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Abstract
We consider the problem of fault-tolerant parallel search on an infinite line by n robots. Starting
from the origin, the robots are required to find a target at an unknown location. The robots can
move with maximum speed 1 and can communicate in wireless mode among themselves. However,
among the n robots, there are f robots that exhibit byzantine faults. A faulty robot can fail to
report the target even after reaching it, or it can make malicious claims about having found the
target when in fact it has not. Given the presence of such faulty robots, the search for the target
can only be concluded when the non-faulty robots have sufficient verification that the target has
been found. We aim to design algorithms that minimize the value of Sd(n, f), the time to find
a target at a distance d from the origin by n robots among which f are faulty. We give several
different algorithms whose running time depends on the ratio f/n, the density of faulty robots,
and also prove lower bounds. Our algorithms are optimal for some densities of faulty robots.
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27:2 Search on a Line by Byzantine Robots

1 Introduction

Searching on a line (also known as a single-lane cow-path or a linear search) problem is
concerned with a robot looking for a target placed at an unknown location on an infinite line;
the robot moves with uniform (constant) speed and can change direction (without any loss in
time) along this line. The ultimate goal is to find the target in optimal time [5]. Searching is
central to many areas of computer science including data structures, computational geometry,
and artificial intelligence. A version of the problem was first posed in 1963 by Bellman [12]
and independently considered in 1964 by Beck [7], where the target was placed according to
a known probability distribution on the real line, the robot was moving with uniform speed,
and the goal was to find the target in minimum expected time.

In this paper, we consider the problem of parallel, co-operative search on the infinite
line by n mobile robots at most f of which are faulty. The target is placed at a distance
unknown to the robots. The robots start at the same time and location and can communicate
instantaneously in wireless mode at any distance on the real line. While searching, the robots
may co-operate by exchanging (broadcasting) messages; however, the search may be impeded
by some of the robots (at most f) which may exhibit byzantine faults. The ultimate goal is
to minimize the time it takes all non-faulty robots to be certain that the correct location of
the target has been found.

1.1 Motion and communication model
To begin, we describe the robots’ locomotive and communication models used in a search
algorithm.

Robots and their trajectories. Robots are assumed to start at a common location, con-
sidered to be the origin of the line. They can move at maximum unit speed either along the
positive direction (described as moving right) or along the negative direction (described as
moving left); any robot can change direction arbitrarily often (by turning) without any loss
in time. An algorithm for parallel search specifies a trajectory unique to each robot that is
given by its turning points, and the speed(s) to follow between turning points. Since each
robot has a distinct identity, it may also follow a distinct trajectory. Robots are assumed
to have full knowledge of all trajectories, and moreover can communicate instantaneously
with each other in wireless mode at any distance. Since robots know all the trajectories, the
only kind of message broadcast by a robot R is whether or not it has found the target at
some location; if R stays silent while visiting some location, the implicit assumption made
by the other robots is that R did not detect the target there. Thus R follows its predefined
trajectory until either it finds the target, in which case it announces that it has found the
target, or it hears some other robot R′ announce that it has found the target, at which
point R may change its trajectory to participate in a verification protocol in regard to the
announcement.

Messages and communication. All n robots know that f of the robots are faulty but they
cannot differentiate in advance which among them are faulty; instead they must distinguish
faulty from non-faulty ones based on conflict resolution and verification of messages received
throughout the communication exchanges taking place during the execution of the search
protocol. To this end, robots are equipped with pairwise distinct identities which they cannot
alter at any time (in that respect our model is similar to the weakly Byzantine agent in [22]).
In addition to the correct identity, the current location of a robot is automatically included
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in any broadcast message sent by the robot. Consequently, a faulty robot that does not
follow its assigned trajectory can be immediately detected as faulty by the other robots, if it
chooses to broadcast at some stage. In all other ways, faulty robots are indistinguishable
from non-faulty (reliable) robots, except that the former can make deliberate positive and
negative detection errors as follows. A non-faulty or reliable robot never lies when it has
to confirm or deny the existence of the target at some location. Contrast this with a faulty
robot that may stay silent even when it detects or visits the target, or may claim that it has
found the target when, in fact, it has not found it. Thus, a reliable robot cannot necessarily
trust an announcement that the target has been found, nor can it be certain that a location -
visited silently by another robot - does not contain the target. In other words, the search
for a target can terminate only after at least one robot that is provably reliable has visited
the target and announced that it has been found. This requirement is critical to all our
algorithms: if at some time, multiple robots make conflicting announcements at a location
then the resulting (conflicting) votes can only be resolved if something is known about the
number of reliable robots that participated in the vote. For instance, if three robots vote
and it is known that two of them are reliable, then the majority vote would be the truth.

1.2 Preliminaries and notation
Consider a parallel search algorithm for a target located at distance d from the origin. First
we define the search time of the algorithm and its corresponding competitive ratio.

I Definition 1 (Search Time). Let Sd(n, f) denote the time it takes for a search algorithm
using a collection of n robots at most f of which are faulty, to find in parallel the location
of a target placed at a distance d (unknown to the robots) from the starting position (the
origin) of the robots on the line.

I Definition 2 (Competitive Ratio). The corresponding competitive ratio is defined as
Sd(n, f)/d, which is the ratio of the algorithm’s search time and the lower bound d on
the time taken by any algorithm for the problem.

For larger values of n and f , it will be more convenient to express our results in terms of
the density, β = f

n , of faulty robots. This leads to the following definition.

I Definition 3 (Asymptotic Competitive Search Ratio). Extend the definition of Sd(n, f)
above to non-integer values of n by replacing n with dne while the parameter f remains
integral. Let β = f

n . Then

Ŝ(β) = min {α | ∃ constant cβ such that ∀f > 0, Sd (f/β + cβ , f) ≤ αd} (1)

denotes the asymptotic competitive search ratio of any algorithm with search time Sd(n, f).

Note that if n ≥ 4f + 2, then in any partition of the robots into two groups each of size
at least 2f + 1, we will always have at least f + 1 reliable (non-faulty) robots per group.
Therefore, an algorithm that sends the corresponding robots in the two groups in opposite
directions is guaranteed to find the target in time d, because when the target is visited by
one of the groups, a straightforward majority vote in the group confirms its presence reliably.
Hence, Sd(4f + 2, f) = d, which is optimal. On the other hand, if n ≤ 2f , there is no
algorithm to complete the search: the f faulty robots may always completely disagree with
the reliable ones, making it impossible to be certain of the location of the target. Therefore,
in the sequel, we examine the interesting case where 2f + 1 ≤ n ≤ 4f + 1.

ISAAC 2016



27:4 Search on a Line by Byzantine Robots

Table 1 Upper and lower bounds on the search time Sd(n, f) for a given number n ≤ 6 of robots
and faults f = 1, 2. Byz UB and Byz LB denote the known upper and lower bound for byzantine
faults while Crash UB and Crash LB denote the known upper and lower bound for crash faults.

n, f Byz. UB Byz. LB Crash-UB Crash-LB
3, 1 9d 3.93d 5.24d 3.76d
4, 1 3d 3d d d

5, 1 2d 2d d d

6, 1 d d d d

5, 2 9d 3.57d 4.43d 3.57d
6, 2 4d 3d d d

Table 2 Upper and lower bounds on the asymptotic competitive search ratio Ŝ(β) for various
ranges of the density β. Note that for β > 1

2 the search problem is impossible to solve.

β ≤ 1
4 ( 1

4 ,
3

10 ] ( 3
10 ,

1
3 ] ( 1

3 ,
5

14 ] ( 5
14 ,

13
34 ] ( 13

34 ,
19
46 ] ( 19

46 ,
47

110 ] ( 47
110 ,

65
146 ] ( 65

146 ,
157
396 ] ( 157

396 ,
1
2 ]

UB 1 2 3 3 4 5 6 7 8 9
LB 1 2 2 3 3 3 3 3 3 3

1.3 Our results
In Section 2, we are concerned mostly with upper bounds. Subsection 2.1 establishes the
guiding principles for the design of algorithms.

We begin our study of upper bounds in Subsection 2.2 by establishing bounds for Sd(n, f)
for specific small values of n and f . These results are summarized in Table 1. For a
comparison, we include in Table 1 known results on the search time for algorithms on the
line with faulty robots that exhibit only crash faults [19], i.e., when the faulty robots never
send any messages.

For larger values of n and f we express our results in terms of the density β = f
n and

show how to extend our algorithms from small values of n and f to this setting. Table 2
summarizes our results from Subsection 2.3.

Subsection 2.4 concludes Section 2 with several intriguing algorithms in that for densities
f
n between 3

10 and 1
3 the resulting search time is between 2d and 3d. In Section 3, we derive

two lower bounds on the search time. All missing proofs are found in the full version of the
paper.

1.4 Related work
A search problem is usually seen as localization of a hidden target using searchers capable to
move in the environment. It is an optimization question, usually attempting to minimize the
time needed to complete the search. The question has been studied in numerous variations
involving static or moving targets, one or many searchers, known or unknown environment,
synchronous or asynchronous settings, different speed agents and many others (cf. [23]).

In several studies, when the environment is not known in advance, search implies
exploration, often involving mapping and localizing searchers within the environment
[2, 3, 21, 24, 26, 30]. However, even for the case of a known, simple environment like
a line, there were several interesting studies attempting to optimize the search time. They
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started with the independent works of Bellman [12] and Beck [7], in which the authors
attempted to minimize the competitive ratio in a stochastic setting. More exactly, they
proved that time 9d is needed to guarantee finding the target situated at a (a priori un-
known) distance d from the origin. Several other works on linear search followed (e.g. see
[4, 7, 8, 9, 10, 11, 12]). More recently the search by a single searcher was studied for different
models, e.g., when the turn cost was considered [20], when the bounds on the distance to the
target are known in advance [14], and when the target was moving or for more general linear
cost functions [13].

Most recently variants of linear search were studied for collections of collaborating
searchers (robots). [16] considered linear group search, when the process is completed when
the target is reached by the last robot visiting it. The robots collaborate attempting to
minimize the group search time. However, [16] shows that having many robots does not help
and the optimal search time is still bounded from below by 9d. Group search using a pair
of robots having distinct maximal speeds was studied in [6], in which techniques producing
optimal search time were designed.

Fault tolerance was studied in distributed computing in various settings in the past (e.g.,
see [25, 28, 29]). However, the subject of unreliability was mainly for static components of
the environment (e.g. network nodes or links), which was sometimes modelled by dynam-
ically evolving environments (cf. [15, 27]). The malfunctions arising to mobile robots were
investigated for various problems of gathering or pattern forming [1, 17, 22, 31] or patrolling
[18]. Recently [19] investigated crash faults of robots performing linear search, where the
time of finding the target by the first reliable robot was optimized. However, dealing with
Byzantine agents is in general more tricky, requiring to identify and to refute the most
malicious adversarial behavior (e.g., see [22]).

2 Upper Bounds

As already observed, if n ≥ 4f+2, linear search can be performed optimally in time d, and no
algorithm exists if n ≤ 2f . Therefore, we consider below the case when 2f + 1 ≤ n ≤ 4f + 1.
Clearly, the robots can always stay together as a group, and perform the doubling zig-zag
strategy that is optimal for a single robot and that has competitive ratio 9 [5, 7]. Since the
reliable robots (at least f + 1) are always in a majority, we are guaranteed to find the target.
This yields the following upper bound:

I Theorem 4. Sd(n, f) ≤ 9d.

In the remainder of this section, we provide upper bounds that, in general, are better
than those suggested by Theorem 4 for the search problem. We do so by identifying and
using some guiding principles to design search algorithms in the presence of faulty robots.

2.1 Principles for the design of algorithms
The general framework of our algorithms involves five basic principles, namely Partition into
Groups, Symmetry of Algorithms, Resolution of Conflicts, Simultaneous Announcements, and
Computations by the Robots, which we describe below in detail.

Partition into Groups. Depending on the ratio of faulty robots, we partition the robots
into a certain number of groups. Two of the groups lead the exploration in opposite direction
from the origin of the line. Further, each of these two groups will have at least f + 1 robots
so that at least some of the robots would announce the target when it is reached.

ISAAC 2016
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Symmetry of Algorithms. The algorithms are symmetric as far as left and right part of the
line is concerned. We therefore typically discuss the behavior of the algorithm with respect
to one side of the line only.

Resolution of Conflicts. If at any time there is an announcement of a target, the robots
in the search groups stop until the claim is resolved. In the meantime, robots from some
other group(s) move to resolve the claim. Once the claim is resolved, either the target is
found and the robots stop, or a certain number of faulty robots is identified. From this time
onward, the algorithm disregards any message from these faulty robots, effectively reducing
the number of faulty robots to contend with, and the groups continue the search. Thus, each
such announcement exposes more of the faulty robots, until eventually, we can be certain of
a majority of robots in each search group being reliable, in which case the remaining search
can be easily finished.

Simultaneous Announcements. When two announcements are being made at the same
time, as usual with wireless transmissions, the algorithm deals only with one of them at
a time, chosen arbitrarily. After the resolution of the first announcement is done and the
search is possibly restarted, the robots redo their observation, and then the announcement is
repeated if needed, thus taking into consideration the situation after the resolution of the
first announcement. We show it does not influence the search time.

Computations by the Robots We assume that the time spent on calculations is negligible
in comparison with the time spent in moving. Thus, we count only the time needed in
movements of the robots until the target is found.

As indicated above, throughout the execution of the algorithms, conflicts will be resolved
by voting. More precisely, we define V (x, t) to be the vote of the robots about position x
at time t. If y robots have claimed that the target is at x at or before time t, while z have
claimed (by visiting and keeping silent) that it is not at x, then we say V (x, t) = (y, z).

I Definition 5 (Conflict). We say there is a conflict at position x at time t if V (x, t) = (y, z),
with 0 < y, z ≤ f .

The following two simple observations are used extensively in the proofs in this section.

I Lemma 6. Let V (x, t) = (y, z), and let f be the number of faulty robots before time t.
Then
1. If y > f then the target is at position x and the search is concluded.
2. If z > f then the target is not at position x and y new faulty robots have been identified

at time t.

I Lemma 7. Suppose at time t, there are f ′ faulty robots remaining, and there are at least
2f ′+ 1 robots at positions ≥ x and at least 2f ′+ 1 robots at positions ≤ −x. Then any target
that is distance d from the origin can be found in time t+ (d− x).

To build intuition, we start with giving algorithms with at most 2 faulty robots, and
later show how to use these techniques to give algorithms with asymptotic ratios for general
values of n and f .
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2.2 Algorithms for n ≤ 6
Since 2f + 1 ≤ n < 4f + 2, there are only two kinds of possible combinations of values with
n ≤ 6: either f = 1 and 3 ≤ n ≤ 5, or f = 2 and 5 ≤ n ≤ 6.

I Proposition 8. Sd(4, 1) ≤ 3d

Proof of Proposition 8. Partition all robots into two search groups, L, and R, with two
robots in each group. Each robot in R (L) moves right (left resp.) at speed 1 until it finds
the target or hears an announcement that the target has been found. Suppose now that
there is an announcement at time x from position x > 0. If V (x, x) = (2, 0), by Lemma 6,
the target has been found at x and the algorithm terminates. Suppose that V (x, x) = (1, 1).
Then one of the robots in L, say A, travels to x to resolve the conflict, taking additional
time 2x, while all other robots remain stationary. At time 3x, the robot A reaches x. If
V (x, 3x) = (2, 1), by Lemma 6, the target has been found, and the algorithm terminates.
If instead V (x, 3x) = (1, 2), then by Lemma 6, the faulty robot is identified, and all other
robots can be inferred to be reliable. Now the search continues with the groups moving in
opposite directions with only the reliable robots being considered, until the target is found.
Notice that an announcement at −x, simultaneous with that at x, would be resolved at time
3x with reliable robots. Therefore, if the target is at d or −d, the time taken to find it is
≤ 3x+ d− x = 2x+ d ≤ 3d since d > x. Thus in all cases, Sd(4, 1) ≤ 3d. J

If the number of robots increases to n = 5 (while f still equals 1), then it is possible
to send two groups of size 2 in opposite directions as in the algorithm above, but keep one
spare robot at the origin for conflict resolution. This improves the search time to at most 2d
since the spare is always at a distance d from a conflicting vote, and moreover, the spare is
definitely reliable since the faulty robot is part of the conflicting vote..

I Proposition 9. Sd(5, 1) ≤ 2d

Note that the cases, (n, f) = (5, 2) or (n, f) = (3, 1), satisfy n = 2f+1, the bare minimum
of robots necessary to guarantee termination. For these cases, it seems very difficult to
improve upon the upper bound on Sd(n, f) ≤ 9d from Theorem 4. In fact, we conjecture
that this best possible for the pairs (5, 2) and (3, 1) stated above.

By ensuring an appropriate redistribution of robots past the announcement of a conflict,
we can show the following result:

I Proposition 10. Sd(6, 2) ≤ 4d.

2.3 Algorithms for large n
We now consider the case of large n, with different values of the density, β = f/n, of faulty
robots. We start with generalizing the results from the previous subsection, then build
recursive techniques that allow us to deal with larger densities of faulty robots, while paying
a price in terms of the search time.

I Theorem 11. Sd
(

10f+4
3 , f

)
≤ 2d, provided that f ≡ 2 mod 3.

Using the fact that Sd(n+ k, f) ≤ Sd(n, f) for any k ≥ 0 and that Ŝ(β) ≤ Ŝ(β′) if β ≤ β′
we can easily derive the following corollary:

I Corollary 12. If β ≤ 3
10 then Ŝ(β) ≤ 2.

ISAAC 2016
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I Theorem 13. Sd
(

14f+4
5 , f

)
≤ 3d provided f ≡ 4 mod 5.

Proof of Theorem 13. Partition the robots into two search groups L and R each containing
7f+2

5 robots. The robots in L move left and those in R move right at speed 1. Without
loss of generality, assume there is an announcement at x at time x. Let V (x, x) = (y, z).
Then if max{y, z} > f , the announcement is resolved using Lemma 6. Suppose instead that
max{y, z} ≤ f . Then min{y, z} ≥ 2f+2

5 and at least 2f+2
5 robots at x are faulty. In this

case, 3f+3
5 robots from L move from −x to x, and at the same time 2f+2

5 robots that voted
yes and 2f+2

5 that voted no are sent from x to −x. At time 3x, in total 2f + 1 robots have
voted at x, and by Lemma 6, either the target is identified, or at least 2f+2

5 faulty robots
are identified at −x and may be disregarded from now on. There are at most 3f−2

5 faulty
robots unidentified. After the exchange of robots and elimination of the faulty robots in the
worst case there are 6f+1

5 robots in L and in R, i.e., a majority of reliable robots in both
search groups. Therefore by Lemma 7, search for a target at distance d can be finished in
time 3x+ d− x ≤ 3d as claimed. Note that all quantities are integral if f ≡ 4 mod 5. J

As above, the following corollary is immediate:

I Corollary 14. If β ≤ 5
14 then Ŝ(β) ≤ 3.

As illustrated in the proofs of Theorems 11 and 13, when an announcement of a target is
made, either the target can be confirmed, or the number of unidentified faulty robots can be
reduced by an exchange of robots between the two search groups. For higher densities of
faulty robots this technique can be repeated, for which we pay by an increase in the search
time. This is the motivation for the recurrence formulas below that are used to obtain search
algorithms for higher densities of robots.

I Definition 15. Let Tx(l, s, r, f) be the minimum search time required by the robots to
find the target given that initially, l robots are located at −x, s robots are at the origin 0, r
robots are at +x, and f robots are faulty.

Since, as in the algorithms described so far, one way to solve our search problem is to
send two equal-sized groups of robots to positions x and −x, we get the following upper
bound.

I Lemma 16. ∀d ≥ x > 0 Sd(n, f) ≤ x+ Tx(n/2, 0, n/2, f). Furthermore, if n/2 ≥ 2f + 1
then Tx(n/2, 0, n/2, f) = d− x.

If there is an announcement at x, we can identify some of the faulty robots, and by paying
a price in terms of additional time, we can reduce it to a new problem with a smaller number
of faulty robots. This can be encapsulated in the following lemma:

I Lemma 17. Let k > 0 be even. Suppose there is an announcement at distance x from the
origin. Then for all a ≥ x, Tx(f + k, 0, f + k, f) ≤ 2x+ Ta(f + k/2, 0, f + k/2, f − k).

Proof of Lemma 17. Assume there are f +k robots each at x and −x, with at most f faulty
robots in all, and that a conflict occurs at x > 0 at some time t. Let V (x, x) = (y, z). Then
k ≤ min{y, z} ≤ max{y, z} ≤ f . Now the robots move as follows:
1. All f + k robots at position x move to −x.
2. f + k/2 of the robots at −x move to x.
Note that these movements take time 2x, and there are now f+k/2 robots at x and f+k/2+k
robots at −x. Since 2f + 3k/2 robots have now visited x, the vote V (x, 3x) is enough to
resolve the conflict, and there remain at most f − k faulty robots among the total 2f + k

robots. This proves the lemma. J
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Lemma 17 along with Theorem 13 can be used to obtain slower algorithms for higher
densities. We have:

I Theorem 18.
1. Ŝ(β) ≤ 5 for β ≤ 19/46.
2. Ŝ(β) ≤ 7 for β ≤ 65/146.

Similar to Lemma 17 the following lemma establishes a recurrence that can be used to
extend Theorem 11 to higher densities (at a cost of a higher competitive ratio).

I Lemma 19. Suppose there is an announcement at distance x from the origin. Then for
all a ≥ x and k ≥ f/4: Tx(f + k, 0, f + k, f) ≤ 2x+ Ta

(
4(f−k)

3 , 2(f−k)
3 , 3k, f − k

)
.

Using a similar argument to that used in Theorem 18 we can apply Lemma 19 and
Theorem 11 to get:

I Theorem 20.
1. Ŝ(β) ≤ 4 for β ≤ 13/34.
2. Ŝ(β) ≤ 6 for β ≤ 47/110.
3. Ŝ(β) ≤ 8 for β ≤ 157/396.

2.4 Algorithms for 3
10 ≤ β < 1

3

Finally we discuss a new class of algorithms for densities of fn between 3
10 and 1

3 whose search
time is between 2d and 3d.

Informally, in any of these algorithms, the robots are partitioned into two search groups,
that move in opposite directions at speed 1, and i middle groups, i odd, i ≥ 3, positioned at
regular intervals between the search groups. These i groups are used to solve any conflict
reached by the search groups. The positioning of the middle groups between the search
groups is achieved by them moving at a fraction of the maximal speed.

When a vote arises that cannot be resolved using Lemma 6, the middle groups are moved
to the point of conflict in sequence at speed 1 until a resolution of the conflict is obtained.
The middle groups not used in the resolution of a conflict on one side can be used to resolve
a conflict on the other side. This approach allows a fine-grain resolution of a conflict by
taking into account the result of the vote each time a group arrives to the conflict point.

I Lemma 21. Let i be an odd integer, i ≥ 3.
Sd( (3i+2)f

i+1 + 2, f)) ≤
(

3− 2
i+1

)
d, provided f ≡ 0 mod (i+ 1).

I Corollary 22.
1. Ŝ(β) ≤ 2.5 for β ≤ 4/13.
2. Ŝ(β) ≤ 2.67 for β ≤ 6/19.
3. Ŝ(β) ≤ 2.75 for β ≤ 8/25.
4. Ŝ(β) ≤ 2.8 for β ≤ 10/31.

3 Lower Bounds

It is straightforward to see that to achieve search time d, 4f + 2 robots are necessary; with
4f + 1 or fewer robots, at time d, either d or −d can be visited by at most 2f robots. The
adversary can make f of these 2f robots faulty, and it is impossible to be certain about the
answer. Formally we can prove the following result.

ISAAC 2016
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I Lemma 23. Sd(5, 1) ≥ 2d.

Proof of Lemma 23. At time d− ε no one has visited d or −d. Consider where the robots
are at this time. It must be the case that one of the intervals (−d, 0) or (0, d) contains at
most 2 robots. Without loss of generality say it is (0, d). Put the target at d. Sort the robots
by distance to d (ties broken arbitrarily) and make the robot closest to d faulty and silent.
Then at least one robot from (−d, 0] must also reach d so that two non-faulty robots can
identify the target at d. Thus, the search time is at least d− ε+ d = 2d− ε. J

The next theorem shows that the density f/n = 3
10 in Theorem 11 is also a lower bound

on this ratio if we want to maintain the search time to be at most 2d.

I Theorem 24. If Sd(n, f) ≤ 2d then f
n ≤

3
10 .

Proof of Theorem 24. Assume on the contrary that nf ≤
10
3 −ε and that there is an algorithm

for solving the search problem in time 2d. Observe the intervals [−d, 0), {0}, (0,+d] at time
d and let us denote by l, r the number of robots within [−d, 0), (0,+d], and by s the number
of robots at the origin 0, respectively. By assumption l + r + s = (10/3− ε)f . Observe that
robots which are located at points different from −d, 0, d at time d may not be helpful in
reducing the 2d search time. Thus, without loss of generality we may assume that at time d
only the points −d, 0,+d are occupied by robots. Without loss of generality assume that
r ≤ l. We derive a contradiction by considering two cases.
1. Either l or r ≥ 4

3f . In this case we have that r+ s = 10
3 f − ε− l ≤

10
3 f − ε−

4
3f = 2f − ε.

Thus, s+ r robots are not sufficient to resolve conflicts on the right possibly involving f
faulty robots within time 2d.

2. Assume that there exists ε > 0 such that both, l, r ≤ ( 4
3 − ε)f . In particular, consider

r ≤ ( 4
3 − ε)f . Consider time d and suppose that up to min{r, 1

3f} of robots at d claim to
find the target. For the algorithm to attain time 2d, robots must be send from the start
position 0 at time d to position d so as to verify the claim. Since among the robots sent
to +d from 0 we could have all remaining faulty robots, the number of robots sent from 0
must be at least 2f + 1− r so that we a decision at time 2d can be made. However, if the
target is not at +d then the adversary could make it so that only 1

3f robots are faulty at
+d from among 2f+1 robots. However, now we have at most 10

3 f−ε−2f−1 = 4
3f−ε−1

robots at 0 or to the left of 0 and still 2
3f faulty robots remain among them. Thus, any

claim of target at −d′ to the left of −d cannot be verified in time 2d′ by the available
robots.

This proves the theorem. J

I Lemma 25. Sd(3f + 1, f) = 3d.

Proof of Lemma 25. The upper bound Sd(3f + 1, f) ≤ 3d has been proved in Theorem 13.
To prove the lower bound Sd(3f + 1, f) ≥ 3d we argue as follows. Consider visits to the set
of symmetric positions {−d,+d} by the robots. In particular, consider the first time t that
at least f + 1 robots complete visits to the second of the positions in the set. For instance,
without loss of generality, assume that position −d is visited first by at least f + 1 robots
and later (or instantaneously) by at least f + 1 robots. Clearly the time t is at least d. The
adversary arranges for a conflict at position +d. Note that unless t ≥ 3d, the sets of robots
visiting the two positions must be disjoint, and hence, the conflict at position +d involves
at most 2f robots participating in a vote, i.e. to resolve the conflict, at least one of the
robots that visited −d must move to +d. It follows that the total time required is at least
t+ 2d ≥ 3d. J
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Note that Lemma 25 implies a lower bound for densities β in the range 1/3 > β > 3/10.
In case n = 3, f = 1, we can show the following lower bound on the search time.

I Lemma 26. Sd(3, 1) ≥ 3.93d.

Proof. (Lemma 26) We start by considering three positive real numbers x, y, α such that

α− 1
2 ≤ x < y ≤ 2

α− 3 and α− 1
2 ≤ y

x
≤ 2
α− 3 . (2)

We will show that an α satisfying Inequalities (2) above is the competitive ratio of all search
algorithms for three robots with one Byzantine fault. Moreover, using Mathematica it can
be shown that the maximum value of α that satisfies (2) is 3.93.

Consider numbers −y, −x, −1, 0, 1, x, y on the real line and the movement of the three
robots with respect to these points. Assume on the contrary the competitive ratio is some
value ρ such that ρ < α. Throughout the arguments below we are using Inequalities (2).

Observe that two robots must visit the points −1, 1 before time α, otherwise we get a
contradiction to the competitive ratio because of Inequality (2). Therefore there exists a
robot, say A, that visited both of these points before time α. Same argument applies for
points −x, x. There exist a robot that visits both points −x, x before time αx. Observe
that this robot cannot be A. Indeed, otherwise it takes either time 2x + 1 to reach point
−1 or time 2 + 3x to reach point x. Let B be the robot that visits both points −x, x before
time αx. Because of the time constraints in Inequalities (2) the robot B must have either
positive trajectory (i.e., visiting x before −x) or negative trajectory (i.e., visiting −x before
x). However, it is easy to see that B cannot have a positive trajectory because it would be
too far to confirm an target placed at −1. This proves the lemma J

4 Discussion

In this paper, we considered a generalization of the well-known cow-path problem by having
the search done in parallel with a group of n robots, with up to f of them being byzantine
faulty. We presented optimal search algorithms for several ranges of values for β = f/n, the
fraction of faulty robots, and gave non-trivial upper and lower bounds in many cases. Several
interesting problems in the setting remain open, the most interesting one being to give tight
upper and lower bounds in the case n = 2f + 1.
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