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Abstract
Let S be a finite set of points in the plane that are in convex position. We present an algorithm
that constructs a plane 3+4π

3 -spanner of S whose vertex degree is at most 3. Let Λ be the
vertex set of a finite non-uniform rectangular lattice in the plane. We present an algorithm that
constructs a plane 3

√
2-spanner for Λ whose vertex degree is at most 3. For points that are in

the plane and in general position, we show how to compute plane degree-3 spanners with a linear
number of Steiner points.
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1 Introduction

Let S be a finite set of points in the plane. A geometric graph is a graph G = (S,E) with
vertex set S and edge set E consisting of line segments connecting pairs of vertices. The
length (or weight) of any edge (p, q) in E is defined to be the Euclidean distance |pq| between
p and q. The length of any path in G is defined to be the sum of the lengths of the edges on
this path. For any two vertices p and q of S, their shortest-path distance in G, denoted by
|pq|G, is a minimum length of any path in G between p and q. For a real number t > 1, the
graph G is a t-spanner of S if for any two points p and q in S, |pq|G ≤ t|pq|. The smallest
value of t for which G is a t-spanner is called the stretch factor of G. A large number of
algorithms have been proposed for constructing t-spanners for any given point set; see [18].

∗ Supported by NSERC.
† Supported by NSERC.
‡ Supported by NSERC.
§ Supported by the ANR DESCARTES Project.
¶ Supported by NSERC.
‖ Supported by NSERC.

© Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, Anil Maheshwari, and
Michiel Smid;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 Towards Plane Spanners of Degree 3

A plane spanner is a spanner whose edges do not cross each other. Chew [7] was the first
to prove that plane spanners exist. Chew proved that the L1-Delaunay triangulation of a
finite point set has stretch factor at most

√
10 ≈ 3.16 (observe that lengths in this graph are

measured in the Euclidean metric). In the journal version [8], Chew proves that the Delaunay
triangulation based on a convex distance function defined by an equilateral triangle is a
2-spanner. Dobkin et al. [11] proved that the L2-Delaunay triangulation is a t-spanner for
t = π(1+

√
5)

2 ≈ 5.08. Keil and Gutwin [16] improved the upper bound on the stretch factor
to t = 4π

3
√

3 ≈ 2.42. This was subsequently improved by Cui et al. [9] to t = 2.33 for the case
when the point set is in convex position. Currently, the best result is due to Xia [19], who
proved that t is less than 1.998. For points that are in convex position the current best upper
bound on the stretch factor of plane spanners is 1.88 that was obtained by Amani et al. [1].
Regarding lower bounds, by considering the four vertices of a square, it is obvious that a
plane t-spanner with t <

√
2 does not exist. Mulzer [17] has shown that every plane spanning

graph for the vertices of a regular 21-gon has stretch factor at least 1.41611. Dumitrescu and
Ghosh [13] improved the lower bound to 1.4308 for the vertices of a regular 23-gon.

The degree of a spanner is its maximum vertex degree. Das and Heffernan [10] showed the
existence of spanners of maximum degree 3. Moreover, 3 is the lower bound on the maximum
degree of a t-spanner, for any constant t > 1, because a Hamiltonian path through a set of
points arranged in a grid has unbounded stretch factor; see [18] for more details. Even for
points that are in convex position, 3 is a lower bound on the degree (see Kanj et al. [15]).

The problem of constructing bounded-degree spanners that are plane and have small
stretch factor has received considerable attention (e.g., see [5, 6, 15]). Bonichon et al. [5]
proved the existence of a degree 4 plane spanner with stretch factor 156.82. A simpler
algorithm by Kanj et al. [15] constructs a degree 4 plane spanner with stretch factor 20; for
points that are in convex position, this algorithm gives a plane spanner of degree at most
3 with the same stretch factor. Dumitrescu and Ghosh [12] considered plane spanners for
uniform grids. For the infinite uniform square grid, they proved the existence of a plane
spanner of degree 3 whose stretch factor is at most 2.607; the lower bound is 1 +

√
2.

In this paper we consider bounded-degree plane spanners. In Section 3 we present an
algorithm that computes a plane 3+4π

3 ≈ 5.189-spanner of degree 3 for points in convex
position. In Section 4 we consider finite non-uniform rectangular grids; we present an
algorithm that computes a degree 3 plane spanner whose stretch factor is at most 3

√
2 ≈ 4.25.

In Section 5 we show that any plane t-spanner for points in the plane that are in general
position, can be converted to a plane (t+ ε)-spanner of degree at most 3 that uses a linear
number of Steiner points, where ε > 0 is an arbitrary small constant.

2 Preliminaries

For any two points p and q in the plane let pq denote the line segment between p and q,
`(p, q) denote the line passing through p and q, R(p→q) denote the ray emanating from p

and passing through q, and let D(p, q) denote the closed disk that has pq as a diameter.
Moreover, let L(p, q) denote the lune of p and q, which is the intersection of the two closed
disks of radius |pq| that are centered at p and q.

Let S be a finite and non-empty set of points in the plane. We denote by CH(S) the
boundary of the convex hull of S. The diameter of S is the largest distance among the
distances between all pairs of points of S. Any pair of points whose distance is equal to the
diameter is called a diametral pair. Each point of diametral pair is called a diametral point.
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Algorithm 1 Matching(C1, C2)
Input: Linearly separated chains C1 and C2 with the vertices of C1 ∪C2 in convex position.
Output: A matching between the points of C1 and the points of C2.

1: if C1 = ∅ or C2 = ∅ then return ∅
2: (a, b)← a closest pair of vertices between C1 and C2 such that a ∈ C1 and b ∈ C2
3: C ′1, C

′′
1 ← the two chains obtained by removing a from C1

4: C ′2, C
′′
2 ← the two chains obtained by removing b from C2

5: return {ab} ∪Matching(C ′1, C ′2) ∪Matching(C ′′1 , C ′′2 )

I Observation 1. Let S be a finite set of at least two points in the plane, and let {p, q} be
any diametral pair of S. Then, the points of S lie in L(p, q).

I Theorem 2 (See Theorem 7.11 in [3]). If C1 and C2 are convex polygonal regions with
C1 ⊆ C2, then the length of the boundary of C1 is at most the length of the boundary of C2.

I Lemma 3 (Amani et al. [1]). Let a, b, and c be three points in the plane, and let β = ∠abc.
Then, |ab|+|bc||ac| 6 1

sin(β/2) .

I Lemma 4 (Proof in the full version of the paper [4]). Let a and b be two points in the plane.
Let c be a point that is on the boundary or in the interior of L(a, b). Then, ∠acb > π

3 .

3 Plane Spanners for Points in Convex Position

In this section we consider degree-3 plane spanners for points that are in convex position.
Let S be a finite set of points in the plane that are in convex position. Consider the two
chains that are obtained from CH(S) by removing any two edges. Let τ be the larger stretch
factor of these two chains. In Section 3.1 we present an algorithm that computes a plane
(2τ + 1)-spanner of maximum degree 3 for S. Based on that, in Section 3.2 we show how to
compute a plane 3+4π

3 -spanner of maximum degree 3 for S. Moreover, we show that if S is
centrally symmetric, then there exists a plane (π + 1)-spanner of degree 3 for S.

3.1 Spanner for Convex Double Chains
Let C1 and C2 be two chains of points in the plane that are separated by a straight line. Let
S1 and S2 be the sets of vertices of C1 and C2, respectively, and assume that S1 ∪ S2 is in
convex position. Let τ be a real number. In this section we show that if the stretch factor of
each of C1 and C2 is at most τ , then there exists a plane (2τ + 1)-spanner for S1 ∪ S2 whose
maximum vertex degree is 3.

In order to build such a spanner, we join C1 and C2 by a set of edges that form a matching.
Thus, the spanner consists of C1, C2, and a set E of edges such that each edge has one
endpoint in C1 and one endpoint in C2. The set E is a matching, i.e., no two edges of E are
incident to a same vertex. We show how to compute E recursively. Let (a, b) be the closest
pair of vertices between C1 and C2; see Figure 1. Add this closest pair (a, b) to E. Then
remove (a, b) from C1 and C2, and recurse on the two pairs of chains obtained on each side
of `(a, b). Stop the recursion as soon as one of the chains is empty. Given C1 and C2, the
algorithm Matching computes a set E.

I Theorem 5. Let C1 = (S1, E1) and C2 = (S2, E2) be two linearly separated chains of
points in the plane, each with stretch factor at most τ , such that S1 ∪ S2 is in convex

ISAAC 2016
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Figure 1 Illustration of the proof of Theorem 5.

position. Let E be the set of edges returned by algorithm Matching(C1, C2). Then, the
graph G = (S1 ∪ S2, E1 ∪E2 ∪E) is a plane (2τ + 1)-spanner for S1 ∪ S2 in which the degree
of each endpoint of C1 and C2 is at most 2 and every other vertex has degree at most 3.

In the rest of this section we prove Theorem 5. The degree and planarity constraints follows
from the algorithm. However, in the full version of the paper [4] we prove these constraints
by induction. Now, we prove that the stretch factor of G is at most 2τ + 1. The proof is by
induction on min{|S1|, |S2|}. As for the base cases, if |S1| = 0, then G = C2 is a τ -spanner.
If |S2| = 0, then G = C1 is a τ -spanner. Assume |S1| > 1 and |S2| > 1. Let ` be a line that
separates C1 and C2. Without loss of generality assume ` is horizontal, C1 is above `, and
C2 is below `. Let (a, b) be the pair of vertices selected by algorithm Matching, where (a, b)
is a closest pair of vertices between C1 and C2 such that a ∈ C1 and b ∈ C2.
Let C ′1 and C ′′1 be the left and right sub-chains of C1, respectively, that are obtained by
removing a; see Figure 1. We obtain C ′2 and C ′′2 similarly. Let G′ (resp. G′′) be the spanner
obtained for the vertices of C ′1 and C ′2 (resp. C ′′1 and C ′′2 ). By the induction hypothesis, G′
(resp. G′′) is a (2τ + 1)-spanner for the vertices of C ′1 ∪ C ′2 (resp. C ′′1 ∪ C ′′2 ).

We are going to prove that for any two points u, v ∈ S1 ∪S2 we have |uv|G 6 (2τ + 1)|uv|.
If both u and v belong to S1, or both belong to S2, then |uv|G 6 τ |uv|; this is valid because
each of C1 and C2 has stretch factor at most τ . Assume u ∈ S1 and v ∈ S2. If u, v ∈ G′ or
u, v ∈ G′′ then, by the induction hypothesis, |uv|G 6 (2τ + 1)|uv|. Thus, it only remains to
prove |uv|G 6 (2τ + 1)|uv| for the following cases: (a) u = a and v ∈ C2, (b) u ∈ C1 and
v = b, (c) u ∈ C ′1 and v ∈ C ′′2 , and (d) u ∈ C ′′1 and v ∈ C ′2. Because of symmetry we only
prove items (a) and (c). The proofs are given in the following two lemmas.

I Lemma 6. If u = a and v ∈ C2, then |uv|G 6 (2τ + 1)|uv|.

Proof. Note that |av|G 6 |ab|+ |bv|C2 6 |av|+ τ |bv|, where the second inequality is valid
since |ab| 6 |av|, by our choice of (a, b), and since |bv|C2 6 τ |bv|, given that the stretch factor
of C2 is at most τ . It remains to prove that |bv| 6 2|av|. By the triangle inequality we have
|bv| 6 |ab|+ |av|. Since |ab| 6 |av|, we have |bv| 6 2|av|. J

I Lemma 7. If u ∈ C ′1 and v ∈ C ′′2 , then |uv|G 6 (2τ + 1)|uv|.

Proof. Since S is in convex position, the polygon Q formed by u, a, v, and b is convex and
its vertices appear in the order u, a, v, b. Note that

|uv|G 6 |ua|C1 + |ab|+ |bv|C2 6 τ |ua|+ |uv|+ τ |bv| = |uv|+ τ(|ua|+ |bv|),

where the second inequality is valid since |ab| 6 |uv|, by our choice of (a, b), and since
|ua|C1 6 τ |ua| and |bv|C2 6 τ |bv|, given that the stretch factor of each of C1 and C2 is at
most τ . It remains to prove that |ua|+ |bv| 6 2|uv|. Let c be the intersection point of ab and
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uv; see Figure 1. By the triangle inequality, we have |ua| 6 |uc|+ |ca| and |bv| 6 |bc|+ |cv|.
It follows that |ua|+ |bv| 6 |uv|+ |ab|. Since |ab| 6 |uv|, we have |ua|+ |bv| 6 2|uv|. This
completes the proof. J

3.2 Spanner for Points in Convex Position
In this section we show how to construct plane spanners of degree at most 3 for points that
are in convex position.

I Theorem 8. Let S be a finite set of points in the plane that is in convex position. Then,
there exists a plane spanner for S whose stretch factor is at most 3+4π

3 and whose vertex
degree is at most 3.

Proof. The proof is constructive; we present an algorithm that constructs such a spanner
for S. The algorithm performs as follows. Let (p, q) be a diametral pair of S. Consider the
convex hull of S. Let C1 and C2 be the two chains obtained from CH(S) by removing p and
q (and their incident edges). Note that C1 and C2 are separated by `(p, q). Let G′ be the
graph on S \ {p, q} that contains the edges of C1, the edges of C2, and the edges obtained
by running algorithm Matching(C1, C2). By Theorem 5, G′ is plane and the endpoints of
C1 and C2 have degree at most 2. We obtain a desired spanner, G, by connecting p and
q, via their incident edges in CH(S), to G′. In other words, G = (S,E), where E is the
union of the edges of CH(S) and the edges of Matching(C1, C2). A pseudo code for this
construction is given in the full version of the paper [4].

Observe that G is plane. Moreover, all vertices of G have degree at most 3; p and q

have degree 2. Now we show that the stretch factor of G is at most 3+4π
3 ≈ 5.19. Note

that G consists of CH(S) and a matching which is returned by algorithm Matching. Since
p and q are diametral points, then by a result of [1], for any point s ∈ S \ {p} we have
|ps|CH(S) 6 1.88|ps|. Since CH(S) ⊆ G, we have |ps|G 6 1.88|ps|. By symmetry, the same
result holds for q and any point s ∈ S \ {q}. Since (p, q) is a diametral pair of S, both C1
and C2 are in L(p, q). Based on this, in Theorem 11, we will see that both C1 and C2 have
stretch factor at most 2π

3 . Then, by Theorem 5, the stretch factor of G′ is at most 3+4π
3 .

Since G′ ⊂ G, for any two points r, s ∈ S \ {p, q} we have |rs|G 6 3+4π
3 |rs|. Therefore, the

stretch factor of G is at most 3+4π
3 . This completes the proof of the theorem. J

A point set S is said to be centrally symmetric (with respect to the origin), if for every
point p ∈ S, point −p also belongs to S.

I Theorem 9. Let S be a finite centrally symmetric point set in the plane that is in convex
position. Then, there exists a plane spanner for S whose stretch factor is at most π + 1 and
whose vertex degree is at most 3.

Proof. Let G be the graph obtained by the algorithm presented in the proof of Theorem 8.
Recall that G is plane and its maximum vertex degree is at most 3. It remains to show
that the stretch factor of G is at most π + 1. Let (p, q) be the diametral pair of S that is
considered by this algorithm. Since S is centrally symmetric, all points of S are in D(p, q).
Based on this, in Theorem 10, we will see that both C1 and C2 have stretch factor at most
π
2 . Then Theorem 5 implies that the stretch factor of G is at most π + 1. J

3.3 Convex Chains with Diametral Endpoints
In this section we analyze the stretch factor of convex chains of points where their endpoints
are a diametral pair. Let C be a chain of points. For any two points u and v on C let δC(u, v)
denote the path between u and v on C, and let |uv|C denote the length of δC(u, v).

ISAAC 2016



19:6 Towards Plane Spanners of Degree 3
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Figure 2 Proof of Theorem 10: the path δC(u, v) is inside the shaded regions.

I Theorem 10. Let C be a convex chain with endpoints p and q. If C is in D(p, q), then
the stretch factor of C is at most π

2 .

Proof. Since C is convex, it is contained in a half-disk of D(p, q), i.e., a half-disk with
diameter pq. Let u and v be any two points of C. Let δC(u, v) be the path between u and v
in C. We show that δC(u, v) is in D(u, v). Then, by Theorem 2 the length of δC(u, v) is at
most the length of the half-arc of D(u, v), which is π

2 |uv|. Without loss of generality assume
that pq is horizontal, p is to the left of q, and C is above pq. Assume that u appears before
v while traversing C from p to q. See Figure 2. We consider the following four cases.

u = p and v = q. Then δC(p, q) = C is in D(p, q) by the hypothesis.
u = p and v 6= q. Let v′ be the intersection point of R(q→v) with the boundary of
D(p, q). See Figure 2(a). Observe that ∠pv′v = ∠pv′q = π

2 . Thus, v
′ is on the boundary

of D(p, v). Since two circles can intersect in at most two points, p and v′ are the only
intersection points of the boundaries of D(p, q) and D(p, v). Thus, the clockwise arc p̂v′
on the boundary of D(p, q) is inside D(p, v). Because of convexity, no point of δC(p, v) is
to the right of R(p→v) or R(q→v). It follows that δC(p, v) is in D(p, v).
u 6= p and v = q. The proof of this case is similar to the proof of the previous case.
u 6= p and v 6= q. Let c be the intersection point of R(p→u) and R(q→v). Because of
convexity, δC(u, v) is in the triangle 4ucv. We look at two cases:
c is inside D(p, q). See Figure 2(b). Note that ∠ucv > π

2 . This implies that the point
c, and consequently the triangle 4ucv, are in D(u, v). Thus, δC(u, v) is inside D(u, v).
c is outside D(p, q). Let u′ (resp. v′) be the intersection point of R(p→u) (resp.
R(q→v)) with D(p, q). Note that δC(u, v) is inside the shaded region of Figure 2(c).
Observe that ∠uv′v > ∠pv′q = π

2 , and ∠uu′v > ∠pu′q = π
2 . Thus, both u′ and v′

are inside D(u, v). Consequently, the clockwise arc ũ′v′ on the boundary of D(p, q) is
inside D(u, v). Therefore, δC(u, v) is inside D(u, v). J

I Theorem 11 (Proof in the full version of the paper [4]). Let C be a convex chain with
endpoints p and q. If C is in L(p, q), then the stretch factor of C is at most 2π

3 .

4 Non-Uniform Rectangular Grid

In this section we build a plane spanner of degree at most three for the point set of the
vertices of a non-uniform rectangular grid. In a finite non-uniform m× k grid, Λ, the vertices
are arranged on the intersections of m horizontal and k vertical lines. The distances between
the horizontal lines and the distances between the vertical lines are chosen arbitrary. The
total number of vertices of Λ—the number of points of the underlying point set—is n = m · k.
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Figure 3 The augmented grid.

If m ∈ {1, 2} or k ∈ {1, 2} then Λ is a plane spanner whose maximum vertex degree is at
most 3 and whose stretch factor is at most

√
2. Assume m > 3 and k > 3. We present an

algorithm that constructs a degree-3 plane spanner, G, for the points of Λ. Note that Λ is a
finite grid and has boundary vertices. In order to simplify the analysis and the proofs for
boundary vertices, we augment Λ in the following way. We add four lines at distance ε, to the
left, right, above and below Λ. We choose ε to be smaller than the distances among all pairs
of vertical lines, and all pairs of horizontal lines of Λ. See Figure 3. For simplicity, in the
rest of this section, we refer to the augmented lattice as Λ, and assume it has m horizontal
and k vertical lines. Based on this assumption, the original lattice has m− 2 horizontal lines
and k − 2 vertical lines.

Let h1, . . . , hm be the horizontal lines of Λ from bottom to top. Similarly, let v1, . . . , vk
be the vertical lines of Λ from left to right. Note that Λ consists of m− 1 horizontal slabs
(rows) and k − 1 vertical slabs (columns). Each horizontal slab Hi, with 1 6 i < m, is
bounded by consecutive horizontal lines hi and hi+1. Each vertical slab Vj , with 1 6 j < k,
is bounded by consecutive vertical lines vj and vj+1. See Figure 3. For each slab we define
the width of that slab as the distance between the two parallel lines on its boundary. Let
pi,j , with 1 6 i 6 m and 1 6 j 6 k, be the vertex of Λ that is the intersection point of hi
and vj . For each Hi, 1 6 i < m, we define E(Hi) = {(pi,j , pi+1,j) : 2 6 j 6 k − 1} as the set
of edges of Hi. Moreover, we define the set of candidate edges of Hi as follows:

CE(Hi) =
{
{(pi,j , pi+1,j) : 2 6 j 6 k − 1 and j is even} if i is even,
{(pi,j , pi+1,j) : 2 6 j 6 k − 1 and j is odd} if i is odd.

Similarly, for each Vj , 1 6 j < k, we define E(Vj) = {(pi,j , pi,j+1) : 2 6 i 6 m− 1} as the set
of edges of Vj . The set of candidate edges of Vj is defined as follows:

CE(Vj) =
{
{(pi,j , pi,j+1) : 2 6 i 6 m− 1 and i is even} if j is even,
{(pi,j , pi,j+1) : 2 6 i 6 m− 1 and i is odd} if j is odd.

See Figure 4(a). Informally speaking, the set of edges of each horizontal slab contains k − 2
vertical edges of Λ that are on v2, . . . , vk−1, and the set of edges of each vertical slab contains
m − 2 horizontal edges of Λ that are on h2, . . . , hm−1. The boundary edges of Λ, i.e., the
edges with both their endpoints on the boundary of Λ, do not belong to any of these sets.

ISAAC 2016



19:8 Towards Plane Spanners of Degree 3
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Figure 4 (a) Candidate edges in each slab are shown in their slab label color. The edges that are
above, below, to the left, and to the right of a candidate edge, are not candidate in any of the slabs:
(b) a horizontal candidate edge, and (c) a vertical candidate edge.

Every second vertical edge in Hi belongs to the set of candidate edges of Hi. The set of
candidate edges of Hi−1 (resp. Hi+1) contains every second vertical edge in Hi−1 (rep. Hi+1)
that is not adjacent to any candidate edge in Hi. The same observation applies on each Vi.
Thus, if e is a candidate edge in some set, then the edges of Λ that are above, below, to the
left, and to the right of e, are not candidate edges in any set. See Figures 4(b) and 4(c).

Now we describe the algorithm. We know that Λ is a
√

2-spanner of degree 4. The
algorithm consists of two phases. In the first phase it removes some edges from Λ and
constructs a graph G′ whose largest vertex degree is 3 (G′ may have large stretch factor).
In the second phase the algorithm adds some edges to G′ and constructs a graph G whose
maximum degree is 3 and whose stretch factor is 3

√
2. Note that G′ ⊆ G ⊂ Λ. Refer to

Figure 5 for an illustration of the two phases.

Phase 1 (Edge Deletion): In this phase, the algorithm iterates over all the slabs, {H1, . . . ,

Hm−1, V1, . . . , Vk−1}, in a non-increasing order of their widths. Let S be the current slab.
The algorithm considers the candidate edges of S, i.e., all edges of CE(S), from left to right
if S is horizontal, and bottom-up if S is vertical (however, this ordering does not matter).
The algorithm removes a candidate edge if it has at least one endpoint of degree 4. Let G′
be the graph obtained at the end of this phase.

Phase 2 (Edge Insertion): Consider the graph G′ obtained at the end of Phase 1. Let E′
be the empty set. In the second phase, the algorithm iterates over all the slabs, {H1, . . . ,

Hm−1, V1, . . . , Vk−1}, in a non-decreasing order of their widths. Let S be the current slab.
The algorithm considers all the edges of S, i.e., all edges of E(S). Let e = (a, b) be the
current edge. The algorithms adds e to E′ if both endpoints of e have degree 2 in G′ ∪ E′,
i.e., degG′(a) + degE′(a) = 2 and degG′(b) + degE′(b) = 2. At the end of this phase, let G
be the graph obtained by taking the union of G′ and E′.

Consider the graph G obtained at the end of Phase 2. We show that G is a plane
3
√

2-spanner of maximum degree 3 for Λ. Since the algorithm considers only the edges of Λ,
then G is a subgraph of Λ and hence it is plane. As for the degree constraint, after Phase 1
the maximum degree in G′ is 3. In Phase 2 we add edges between some vertices of degree 2
in G′ (at most one edge per vertex) and hence no vertex of degree 4 can appear. Thus G
has maximum degree 3. It only remains to show that G is a 3

√
2-spanner. Before that, we

review some properties of G′ and G.
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Figure 5 The numbers close to the slab labels show the order in which the slabs are considered
in Phase 1. (a) The graph G′ obtained at the end of Phase 1; its four types of faces are shaded
(the blue edges are the candidate edges that have not been removed in Phase 1). (b) The graph
G obtained at the end of Phase 2; its three types of faces are shaded (the orange edges have been
added in Phase 2, and belong to E′).

The candidate edges form stair-cases in Λ; see Figure 4(a). Moreover, the set of non-
candidate edges (black edges of Figure 4(a)) also form stair-cases. Each internal vertex of Λ
belongs to a staircase of candidate edges and a stair-case of non-candidate edges. Thus, in
G′, every vertex is on a stair-case of non-candidate edges that is connected to the boundary
edges in both directions. Moreover, each of the stair-cases formed by candidate edges is
surrounded by two stair-cases of non-candidate edges. Since G′ contains all boundary edges,
i.e., the edges with both endpoints on the boundary, each boundary vertex has degree at
least 2 and at most 3 in G′. The edge deletion phase ensures that in G′ there is no internal
vertex of degree 4. Further, each internal vertex is incident on two candidate edges. Thus at
the end of Phase 1, each internal vertex looses at most two edges, and hence has degree at
least 2 in G′. Therefore we have the following observation.

I Observation 12. The graph G′ has the following properties. (1) G′ contains all boundary
edges of Λ, (2) G′ is connected, (3) each vertex of G′ has degree 2 or 3, and (4) each face in
G′ is either (see the shaded regions of Figure 5(a)):

1-cell: consists of one cell of Λ, or
2-cell: consists of two adjacent cells with the middle edge missing, or
3-cell: consists of three adjacent cells which form an L-shape with the two middle edges
missing (this L-shape might also be rotated), or
stair-case: consists of more than three cells which form a stair-case with more than one
vertex of degree two.

We define {p1,1, pm,1, p1,k, pm,k} as the set of corner vertices of Λ. We also define the set of
corner edges of Λ as {(p1,2, p2,2), (p2,2, p2,1), (p1,k−1, p2,k−1), (p2,k−1, p2,k), (pm−1,1, pm−1,2),
(pm−1,2, pm,2), (pm−1,k−1, pm,k−1), (pm−1,k−1, pm−1,k)}. In Figure 3 the corner edges are in
red. Note that each corner edge is adjacent to another corner edge. A non-corner edge is an
edge of Λ which is not a corner edge.

I Lemma 13 (Proof in the full version of the paper [4]). All non-corner edges of Λ that are
incident to a boundary vertex are in G′.
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Figure 6 The edge (a, f) is a candidate edge (a) that is in G′, and (b) that is not in G′.

By Lemma 13, any non-corner edge e of Λ that is not in G′ has both its endpoints in the
interior of Λ. That is, both endpoints of e have degree four in Λ. Based on this, and by our
choice of candidate edges, we have the following observation; see Figures 4(b) and 4(c).

I Observation 14. If a non-corner edge e is not in G′, then the edges that are above, below,
to the left, and to the right of e are in G′, and hence in G.

I Lemma 15. Let (a, b) be a corner edge that is not in G. Then |ab|G = 3|ab|.

Proof. Recall that each corner edge is adjacent to another corner edge. Let (b, d) be the
corner edge that is adjacent to (a, b). Let c be the corner vertex that is adjacent to a and d.

d

a

b

c

ε

ε

Since (a, c) and (c, d) are boundary edges, both of them are in G. We are going to show,
by contradiction, that (b, d) is also in G. Assume (b, d) /∈ G. If (b, d) was removed before
(a, b), then at the moment the algorithm considers (a, b), both a and b have degree less than
4. Hence the algorithm would not remove (a, b); this contradicts the fact that (a, b) /∈ G. If
(a, b) was removed before (b, d) by a similar argument we get a contradiction. Thus (b, d) ∈ G.
Note that |ab| = |ac| = |cd| = |bd| = ε. Thus the length of the path δ = (a, c, d, b) is 3 times
|ab|. J

At the end of Phase 2, all the stair-cases that have more than one vertex of degree two,
have been broken into 2-cell and 3-cell faces. Thus we have the following observation.

I Observation 16. Each face in G is either a 1-cell, a 2-cell, or a 3-cell (see the shaded
faces in Figure 5(b)).

I Lemma 17. Let (f, c) be the missing edge of a 2-cell face in G. If (f, c) is a non-corner
edge, then |fc|G 6 3|fc|.

Proof. Let F = (a, b, c, d, e, f) be the 2-cell face of G with the edge (f, c) is missing. Without
loss of generality assume that (f, c) is horizontal, f is to the left of c, and a, b, c, d, e, f in the
clockwise order of the vertices along F ; see Figure 6.

Note that |fc| = |ab| = |ed|, |af | = |bc|, and |fe| = |cd|. Moreover, (a, b), (b, c), (d, e), and
(e, f) are not candidate edges, hence they are in G′ and in G, while (a, f) and (c, d) are
candidate edges. Since (f, c) is a non-corner edge, in both G′ and G, f is connected to a
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point f ′ and c is connected to a point c′ where f ′ and c′ are different from the vertices of F .
By Observation 14, (f, f ′) and (c, c′) are in G′ and in G. Without loss of generality assume
|af | 6 |fe|. We are going to prove that the length of the path (f, a, b, c) is at most three
times |fc|. In order to prove this, we show that |af | 6 |fc|. The proof is by contradiction.
Assume |fc| < |af |. For an edge (u, v) ∈ Λ, let Suv be the slab containing (u, v) in its
interior; if (u, v) is horizontal then Suv is vertical, and vice versa. In Phase 1, the slabs
Sfe and Saf are considered before Sfc, while in Phase 2, both are considered after Sfc. We
consider two cases:

(a, f) ∈ G′. See Figure 6(a). The reason why (a, f) was not removed is that both a and
f had degree less than 4 at the moment the algorithm considered (a, f). At that moment
the edge (f, c) was still in the graph. Thus, in order for f to have degree less than four,
the edge (e, f) should have been removed before considering (a, f), which contradicts
(e, f) being a non-candidate edge.
(a, f) /∈ G′. Thus (a, f) is added in Phase 2, and hence, both a and f have degree two
in G′. See Figure 6(b). Recall that (c, d) is a candidate edge. Notice that (c, d) /∈ G′
because at the moment the algorithm considered (c, d), the vertex c had degree 4, and
hence (c, d) is removed. Thus (c, d) is added in Phase 2, implying that both c and d have
degree two in G′. Therefore a, f, c, and d have degree two in G′. Since, in Phase 2, Sfc
is considered before both Sfe and Saf , the edge (f, c) should have been inserted before
considering (a, f) and (c, d). This contradicts the fact that (f, c) is not in G.

J

I Lemma 18 (Proof in the full version of the paper [4]). Let (b, e) be a missing edge of a
3-cell face in G. If (b, e) is a non-corner edge, then |be|G 6 3|be|.

I Theorem 19. Let Λ be a finite non-uniform rectangular grid. Then, there exists a plane
spanner for the point set of the vertices of Λ such that its degree is at most 3 and its stretch
factor is at most 3

√
2.

Proof. Assume Λ has m rows and k columns.

pw,x

py,z

pw,z

If m ∈ {1, 2} or k ∈ {1, 2}, then Λ is a plane spanner whose degree is at most 3 and
whose stretch factor is at most

√
2. Assume m > 3 and k > 3. Let Λ be the augmented

lattice obtained from Λ as described in the beginning of this section. Let G be the graph
obtained by the 2-phase algorithm described in this section. Then G is plane and its vertex
degree is at most 3. By Lemmas 15, 17, and 18, for any edge (a, b) ∈ Λ that is not in G,
there exists a path in G whose length is at most 3 times |ab|. Now we are going to show
that the stretch factor of G is at most 3

√
2. Let pw,x and py,z be any two vertices of Λ.

Consider the vertex pw,z in Λ. By applying Lemmas 15, 17, and 18, in G there exists a path
between pw,x and pw,z such that its length is at most 3 times |pw,xpw,z|. Similarly, in G there
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exists a path between py,z and pw,z such that its length is at most 3 times |py,zpw,z|. Since
|pw,xpw,z| + |py,zpw,z| 6

√
2|pw,xpy,z|, we conclude that in G there exists a path between

pw,x and py,z that is passing through pw,z and whose length is at most 3
√

2 times |pw,xpy,z|.
In order to obtain a spanner for Λ, we remove from G all the vertices of Λ that are not

in Λ, as well as the edges incident to those vertices. Then we add all the missing boundary
edges of Λ to the resulting graph. Let G be the graph that is obtained. As the boundary
vertices of Λ have degree at most 3, G has vertex degree at most 3. Since all the boundary
edges of Λ are in G, the stretch factor of G is not more than the stretch factor of G. This
completes the proof. J

5 Concluding Remarks

In order to obtain plane spanners with small stretch factor, one may think of adding Steiner
points1 to the point set and build a spanner on the augmented point set. In the L1-metric, a
plane 1-spanner of degree 4 can be computed by using O(n logn) Steiner points (see [14]).
Arikati et al. [2] showed how to compute, in L1-metric, a plane (1 + ε)-spanner with O(n)
Steiner points, for any ε > 0. Moreover, for the Euclidean metric, they showed how to
construct a plane (

√
2 + ε)-spanner that uses O(n) Steiner points and has degree 4.

Let S be a set of n points in the plane that is in general position; no three points are
collinear. Let G be a plane t-spanner of S. We show that, for any ε > 0, there exists a plane
(t+ ε)-spanner G′ for S with O(n) Steiner points whose vertex degree is at most 3. We show
how to construct such a spanner. Without loss of generality we assume that ε is smaller than
the closest pair distance in S, otherwise we pick an ε′ smaller than the closest pair distance,
and construct a (t+ ε′)-spanner, which is also a (t+ ε)-spanner.

p

p′

Cp

For each point p of the point set S, consider a circle Cp with radius ε
πn that is centered at

p. Introduce a Steiner point on each intersection point of Cp with the edges of G that are
incident to p. Also, introduce a Steiner point p′ on Cp that is different from these intersection
points. Delete the part of the edges of G inside each circle Cp (each edge e of G turns into
an edge e′ of G′ with endpoints on Cp). Add an edge from p to p′, and add a cycle whose
edges connect consecutive Steiner points on the boundary of Cp. This results in a degree-3
geometric plane graph G′. For each vertex of degree k in G, we added k+ 1 Steiner points in
G′. Since G is planar, its total vertex degree is at most 6n− 12. Thus, the number of Steiner
points is 7n− 12, in total (by a different construction of G′ this can be reduced to 5n− 12).

A path δuv between two vertices u and v in G can be turned into a path δ′uv in G′ as
follows. For each point p in S corresponding to an internal vertex of δuv incident to two
edges e1 and e2 of δuv, replace the part of e1 and e2 inside Cp by the shorter of the two paths
along Cp connecting the corresponding Steiner points. Also, for each of point p ∈ {u, v}

1 Ssome points in the plane that do not belong to the input point set.
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incident to an edge e of δuv replace the part of e inside Cp with edge (p, p′) together with the
shorter of the two paths along Cp connecting p′ and the Steiner point corresponding to e.

Note that |δuv|
|uv| 6 t. Since the Steiner points are located at distance ε

πn from points of S,
the length of the path along Cp replacing each vertex p of δuv is at most ε

n . Since δuv has at
most n vertices, the length of δ′uv in G′ is at most |δuv|+ n · εn . Thus,

|δ′
uv|
|uv| 6

|δuv|+ε
|uv| 6 t+ ε,

is valid because ε is smaller than the closest pair distance in S, and hence smaller than |uv|.
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