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Abstract
Given a static reference string R and a source string S, a relative compression of S with respect to
R is an encoding of S as a sequence of references to substrings of R. Relative compression schemes
are a classic model of compression and have recently proved very successful for compressing
highly-repetitive massive data sets such as genomes and web-data. We initiate the study of
relative compression in a dynamic setting where the compressed source string S is subject to edit
operations. The goal is to maintain the compressed representation compactly, while supporting
edits and allowing efficient random access to the (uncompressed) source string. We present new
data structures that achieve optimal time for updates and queries while using space linear in
the size of the optimal relative compression, for nearly all combinations of parameters. We
also present solutions for restricted and extended sets of updates. To achieve these results, we
revisit the dynamic partial sums problem and the substring concatenation problem. We present
new optimal or near optimal bounds for these problems. Plugging in our new results we also
immediately obtain new bounds for the string indexing for patterns with wildcards problem and
the dynamic text and static pattern matching problem.
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1 Introduction

Given a static reference string R and a source string S, a relative compression of S with
respect to R is an encoding of S as a sequence of references to substrings of R. Relative
compression (or external macro compression) is a classic model of compression defined by
Storer and Szymanski [34, 35] in 1978 and has since been used in a wide range of compression
scenarios [26, 27, 23, 24, 6, 9, 19]. To compress massive highly-repetitive data sets, such as
biological sequences and web collections, relative compression has been shown to be very
practical [23, 24, 19].

Relative compression is often applied to compress multiple similar source strings. In such
settings relative compression is superior to compressing the source strings individually. For
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instance, human genomes are 99% similar and hence relative compression might be used to
compress a large collection of sequenced genomes using, e.g., the human reference genome as
the static reference string. We focus on the case of compressing a single source string, but
our results trivially generalize to compressing multiple source strings.

In this paper we initiate the study of relative compression in a dynamic setting, where
the compressed source string S is subject to edit operations (insertions, deletions, and
replacements of single characters). The goal is to maintain the compressed representation
compactly, while supporting edits and allowing efficient random access to the (uncompressed)
source string. Efficient data structures supporting these operations allow us to avoid costly
recompression of massive data sets after updates.

We provide the first non-trivial bounds for this problem. We present new data structures
that achieve optimal time for updates and queries while using space linear in the size of the
optimal relative compression, for nearly all combinations of parameters. We also present
solutions for restricted and extended sets of updates.

To achieve these results, we revisit the dynamic partial sums problem and the substring
concatenation problem. We present new optimal or near optimal bounds for both of these
problems (see detailed discussion below). Furthermore, plugging in our new results immedi-
ately leads to new bounds for the string indexing for patterns with wildcards problem [25, 5]
and the the dynamic text and static pattern matching problem [2].

1.1 Dynamic Relative Compression
Given a reference string R and a source string S, a relative compression of S with respect
to R is a sequence C = (i1, j1), ..., (i|C|, j|C|) such that S = R[i1, j1] · · ·R[i|C|, j|C|]. We
call C a substring cover for S. The substring cover is optimal if |C| is minimum over all
relative compressions of S with respect to R. The dynamic relative compression problem is
to maintain a relative compression of S under the following operations. Let i be a position
in S and α be a character.

access(i): return the character S[i],
replace(i, α): change S[i] to character α,
insert(i, α): insert character α before position i in S,
delete(i): delete the character at position i in S.

Note that operations insert and delete change the length of S by a single character. In all
bounds below, the access(i) operation extends to decompressing an arbitrary substring of
length ` using only O(`) additional time.

Our Results. Throughout the paper, let r be the length of the reference string R, N be the
length of the (uncompressed) string S, and n be the size of an optimal relative compression
of S with regards to R. All of the bounds mentioned below and presented in this paper
hold for a standard unit-cost RAM with w-bit words with standard arithmetic and logical
operations on a word. This means that the algorithms can be implemented directly in
standard imperative programming languages such as C [22] or C++ [36]. An index into R or
S can be stored in a single word and hence w ≥ log(n+ r).

I Theorem 1. Let R and S be a reference and source string of lengths r and N , respectively,
and let n be the length of the optimal substring cover of S by R. Then, we can solve the
dynamic relative compression problem supporting access, replace, insert, and delete
(i) in O(n+ r) space and O

(
logn

log logn + log log r
)
time per operation, or

(ii) in O(n+ r logε r) space and O
(

logn
log logn

)
time per operation, for any constant ε > 0.
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These are the first non-trivial bounds for the problem. Together, the bounds are optimal for
most natural parameter combinations. In particular, any data structure for a string of length
N supporting access, insert, and delete must use Ω(logN/ log logN) time in the worst-case
regardless of the space [13] (this is called the list representation problem). Since n ≤ N ,
we can view O(logn/ log logn) as a compressed version of the optimal time bound that is
always O(logN/ log logN) and better when S is compressible. Hence, Theorem 1(i) provides
a linear-space solution that achieves the compressed time bound except for an O(log log r)
additive term. Note that whenever n ≥ (log r)logε log r, for any ε > 0, the logn/ log logn term
dominates the query time and we match the compressed time bound. Hence, Theorem 1(i)
is only suboptimal in the special case when n is almost exponentially smaller than r. In this
case, we can use Theorem 1(ii) which always provides a solution achieving the compressed
time bound at the cost of increasing the space to O(n+ r logε r).

We note that dynamic compression under different models of compression has been
studied extensively [17, 11, 10, 33, 16, 12, 21, 28]. However, all of these results require
space dependent on the size of the original string and hence cannot take full advantage of
highly-repetitive data.

1.2 Dynamic Partial Sums
The partial sums problem is to maintain an array Z[1..s] under the following operations.

sum(i): return
∑i
j=1 Z[j],

update(i,∆): set Z[i] = Z[i] + ∆,
search(t): return 1 ≤ i ≤ s such that sum(i − 1) < t ≤ sum(i). To ensure well-defined
answers, we require that Z[i] ≥ 0 for all i.

The partial sums problem is a classic and well-studied problem, see e.g., [8, 32, 20, 13, 18, 30].
In our context, we consider the problem in the word RAM model, where each array entry
stores a w-bit integer and the element of the array can be changed by δ-bit integers, i.e.,
the argument ∆ can be stored in δ bits. In this setting, Pătraşcu and Demaine [30] gave
a linear-space data structure with Θ(log s/ log(w/δ)) time per operation. They also gave a
matching lower bound.

We consider the following generalization supporting dynamic changes to the array. The
dynamic partial sums problems is to additionally support the following operations.

insert(i,∆): insert a new entry in Z with value ∆ before Z[i],
delete(i): delete the entry Z[i] of value at most ∆.
merge(i): replace entry Z[i] and Z[i+ 1] with a new entry with value Z[i] + Z[i+ 1].
divide(i, t): , where 0 ≤ t ≤ Z[i]. Replace entry Z[i] by two new consecutive entries with
value t and Z[i]− t, respectively.

Hon et al. [18] and Navarro and Sadakane [29] presented optimal solutions for this problem
in the case where the entries in Z are at most polylogarithmic in s (they did not explicitly
consider the merge and divide operation).

Our Results. We show the following improved result.

I Theorem 2. Given an array of length s storing w-bit integers and fixed parameter δ, such
that ∆ < 2δ, we can solve the dynamic partial sums problem supporting sum, update, search,
insert, delete, merge, and divide in linear space and O(log s/ log(w/δ)) time per operation.
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Note that this bound simultaneously matches the optimal time bound for the standard partial
sums problem and supports storing arbitrary w-bit values in the entries of the array, i.e., the
values we can handle in optimal time are exponentially larger than in the previous results.

To achieve our bounds we extend the static solution by Pătraşcu and Demaine [30]. Their
solution is based on storing a sampled subset of representative elements of the array and
difference encode the remaining elements. They pack multiple difference encoded elements in
words and then apply word-level parallelism to speedup the operations. To support insert and
delete the main challenge is to maintain the representative elements that now dynamically
move within the array. We show how to efficiently do this by combining a new representation
of representative elements with a recent result by Pătraşcu and Thorup [31]. Along the way
we also slightly simplify the original construction by Pătraşcu and Demaine [30].

1.3 Substring Concatenation
Let R be a string of length r. A substring concatenation query on R takes two pairs of indices
(i, j) and (i′, j′) and returns the start position in R of an occurrence of R[i, j]R[i′, j′], or NO
if the string is not a substring of R. The substring concatenation problem is to preprocess R
into a data structure that supports substring concatenation queries.

Amir et al. [2] gave a solution using O(r
√

log r) space with query time O(log log r), and
recently Gawrychowski et al. [15] showed how to solve the problem in O(r log r) space and
O(1) time.

Our Results. We give the following improved bounds.

I Theorem 3. Given a string R of length r, the substring concatenation problem can be
solved in either
(i) O(r logε r) space and O(1) time, for any constant ε > 0, or
(ii) O(r) space and O(log log r) time.

Hence, Theorem 3(i) matches the previous O(1) time bound while reducing the space
from O(r log r) to O(r logε r) and Theorem 3(ii) achieves linear space while using O(log log r)
time. Plugging in the two solutions into our solution for dynamic relative compression leads
to the two branches of Theorem 1.

To achieve the bound in (i), the main idea is a new construction that efficiently combines
compact data structure for 1D range reporting [3] with the recent constant time weighted
level ancestor data structure for suffix trees [15]. The bound in (ii) follows as a simple
implication of another recent result for unrooted LCP queries [5] by some of the authors.
Due to lack of space, we refer to the full version of the paper (see [4]) for the details of our
solution.

The substring concatenation problem is a key component in several solutions to the string
indexing for patterns with wildcards problem [5, 7, 25], where the goal is to preprocess a string
T to support pattern matching queries for patterns with wildcards. Plugging in Theorem 3(i)
we immediately obtain the following new bound for the problem.

I Corollary 4. Let T be a string of length t. For any pattern string P of length p with k
wildcards, we can support pattern matching queries on T using O(t logε t) space and O(p+σk)
time for any constant ε > 0.

This improves the running time of fastest linear space solution by a factor log log t at the
cost of increasing the space slightly by a factor logε t. See [25] for detailed overview of the
known results.



P. Bille, P. H. Cording, I. L. Gørtz, F. R. Skjoldjensen, H.W. Vildhøj, and S. Vind 18:5

1.4 Extensions

Finally, we present two extensions of the dynamic relative compression problem. The proofs
of these extensions are also omitted here and can be found in the full version of the paper.

1.4.1 Dynamic Relative Compression with Access and Replace

If we restrict the operations to access and replace we obtain the following improved bound.

I Theorem 5. Let R and S be a reference and source string of lengths r and N , respectively,
and let n be the length of the optimal substring cover of S by R. Then, we can solve the
dynamic relative compression problem supporting access and replace in O(n+ r) space and
O(log logN) expected time.

This version of dynamic relative compression is a key component in the dynamic text and
static pattern matching problem, where the goal is to efficiently maintain a set of occurrences
of a pattern P in a text T that is dynamically updated by changing individual characters.
Let p and t denote the lengths of P and T , respectively. Amir et al. [2] gave a data structure
using O(t+ p

√
log p) space which supports updates in O(log log p) time. The computational

bottleneck in the update operation is to update a substring cover of size O(p). Plugging in
the bounds from Theorem 5, we immediately obtain the following improved bound, matching
the previous time bound while improving the space to linear.

I Corollary 6. Given a pattern P and text T of lengths p and t, respectively, we can solve the
dynamic text and static pattern matching problem in O(t+ p) space and O(log log p) expected
time per update.

1.4.2 Dynamic Relative Compression with Split and Concatenate

We also consider maintaining a set of compressed strings under split and concatenate
operations (as in Alstrup et al. [1]). Let R be a reference string and let S = {S1, . . . , Sk} be
a set of strings compressed relative to R. In addition to access, replace, insert and delete we
also define the following operations.

concat(i, j): Add string Si · Sj to S and remove Si and Sj .
split(i, j): Remove Si from S and add Si[1, j − 1] and Si[j, |Si|].

We obtain the following bounds.

I Theorem 7. Let R be a reference string of length r, let S = {S1, . . . , Sk} be a set of source
strings of total length N , and let n be the total length of the optimal substring covers of the
strings in S. Then, we can solve the dynamic relative compression problem supporting access,
replace, insert, delete, split, and concat,
(i) in space O(n+ r) and time O(logn) for access and time O(logn+ log log r) for replace,

insert, delete, split, and concat, or
(ii) in space O(n+ r logε r) and time O(logn) for all operations.

Hence, compared to the bounds in Theorem 1 we only increase the time bounds by an
additional log logn factor.
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2 Dynamic Relative Compression

In this section we show how Theorems 2 and 3 lead to Theorem 1.
Let C = ((i1, j1), ..., (i|C|, j|C|)) be the compressed representation of S. From now on, we

refer to C as the cover of S, and call each element (il, jl) in C a block. Recall that a block
(il, jl) refers to a substring R[il, jl] of R. A cover C is maximal if concatenating any two
consecutive blocks (il, jl), (il+1, jl+1) in C yields a string that does not occur in R, i.e., the
string R[il, jl]R[il+1, jl+1] is not a substring of R. We need the following lemma.

I Lemma 8. If Cmax is a maximal cover and C is an arbitrary cover of S, then |Cmax| ≤
2|C| − 1.

Proof. In each block b of C there can start at most two blocks in Cmax, because otherwise
two adjacent blocks in Cmax would be entirely contained in the block b, contradicting the
maximality of Cmax. Since the last block of both C and Cmax end at the last position of S, a
contradiction of the maximality is already obtained when more than one block of Cmax start
in the last block of C. Hence, |Cmax| ≤ 2|C| − 1. J

Recall that n is the size of an optimal cover of S with regards to R. The lemma implies that
we can maintain a compression of size at most 2n− 1 by maintaining a maximal cover of
S. The remainder of this section describes our data structure for maintaining and accessing
such a cover.

Initially, we can use the suffix tree of R to construct a maximal cover of S in O(N + r)
time by greedily matching the maximal prefix of the remaining part of S with any suffix of
R. This guarantees that the blocks constitute a maximal cover of S.

2.1 Data Structure

The high level idea for supporting the operations on S is to store the sequence of block
lengths j1 − i1 + 1, . . . , j|C| − i|C| + 1 in a dynamic partial sums data structure. This allows
us, for example, to identify the block that encodes the kth character in S by performing a
search(k) query.

Updates to S are implemented by splitting a block in C. This may break the maximality
property so we use substring concatenation queries on R to detect if blocks can be merged.
We only need a constant number of substring concatenation queries to restore maximality.
To maintain the correct sequence of block lengths we use update, divide and merge operations
on the dynamic partial sums data structure.

Our data structure consist of the string R, a substring concatenation data structure
of Theorem 3 for R, a maximal cover C for S stored in a doubly linked list, and the
dynamic partial sums data structure of Theorem 2 storing the block lengths of C. We also
store auxiliary links between a block in the doubly linked list and the corresponding block
length in the partial sums data structure, and a list of alphabet symbols in R with the
location of an occurrence for each symbol. By Lemma 8 and since C is maximal we have
|C| ≤ 2n− 1 = O(n). Hence, the total space for C and the partial sums data structure is
O(n). The space for R is O(r) and the space for substring concatenation data structure is
either O(r) or O(r logε r) depending on the choice in Lemma 3. Hence, in total we use either
O(n+ r) or O(n+ r logε r) space.
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2.2 Answering Queries

To answer access(i) queries we first compute search(i) in the dynamic partial sums structure
to identify the block bl = (il, jl) containing position i in S. The local index in R[il, jl] of the
ith character in R is ` = i− sum(l − 1), and thus the answer to the query is the character
R[il + `− 1].

We perform replace and delete by first identifying bl = (il, jl) and ` as above. Then we
partition bl into three new blocks b1

l = (il, il+`−2), b2
l = (il+`−1, il+`−1), b3

l = (il+`, jl)
where b2

l is the single character block for index i in S that we must change. In replace
we change b2

l to an index of an occurrence in R of the new character (which we can find
from the list of alphabet symbols), while we remove b2

l in delete. The new blocks and their
neighbors, that is, bl−1, b1

l , b2
l , b3

l , and bl+1 may now be non-maximal. To restore maximality
we perform substring concatenation queries on each consecutive pair of these 5 blocks, and
replace non-maximal blocks with merged maximal blocks. All other blocks are still maximal,
since the strings obtained by concatenating bl′ with bl′+1, for all l′ < l − 1 and all l′ > l,
was not present in R before the change and is not present afterwards. A similar idea is
used by Amir et al. [2]. We perform update, divide and merge operations to maintain the
corresponding lengths in the dynamic partial sums data structure. The insert operation is
similar, but inserts a new single character block between two parts of bl before restoring
maximality. Observe that using δ = O(1) bits in update is sufficient to maintain the correct
block lengths.

In total, each operation requires a constant number of substring concatenation queries and
dynamic partial sums operations; the latter having time complexity O(logn/ log(w/δ)) =
O(logn/ log logn) as w ≥ logn and δ = O(1). Hence, the total time for each access,
replace, insert, and delete operation is either O(logn/ log logn+log log r) or O(logn/ log logn)
depending on the substring concatenation data structure used. In summary, this proves
Theorem 1.

3 Dynamic Partial Sums

In this section we prove Theorem 2. We support the operations insert(i,∆) and delete(i) on
a sequence of w-bit integer keys by implementing them using update and a divide or merge
operation, respectively. This means that we support inserting or deleting keys with value at
most 2δ.

We first solve the problem for small sequences. The general solution uses a standard
reduction, storing Z at the leaves of a B-tree of large outdegree. We use the solution for
small sequences to navigate in the internal nodes of the B-tree.

We need the following recent result due to Pătraşcu and Thorup [31] on maintaining a
set of integer keys X under insertions and deletions. The queries are as follows, where q is
an integer. The membership query member(q) returns true if q ∈ X, predecessor predX(q)
returns the largest key x ∈ X where x < q, and successor succX(q) returns the smallest key
x ∈ X where x ≥ q. The rank rankX(q) returns the number of keys in X smaller than q, and
select(i) returns the ith smallest key in X.

I Lemma 9 (Pătraşcu and Thorup [31]). There is a data structure for maintaining a dynamic
set of wO(1) w-bit integers that supports insert, delete, membership, predecessor, successor,
rank and select in constant time per operation.

ISAAC 2016
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3.1 Dynamic Partial Sums for Small Sequences
Let Z be a sequence of at most B ≤ wO(1) integer keys. We will show how to store Z in
linear space such that all dynamic partial sums operations can be performed in constant time.
We let Y be the sequence of prefix sums of Z, defined such that each key Y [i] is the sum of
the first i keys in Z, i.e., Y [i] =

∑i
j=1 Z[j]. Observe that sum(i) = Y [i] and search(t) is the

index of the successor of t in Y . Our goal is to store and maintain a representation of Y
subject to the dynamic operations update, divide and merge in constant time per operation.

3.1.1 The Scheme by Pătraşcu and Demaine
We first review the solution to the static partial sums problem by Pătraşcu and Demaine [30],
slightly simplified due to Lemma 9. Our dynamic solution builds on this.

The entire data structure is rebuilt every B operations as follows. We first partition Y
greedily into runs. Two adjacent elements in Y are in the same run if their difference is at
most B2δ, and we call the first element of each run a representative for all elements in the
run. We use R to denote the sequence of representative values in Y and rep(i) to be the
index of the representative for element Y [i] among the elements in R.

We store Y by splitting representatives and other elements into separate data structures:
I and R store the representatives at the time of the last rebuild, while U stores each element
in Y as an offset to its representative value as well as updates since the last rebuild. We
ensure Y [i] = R[rep(i)] + U [i] for any i and can thus reconstruct the values of Y .

The representatives are stored as follows. I is the sequence of indices in Y of the
representatives and R is the sequence of representative values in Y . Both I and R are stored
using the data structure of Lemma 9. We can then define rep(i) = rankI(predI(i)) as the
index of the representative for i among all representatives, and use R[rep(i)] = selectR(rep(i))
to get the value of the representative for i.

We store in U the current difference from each element to its representative, U [i] =
Y [i]−R[rep(i)] (i.e. updates between rebuilds are applied to U). The idea is to pack U into
a single word of B elements. Observe that update(i,∆) adds value ∆ to all elements in Y
with index at least i. We can support this operation in constant time by adding to U a word
that encodes ∆ for those elements. Since each difference between adjacent elements in a run
is at most B2δ and |Y | = O(B), the maximum value in U after a rebuild is O(B22δ). As
B updates of size 2δ may be applied before a rebuild, the changed value at each element
due to updates is O(B2δ). So each element in U requires O(logB + δ) bits (including an
overflow bit per element). Thus, U requires O(B(logB + δ)) bits in total and can be packed
in a single word for B = O(min{w/ logw,w/δ}).

Between rebuilds the stored representatives are potentially outdated because updates may
have changed their values. However, observe that the values of two consecutive representatives
differ by more than B2δ at the time of a rebuild, so the gap between two representatives
cannot be closed by B updates of δ bits each (before the structure is rebuilt again). Hence,
an answer to search(t) cannot drift much from the values stored by the representatives; it can
only be in a constant number of runs, namely those with a representative value succR(t) and
its two neighboring runs. In a run with representative value v, we find the smallest j (inside
the run) such that U [j] + v − t > 0. The smallest j found in all three runs is the answer
to the search(t) query. Thus, by rebuilding periodically, we only need to check a constant
number of runs when answering a search(t) query.

On this structure, Pătraşcu and Demaine [30] show that the operations sum, search and
update can be supported in constant time each as follows:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 5 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 30, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 0 1 2 4 6 7 10 0 0 0 0 2

B 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 4 4 4 4 4 4 4 5 6 7 8 8

a) The initial data structure constructed from Z.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Z 5 1 4 7 1 1 6 3 2 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 3 5 6 7 9 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 4 5 6 7 7

New index 9 Old index 9

b) The result of divide(8, 3) on the structure of a). Representative
value 30 was removed from R. We shifted and updated U , B and
C to remove the old representative and accommodate for a new
element with value 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 3 2 1 1 4 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 3 5 6 7 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 4 5 6 7 7

Index containing the sum of the merged indices.

c) The result of merge(12) on the structure of c).

Figure 1 Illustrating operations on the data structure with B2δ = 4. a) shows the data structure
immediately after a rebuild, b) shows the result of performing divide(8, 3) on the structure of a),
and c) shows the result of performing merge(12) on the structure of b).

sum(i): return the sum of R[rep(i)] and U [i]. This takes constant time as U [i] is a field in a
word and representatives are stored using Lemma 9.

search(t): let r0 = rankR(succR(t)). We must find the smallest j such that U [j]+R[r]−t > 0
for r ∈ {r0− 1, r0, r0 + 1}, where j is in run r. We do this for each r using standard word
operations in constant time by adding R[r]− t to all elements in U , masking elements
not in the run (outside indices selectI(r) to selectI(r + 1)− 1, and counting the number
of negative elements.

update(i,∆): we do this in constant time by copying ∆ to all fields j ≥ i by a multiplication
and adding the result to U .

To count the number of negative elements or find the least significant bit in a word in constant
time, we use the technique by Fredman and Willard [14].

Notice that rebuilding the data structure every B operations takes O(B) time, resulting in
amortized constant time per operation. We can instead do this incrementally by a standard
approach by Dietz [8], reducing the time per operation to worst case constant. The idea
is to construct the new replacement data structure incrementally while using the old and
complete data structure.

3.1.2 Efficient Support for divide and merge
We now show how to maintain the structure described above while supporting operations
divide(i, t) and merge(i). An example supporting the following explanation is provided in
Figure 1.

Observe that the operations are only local: Splitting Z[i] into two parts or merging
Z[i] and Z[i+ 1] does not influence the precomputed values in Y (besides adding/removing
values for the divided/merged elements). We must update I, R and U to reflect these local
changes accordingly. Because a divide or merge operation may create new representatives
between rebuilds with values that do not fit in U , we change I, R and U to reflect these new
representatives by rebuilding the data structure locally. This is done as follows.
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Consider the run representatives. Both divide(i, t) and merge(i) may require us to create
a new run, combine two existing runs or remove a run. In any case, we can find a replacement
representative for each run affected. As the operations are only local, the replacement is
either a divided or merged element, or one of the neighbors of the replaced representative.
Replacing representatives may cause both indices and values for the stored representatives
to change. We use insertions and deletions on R to update representative values.

Since the new operations change the indices of the elements, these changes must also
be reflected in I. For example, a merge(i) operation decrements the indices of all elements
with index larger than i compared to the indices stored at the time of the last rebuild We
should in principle adjust the O(B) changed indices stored in I. The cost of adjusting the
indices accordingly when using Lemma 9 to store I is O(B). Instead, to get our desired
constant time bounds, we represent I using a resizable data structure with the same number
of elements as Y that supports this kind of update. We must support selectI(i), rankI(q),
and predI(q) as well as inserting and deleting elements in constant time. Because I has few
and small elements, we can support the operations in constant time by representing it using
a bitstring B and a structure C which is the prefix sum over B as follows.

Let B be a bitstring of length |Y | ≤ B, where B[i] = 1 iff there is a representative at
index i. C has |Y | elements, where C[i] is the prefix sum of B including element i. Since C
requires O(B logB) bits in total we can pack it in a single word. We answer queries as follows:
rankI(q) equals C[q − 1], we answer selectI(i) by subtracting i from all elements in C and
return one plus the number of elements smaller than 0 (as done in U when answering search),
and we find predI(q) as the index of the least significant bit in B after having masked all
indices larger than q. Updates are performed as follows. Using mask, shift and concatenate
operations, we can ensure that B and C have the same size as Y at all times (we extend
and shrink them when performing divide and merge operations). Inserting or deleting a
representative is to set a bit in B, and to keep C up to date, we employ the same ±1 update
operation as used in U .

We finally need to adjust the relative offsets of all elements with a changed representative
in U (since they now belong to a representative with a different value). In particular, if the
representative for U [j] changed value from v to v′, we must subtract v′ − v from U [j]. This
can be done for all affected elements belonging to a single representative simultaneously in U
by a single addition with an appropriate bitmask (update a range of U). Note that we know
the range of elements to update from the representative indices. Finally, we may need to
insert or delete an element in U , which can be done easily by mask, shift and concatenate
operations on the word U . This leads to Theorem 10.

I Theorem 10. There is a linear space data structure for dynamic partial sums supporting
each operation search, sum, update, insert, delete, divide, and merge on a sequence of length
O(min{w/ logw,w/δ}) in worst-case constant time.

3.2 Dynamic Partial Sums for Large Sequences
Willard [37] (and implicitly Dietz [8]) showed that a leaf-oriented B-tree with out-degree B of
height h can be maintained in O(h) worst-case time if: 1) searches, insertions and deletions
take O(1) time per node when no splits or merges occur, and 2) merging or splitting a node
of size B requires O(B) time.

We use this as follows, where Z is our integer sequence of length s. Create a leaf-
oriented B-tree of degree B = Θ(min{w/ logw,w/δ}) storing Z in the leaves, with height
h = O(logB n) = O(logn/ log(w/δ)). Each node v uses Theorem 10 to store the O(B)
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sums of leaves in each of the subtrees of its children. Searching for t in a node corresponds
to finding the successor Y [i] of t among these sums. Dividing or merging elements in Z

corresponds to inserting or deleting a leaf. This concludes the proof of Theorem 2.

4 Conclusion

Our solution to DRC is built on data structures for the partial sums problem and the
substring concatenation problem. Our partial sums-solution is optimal, but in order to
get the desired constant query time for substring concatenation, our data structure uses
O(r logε r) space. Opposed to this, our linear space solution leads to O(log log r) query time.
We leave as an open problem if it is possible to get constant time substring concatenation
queries using O(r) space, which will also carry over to a stronger result for the DRC problem,
and improved solutions for the string indexing for patterns with wildcards problem and the
dynamic text and static pattern matching problem.

Currently we maintain a 2-approximation of the optimal cover. It would be useful to
know if a better approximation ratio can be maintained under the same (or better) time and
space bounds that we give.

Acknowledgments. We thank Pawel Gawrychowski for helpful discussions.
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