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Abstract
We study the version of the C-Planarity problem in which edges connecting the same pair of
clusters must be grouped into pipes, which generalizes the Strip Planarity problem. We give
algorithms to decide several families of instances for the two variants in which the order of the
pipes around each cluster is given as part of the input or can be chosen by the algorithm.
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1 Introduction

Visualizing clustered graphs is a challenging task with several applications in the analysis of
networks that exhibit a hierarchical structure. The most established criterion for a readable
visualization of these graphs has been formalized in the notion of c-planarity, introduced by
Feng, Cohen, and Eades [12] in 1995. Given a clustered graph C(G, T ) (c-graph), that is, a
graph G equipped with a recursive clustering T of its vertices, problem C-Planarity asks
whether there exist a planar drawing of G and a representation of each cluster as a topological
disk enclosing all and only its vertices, such that no “unnecessary” crossings occur between
disks and edges, or between disks. Ever since its introduction, this problem has been attracting
a great deal of research. However, the question about its computational complexity withstood
the attack of several powerful algorithmic tools, as the Hanani-Tutte theorem [13, 15], the
SPQR-tree machinery [9], and the Simultaneous PQ-ordering framework [5].

The clustering of a c-graph C(G, T ) is described by a rooted tree T whose leaves are
the vertices of G and whose each internal node µ, except for the root, represents a cluster
containing all and only the leaves of the subtree of T rooted at µ. A c-graph is flat if T
has height 2. The clusters-adjacency graph GA of a flat c-graph is the graph obtained by
contracting each cluster into a single vertex and by removing multi-edges and loops.

Cortese et al. [10] introduced a variant of C-Planarity for flat c-graphs, which we call
C-Planarity with Embedded Pipes, whose input is a flat c-graph together with a planar
drawing of its clusters-adjacency graph, where vertices are represented by disks and edges by
pipes. The goal is to produce a c-planar drawing in which each vertex lies inside the disk
representing the cluster it belongs to and each inter-cluster edge lies inside the corresponding
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pipe. In [10] this problem is solved when the underlying graph is a cycle. Chang, Erickson,
and Xu [8] observed that in this case the problem is equivalent to determining whether a
closed walk of length n in a simple plane graph is weakly simple, and improved the time
complexity to O(n logn). For the special case in which the clusters-adjacency graph is a
path, known by the name of Strip Planarity, there exist polynomial-time algorithms
when the underlying graph has a fixed planar embedding [2] and when it is a tree [13].

We remark that polynomial-time algorithms for the C-Planarity problem are known
under strong limitations on the number or on the arrangement of the components in the
clusters. A component of a cluster is a maximal connected subgraph induced by its vertices.
In particular, C-Planarity can be decided in linear time when each cluster contains one
connected component [9, 12] (the c-graph is c-connected). However, even when each cluster
contains at most two connected components, polynomial-time algorithms are known only
when further restrictions are imposed on the c-graph [5, 14]. The results we show in this
paper are also based on imposing constraints on the number of certain types of components.

A component is multi-edge if it is incident to at least two inter-cluster edges, otherwise
it is single-edge. Also, it is passing if it is adjacent to vertices belonging to at least two
other clusters in T , otherwise it is originating. For Strip Planarity the originating
components can be further distinguished into source and sink components, based on whether
the inter-cluster edges incident to them only belong to the lower or to the upper strip.

Our contributions. We give polynomial-time algorithms for instances of Strip Planarity
with a unique source component (Section 3) and for instances of C-Planarity with Embed-
ded Pipes with certain combinations of originating and passing multi-edge components in
the clusters (Section 4). Finally, in Section 5 we introduce a generalization of C-Planarity
with Embedded Pipes, which we call C-Planarity with Pipes, in which the inter-cluster
edges are still required to be grouped into pipes, but the order of the pipes around each disk
is not prescribed by the input. By introducing a new characterization of C-Planarity, we
give an FPT algorithm for C-Planarity with Pipes that runs in g(K, c) · O(n2) time,
with g(K, c) ∈ O(Kc(K−2)), where K is the maximum number of multi-edge components
in a cluster and c is the number of clusters with at least two multi-edge components. We
remark that our results imply polynomial-time algorithms for all the three problems in the
case in which each cluster contains at most two components.

Due to space limitations, complete proofs are deferred to the full version of the paper [1].

2 Preliminaries

For the standard definitions on planar graphs, planar drawings, planar embeddings, and
connectivity we point the reader to [11]. We call rotation scheme the clockwise circular
ordering of the edges around each vertex in a planar embedding, and refer to the containment
relationships between vertices and cycles in the embedding as relative positions. Also, if
block of a 1-connected graph consists of a single edge, we call it trivial, otherwise non-trivial.

PQ-trees. A PQ-tree [7] T is an unrooted tree, whose leaves are the elements of a set A and
whose internal nodes are either P-nodes or Q-nodes, that can be used to represent all and
only the circular orderings O(T ) on A satisfying a given set of consecutivity constraints on
subsets of A. The orderings in O(T ) are all and only the circular orderings on the leaves of
T obtained by arbitrarily ordering the neighbours of each P-node and by arbitrarily selecting
for each Q-node a given circular ordering on its neighbours or its reverse ordering.
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Connectivity. A k-cut of a graph is a set of at most k vertices whose removal disconnects
the graph. A graph with no 1-cut is biconnected. The maximal biconnected components of a
graph are its blocks. Without loss of generality, we will assume that the clusters-adjacency
graph of C(G, T ) is connected and that for every component c of every cluster µ ∈ T :
(i) there exists at least an inter-cluster edge incident to c,
(ii) every block of c that is a leaf in the block-cut-vertex tree of c contains at least a vertex

v such that v is not a cut-vertex of c and it is incident to at least an inter-cluster edge,
and

(iii) if there exists exactly one vertex in c that is incident to inter-cluster edges, then c

consists of a single vertex.

Simultaneous Embedding with Fixed Edges. Given planar graphs G1 = (V,E1) and
G2 = (V,E2), problem SEFE asks whether there exist planar drawings Γ1 of G1 and Γ2 of
G2 such that (i) any vertex v ∈ V is mapped to the same point in Γ1 and Γ2 and (ii) any
edge e ∈ E1 ∩E2 is mapped to the same curve in Γ1 and Γ2. Graphs G∩ = (V,E1 ∩E2) and
G∪ = (V,E1 ∪ E2) are the common and the union graph, respectively. See [4] for a survey.

We state here a theorem on SEFE that will be fundamental for our results. Even though
this theorem has never been explicitly stated in the literature, it can be easily deduced from
known results [6]. We discuss this in the full version of the paper [1].

I Theorem 1. Let G1 = (V,E1) and G2 = (V,E2) be two planar graphs whose common
graph G∩ = (V,E1 ∩ E2) is a forest and whose cut-vertices are incident to at most two
non-trivial blocks. It can be tested in O(|V |2) time whether 〈G1, G2〉 admits a SEFE.

3 Single-source Strip Planarity

In this section we prove a result of the same flavour as that by Bertolazzi et al. [3] for the
upward planarity testing of single-source digraphs. Namely, we show that instances of Strip
Planarity with a unique source component can be tested efficiently. The Strip Planarity
problem takes in input a planar graph G = (V,E) and a mapping γ : V → {1, . . . , k} of each
vertex to one of k unbounded horizontal strips such that, for any edge (u, v) ∈ E, it holds
|γ(u)− γ(v)| ≤ 1. The goal is to find a planar drawing of G in which vertices lie inside the
corresponding strips and edges cross the boundary of any strip at most once. This problem
is equivalent to C-Planarity with Embedded Pipes when GA is a path [2].

We start with an auxiliary lemma. An instance 〈G, γ〉 of Strip Planarity on k > 1
strips is spined if there exists a path (v1, . . . , vk) in G such that γ(vi) = i, vertex vk is the
unique vertex in the k-th strip, and each vertex vi with i 6= 1 induces a component in the i-th
strip. Path (v1, . . . , vk) is the spine path of 〈G, γ〉 and (vi, vi+1) is the i-th edge of this path.

I Lemma 2. Any positive spined instance 〈G, γ〉 of Strip Planarity admits a strip-planar
drawing in which the intersection point between the first edge of the spine path of 〈G, γ〉 and
the horizontal line separating the first and the second strip is the left-most intersection point
between any inter-strip edge and such a line.

I Lemma 3. Let 〈G = (V,E), γ〉 be a spined instance of Strip Planarity on k > 1 strips
with a unique source component c. It is possible to construct in linear time an equivalent
spined instance 〈G′ = (V ′, E′), γ′〉 on k − 1 strips with a unique source component c′.

Proof Sketch. First note that the source component c lies in the first strip. We construct
an auxiliary planar graph Gc as follows. Initialize Gc = c and add a dummy vertex v to it.

ISAAC 2016
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For each inter-strip edge e incident to a vertex u in c, add to Gc a dummy vertex ve and
edges (v, ve) and (ve, u). If Gc has cut-vertices, then let Bc be the block of Gc that contains
v. Then, construct a PQ-tree Tc representing all possible orders of the edges around v in a
planar embedding of Bc. This can be done by applying the planarity testing algorithm by
Booth and Lueker [7], in such a way that v is the last vertex of the st-numbering of Bc. Note
that the leaves of PQ-tree Tc are in one-to-one correspondence with the vertices ve in Bc.
We construct a representative graph GTc

from Tc, as described in [12], composed of (i) wheel
graphs (that is, graphs consisting of a cycle, called rim, and of a central vertex connected to
every vertex of the rim), of (ii) edges connecting vertices of different rims not creating any
simple cycle that contains vertices belonging to more than one wheel, and of (iii) vertices of
degree 1, which are in one-to-one correspondence with the leaves of Tc (an hence with the
dummy vertices ve in Bc), each connected to a vertex of some rim. As proved in [12], in any
planar embedding of GTc in which all the degree-1 vertices are incident to the same face, the
order in which such vertices appear in a Eulerian tour of such a face is in O(Tc).

Construct 〈G′, γ′〉 as follows. For i = 2, . . . , k and for each vertex v with γ(v) = i, add v
to V ′ and set γ′(v) = i − 1, that is, assign all the vertices of the i-th strip of 〈G, γ〉, with
i ≥ 2, to the (i− 1)-th strip of 〈G′, γ′〉. Further, add to E′ all edges in E ∩ (V ′ × V ′). Also,
add all vertices and edges of GTc to V ′ and to E′, respectively, and set γ′(u) = 1 for each
vertex u of GTc

. Finally, for each inter-strip edge e = (x, y) in E with γ(x) = 1 and γ(y) = 2,
add to E′ an intra-strip edge between y and the degree-1 vertex of GTc corresponding to ve.

Instance 〈G′, γ′〉 can be constructed in linear time [7, 12] and its size is linear in the
one of 〈G, γ〉. Further, 〈G′, γ′〉 has a unique source component, which contains GTc

as a
subgraph, and is spined. We now show the equivalence between the two instances.

Suppose that 〈G, γ〉 admits a strip-planar drawing Γ. Note that all the vertices of c
incident to inter-strip edges lie on the outer face of c in Γ. To construct a strip-planar
drawing Γ′ of 〈G′, γ′〉, subdivide each inter-strip edge incident to c with a dummy vertex ve
lying in the interior of the first strip of Γ. By the construction of Tc and of GTc

, each vertex
ve corresponds to exactly one degree-1 vertex of GTc . Let c+ be the subgraph of G induced
by the vertices in c and by all the vertices ve. Since the order in which the vertices ve appear
in a Eulerian tour of the outer face of c+ in Γ is in O(Tc), we can replace the drawing of c+

in Γ with a drawing of GTc
in which each degree-1 vertex is mapped to its corresponding

vertex ve. To obtain Γ′, we merge the first two strips of Γ into the first strip of Γ′.
Suppose that 〈G′, γ′〉 admits a strip-planar drawing Γ′, we show how to construct a strip-

planar drawing Γ of 〈G, γ〉. First, by Lemma 2, we can assume that in Γ′ the intersection
point between the first edge of the spine path of 〈G′, γ′〉 and the line separating the first
and the second strip in Γ′ is the left-most intersection point between any edge (x, y) with
γ(x) = 1 and γ(y) = 2 and such a line. Further, we can assume the following.

I Claim 4. For every wheel W in GTc , the rim of W contains in its interior its central
vertex and no other vertex in Γ′.

Initialize Γ as the drawing in Γ′ of the subinstance of 〈G′, γ′〉 induced by the vertices not
in GTc , where the i-th strip in Γ′ is mapped to the (i + 1)-th strip in Γ. First, draw GTc

in the first strip of Γ as it is drawn in Γ′. Then, draw each inter-strip edge (x, y) with y in
GTc

, which corresponds to an intra-strip edge incident to GTc
in Γ′, as a curve composed

of six parts. The first part coincides with the drawing of (x, y) in Γ′; the second is a curve
arbitrarily close to the drawing in Γ′ of a path in GTc

from y to the first vertex v1 of the spine
path of 〈G′, γ′〉; the third is a curve arbitrarily close to the drawing in Γ′ of the first edge of
the spine path of 〈G′, γ′〉 till a point p in the interior of the first strip of Γ′ and arbitrarily
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close to the boundary of the second strip; the fourth is a horizontal segment connecting p to
a point q lying to the left of Γ′; the fifth is a vertical segment connecting q to a point r in
the interior of the first strip of Γ; and the sixth is a curve connecting r to y. By Claim 4, the
degree-1 vertices of GTc lie on its outer face in Γ′ (and hence in Γ). Thus, the inter-strip
edges incident to GTc

can be drawn without crossings, as they preserve the same containment
relationship between vertices and cycles in Γ as the corresponding intra-strip edges in Γ′.

Let H be the graph obtained from Bc by subdividing each edge e incident to v with a
dummy vertex ve and by removing v. Replace the drawing of GTc in Γ with a planar drawing
of H such that the vertices ve appear in a Eulerian tour of its outer face in the same clockwise
order as the corresponding degree-1 vertices appear in a Eulerian tour of the outer face of
GTc in Γ. Recall that these vertices are on the outer face of GTc in Γ, by Claim 4. Such a
drawing of H exists since this order is in O(Tc) [12]. To complete Γ, for each cut-vertex z of
Gc separating Bc from a subgraph Gz of Gc, draw graph Gz arbitrarily close to z. Note that
no vertex of Gz, except possibly for z, is incident to an inter-strip edge. J

Let 〈G, γ〉 be an instance of Strip Planarity on k > 1 strips satisfying the properties of
Lemma 3. By applying this lemma k − 1 times, we obtain an instance of Strip Planarity
on k = 1 strips, that is, an instance whose strip-planarity coincides with the planarity of its
underlying graph, which can be tested in linear time [7]. Hence, we get the following.

I Lemma 5. Let 〈G = (V,E), γ〉 be a spined instance of Strip Planarity on k > 1 strips
with a unique source component c. It is possible to decide in O(k × n) time whether 〈G, γ〉
admits a strip-planar drawing.

Given an instance of Strip Planarity, one can create O(n) spined instances by attaching
the spine path to each of the O(n) vertices in the first strip. The next theorem follows.

I Theorem 6. Let 〈G, γ〉 be an instance of Strip Planarity on k strips such that there
exists a unique source component c. It is possible to decide in O(n3) time whether 〈G, γ〉
admits a strip-planar drawing.

4 C-Planarity with Embedded Pipes

In this section we show that the C-Planarity with Embedded Pipes problem is solvable
in quadratic time for a notable family of instances.

Let c be an originating component belonging to a cluster µ ∈ T and let ν 6= µ ∈ T be the
cluster to which the vertices of c are adjacent to. We say that c is originating from µ to ν.

I Lemma 7. Let 〈C(G, T ),ΓA〉 be an instance of C-Planarity with Embedded Pipes
and let S be the maximum number of originating multi-edge components in a cluster that are
incident to the same pipe. It is possible to construct in linear time an equivalent instance
〈G1, G2〉 of SEFE such that (i) G∩ is a spanning forest, (ii) each cut-vertex of G2 = (V,E2)
is incident to at most one non-trivial block, and (iii) each cut-vertex of G1 = (V,E1) is
incident to at most S non-trivial blocks.

Proof. We show how to construct 〈G1, G2〉 starting from 〈C(G, T ),ΓA〉. The frame gadget H
is an embedded planar graph defined as follows. Refer to Fig. 1.a. For each intersection point
between a disk representing a cluster µ ∈ T and a segment delimiting a pipe representing
an edge of GA incident to µ in the drawing ΓA of GA, we add a vertex at this point. This
results in a planar drawing of a graph; we set H to be this graph. We call disk cycle of µ the
cycle in H obtained from the disk of µ in ΓA. Similarly, we call pipe cycle of an edge (µ, ν)

ISAAC 2016
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µ

ν

vout vout

(a) (b) (c)

Figure 1 (a) Drawing ΓA of the clusters-adjacency graph GA, with vertices at the intersections
of disks and pipes. The disk cycle for cluster µ and the pipe cycle for edge (µ, ν) of GA are orange
and gray tiled regions, respectively. (b) Frame gadget H. (c) Partial instance 〈G1, G2〉 of SEFE
constructed from ΓA; graphs G1, G2, and G∩ are subdivisions of triconnected planar graphs.

of GA the cycle in H obtained from the pipe representing edge (µ, ν) in ΓA. Note that, for
clusters incident to exactly one pipe, this operation introduced two copies of the same edge;
subdivide with a dummy vertex the copy that is not incident to the interior of this pipe.
Then, add a vertex vout in the outer face of H, connected to all the vertices incident to this
face, and triangulate all the faces of H not corresponding to the interior of any cluster cycle
or of any pipe cycle, hence obtaining a triconnected embedded planar graph. See Fig. 1.b.

Initialize G∩ = H. For each edge e ∈ E(H) separating a pipe from a disk, remove e
from G1 (not from G2); this implies that disk cycles and pipe cycles only belong to G2.
Further, for each two edges e′ and e′′ corresponding to the two segments (uµ,ν , uν,µ) and
(vµ,ν , vν,µ) delimiting a pipe representing an edge (µ, ν) of GA, subdivide e′ with four dummy
vertices a′µ,ν , b′µ,ν , b′ν,µ, a′ν,µ, and e′′ with four dummy vertices a′′µ,ν , b′′µ,ν , b′′ν,µ, a′′ν,µ, and add
edges (a′µ,ν , a′′µ,ν) and (a′ν,µ, a′′ν,µ) to G1 and edges (b′µ,ν , b′′µ,ν) and (b′ν,µ, b′′ν,µ) to G2.

For each cluster µ ∈ T , augment 〈G1, G2〉 as follows; see Fig. 2.a. Subdivide an edge of
G∩ that corresponds to a portion of the boundary of the disk representing µ in ΓA with a
dummy vertex γµ, and add to G∩ a star Cµ, whose central vertex is adjacent to γµ, with
a leaf z(ci) for each multi-edge component ci of µ. Also, add to G∩ each component ci of
µ. Finally, for each edge (µ, ν) of GA, subdivide (vµ,ν , a′µ,ν) with a dummy vertex αµ,ν and
(a′′µ,ν , b′′µ,ν) with a dummy vertex βµ,ν . Add to G∩ a star Aµ,ν (Bµ,ν), whose central vertex is
adjacent to αµ,ν (is identified with βµ,ν), with a leaf aµ(e) (a leaf bµ(e)) for each inter-cluster
edge e incident to a component of µ and to a component in ν. To complete 〈G1, G2〉, add the
following edges only belonging to G1 and to G2. For each inter-cluster edge e = (x, y) with
x ∈ µ and y ∈ ν, add to G1 edges (x, aµ(e)), (y, aν(e)), and (bµ(e), bν(e)), and add to G2
edges (aµ(e), bµ(e)) and (aν(e), bν(e)). Also, for each vertex x of a component ci of a cluster
µ such that x is incident to at least an inter-cluster edge, add to G2 an edge (x, z(ci)).

Clearly, 〈G1, G2〉 can be constructed in linear time. We now prove that G1 and G2 satisfy
the properties of the lemma. We note that G1 and G2 are connected, since each vertex
of a component ci is connected to the frame gadget by means of paths in G1 and in G2
passing through stars Aµ,ν and Cµ, respectively. Also, for each cluster µ ∈ T , graph G2
contains cut-vertices γµ, the center of star Cµ, and vertices z(ci), for each component ci of µ.
However, vertex γµ is incident to exactly one non-trivial block, that is, the one containing all
the vertices and edges of the frame gadget; the center of Cµ is incident only to non-trivial
blocks; and vertices z(ci), for each component ci of µ, are incident to at most one non-trivial
block, that is, the one containing all the vertices and edges in ci. Also, for each cluster µ ∈ T ,
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a′µ,ν

a′′µ,ν

b′µ,ν

b′′µ,ν

γµ

z(c1)

c1

c2
c3

c4

vµ,ν

uµ,ν

αµ,ν

βµ,νe

aµ(e)

bµ(e)

c5

ν

µ

e

u u

v v

(a) (b)

Figure 2 (a) Augmentation of instance 〈G1, G2〉 focused on cluster µ ∈ T . (b) Replacing an edge
e = (u, v) to make G∩ acyclic.

all the passing components in µ belong to the biconnected component of G1 containing all
the vertices and edges of the frame gadget, while each multi-edge component originating
from µ to a cluster ν determines a non-trivial block incident to αµ,ν , and each single-edge
originating component from µ to a cluster ν determines a trivial block incident to αµ,ν . Since
the number of multi-edge components originating from any cluster to any other cluster is at
most S, graph G1 satisfies the required properties. The following claim implies that G∩ can
be transformed into a spanning forest without altering the properties of 〈G1, G2〉.

I Claim 8. Each cycle of G∩ can be removed without altering the properties of 〈G1, G2〉 by
replacing one of its edges with the gadget in Fig. 2.b.

We now prove the equivalence. Suppose that 〈G1, G2〉 admits a SEFE 〈Γ1,Γ2〉. We show
how to construct a c-planar drawing with embedded pipes Γ of 〈C(G, T ),ΓA〉. Without loss
of generality, assume that vertex vout is embedded on the outer face of 〈Γ1,Γ2〉. Note that
the paths in G∩ corresponding to the segments delimiting the pipes representing an edge of
GA incident to a cluster µ ∈ T appear in 〈Γ1,Γ2〉 in the same clockwise circular order as the
corresponding pipes appear around the disk representing µ in ΓA. This is due to the fact
that the frame gadget is a triconnected planar graph whose unique planar embedding is the
one obtained from ΓA. Note that in 〈Γ1,Γ2〉 all the vertices in V appear either in the interior
or on the boundary of disk cycles or of pipe cycles. This is due to the fact that removing
all the vertices on the boundary of such cycles leaves a connected subgraph of G∪ and that
there exists a unique face of H to which all the vertices belonging to such cycles are incident.

The proof is based on the fact that any SEFE of 〈G1, G2〉 has the following properties.
1. For each cluster µ ∈ T , the central vertex of star Cµ lies in the interior of the disk cycle

of µ, and hence all the vertices and edges of the components ci of µ lie in the interior of
such a cycle, since G2 is connected.

2. For each two clusters µ, ν ∈ T , the vertices of the components of µ and of the those of ν
lie in the interior of different cycles of G1, since all the components of each cluster µ are
connected by paths in G1 to the leaves of a star Aµ,ξ, where ξ is a cluster adjacent to µ.
Also, all the leaves of these stars lie in the interior of a cycle of G1 delimited by edges of
G∩ and by edges (a′µ,ξi

, a′′µ,ξi
), for all the clusters ξi adjacent to µ.

ISAAC 2016
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3. For each inter-cluster edge e connecting a vertex v of a component ci of µ to a cluster ν,
edge (v, aµ(e)) in G1 crosses edge (uµ,ν , vµ,ν). This is due to the previous two points and
the fact that the leaves of Aµ,ν lie outside the disk cycle of µ. We can assume that each
of these edges crosses edge (uµ,ν , vµ,ν) exactly once, as otherwise we could redraw them
to fulfill this requirement.

4. For two adjacent clusters µ, ν ∈ T , the order in which the edges in G1 incident to the
leaves of Aµ,ν cross (uµ,ν , vµ,ν) from uµ,ν to vµ,ν is the reverse of the order in which the
edges in G1 incident to the leaves of Aν,µ cross (uν,µ, vν,µ) from uν,µ to vν,µ, where the
identification between an edge incident to a leaf aµ(e) of Aµ,ν and an edge incident to a
leaf aν(e) of Aν,µ is based on the inter-cluster edge e they correspond to. In fact, the order
in which the edges in G1 incident to the leaves of Aµ,ν cross (uµ,ν , vµ,ν) is transmitted to
the leaves of Bµ,ν via edges in G2, then it is transmitted to the leaves of Bν,µ via edges
in G1, and finally to the leaves of Aν,µ via edges in G2. Note that all the leaves of these
stars lie in the interior of the pipe cycle corresponding to edge (µ, ν) of GA.

We describe how to obtain a c-planar drawing with embedded pipes Γ of 〈C(G, T ),ΓA〉
from 〈Γ1,Γ2〉. For each µ ∈ T , draw region R(µ) as the simple closed region whose boundary
coincides with the drawing in Γ2 of the disk cycle of µ. Each component ci of a cluster µ has
the same drawing in Γ as ci in 〈Γ1,Γ2〉. For each inter-cluster edge e = (x, y) with x ∈ µ
and y ∈ ν, the portion of e in the interior of R(µ) (of R(ν)) coincides with the drawing
of edge (x, aµ(e)) (of edge (y, aν(e))) between x (between y) and the intersection point of
this edge with edge (uµ,ν , vµ,ν) (with edge (uν,µ, vν,µ)). To complete the drawing of all the
inter-cluster edges between µ and ν in the interior of the pipe representing edge (µ, ν) of GA,
connect the intersection points between the corresponding edges in G1 and edges (uµ,ν , vµ,ν)
and (uν,µ, vν,µ) by means of a set of non-intersecting curves. This is possible since the order
in which the edges in G1 incident to the leaves of Aµ,ν cross (uµ,ν , vµ,ν) from uµ,ν to vµ,ν
is the reverse of the order in which the edges in G1 incident to the leaves of Aν,µ cross
(uν,µ, vν,µ) from uν,µ to vν,µ. This implies that Γ is a c-planar drawing of C(G, T ). The
fact that Γ can be continuously deformed into a c-planar drawing with embedded pipes
of 〈C(G, T ),ΓA〉 is due to the fact that the paths in G∩ corresponding to the segments
delimiting the pipes incident to each cluster µ ∈ T appear in 〈Γ1,Γ2〉 in the same clockwise
order as the corresponding pipes appear around the disk representing µ in ΓA.

For the other direction, the goal is to construct a SEFE 〈Γ1,Γ2〉 of 〈G1, G2〉 that satisfies all
the properties describe above starting from a c-planar drawing with pipes Γ of 〈C(G, T ),ΓA〉.
For each cluster µ ∈ T , draw the disk cycle of µ as the boundary of the disk of µ in ΓA.
Also, for each edge (µ, ν) of GA, draw the corresponding pipe cycle as the boundary of the
pipe of edge (µ, ν) in ΓA. For each cluster µ ∈ T , each component ci of µ has the same
drawing in 〈Γ1,Γ2〉 as ci in Γ. For each edge (µ, ν) of GA, the stars Aµ,ν , Bµ,ν , Aν,µ, and
Bν,µ are drawn in 〈Γ1,Γ2〉 so that the order of their leaves is the same or the reverse of the
order in which the inter-cluster edges between µ and ν traverse the boundary of the disk
of µ in Γ. Note that this order is the reverse of the order in which these edges traverse the
boundary of the disk of ν in Γ. This allows to draw all the edges in G1 and in G2 that are
incident to such leaves without introducing crossings between edges of the same graph. The
drawing of star Cµ, for each cluster µ ∈ T , and of the edges in G2 incident to its leaves can
be easily obtained to respect the circular order of the inter-cluster edges incident to each of
the components of µ. This concludes the proof of the lemma. J

By Lemma 7 and Theorem 1 we have the following main result.
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R′′

B(µ)
B(ν)

e2

e1 R′

R′′

B(µ)
B(ν)

e2

e1 R′

(a) (b)

Figure 3 (a) A c-planar drawing with pipes Γ′, with regions R′ (blue) and R′′ delimited by B(µ)
and B(ν), and by e1 and e2 (dashed), where region R′ does not contain any vertex of G \ (µ∪ ν). (b)
A c-planar drawing with pipes Γ∗ corresponding to Γ′ in which inter-cluster edges are inside pipes.

I Theorem 9. C-Planarity with Embedded Pipes can be solved in O(n2) time for
instances 〈C(G, T ),ΓA〉 such that for each cluster µ ∈ T and for each edge (µ, ν) in GA
either (CASE 1) cluster µ contains at most one originating multi-edge component from µ to
ν or (CASE 2) cluster µ contains at most two multi-edge originating components from µ to ν
and does not contain any passing component that is incident to ν.

5 C-Planarity with Pipes

In this section we introduce and study problem C-Planarity with Pipes. A c-planar
drawing Γ of a flat c-graph C(G, T ) is a c-planar drawing with pipes if, for any two clusters
µ, ν ∈ T that are adjacent in GA and for any two inter-cluster edges e1 and e2 that are
incident to both µ and ν, one of the two regions delimited by B(µ), by B(ν), by e1, and by
e2 does not contain any vertex of G \ (µ ∪ ν); see Fig. 3.

Problem C-Planarity with Pipes asks for the existence of a c-planar drawing with pipes
of a given flat c-graph. We first prove that this problem is a generalization of C-Planarity
with Embedded Pipes.

I Lemma 10. C-Planarity with Embedded Pipes reduces in linear time to C-Planarity
with Pipes. The reduction does not increase the number of multi-edge components in
any cluster.

We now present an FPT algorithm for C-Planarity with Pipes with two parameters,
namely the maximum number K of multi-edge components in a cluster and the number c of
clusters with at least two multi-edge components. Our result builds on a characterization of
C-Planarity of flat c-graphs in terms of a new constrained embedding problem.

5.1 A Characterization of Flat C-Planarity
We start with some definitions. Let C(G, T ) be a flat c-graph. A components tree Xµ of a
cluster µ ∈ T is a rooted tree in which every internal vertex is a multi-edge component c
of µ and in which every leaf xµ(e) corresponds to an inter-cluster edge e incident to one of
such components. A neighbor-clusters tree Yµ of µ is a rooted tree in which there exists an
internal vertex ν for each cluster ν adjacent to µ, plus a set of additional internal vertices,
and every leaf yµ(e) corresponds to an inter-cluster edge e incident to µ. Let Γ be a c-planar
drawing of C(G, T ), let Xµ be a components tree of µ rooted at a multi-edge component ρµ,
and let Yµ be a neighbor-clusters tree of µ rooted at a cluster ξµ, such that there exists an
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Figure 4 (a) A c-planar drawing Γ focused on cluster µ. Edges incident to µ are solid. Component
c is nested into component ρµ. Trees (b) Xµ and (c) Yµ such that Γ is consistent with Xµ and Yµ.
(d) A c-planar drawing that is not a c-planar drawing with pipes, even if the inter-cluster edges
incident to the same cluster are consecutive (see the annuli around clusters), due to the presence of
trivial block (µ, ν).

inter-cluster edge eµ incident to both ρµ and ξµ. Let Oµ be the clockwise linear order in
which the edges incident to µ traverse B(µ) in Γ, starting from and ending at eµ. Drawing Γ
is consistent with Xµ if, for each vertex c ∈ Xµ, the leaves of the subtree of Xµ rooted at
c are consecutive in the restriction of Oµ to the inter-cluster edges incident to multi-edge
components of µ. Also, Γ is consistent with Yµ if, for each vertex ν ∈ Yµ, the leaves of the
subtree of Yµ rooted at ν are consecutive in Oµ. Let X and Y be two sets containing a
components tree Xµ and a neighbor-clusters tree Yµ, respectively, for each µ ∈ T . Drawing
Γ is consistent with 〈X ,Y〉 if, for each µ ∈ T , it is consistent with both Xµ and Yµ.

Given a flat c-graph C(G, T ), together with two sets X and Y of components trees
and of neighbor-clusters trees, respectively, for all the clusters in T , problem Inclusion-
Constrained C-Planarity asks whether a c-planar drawing of C(G, T ) exists that is
consistent with 〈X ,Y〉.

I Theorem 11. A flat c-graph C(G, T ) is c-planar if and only if there exist two sets X and
Y of components trees and of neighbor-clusters trees, respectively, for all the clusters in T ,
such that 〈C(G, T ),X ,Y〉 is a positive instance of Inclusion-Constrained C-Planarity.

Proof Sketch. The “only if part” trivially follows from the definition of
Inclusion-Constrained C-Planarity. For the “if part”, let Γ be any c-planar drawing of
C(G, T ) and let µ be a cluster in T . Suppose that µ contains at least a multi-edge component
ρµ, as otherwise Xµ is the empty tree and Γ is consistent with it. Let eµ be any inter-cluster
edge incident to ρµ and to a cluster ξµ. Let Oµ be the clockwise linear order of the edges
incident to µ starting from eµ and ending at eµ. Since Γ is c-planar, no two pairs of edges
incident to two different components of µ (two different clusters adjacent to µ) alternate
in Oµ. Hence, order Oµ defines a hierarchical inclusion of the components of µ and of the
clusters adjacent to µ with respect to ρµ and to ξµ, respectively, which can be described by
means of two trees Xµ and Yµ; see Fig. 4.a–4.c. Clearly, Γ is consistent with such trees. J

In the following theorem, whose proof is deferred to the full version of the paper [1], we
show that the Inclusion-Constrained C-Planarity problem can be solved efficiently.

I Theorem 12. Inclusion-Constrained C-Planarity can be solved in quadratic time.

In the following we prove that, for each cluster µ of a c-graph C(G, T ), there exists a
neighbor-clusters tree Yµ such that every c-planar drawing with pipes of C(G, T ) is consistent
with Yµ. Hence, an FPT algorithm for C-Planarity with Pipes can be based on generating,
for each cluster, all the possible components trees and its unique neighbor-clusters tree, and
on testing these instances of Inclusion-Constrained C-Planarity by Theorem 12.
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5.2 Neighbor-clusters Trees in C-Planar Drawings with Pipes
In the following theorem we give a characterization of the c-graphs that are positive instances
of C-Planarity with Pipes based on the possible orders of inter-cluster edges around each
cluster in any c-planar drawing. We first consider only c-graphs whose clusters-adjacency
graph GA has no trivial blocks; however, we prove later that this is not a restriction.

I Theorem 13. Let C(G, T ) be a flat c-graph such that GA has no trivial block. Then,
C(G, T ) is a positive instance of C-Planarity with Pipes if and only if C(G, T ) admits
a c-planar drawing Γ in which, for each cluster µ ∈ T , the inter-cluster edges between µ and
any cluster ν adjacent to µ in GA are consecutive in the order in which the inter-cluster
edges incident to µ cross B(µ) in Γ.

Proof Sketch. The “only if part” descends from the definition of a c-planar drawing with
pipes. We prove the “if part”; see Fig. 4.d. Let Γ be a c-planar drawing of C(G, T ) satisfying
the conditions of the theorem and consider two clusters µ, ν ∈ T with two inter-cluster
edges e1 and e2 incident to µ and ν. If both the regions delimited by e1, e2, B(µ), and B(ν)
contain vertices in G \ (µ ∪ ν), then all the clusters in one of the regions are only connected
to µ and all the clusters in the other region are only connected to ν, due to the conditions of
the lemma. Hence, (µ, ν) is a trivial block of GA, a contradiction. J

We exploit Theorem 13 to construct a neighbor-clusters tree Y ◦µ of each cluster µ ∈ T such
that any c-planar drawing with pipes of C(G, T ) is consistent with Y ◦µ . Tree Y ◦µ is rooted at
a vertex ωµ. There exists a child ν of ωµ for each cluster ν adjacent to µ, having a leaf yµ(e)
for each inter-cluster edge e incident to µ and to ν. We call Y ◦µ the pipe-neighbor-clusters tree
of µ. Theorem 13 and the construction of Y ◦µ , for each cluster µ ∈ T , imply the following.

I Corollary 14. Let C(G, T ) be a c-graph whose clusters-adjacency graph has no trivial
blocks. Then, C(G, T ) admits a c-planar drawing with pipes if and only if C(G, T ) admits a
c-planar drawing Γ in which, for each µ ∈ T , drawing Γ is consistent with Y ◦µ .

By Corollary 14 we can reduce C-Planarity with Pipes for a c-graph whose clusters-
adjacency graph GA has no trivial blocks to Inclusion-Constrained C-Planarity, where
the role played by the neighbor-clusters trees is taken by the pipe-neighbor-clusters trees. In
the full paper [1] we explain how to overcome the requirement that GA has no trivial block.

I Lemma 15. Let C(G, T ) be an instance of C-Planarity with Pipes in which GA
contains trivial blocks. It is possible to construct in linear time an equivalent instance
C∗(G∗, T ∗) of C-Planarity with Pipes in which G∗A has no trivial block. Further,
K∗ = K and c∗ = c, where K (K∗) is the maximum number of multi-edge components in
a cluster of C(G, T ) (of C∗(G∗, T ∗)) and c (c∗) is the number of clusters of C(G, T ) (of
C∗(G∗, T ∗)) with at least two multi-edge components.

5.3 An FPT Algorithm for C-Planarity with Pipes
In the following we prove the main result of the section.

I Theorem 16. C-Planarity with Pipes can be tested in O(Kc(K−2)) ·O(n2) time, where
K is the maximum number of multi-edge components in a cluster and c is the number of
clusters with at least two multi-edge components.

Proof Sketch. Let C(G, T ) be a c-graph, which can be assumed to have no trivial block by
Lemma 15. Construct the set Y containing the unique pipe-neighbor-clusters tree Y ◦µ of each
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cluster µ ∈ T . Then, construct all the possible sets X of components trees, over all clusters
in T . For each pair 〈X ,Y〉, apply Theorem 12 to test whether 〈C(G, T ),X ,Y〉 is a positive
instance of Inclusion-Constrained C-Planarity. By Theorem 13 and Corollary 14,
c-graph C(G, T ) is a positive instance if and only if at least one of such tests succeeds. J

We observe two notable corollaries of Theorem 16 (for the second, see Lemma 10).

I Corollary 17. Strip Planarity can be tested in O(Ks(K−2)) ·O(n2) time, where K is
the maximum number of multi-edge components in a strip and s is the number of strips
containing at least two multi-edge components.

I Corollary 18. C-Planarity with Embedded Pipes can be tested in Kc(K−2) ·O(n2)
time, where K is the maximum number of multi-edge components in a cluster and c is the
number of clusters with at least two multi-edge components.

6 Conclusions and Open Problems

In this paper we studied the problem of constructing c-planar drawings with pipes of flat
c-graphs. We presented algorithms to test the existence of such drawings when the number
of certain components is small, in different scenarios, namely when the clusters-adjacency
graph is a path (Strip Planarity), when it has a fixed embedding (C-Planarity with
Embedded Pipes), and when it has no restrictions (C-Planarity with Pipes).

Several questions are left open. We find particularly interesting to determine whether
there exist combinatorial properties of the nesting of the components allowing us to reduce
the number of possible components trees, analogous to the ones we could prove for the
pipe-neighbor-clusters trees. We remark that the introduction of the components trees makes
the running time of our FPT algorithms independent of the size of each component.
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