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Abstract
We study the following problem: with the power of postselection (classically or quantumly), what
is your ability to answer adaptive queries to certain languages? More specifically, for what kind
of computational classes C, we have PC belongs to PostBPP or PostBQP? While a complete
answer to the above question seems impossible given the development of present computational
complexity theory. We study the analogous question in query complexity, which sheds light on
the limitation of relativized methods (the relativization barrier) to the above question.

Informally, we show that, for a partial function f , if there is no efficient1 small bounded-error
algorithm for f classically or quantumly, then there is no efficient postselection bounded-error
algorithm to answer adaptive queries to f classically or quantumly. Our results imply a new
proof for the classical oracle separation PNPO 6⊂ PPO, which is arguably more elegant. They also
lead to a new oracle separation PSZKO 6⊂ PPO, which is close to an oracle separation between
SZK and PP – an open problem in the field of oracle separations.

Our result also implies a hardness amplification construction for polynomial approximation:
given a function f on n bits, we construct an adaptive-version of f , denoted by F , on O(m·n) bits,
such that if f requires large degree to approximate to error 2/3 in a certain one-sided sense, then
F requires large degree to approximate even to error 1/2− 2−m. Our construction achieves the
same amplification in the work of Thaler (ICALP, 2016), by composing a function with O(logn)
deterministic query complexity, which is in sharp contrast to all the previous results where the
composing amplifiers are all hard functions in a certain sense.
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1 Introduction

1.1 Background
The idea of postselection has been surprisingly fruitful in theoretical computer science and
quantum computing [3, 11, 6]. Philosophically, it addresses the following question: if you
believe in the Many-worlds interpretation2 and can condition on a rare event (implemented
by killing yourself after observing the undesired outcomes), then what would you be able
to compute in a reasonable amount of time? The complexity classes PostBPP [12] and
PostBQP [1] are defined to represent the computational problems you can solve with the
ability of postselection in a classical world or a quantum world.

∗ The full version is available at http://arxiv.org/abs/1606.04016.
1 In the world of query complexity, being efficient means using O(polylog(n)) time.
2 https://en.wikipedia.org/wiki/Many-worlds_interpretation
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However, even with that seemingly omnipotent power of postselection, your computational
power is still bounded. It is known that PostBPP ⊆ PH [12], and (surprisingly) PostBQP =
PP [1]. Hence, it seems quite plausible that even with the postselection power, you are still
not able to solve a PSPACE-complete problem, as it is widely believed that PH and PP are
strictly contained in PSPACE.

Another more non-trivial (and perhaps unexpected) weakness of those postselection
computation classes, is their inability to simulate adaptive queries to certain languages.
For example, it is known that PNP[O(logn)]3 is contained in PostBPP [12], and this result
relativizes. But there is an oracle separation between PNP[ω(logn)] and PostBQP [4]. In other
words, there is no relativized PostBQP algorithm that can simulate ω(logn) adaptive queries
to a certain language in NP. In contrast, we know that P‖NP ⊆ PostBPP ⊆ PP [12], hence
they are capable of simulating non-adaptive queries to NP.

Then a natural question follows:

I Question 1.1. What is the limit of the abilities of these postselection classes on simulating
adaptive queries to certain languages? More specifically, is there any characterization of the
complexity class C such that PC is contained in PostBPP or PostBQP?

Arguably, a complete answer to this problem seems not possible at the present time: even
determining whether PNP ⊆ PP is already extremely hard, as showing PNP ⊆ PP probably
requires some new non-relativized techniques, and proving PNP 6⊂ PP implies PH 6⊂ PP,
which is a long-standing open problem.

1.2 Relativization and the analogous question in query complexity
So in this paper, inspired by the oracle separation in [4], we study this problem from a
relativization point of view. Relativization, or oracle separations are ultimately about the
query complexity. Given a complexity class C, there is a canonical way to define its analogue
in query complexity: partial functions which are computable by a non-uniform C machine
with polylog(n) queries to the input. For convenience, we will use Cdt to denote the query
complexity version of C. We adopt the convention that Cdt denotes the query analogue of C,
while Cdt(f) denotes the Cdt complexity of the partial function f .

For a partial function f , we use len(f) to denote its input length. We say a family of
partial functions f ∈ Cdt, if Cdt(f) = O(polylog(len(f))) for all f ∈ f .

In order to study this question in the query complexity setting, given a partial function
f , we need to define its adaptive version.

I Definition 1.2 (Adaptive Construction). Given a function f : D → {0, 1} with D ⊆ {0, 1}M
and an integer d, we define Adaf,d, its depth d adaptive version, as follows:

Adaf,0 := f and
Adaf,d : D ×Dd−1 ×Dd−1 → {0, 1}

Adaf,d(w, x, y) :=
{

Adaf,d−1(x) f(w) = 0
Adaf,d−1(y) f(w) = 1

where Dd−1 denotes the domain of Adaf,d−1.
The input to Adaf,d can be encoded as a string of length (2d+1 − 1) ·M . Thus, Adaf,d is

a partial function from D(2d+1−1) → {0, 1}.

3 O(logn) stands for the P algorithm can only make O(logn) queries to the oracle.
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Then, given a family of partial function f , we define Adaf := {Adaf,d | f ∈ f , d ∈ N}.
Notice that when you have the ability to adaptively solve d+ 1 queries to f (or with high

probability), then it is easy to solve Adaf,d. Conversely, in order to solve Adaf,d, you need
to be able to adaptively answer d+ 1 questions to f , as even knowing what is the right ith
question to answer requires you to correctly answer all the previous i− 1 questions.

Now, everything is ready for us to state the analogous question in query complexity.

I Question 1.3. What is the characterization of the partial functions family f such that
Adaf ∈ PostBPPdt (PostBQPdt)?

There are at least two reasons to study Question 1.3. First, it is an interesting question
itself in query complexity. Second, an answer to Question 1.3 also completely characterizes
the limitation on the relativized techniques for answering Question 1.1, i.e., the limitation of
relativized methods for simulating adaptive queries to certain complexity classes with the
power of postselection.

This paper provides some interesting results toward resolving Question 1.3.

1.3 Our results
Despite that we are not able to give a complete answer to Question 1.3. We provide some
interesting lower bounds showing that certain functions’ adaptive versions are hard for these
postselection classes.

Formally, we prove the following two theorems.

I Theorem 1.4 (Quantum Case). For a family of partial function f , Adaf 6∈ PostBQPdt(PPdt)
if f 6∈ SBQPdt ∩ coSBQPdt.

I Theorem 1.5 (Classical Case). For a family of partial function f , Adaf 6∈ PostBPPdt if
f 6∈ SBPdt ∩ coSBPdt.

Roughly speaking, SBP is a relaxation of BPP, it is the set of languages L such that
there exists a BPP machine M , which accepts x with probability ≥ 2α if x ∈ L; and with
probability ≤ α if x 6∈ L for a positive real number α. And SBQP is the quantum analogue
of SBP, where you are allowed to use a polynomial time quantum algorithm instead.4

Our theorems show that, for a partial function f , if there is no efficient classical (quantum)
algorithm which accepts all the 1-inputs with a slightly better chance than all the 0-inputs,
then there is no efficient PostBPP (PostBQP) algorithm that can answer adaptive queries to
f .

In fact, we prove the following two quantitatively tighter theorems, from which Theorem 1.4
and Theorem 1.5 follows easily.

I Theorem 1.6. Let f be a partial function and T be a non-negative integer. Suppose
d̂eg+(f) > T or d̂eg−(f) > T , then we have

PPdt(Adaf,d) > min(T/4, 2d−1).5

I Theorem 1.7. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function and d be a
non-negative integer. Suppose SBPdt(f) > T or coSBPdt(f) > T , then we have

PostBPPdt(Adaf,d) > min(T/5, (2d − 1)/5).

4 For the formal definitions of SBP, PostBPP, PostBQP, SBQP and their equivalents in query complexity,
see the preliminaries.

ISAAC 2016
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1.4 Applications in oracle separations
Our results have several applications in oracle separations.

A new proof for PNPO 6⊂ PPO:
We prove that SBQPdt(f) is indeed equivalent to one-sided low-weight approximate degree,
denoted by d̂eg+(f) (cf. Definition 2.8), which is lower bounded by one-sided approximate
degree deg+(f) (cf. Definition 1.8).
Using the fact that deg+(ANDn) ≥ Ω(

√
n), Theorem 1.4 implies that AdaAND 6⊂ PPdt,

yielding a simpler proof for the classical oracle separation between PNP and PP in [4].
Our proof is arguably simpler and more elegant. Also, unlike the seemingly artificial
problem ODD-MAX-BIT6 in [4], AdaAND looks like a more natural hard problem in PNP.
The new oracle separation PSZKO 6⊂ PPO :
Since the Permutation Testing Problem, denoted by PTPn (see Problem 2.12 for a
formal definition), satisfies deg+(PTPn) ≥ Ω(n1/3) and has a log(n)-time SZK protocol.
Theorem 1.4 implies that AdaPTP 6⊂ PPdt, which in turn shows an oracle separation
between PSZK and PP.
It has been an open problem [2] that whether there exists an oracle separation between
SZK and PP, our result is pretty close to an affirmative answer to that.7
Also, note that PSZK ⊆ PAM∩coAM = AM ∩ coAM, so our result improves on the oracle
separation between AM ∩ coAM and PP by Vereschchagin [18].

1.5 Applications in hardness amplification for polynomial approximation
Our construction also leads to a hardness amplification theorem for polynomial approximation.
In order to state our result, we need to introduce the definition of two approximate degrees
first.

I Definition 1.8. The ε-approximate degree of a partial function of f : D → {0, 1}, denoted
as d̃egε(f), is the least degree of a real polynomial p such that |p(x)− f(x)| ≤ ε when x ∈ D,
and |p(x)| ≤ 1 + ε when x 6∈ D.

We say a polynomial p one-sided ε-approximates a partial Boolean function f , if p(x) ∈
[0, ε] when f(x) = 0, and p(x) ≥ 1 when f(x) = 1.8 Then the one-sided ε-approximate
degree of a partial function f , denoted by degε+(f), is the minimum degree of a polynomial
one-sided ε-approximating f .

Now we are in a position to state our amplification theorem.

I Theorem 1.9. Let f be a partial function such that deg2/3
+ (f) > T and d be a positive

integer, we have d̃egε(Adaf,d) > T for ε = 0.5− 2−2d+1.

That is, given a function with high one-sided approximate degree for an error constant
bounded away from 1, it can be transformed to a function with high approximate degree
even for ε doubly exponentially close to 1/2 in d.9

6 Given a binary input x, it asks whether the rightest 1 in x is in an odd position.
7 Partially inspired by this work, an oracle separation between SZK and PP (in fact, UPP) has been

constructed in a very recent work of Bouland, Chen, Holden, Thaler and Vasudevan [5], thus resolved
this open problem.

8 Our definition of one-sided approximation is slightly different from the standard one [15, 8, 16], but
it greatly simplifies several discussions in our paper, and they are clearly equivalent up to a linear
transformation in ε.

9 Which is single exponential in the input length of the amplifier AdaQ, see the discussion below.



L. Chen 26:5

Comparison with previous amplification results

There have been a lot of research interest in hardness amplification for polynomial approxim-
ation, many amplification results are achieved through function composition [9, 15, 17]. We
use f ◦ g to denote the block composition of f and g, i.e. f(g, g, . . . , g).

Our result can also be viewed as one of them. Let AdaQd := Adaid,d, where id is just the
identity function from {0, 1} to {0, 1}. Then we can see that in fact Adaf,d is equivalent to
AdaQd ◦ f . Let n = 2d+1 − 1, which is the input length of AdaQd.

However, all the previous amplification results are achieved by letting the amplifier f to
be a hard function. We list all these results for an easy comparison.

In the work of Bun and Tahler [9], they showed that for a function g such that deg+(g) > T ,
d̃egε(ORn ◦ g) > T for ε = 1/2 − 2−Ω(n). This is further improved by Sherstov [15] to
that deg±(ORn ◦ g) = Ω(min(n, T )). Here, the amplifier ORn is a hard function in the
sense that deg+(ORn) ≥ Ω(

√
n) [14].

In [17], Thaler showed that for a function g such that deg+(g) > T , d̃egε(ODD-MAX-BITn
◦ g) > T for ε = 1/2 − 2−Ω(n).10 In this case, the amplifier ODD-MAX-BITn is even
harder in the sense that it has a PPdt query complexity of Ω( 3

√
n) [4].

Moreover, it is easy to see that the randomized query complexity of both ORn and
ODD-MAX-BITn is the maximum possible Ω(n).

In contrast, our amplifier AdaQ, is extremely simple – it has a deterministic query
complexity of O(logn)!11

This is a rather surprising feature of our result. That means AdaQ also has an exact
degree of O(logn). Intuitively, composing with such a simple and innocent function seems
would not affect the hardness of the resulting function. Our result severely contradicts this
intuition. But from the view point of Theorem 1.4, composing with AdaQ indeed “adaptivize”
the function, makes it hard for PostBQP algorithms, which is in turn closely connected to PP
algorithms and therefore polynomial approximate degree. So this result is arguably natural
under that perspective, which illustrates a recurring theme in TCS: a new perspective can
lead to some unexpected results.

1.6 Paper organization
In Section 2 we introduce some preliminaries, due to the space constraints, some of the
formal definitions of those partial function classes in query complexity can be found in the
full version. We prove Theorem 1.4 and Theorem 1.6 in Section 3, and defer the proof for
Theorem 1.5 and Theorem 1.7 to the full version. Theorem 1.9 is proved in Section 3.4. And
we provide formal proofs for the two oracle separation results in the full version.

2 Preliminaries

2.1 Decision trees and quantum query algorithms
A (randomized) decision tree is the analogue of a deterministic (randomized) algorithm in
the query complexity world, and a quantum query algorithm is the analogue of a quantum
algorithm. See [7] for a nice survey on query complexity.

10This construction is further improved in a very recent work [10] by Bun and Thaler, with a more
sophisticated construction which does not follow the composition paradigm.

11A simple O(logn)-query algorithm just follows from the definition.

ISAAC 2016
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Let T be a randomized decision tree, we use C(T ) to denote the maximum number of
queries incurred by T in the worst case12. Let Q be a quantum query algorithm, we use
C(Q) to denote the number of queries taken by Q.

We assume a randomized decision tree T (or a quantum query algorithm Q) outputs a
result in {0, 1}, and we use T (x) (Q(x)) to denote the (random) output of T (Q) given an
input x.

2.2 Complexity classes and their query complexity analogues
We assume familiarity with some standard complexity classes like PP. Due to space con-
straint, we only introduce the most relevant classes A0PPdt and PPdt here, and defer the
formal definitions of the partial function complexity classes SBPdt, SBQPdt, PostBPPdt and
PostBQPdt to the full version.

Recall that Cdt is the set of the partial function family f with Cdt(f) = O(polylog(len(f)))
for all f ∈ f , hence we only need to define Cdt(f) for a partial function f .

PPdt

We first define PPdt(f).

I Definition 2.1. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. Let T be a
randomized decision tree which computes f with a probability better than 1/2. Let α be the
maximum real number such that

Pr[T (x) = f(x)] ≥ 1
2 + α

for all x ∈ D.
Then we define PPdt(T ; f) := C(T )+log2(1/α), and PPdt(f) as the minimum of PPdt(T ; f)

over all T computing f with a probability better than 1/2.

A0PP and A0PPdt

In this subsection we review the definition of A0PP, and define its analogue in query
complexity. There are several equivalent definitions for A0PP, we choose the most convenient
one here.

I Definition 2.2. A0PP (defined by Vyalyi [19]) is the class of languages L ⊆ {0, 1}∗ for
which there exists a BPP machine M and a polynomial p, such that for all inputs x:
(i) x ∈ L =⇒ Pr [M (x) accepts] ≥ 1

2 + 2−p(|x|).
(ii) x /∈ L =⇒ Pr [M (x) accepts] ∈

[ 1
2 ,

1
2 + 2−p(|x|)−1].

I Definition 2.3. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. We say a
randomized decision tree T A0PP-computes f if there is a real number α > 0 such that

Pr[T (x) = 1] ≥ 1/2 + 2α when f(x) = 1.
Pr[T (x) = 1] ∈ [1/2, 1/2 + α] when f(x) = 0.

Fix a T A0PP-computing f , let α be the maximum real number satisfying above conditions.
Then we define A0PPdt(T ; f) = C(T ) + log2(1/α) for T A0PP-computing f and A0PPdt(f)
as the minimum of A0PPdt(T ; f) over all T A0PPdt-computing f . And we simply let
coA0PPdt(f) := A0PPdt(¬f).

12 i.e. the maximum height of a decision tree in the support of T
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Two relativized facts

We also introduce two important relativized results here. In [1], Aaronson showed that
PostBQP is indeed PP in disguise.

I Theorem 2.4 ([1]). PostBQP = PP.

And in [13], Kuperberg showed that SBQP is in fact equal to A0PP.

I Theorem 2.5 ([13]). SBQP = A0PP.

These two theorems relativize, hence we have the following corollaries.

I Corollary 2.6. SBQPdt = A0PPdt.

I Corollary 2.7. PostBQPdt = PPdt.

2.3 Low-weighted one-sided approximate degree
In this subsection, we introduce a new notion of one-sided approximate degree, which is
closely connected to A0PPdt(f).

I Definition 2.8. Write a polynomial p(x) :=
∑m
i=1 ai ·Mi(x) as a sum of monomials, we

define weight(p) :=
∑m
i=1 |ai|. The one-sided low-weight ε-approximate degree of a partial

function f denoted by d̂eg
ε

+(f), is defined by

d̂eg
ε

+(f) := min
p

max{deg(p), log2(weight(p))},

where p goes over all polynomials which one-sided ε-approximates f .13

We simply let d̂eg
ε

−(f) := d̂eg
ε

+(¬f). We also define d̂eg+(f) as d̂eg
1/2
+ (f). d̂eg− is

defined similarly.

Clearly d̂eg
ε

+(f) ≥ degε+(f). And the choice of constant 1/2 is arbitrary, as we can reduce
the approximation error by the following lemma.

I Lemma 2.9. For any 0 < ε1 < ε2 < 1, d̂eg
ε1

+ (f) ≤
⌈

ln ε−1
1

ln ε−1
2

⌉
· d̂eg

ε2

+ (f).

Proof. We can just take the
⌈

ln ε−1
1

ln ε−1
2

⌉th
power of the polynomial corresponding to d̂eg

ε2

+ (f). J

We show that d̂eg+(f) is in fact equivalent to A0PPdt(f) up to a constant factor.

I Theorem 2.10. Let f be a partial function, then

d̂eg+(f) ≤ 2 · A0PPdt(f) and A0PPdt(f) ≤ 2 · d̂eg+(f) + 2.

The proof is based on a simple transformation between a decision tree and the polynomial
representing it, we defer the details to the full version.

And the following corollary follows from the definitions.

I Corollary 2.11. Let f be a partial function, then

d̂eg−(f) ≤ 2 · coA0PPdt(f) and coA0PPdt(f) ≤ 2 · d̂eg−(f) + 2.

13Recall that a polynomial p one-sided ε-approximates a partial Boolean function f , if p(x) ∈ [0, ε] when
f(x) = 0, and p(x) ≥ 1 when f(x) = 1 as in Definition 1.8.

ISAAC 2016
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2.4 The permutation testing problem
Finally, we introduce the permutation testing problem.

I Problem 2.12 (Permutation Testing Problem or PTP). Given black-box access to a function
f : [n]→ [n], and promised that either
(i) f is a permutation (i.e., is one-to-one), or
(ii) f differs from every permutation on at least n/8 coordinates.

The problem is to accept if (i) holds and reject if (ii) holds.
Assume n is a power of 2, we use PTPn to denote the Permutation Testing Problem

on functions from [n] → [n]. PTPn can be viewed as a partial function D → {0, 1} with
D ⊆ {0, 1}n·log2 n.

3 Proof for the quantum case

In this section we prove Theorem 1.4 and Theorem 1.6.
Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function, we say a polynomial p on M

variables computes f , if p(x) ≥ 1 whenever f(x) = 1, and p(x) ≤ −1 whenever f(x) = 0.

3.1 Existence of the hard distributions
In this subsection we show that if d̂eg+(f) is large, there must exist some input distributions
witness this fact in a certain sense.

I Lemma 3.1. Let f be a partial function and T be a non-negative integer. For convenience,
we say a polynomial p is valid, if it is of degree at most T , and satisfies weight(p) ≤ 2T .

If d̂eg
2/3
+ (f) > T , there exist two distributions D0 and D1 supported on f−1(0) and f−1(1)

respectively, such that

−p(D0) > 2 · p(D1),

where p(D) = Ex∼D[p(x)], for all valid polynomial p computing f .

In order to establish the above lemma, we need the following simple lemma.

I Lemma 3.2. For any valid polynomial p computing f , if d̂eg
2/3
+ (f) > T , then there exist

x ∈ f−1(0) and y ∈ f−1(1) such that −p(x) > 2 · p(y).

The proof is based on a simple calculation, the details can be found in the full version.
Then we prove Lemma 3.1.

Proof of Lemma 3.1. By Lemma 3.2, we have

min
p

max
(x,y)∈f0×f1

−p(x)− 2 · p(y) > 0,

where p is a valid polynomial which computes f , f0 := f−1(0) and f1 := f−1(1). By the
minimax theorem, and note that all the valid polynomials form a compact convex set, there
exists a distribution Dxy on f0 × f1 such that for any valid polynomial p computing f , we
have

E(x,y)∼Dxy
[−p(x)− 2 · p(y)] > 0.

Then we simply let D0 (D1) be the marginal distribution of Dxy on f0 (f1), which completes
the proof. J
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And the following corollary follows by the definition of d̂eg−.

I Corollary 3.3. Let f be a partial function and T be a non-negative integer, if d̂eg
2/3
− (f) > T ,

then there exist two distributions D0 and D1 supported on f−1(0) and f−1(1) respectively,
such that for all valid polynomial p computing f ,

p(D1) > −2 · p(D0).

3.2 Proof for Theorem 1.4 and Theorem 1.6
We first show Theorem 1.6 implies Theorem 1.4.

Proof of Theorem 1.4. Suppose f 6∈ SBQPdt, the case that f 6∈ coSBQPdt is similar.
By Corollary 2.6 and Theorem 2.10, there exists a sequence of function {fi}∞i=1 ⊆

f such that d̂eg+(fi) > log(len(fi))i. Then we consider the partial function sequence
{Adafi,dlog(len(fi))e}∞i=1 ⊆ Adaf .

By Theorem 1.6, we have

PPdt(Adafi,dlog(len(fi))e) > min(log(len(fi))i/4, len(fi)/2).

Note that len(Adafi,dlog(len(fi))e) ≤ 2 · len(fi)2, we can see Adaf /∈ PPdt due to the above
partial function sequence. J

Now, we are going to prove Theorem 1.6. We begin by introducing some consequences of
a function having low PPdt complexity.
I Lemma 3.4. Let f be a partial function, T be a positive integer. Suppose PPdt(f) ≤ T ,
then there exists a degree T -polynomial p computing f and satisfying weight(p) ≤ 22T .

The proof is based on a direct analysis of the polynomial representing the decision tree
for PPdt(f), we defer the details to the full version.

Our proof relies on the following two key lemmas.

I Lemma 3.5. Let f be a partial function with d̂eg
2/3
+ (f) > T . Then for each integer d, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that −p(D0) > 22d · p(D1) for any degree-T polynomial p computing Adaf,d and satisfying
weight(p) ≤ 2T .

I Lemma 3.6. Let f be a partial function with d̂eg
2/3
− (f) > T . Then for each integer d, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that p(D1) > −22d · p(D0) for any degree-T polynomial p computing Adaf,d and satisfying
weight(p) ≤ 2T .

We first show these two lemmas imply Theorem 1.6 in a straightforward way.

Proof of Theorem 1.6. We prove the case when d̂eg+(f) > T first.
Otherwise, suppose PPdt(Adaf,d) ≤ min(T/4, 2d−1). By Lemma 3.4, we have a degree-

T/4 polynomial p computing Adaf,d with weight(p) ≤ min(2T/2, 22d). From Lemma 2.9,
d̂eg+(f) = d̂eg

1/2
+ (f) ≤ 2 · d̂eg

2/3
+ (f), hence d̂eg

2/3
+ (f) > T/2. Then by Lemma 3.5, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that −p(D0) > 22d · p(D1) as p is of degree at most T/4 and satisfies weight(p) ≤ 2T/2.

But this means that −p(D0) > 22d , which implies there exists an x such that p(x) < −22d ,
therefore weight(p) > 22d , contradiction.

The case when d̂eg−(f) > T follows exactly in the same way by using Lemma 3.6 instead
of Lemma 3.5. J
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3.3 Proof for Lemma 3.5
Finally we prove Lemma 3.5. The proof for Lemma 3.6 is completely symmetric using
Corollary 3.3 instead of Lemma 3.1.

Proof of Lemma 3.5. Recall that a polynomial p is valid, if it is of degree at most T , and
satisfies weight(p) ≤ 2T . Let fd := Adaf,d and Dd be the domain of fd. We are going to
construct these distributions Dd0 ’s and Dd1 ’s by an elegant induction.

Construction of D0 and D1 from Lemma 3.1. By Lemma 3.1 there exist two distributions
D0 and D1 supported on f−1(0) and f−1(1) respectively, such that −p(D0) > 2 · p(D1) for
all valid polynomial p computing f .

The base case: construction of D0
0 and D0

1. For the base case d = 0, as f0 is just f , we
simply set D0

0 = D0 and D0
1 = D1. Then for all valid polynomial p computing f0, we have

−p(D0
0) > 2 · p(D0

1) = 220 · p(D0
1).

Construction of Dd
0 and Dd

1 for d > 0. When d > 0, suppose that we have already
constructed the required distributions Dd−1

0 and Dd−1
1 for fd−1. Decompose the input to fd

as (w, x, y) ∈ D ×Dd−1 ×Dd−1 as in the definition, we claim that

Dd0 = (D0,Dd−1
0 ,Dd−1

0 )14 and Dd1 = (D1,Dd−1
1 ,Dd−1

1 )

satisfy our conditions.

Analysis of Dd
0 and Dd

1 . Note that Dd
i is supported on f−1

d (i) for i ∈ {0, 1} from the
definition. Let p(w, x, y) be a valid polynomial computing fd. We set

p(Dw,Dx,Dy) := Ew∼Dw,x∼Dx,y∼Dy
[p(w, x, y)]

for simplicity, where Dw,Dx,Dy are distributions over D,Dd−1, Dd−1 respectively.
Then we have to verify that for all valid polynomial p computing fd,

−p(Dd0) = −p(D0,Dd−1
0 ,Dd−1

0 ) > 22d

· p(D1,Dd−1
1 ,Dd−1

1 ) = 22d

· p(Dd1).

We proceed by incrementally changing (D0,Dd−1
0 ,Dd−1

0 ) into (D1,Dd−1
1 ,Dd−1

1 ), and
establish inequalities along the way.

Step 1: (D0, Dd−1
0 , Dd−1

0 ) ⇒ (D0, Dd−1
1 , Dd−1

0 ). By the definition, we can see that
for any fixed W ∈ support(D0) and Y ∈ support(Dd−1

0 ), the polynomial in x defined
by pL(x) := p(W,x, Y ) is a valid polynomial computing fd−1, hence −pL(Dd−1

0 ) > 22d−1 ·
pL(Dd−1

1 ). By linearity, we have

−p(D0,Dd−1
0 ,Dd−1

0 ) > 22d−1
· p(D0,Dd−1

1 ,Dd−1
0 ).

Step 2: (D0, Dd−1
1 , Dd−1

0 ) ⇒ (D1, Dd−1
1 , Dd−1

0 ). Similarly, for any fixedX ∈ support(Dd−1
1 )

and Y ∈ support(Dd−1
0 ), by the definition, we can see that the polynomial in w defined

by pM (w) := −p(w,X, Y ) is a valid polynomial computing f , hence −pM (D0) > 2 · pM (D1).
Again by linearity, we have

p(D0,Dd−1
1 ,Dd−1

0 ) > −2 · p(D1,Dd−1
1 ,Dd−1

0 ) > −p(D1,Dd−1
1 ,Dd−1

0 ).
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Step 3: (D1, Dd−1
1 , Dd−1

0 ) ⇒ (D1, Dd−1
1 , Dd−1

1 ). Finally, for any fixedW ∈ support(D1)
and X ∈ support(Dd−1

1 ), the polynomial in y defined by pR(y) := p(W,X, y) is a polynomial
computing fd−1, hence −pR(Dd−1

0 ) > 22d−1 · pR(Dd−1
1 ). By linearity, we have

−p(D1,Dd−1
1 ,Dd−1

0 ) > 22d−1
· p(D1,Dd−1

1 ,Dd−1
1 ).

Putting the above three inequalities together, we have

−p(Dd0) = −p(D0,Dd−1
0 ,Dd−1

0 ) > 22d

· p(D1,Dd−1
1 ,Dd−1

1 ) = 22d

· p(Dd1).

This completes the proof. J

3.4 Application in hardness amplification for polynomial approximation

In this subsection, we slightly adapt the above proof in order to show Theorem 1.9.
For a polynomial p on n variables, let ‖p‖∞ := maxx∈{0,1}n |p(x)|. Lemma 3.5 shows

that, fix a partial function f with d̂eg+(f) > T , then for any polynomial computing Adaf,d
with weight(p) ≤ 2T , we must have ‖p‖∞ > 22d . The restriction on weight(p) is essential for
us to establish the connection between A0PPdt and d̂eg+, but it becomes troublesome when
it comes to proving a hardness amplification result.

Luckily, we can get rid of the restriction on weight(p) by making a stronger assumption
that deg+(f) > T . Formally, we have the following analogous lemma for Lemma 3.5.

I Lemma 3.7. Let f be a partial function with deg2/3
+ (f) > T . Then for each integer d, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that for any degree-T polynomial p computing Adaf,d, −p(Dd0) > 22d · p(Dd1) and consequently
‖p‖+∞ > 22d .

Proof. Using nearly the same proof for Lemma 3.1, we can show that for a partial function
f , if deg2/3

+ (f) > T , there exist two distributions D0 and D1 supported on f−1(0) and f−1(1)
respectively, such that −p(D0) > 2 · p(D1) for all degree-T polynomial p computing f . Then
we can proceed exactly as in the proof for Lemma 3.5 to get the desired distributions. J

Finally, we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let F := Adaf,d. Suppose otherwise d̃egε(F ) ≤ T for ε = 0.5 −
2−2d+1. Then there exists a polynomial p such that ‖p‖∞ ≤ 1 + ε, p(x) ≤ 0.5− 2−2d+1 when
F (x) = 0, and p(x) ≥ 0.5 + 2−2d+1 when F (x) = 1.

Then we define polynomial q(x) := (p(x)− 0.5) · 22d−1. It is easy to see q(x) computes F .
Also, we have ‖q‖∞ ≤ (‖p‖∞ + 0.5) · 22d−1 < 22d , which contradicts Lemma 3.7, and this
completes the proof. J
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