totals to n lgn+ n/c bits. To decode a value, we need a constant
number of arithmetic operations. This saving of memory at the cost of c accesses to interpret
one element of A carries through all of our work.

This paper is organized as follows. In Section 2, we review previous work on permuting
data in place [7], on which we base our work. In Section 3, we start by presenting an algorithm
for inverting permutations that uses O(b+ lgn) additional bits and runs in O(n2/b) worst
case time. Using a different approach, we improve the worst case time complexity to O(n lgn),
but using O(

√
n lgn) additional bits. This development then leads to our main algorithm for

inverting permutations, we achieve an algorithm with a worst case time complexity of O(n lgn)
using only O(lg2 n) additional bits. Then we face the problem that while π−1() leaves the
cycle structure as it was, higher powers may create more (smaller) cycles. This causes further
difficulty which is addressed in Section 4 where we generalize the algorithm from Section 3
to the situation in which the permutation is to be replaced by its kth power. An algorithm
whose worst case running time is O(n lgn) and uses O(lg2 n+ min{k lgn, n3/4+ε}) additional
bits is presented. Our solution relies on Rubinstein’s [13] work on finding factorizations into
small terms modulo a parameter. The final result can be improved if better factorization is
applied. However, we show that obtaining a better factorization is probably difficult since it
would imply Vinogradov’s conjecture [15]. We conclude our work in Section 5.

2 Background and Related Work

Fich et al. studied the problem of permuting external data according to a given permutation,
in place [7]. That is, given an array B of length n and a permutation π given by an oracle or
read only memory, rearrange the elements of B in place according to π.

It is not sufficient to simply assign B[π(i)] ← B[i] for all i ∈ {1, · · · , n}, because an
element in B may have been modified before it has been accessed. A permutation can be
thought of as a collection of disjoint cycles. The procedure Rotate, rotates the values in
B according to π by calling RotateCycle on the leader of each cycle. A cycle leader is a
uniquely identifiable position in each cycle. The smallest position in a cycle, or min leader,
is a simple example of a cycle leader.

The problem is to identify a position as leader by starting at that position and traversing
only forward along the cycle. Choosing the min leader would take Θ(n2) value inspections in
the worst case. A leader that we call the local min leader can be used to permute data in
O(n lgn) worst case time complexity using only O(lg2 n) additional bits [7]. As stated in [7],
the local min leaders of a permutation π are characterized as follows. Let E1 = {1, . . . , n}
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procedure Rotate(B)
for i← 0 to n− 1 do

if IsLeader(i) then
RotateCycle(B, i)

procedure RotateCycle(B, leader)
i← π(leader)
while i 6= leader do

Swap(B[i], B[leader])
i← π(i)

Figure 1 Rotates the values in B according to a permutation π.
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Figure 2 An illustration of πi.

and π1 = π. For positive integers r > 1, define Er as the set of local minima in Er−1
encountered following the cycle representation of the permutation πr−1 and define πr as the
permutation that maps each element of Er to the next element of Er that is encountered
following πr−1. More formally, Er = {i ∈ Er−1|π−1

r−1(i) > i < πr−1(i)} and πr : Er → Er is
defined such that πr(i) = πmr−1(i) where m = min {m > 0|πmr−1(i) ∈ Er}. Since at most half
the elements in each cycle are local minima, |Er| < |Er−1|/2 and r ≤ lgn. The leader of a
cycle is the unique position i, such that πr−1 . . . π1(i) ∈ Er. For example, if π = (1 7 2 9 4 5
3 10 6 8) as illustrated in Figure 2 (similar to Figure 6 in [7]), then

E1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, π1 = (1 7 2 9 4 5 3 10 6 8)
E2 = {1, 2, 4, 3, 6}, π2 = (1 2 4 3 6)
E3 = {1, 3}, π3 = (1 3)
E4 = {1}, π4 = (1)

The local min leader of the only cycle in π is the position 9 since π3π2π1(9) = 1.
The procedure IsLocalMinLeader (see Figure 3), checks if position i in the permutation

is the local min leader of his cycle. It has the property of proceeding at most 4n steps on the
permutation for a single element, and a total of O(n lgn) steps on the permutation for all
elements. We treat the local min leader technique as a black box. There are a few occasions
where we need details so we provide the procedure to make this paper more self contained.
We refer the reader to [7] for further details on this procedure.

ISAAC 2016
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procedure IsLocalMinLeader(i)
elbow[0]← elbow[1]← i

for r ← 1, 2, . . . do
//loop invariant:
{elbow[r] = πr−1 . . . π1(i)}
Next(r)
if elbow[r] > elbow[r − 1] then

elbow[r]← elbow[r − 1]
Next(r)
if elbow[r] > elbow[r − 1] then

return false

elbow[r + 1]← elbow[r]
else if elbow[r] = elbow[r − 1] then

return true

procedure Next(r)
if r = 1 then
elbow[0]← π(elbow[1])

else
while elbow[r−1] < elbow[r−2] do

elbow[r − 1] ← elbow[r − 2]
Next(r − 1)

while elbow[r−1] > elbow[r−2] do
elbow[r − 1] ← elbow[r − 2]

Next(r − 1)

Figure 3 Checks if index i is a local min leader.

procedure InvertCycle(A, leader)
current← A[leader]
previous← leader

while current 6= leader do
next← A[current]
A[current]← previous

previous← current

current← next

A[leader]← previous

Figure 4 Inverts a permutation.

3 Inverting Permutations

To invert a permutation we can use the structure of the algorithm described in Figure 1, but
invert the cycles instead of rotating the data. Figure 4 shows how to invert a cycle. The
algorithm iterates over the permutation, and inverts each cycle only on its leader. A cycle
leader must be used that will remain unchanged once the cycle is inverted. An example of
such a cycle leader is the min leader.

Inverting a permutation using min leader will use O(lgn) additional bits and take Θ(n)
time if the permutation consists of one large cycle in increasing order; or Θ(n2) time if the
permutation consists of one large cycle in decreasing order. We note that for a random cycle
of length n this total cost would be about n lgn. The analysis is similar to the bidirectional
distributed algorithm for finding the smallest of a set of n uniquely numbered processors
arranged in a circle [9]. However, our interest is in finding algorithms with good worst case
performance.

A permutation can be inverted in linear time using a n-bit vector. The vector can be
used to mark corresponding positions in π as their cycles are inverted. This is equivalent to
using the min leader, but takes n+O(lgn) additional bits.

Using a technique presented in [7], the bit vector can be shrunk to b-bits by conceptually
dividing the permutation into dn/be sections each of size b (except possibly the last section
will be smaller). The b-bit vector is reset at the start of each section and is used to keep
track of which positions are encountered in the section being processed. If the position
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a b c

a < b < c

Figure 5 An example of a bad cycle.

under consideration for being a cycle leader has a corresponding bit with value 0, its cycle is
traversed searching for a smaller position. If no smaller position is found, then the position is
a cycle leader and the cycle is inverted. On the other hand, if the position under consideration
has a corresponding bit with value 1, then the position was previously encountered as part
of a cycle containing a smaller position in the section, and hence is not a cycle leader. Each
cycle will be traversed at most n/b times, thus the total runtime is n2/b and the space used
is b+O(lgn).

I Theorem 1. In the worst case, the array representation of a permutation of length n can
be replaced with its own inverse in O(n2/b) time using b+O(lgn) additional bits of space.

By setting b =
√
n we get the following corollary.

I Corollary 2. In the worst case, the array representation of a permutation of length n can
be replaced with its own inverse in O(n

√
n) time using O(

√
n) additional bits of space.

3.1 Inversion in O(n lg n) Time Using O(
√

n lg n) Bits
The local min leader of a cycle will, in general, change after the cycle has been inverted.
Figure 5 shows a simple example of this: b is the leader of the cycle, but if it were inverted,
c would become the leader. Since c > b, the algorithm in Figure 4 will invert the cycle once
on b and then again on c because c will look like a leader when it is reached in the outer
loop. Inverting the cycle the second time will undo the work of inverting it the first time.
We will call a cycle with this problem a bad cycle.

I Definition 3. A bad cycle is a cycle with the property that if inverted, has a new cycle
leader not yet processed, i.e., larger than the original leader.

It is not hard to build a permutation that will have Θ(n) bad cycles. Such a permutation
could just repeat our bad cycle pattern and create exactly bn/3c bad cycles. So, there is not
enough space to use even 1 bit to mark these cycles.

I Theorem 4. A permutation π represented as an array can be replaced with π−1 in place
using O(

√
n lgn) extra bits in O(n lgn) time.

Proof. Although the permutation π can contain up to n cycles, the number of distinct cycle
lengths in π, which we denote by k, is less than b

√
2nc (since

∑d√2n e
i=1 i > n). We store these

cycle lengths in an array L of size O(
√
n lgn) bits. This can be done in O(n lgn) time by

iterating over the permutation and computing the length of every cycle as it is detected
on its local min leader using the procedure IsLocalMinLeader (see Figure 3). After a
length is detected, query a balanced binary search tree H to check if the length computed
was already encountered; if it was not encountered, insert the new length to L and H. The
cycle lengths are ranked according to their position in L.

If a position i is found to be the local min leader of a cycle α, then the minimum position
in α is given by x = πr−1 . . . π1(i). Let j = π1 . . . πr−1(x), then x = π−1

r−1 . . . π
−1
1 (j) and j

is the local min leader of the inverse α−1 of α. When testing the position i for leadership,

ISAAC 2016



29:6 Raising Permutations to Powers in Place

the procedure IsLocalMinLeader will store j in elbow[0] upon termination because of
its loop invariant (at the beginning of each iteration: elbow[r] = πr−1 . . . π1(i)). Thus, we
can identify the leader of α−1 while testing the leadership of position i without the need for
testing each position in α−1. A bad cycle can easily be identified by checking if j > i.

I Definition 5. A tail of a cycle is the position that points to its local min leader, i.e., if t is
the tail of a cycle c with local min leader l, then π(t) = l.

The algorithm iterates over the permutation similar to the algorithm in Figure 4, and
invert each cycle only on its local min leader. If a bad cycle α was detected, we modify the
tail of the inverted cycle α−1 to point to the rank of the length of the cycle instead of back
to the leader of the inverted cycle. Note that the tail (π(elbow[0])) can be found by probing
A[elbow[0]] before inverting the cycle.

When pointing to the ranks of the cycles length, we have to use values in the range of 1
to n, otherwise the size of each entry in A may increase to dlgne+ 1 bits and we may end up
using n additional bits. The problem now is that A does not distinguish between pointing to
a cycle length rank, or pointing to a different position in the cycle. This can be solved with
a table T of size O(

√
n lgn) bits that stores the positions of the permutation that point to

its first k positions. T will initially store π−1(1), . . . , π−1(k). It is set by initially traversing
the permutation, then it is updated as cycles are inverted.

While testing for the leadership of a position i, if a position t is found such that π(t) ≤ k,
then t can be checked against T in O(1) time to determine if A[t] points to a cycle length
rank or a position in the cycle. If it is the latter case, we simply continue. Else if it points to
a cycle length rank, abort the procedure IsLocalMinLeader and do not invert the cycle.
If the length traversed so far matches the cycle length stored in L at rank A[t], then the
position i is the local min leader of an already inverted cycle. Restore the cycle by setting
A[t] = i.

The total time spent is O(n lgn), and the space used is O(
√
n lgn+ lg2 n). J

3.2 Reducing Extra Space to O(lg2 n) Bits
Next, we extend the approach presented in the previous subsection to achieve an algorithm for
inverting permutations with O(n lgn) worst case time complexity while using only O(lg2 n)
bits. First we start with some definitions.

Given a permutation π, the depth of a position e ∈ π is the maximum index d such that
πd−1 . . . π2π(e) ∈ Ed.2 For example, the depth of 10 in Figure 2 is 3 since π2π1(10) = 1 ∈ E3
and π3π2π1(10) = 3 /∈ E4. Let c be a cycle in π of size l with local min leader s1. We define
S1 as the following sequence: s1, s2, . . . , sl where si = π(si−1) for i > 1; sl is the tail of the
cycle c. For i > 1, Si is a subsequence of Si−1 formed by the local minima in Si−1 excluding
Si−1’s first and last elements. The limited depth of a position e ∈ π is the maximum index
d such that πd−1 . . . π2π(e) ∈ Sd. The values s1, . . . , si−1 are not needed to evaluate the
limited depth of si, but the values si, . . . , sl are required. The limited depth of a position is
upper bounded by its depth. Notice that the first element in Si is always πi−1 . . . π(s1), since
s1 is the local min leader of c. Moreover, the limited depth d of a cycle’s local min leader
is either unique or shared by at most one other element π−1

1 . . . π−1
d−1(πd . . . π2π(s1)) in the

cycle. The depth and limited depth of a position can be computed in a manner similar to
the procedure IsLocalMinLeader with the same space and time complexity.

2 For the definition of πi where i ∈ {1, . . . , d} check Section 2.
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leader

intersection

tail
← spine →

↙
loop

↘
Figure 6 An example of a broken cycle.

We say that a cycle is broken if its tail points to a position other than its local min leader.
We call this position the broken cycle’s intersection. We define the spine to be the path from
the leader to the intersection, and the loop to be the cycle containing the intersection and
the tail. Figure 6 demonstrates these terms.

Following the algorithm described previously, when a cycle c is detected it is replaced by
its inverse; if c is detected to be a bad cycle, the tail of c−1 is modified to store the limited
depth of c−1’s local min leader k. In that case, the tail of c−1 will be modified to point to
the unique position whose limited depth is the same as k if that position was encountered
before k, thus making c−1 a broken cycle. Finally, c−1 will be restored once k is encountered.
As in the previous subsection, for A to distinguish between pointing to a limited depth, or
pointing to a different position in the cycle we use a table T of size O(lg2 n) bits that stores
the positions of the permutation that point to its first lgn positions.

The algorithm iterates over the permutation. At each position i, it interleaves four scans
F , L , T and H . For every operation run on F , a constant number of operations are run
on L ; and for every operation run on L a constant number of operations are run on T and
H . F is used to determine whether i is the local min leader of its cycle (c or c−1), L is
used to determine the limited depth of i, and T and H are used to determine if i’s cycle
was broken, and to restore it. The T and H scans have two phases:

The first phase is the classic tortoise and hare algorithm for cycle detection. It is used to
check if i’s cycle is broken. T (for tortoise) and H (for hare) both start at position i,
T proceeds at one step per iteration and H proceeds at two steps until they meet at
position j. Phase one will consist of no more than l iterations, where l is the length of i′s
cycle. This is because at each iteration, the forward distance (i.e. the distance from H

to T traversing forward in the cycle) between the two pointers will decrease by one; or if
the cycle was broken, the distance decreases once both pointers enter the broken cycle’s
loop. If one of the scans encounters a limited depth or if i is reachable from j, T and H

are aborted while F and L continue. Otherwise, we know that the cycle is broken and
we proceed to the second phase.
The aim of the second phase is to find the tail of the broken cycle c−1. Let λ be the
length of c−1’s loop, µ be the distance from i to c−1’s intersection, and δ be the distance
from the intersection to j. Denote by dt and dh the distance traveled by the pointers in
T and H respectively. dt = µ+ δ and dh = µ+ kλ+ δ where k ∈ Z+. We know

2dt = dh

2(µ+ δ) = µ+ kλ+ δ

µ = kλ− δ .

Thus, if we reset T ’s pointer to position i, while H remains at j, and as in the first
phase, T proceeds at one step per iteration and H proceeds at two steps: T and H

will meet at c−1’s intersection. Then, c−1’s tail can be found by iterating through c−1’s

ISAAC 2016
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loop till a position that points to the intersection is reached. After finding the tail, the
limited depth of the intersection (which will always be the same as the limited depth of
c−1’s leader) is computed.

The L scan aims to compute the limited depth of position i. To do so, L should identify
the tail of c or c−1. L identifies the tail correctly if it encounters a position storing a limited
depth (then that position is the tail), or if the cycle is broken and the tail is computed
by the T and H scans (as is the case when the cycle is broken and i is on its spine). In
the other cases, the L scan assumes that the tail is the position pointing to i. It returns
a correct value if i is a local min leader, and it may not return a correct value otherwise.
However, returning an incorrect value in the other cases does not affect the correctness of
the algorithm.

The F scan tests whether i is the local min leader of c or c−1. If F encounters a limited
depth or if the scans T and H detect that c−1 is broken, F will behave as if the tail of c−1

points to i. The F scan terminates on one of the following cases:
The first case is F determines that i is not a local min leader. If so, the entire process of
all four scans is aborted.
The second case is F determines the position is a local min leader. Then, two cases can
occur:

If c−1 was broken or a limited depth was encountered, then we know that the cycle
is already inverted. Compare the limited depth of i that is computed by L to the
limited depth stored or computed by T and H . If the two values are equal make the
tail point to i. Alternatively, abort all four scans.
Otherwise, the cycle c is not inverted. Invert c and if it was bad store in its tail the
limited depth of c−1’s local min leader.

Analysis: All four scans use O(lg2 n) extra bits. The time complexity is bounded by the
time complexity of F , since the runtime of L , T and H is at most a constant factor
times the runtime of F . For each cycle c, the time spent by F testing for leadership before
inverting the cycle is O(l lg l) where l is the length of c. Inverting c and properly setting its
tail if it was bad will take O(l) time. After inverting c, if c−1 is bad at most one intermediate
broken cycle can be formed, since the limited depth of the local min leader is unique or
shared by at most one other position. This fact is crucial to our analysis, and it is the reason
why the L scan is introduced. The time spent testing for leadership for indices in c−1 is
divided into the following cases:

c−1 is broken and the position i being tested is in c−1’s loop.
Otherwise either c−1 is broken and i is in the spine, or c−1 is not broken and the tail
stores the limited depth of the leader.

If T does not inspect the tail, then the runtime will be the same as testing whether i
is the local min leader of c−1.
Otherwise, the procedure will test if i is the local min leader of the cycle formed by
pointing the tail of c−1 to i. It will iterate at most 4 times from i to the tail [7]. So,
the time complexity will be at most 4 times the time complexity of testing weather i
is the local min leader of c−1.

In all cases the runtime is bounded by O(l lg l). Thus, the total runtime per cycle is O(l lg l)
and the total runtime for the whole algorithm is O(n lgn).

I Theorem 6. In the worst case, the standard representation of a permutation of length n
can be replaced with its own inverse in O(n lgn) time using O(lg2 n) extra bits of space.
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c = 0 1 2 3

c2 = 0 1 2 3

Figure 7 Raising c to the second power results in two separate cycles.

4 Arbitrary Powers

The kth power of a permutation π is πk defined as follows:

πk(i) =


πk+1(π−1(i)) k < 0
i k = 0
πk−1(π(i)) k > 0

where k is an arbitrary integer. In this section we extend the techniques presented in the
previous section to cover the situation in which the permutation is to be replaced by its kth

power for an arbitrary integer k. We present an algorithm whose worst case running time is
O(n lgn) and uses O(lg2 n+ min{k lgn, n3/4+ε}) additional bits.

Without loss of generality, we assume that k is positive. If k is negative, we invert the
permutation then raise it to the power of −k. Raising a cycle to an arbitrary power can
result in several disjoint cycles as illustrated in Figure 7.

I Lemma 7. Raising a cycle of length l to its kth power, will produce gcd(k, l) cycles each
of length l/gcd(k, l).

Proof. Suppose µ cycles are produced. Since they are all symmetric, they will have the same
length λ. λ is the smallest positive integer such that (πk)λ(i) = πkλ(i) = i, so kλ = cl for an
integer c that is relatively prime with λ. Now

l = λµ

k = cl/λ = cµ,

but c is relatively prime with λ, so µ = gcd(k, l) and λ = l/gcd(k, l). J

Given a cycle, it is not hard to raise the cycle to its kth power while using O(k) words or
O(k lgn) bits. Starting from position i, store i, π(i), π2(i), . . . , πk−1(i) in an array B using
O(k lgn) bits. Replace A[i] with A[πk−1(i)], then replace A[π(i)] with A[πk(i)], and so on until
A[π(i)l−k] is reached where l is the length of the cycle. Replace A[π(i)l−k] till A[π(i)l−1] with
the values stored in B. When the procedure terminates, A[i], A[i+ 1], . . . , A[i+ gcd(k, l)− 1]
will contain a position from each resulting cycle. An algorithm to raise a permutation to its
kth power, will be the same as the algorithm presented in Subsection 3.2, however, the T

scan will raise cycles to their kth power instead of inverting them once they are detected.
Then, it will iterate through every cycle of the resulting gcd(k, l) cycles and compute its
leader to check if it was bad. If so, it computes the limited depth of the leader and store it
in the cycle’s tail.

I Theorem 8. In the worst case, the standard representation of a permutation of length n
can be replaced with its kth power, when k is bounded by some polynomial function of n, in
O(n lgn) time using O(lg2 n+ k lgn) extra bits of space.

Theorem 8 is useful if the value of k is small. In the next subsection, we show how to
power permutations using o(n) extra bits of space.
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4.1 Powering Permutations in O(n lg n) Time Using o(n) Extra Bits
To improve the space complexity, we only have to modify the way we are raising cycles to
their kth power. To raise a cycle to its kth power we first find its length l, then we factorize
k mod l. Since k mod l < l, it can be factored trivially in o(l) time while using little extra
storage.

Next, raise the cycle to the power of every prime factor p separately. Here we have to
distinguish between two cases:

First Case: p and l are relatively prime. We will use the following theorem given by
Rubinstein [13]:

I Theorem 9 (Rubinstein [13], Theorem 4.3). Let gcd(N, a) = 1 and R be a rectangle. Then,
cR(N, a), the number of solutions (x, y) to xy = N mod a with (x, y) lying in the rectangle
R is equal to

area(R)
a2 φ(a) +O(a1/2+ε)

for any ε > 0, where φ is Euler’s totient function.
In particular, there exist a point (x, y) where xy = N mod a in any square R with side

length at least a3/4+ε (R must be larger than a3/2+ε).

In this case gcd(p, l) = 1, so there always exist two integers x, y < l3/4+ε such that xy =
p mod l. To find x and y, do a linear search that takes O(l3/4+ε) time. Then, raise the
cycle to the xth power followed by the yth power using the method described in the previous
subsection. The total runtime is O(l) and the space used is O(l3/4+ε).

Second Case: p divides l. In this case gcd(p, l) = p (since p divides l). We will reduce this
case to the previous one. Modify the permutation π to form the permutation π′ that results
from adding an additional position e to the cycle c in π to form the cycle c′. More formally,
π′ is defined as follows:

Let a be a position in the cycle c; for all positions i ∈ π except π−1(a), π′(i) = π(i).
π′(π−1(a)) = e (where e is a new position).
π′(e) = a.

This modification can be done by storing a and two extra words, where the first word stores
the inverse of a, and the second stores the image of e (π′(e)). Each time the array A is
accessed at an index i, if A[i] is equal to a, i is checked against the first word stored. If they
match, then A[i] points to a otherwise A[i] points to e. Doing this eliminates the need for
increasing the word size.

Let {cij |0 ≤ i < l/p, 0 ≤ j < p} be the positions of c, such that
π(cij) = ci(j+1) if j < p− 1
π(cij) = c(i+1 mod l/p)0 if j = p− 1

Raising c to the power of p will result in p cycles such that the jth cycle cj will contain the
positions {cij |0 ≤ i < l/k}, where πp(cij) = c(i+1 mod l/p)j . The length of c′ is l + 1 and
gcd(l+ 1, p) = 1 (since p divides l), so raising c′ to the pth power will result in only one cycle.

Without loss of generality assume that a = c00. The positions cij satisfying a = πm(cij)
for some m ∈ [1, p− 1] are precisely c((l/p)−1)j where j ∈ [0, p− 1]. Notice that

π′p(cij) = πp(cij) for all cij such that a 6= πm(cij) for all m ∈ [1, p− 1]
π′p(c((l/p)−1)0) = e

π′p(c((l/p)−1)j) = c0(j−1) for 1 ≤ j < p

π′p(e) = c0(p−1)
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c = c00 c01 c10 c11⇒ c′ =
c00 c01 c10 c11 e

⇓
c2 = c00 c10 c01 c11⇐ c′2 = e c01 c11 c00 c10

Figure 8 An illustration of case two.

Thus, if we traverse forward in c′p starting from e, the first p positions are the positions in
cp−1 ordered correctly, and the second p positions are the positions in cp−2, and so on. . .
After modifying π to π′ raise c′ to its pth power. Iterate p positions starting from e, then
set A[c((l/p)−1)(p−1)] to c0(p−1). Recursively raise cp−1 to the power of the rest of the prime
factors. Repeat the same process for the rest of the cycles cp−2, . . . , c0. Each time one of the
resultant gcd(l, k) cycles is reached, find its local min leader and store the limited depth of
the leader in the tail if it is a bad cycle. This process is illustrated in Figure 8.

I Theorem 10. In the worst case, the standard representation of a permutation of length n
can be replaced with its kth power, when k is bounded by some polynomial function of n, in
O(n lgn) time using O(lg2 n+ min{k lgn, n3/4+ε}) extra bits of space.

The space complexity in Theorem 10 can be improved if better factoring is applied. More
precisely, if for any N and a where gcd(N, a) = 1, we can find g(a) factors x1, . . . , xg(a) ≤ f(a)
such that x1x2 . . . xg(a) = N mod a in h(a) time, then we can achieve an algorithm with
running time O((n+ h(n)) lgn+ g(n)n) that uses O(lg2 n+ min{k lgn, f(n) lgn}) extra bits
of space.

Note that given any factoring algorithm as described above, any quadratic non-residue
(mod p) can be factored to factors smaller than f(p). Since at least one of the factors must
also be a quadratic non-residue, this implies that the least quadratic non-residue (mod p) is
smaller than f(p). Thus, reducing f(n) to O(nε) is probably difficult since this improvement
would imply Vinogradov’s conjecture [15] (that the least quadratic non-residue (mod p) lies
below pε).

5 Conclusion

In this paper we presented an algorithm for inverting a permutation that runs in O(n lgn)
worst case time and uses O(lg2 n) additional bits. This algorithm is then extended to an
algorithm for raising a permutation to its kth power that runs in O(n lgn) time and uses
O(lg2 n + min{k lgn, n3/4+ε}) extra bits of space. Both algorithms presented rely on the
cycle’s local min leader presented in [7]. Moreover, they can easily be adapted to utilize any
different cycle leader. A better leader will yield a better algorithm without adding to the
worst case time or space complexity for both problems as well as the problem of permuting
in place [7].
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