
An Efficient Algorithm for Placing Electric Vehicle
Charging Stations∗

Pankaj K. Agarwal1, Jiangwei Pan2, and Will Victor3

1 Duke University, Durham, USA
pankaj@cs.duke.edu

2 Duke University, Durham, USA
jwpan@cs.duke.edu

3 Duke University, Durham, USA
william.victor@duke.edu

Abstract
Motivated by the increasing popularity of electric vehicles (EV) and a lack of charging stations
in the road network, we study the shortest path hitting set (SPHS) problem. Roughly speaking,
given an input graph G, the goal is to compute a small-size subset H of vertices of G such that
by placing charging stations at vertices in H, every shortest path in G becomes EV-feasible, i.e.,
an EV can travel between any two vertices of G through the shortest path with a full charge. In
this paper, we propose a bi-criteria approximation algorithm with running time near-linear in
the size of G that has a logarithmic approximation on |H| and may require the EV to slightly
deviate from the shortest path. We also present a data structure for computing an EV-feasible
path between two query vertices of G.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Computations
on Discrete Structures

Keywords and phrases Shortest path hitting set, Charging station placement, Electric vehicle

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.7

1 Introduction

Motivation. Electric vehicles (EVs) are becoming increasingly popular as we transition
from fossil fuels to cleaner energy. One of the main challenges in the popularization of EVs
is the lack of charging facilities in the road network. Ideally, one should be able to reach
a charging station quickly anywhere on the road network, as in the case of gas stations.
However, due to resource constraints and the relatively small fraction of EVs currently on
the road, it is desirable to first build a small number of charging stations to satisfy the most
basic transportation needs of EV owners. One natural such need is that an EV, with an
initial full charge, should be able to travel between any two locations via the shortest path
without draining the battery. In other words, any shortest path in the road network contains
sufficient number of charging stations. We study the problem of placing the minimum number
of charging stations to satisfy the above condition.

∗ Work on this paper is supported by NSF under grants CCF-11-61359, IIS-14-08846, CCF-15-13816,
and ISS-14-47554 by an ARO grant W911NF-15-1-0408, and by Grant 2012/229 from the U.S.-Israel
Binational Science Foundation.

© Pankaj K. Agarwal, Jiangwei Pan, and Will Victor;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 7; pp. 7:1–7:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


7:2 An Efficient Algorithm for Placing Electric Vehicle Charging Stations

Figure 1 Illustration of the definition of highway dimension: a ball of radius r, and three vertices
that intersect all shortest paths within the ball whose lengths are Ω(r).

Problem statement. The input consists of a graph G = (V,E) of n = |V | vertices and
m = |E| edges, which represents a road network, and a positive length function `(·) on the
edges in E. We assume that an EV can travel a fixed distance r (e.g., 200km) in G with a
full charge. More sophisticated models have been proposed for the battery capacity, which
not only consider the distance but also the topography of the underlying terrain. But we use
this simpler model because the problem is challenging even in this model and furthermore,
on realistic terrains the EV will travel distance in the range [ rc , cr], for some small constant
c ≥ 1, with a full charge. For any two vertices u, v ∈ V , let πG(u, v) denote the shortest
path from u to v in graph G; it is abbreviated π(u, v) when there is no ambiguity. For
convenience, we set µ(u, v) := `(π(u, v)). For a subset X ⊆ V and a vertex v ∈ V , let
µ(v,X) := minx∈X µ(v, x).

Given a set X of vertices, a path P is said to be hit by X if X contains an interior
vertex of P — a vertex of P other than its starting and ending vertices. We say a path P
is r-EV-feasible with respect to X (charging stations) if every contiguous subpath of P of
length more than r is hit by X. An r-shortest-path hitting set (r-SPHS) of G is a subset
H ⊆ V such that for all u, v ∈ V , π(u, v) is r-EV-feasible with respect to H. Similarly, given
δ ∈ (0, 1), a δ-approximate r-SPHS of G is a subset H̃ ⊆ V such that for all u, v ∈ V , there
exists an r-EV-feasible path P (with respect to H̃) between u, v with `(P ) ≤ (1 + δ)µ(u, v).
The goal of the shortest-path hitting-set (SPHS) problem is to compute a minimum-size
r-SPHS of G. In the rest of the paper, for simplicity, we may leave out parameter r and just
write SPHS and EV-feasible.

The problem of computing minimum number of charging stations reduces to an instance
of the classical hitting-set problem, and is NP-complete by a simple reduction from the
vertex-cover problem. Since we are not aware of a proof of the NP-completeness in the
literature, we describe the details of the reduction in Section 2. We propose an efficient
approximation algorithm for the SPHS problem that exploits the structure of road networks.

Related work. In the last few years, there has been extensive work on a variety of optim-
ization problems on road networks, which are modeled as “sparse” graphs with additional
structural properties. In particular, Abraham et al. [3, 1, 2] introduced the notion of highway
dimension to give provable guarantees of efficiency for many popular shortest-path heuristics,
such as reach, contraction hierarchies, and transit node; see also [6]. Roughly speaking, the
graph G has highway dimension h if, for any x > 0 and any vertex v ∈ V , there exist h
vertices that intersect all shortest paths of length at least x that are within O(x) distance of
v. See Figure 1 for illustration and Section 2 for the definition. Abraham et al. argued that
real-world road networks have small highway dimension.

Storandt and Funke [21] formulated the problem of placing minimum number of charging
stations such that there exists some EV-feasible path between any two vertices. They gave a



P.K. Agarwal, J. Pan, and W. Victor 7:3

polynomial-time algorithm that achieves O(logn) approximation. However, the EV-feasible
path computed by their algorithm can be much longer than the shortest path. This drawback
was addressed by Funke et al. [13]. They require the shortest path between any two vertices
to be EV-feasible. They modeled the problem as a hitting-set problem (defined in Section 2),
and obtained an O(logn) approximation using a greedy algorithm. Constructing the hitting
set instance requires computing as many as O(n2) shortest paths, and can take O(n3) time in
the worst case, which is formidable when the road network is large. Funke et al. [13] applied
a number of techniques to speed up the computation, but without provable guarantees of
the running time and approximation.

Several variants of the SPHS problem have been studied. For example, the road network
may be small so that one can always drive from one location to another without recharging.
In these cases, the charging stations are placed to satisfy other constraints. For example,
Xiong et al. [26] take EV drivers’ behavior into consideration and compute a set of charging
stations in Singapore that optimizes the equilibrium utility of a congestion game. There are
other optimization criteria considered in the literature, such as charging demand coverage
[11] and EV access cost [22].

Another set of literature study the EV routing problem. Baum et al. [7] gave an algorithm
that plans routes minimizing overall trip time, including time for necessary rechargings on
the way. Their model allows the charging time to be a function of the remaining battery
level. Goodrich and Pszona [14] formulated a bi-criteria path optimization problem, where
two objectives (e.g., travel time and energy cost) are optimized, and their algorithm outputs
a path that optimizes one objective before reaching some vertex and switches to the other
objective afterwards. See also [8, 19] for work on computing energy-efficient paths.

As discussed above, the SPHS problem is an instance of the hitting-set problem, one of
the twenty-one problems in Karp’s original list of NP-complete problems [17]. The natural
greedy algorithm that chooses the element that hits the most remaining sets gives an O(logn)
approximation [9], which is optimal up to o(1) factor unless P=NP [10]. For geometric
instances, however, where the input consists of points and shapes (e.g., disks, rectangles),
better approximation guarantees can be obtained. For example, a PTAS exists when the
shapes are half-spaces in R3 [18] and O(log log opt) approximation can be obtained when the
shapes are axis-parallel rectangles [5]. Recently, Agarwal and Pan [4] gave near-linear-time
approximation algorithms for computing hitting set and set cover of many geometric instances.
The hitting-set problem has also been used to compute a subset of vertices that intersect
every path [12] or every shortest path [23] that contains at least k vertices.

Our result. We present a bi-criteria approximation algorithm for the SPHS problem by
allowing an EV to slightly deviate from the shortest path. Our result is summarized as
follows.

I Theorem 1. Let G = (V,E), ` : V → R+ be a weighted graph of constant highway dimen-
sion h, with |V | = n and |E| = O(|V |). Let r > 0 and δ ∈ [ 10α

r , 2
15 ] be two parameters where

α = maxe∈E `(e), and let κ be the size of a smallest r-SPHS of G. A δ-approximate r-SPHS
H̃ ⊆ V of size O(κ log κ) can be computed in randomized expected time O(cδn log2 n log κ),
where cδ = h− log2 δ.

In this paper, we assume 10α/r ≤ δ ≤ 2/15, where the constants 10 and 2/15 are chosen
for convenience of the analysis. Since G represents a road network, the length of a road edge
in E is much smaller than the range of an average EV. Hence, 10α/r � 1 and δ can be set
to a small constant under the assumption. We also assume |E| = O(|V |) since G represents
a road network and the average degree of a vertex is usually small.

ISAAC 2016



7:4 An Efficient Algorithm for Placing Electric Vehicle Charging Stations

At a high level, we improve the running time from O(n3) to near linear by relaxing
the shortest-path requirement slightly. The algorithm works in two stages. The first stage
computes a small set C of “center” vertices such that there exists a path between any pair
of vertices in G that is not much longer than the shortest path and can be decomposed
into shortest paths between center vertices, called critical paths. Furthermore, C is a δ-
approximate r-SPHS, but the size of C may be much larger than κ. The second stage chooses
a smaller δ-approximate r-SPHS. In particular, it computes a small-size hitting set for the
critical paths. With the assumption that G has constant highway dimension, we show that
the number of center vertices is small, and the optimal hitting set for the critical paths has
similar size as the optimal SPHS. The algorithm uses the framework in [4], together with the
dynamic trees [20] data structure, to efficiently compute a hitting set for critical paths.

Finally, we describe a data structure for the feasible path queries that, given two query
vertices u, v, computes in O(κ log2 κ) time the sequence of charging stations on an r-EV-
feasible path P between u, v with `(P ) ≤ (1 + δ)µ(u, v). The actual path in G can be
recovered by performing shortest-path queries in G between adjacent charging stations. Since
the highway dimension of G is bounded, each shortest-path query can be answered quickly [3].

2 Preliminaries

In this section, we define several concepts that are used by our algorithm, including the
highway dimension and doubling dimension of a graph, and the hitting set and ε-net of a
range space. We also describe a proof of the NP-completeness of the SPHS problem.

Given x > 0 and a vertex u ∈ V , let B(u, x) = {v ∈ V | µ(u, v) ≤ x} be the ball of radius
x centered at u under the shortest path metric on G.

I Definition 2. The highway dimension of a graph G = (V,E) is the smallest integer h that
satisfies the following condition: for all x > 0 and u ∈ V , there exists a set S ⊆ B(u, 6x) of
at most h vertices that contains a vertex from every shortest path inside B(u, 6x) of length
more than x.1

A metric space has doubling dimension d if any ball of radius x is contained in the union
of at most 2d balls of radius x/2. We will always use d to denote the doubling dimension of
the shortest path metric of G and h to denote the highway dimension of G. Lemma 3 relates
these two quantities.

I Lemma 3 ([2]). d ≤ log2(h+ 1).

Let Σ = (X,R) be a finite range space where X is a finite set of elements and R is a family
of subsets of X called ranges. A subset H ⊆ X is called a hitting set of Σ if H intersects
every range in R. Given a parameter ε ∈ (0, 1] and a weight function w(·) on elements of X,
an ε-net for Σ is a subset N ⊆ X that intersects every ε-heavy range, i.e., every range that
has weight at least εw(X).

The VC-dimension [24] of a range space Σ = (X,R) is the largest positive integer b
satisfying the following condition: there exists a subset Y ⊆ X with |Y | = b such that
|{S ∩ Y | S ∈ R}| = 2b. The following ε-net theorem was proved in [16] (see also [15]).

1 We remark that the original paper [3] that introduces highway dimension uses a constant 4 as the
multiplier of the radius of the ball, but leaves open the possibility of larger constants (with adjusted
constants in other bounds). We use a larger constant 6 for convenience of our analysis.



P.K. Agarwal, J. Pan, and W. Victor 7:5

I Lemma 4 ([16]). Given a range space (X,R) of VC-dimension β and parameters ε, φ ∈
(0, 1), a set of O(βε (log 1

ε + log 1
φ ) independent random samples of X is an ε-net of (X,R)

with probability at least 1− φ.

In this paper, we will be interested in range spaces ΣG = (V,R) where each range in R

corresponds to the vertices on a shortest path in G. Abraham et al. [1] showed that the
VC-dimension of ΣG is two when R contains all shortest paths in G. By the definition of
VC-dimension, it is easy to check that the VC-dimension of ΣG is no more than two when R

contains a subset of all shortest paths in G. It is summarized in the following lemma.

I Lemma 5 ([1]). The VC-dimension of ΣG is at most two.

The decision version of the SPHS problem is as follows: given a graph G, a parameter
r > 0 and an integer k, determine whether there exists an r-SPHS of G of size at most k.

I Theorem 6. The SPHS problem is NP-complete.

Proof. We reduce the vertex-cover problem to the SPHS problem. Recall that given a graph
G1 = (V1, E1), a subset A ⊆ V1 is a vertex cover if {u, v} ∩ A 6= ∅ for all (u, v) ∈ E1. We
construct another undirected graph G2 = (V2, E2), where V2 = V1 ∪{ue, ve | e = (u, v) ∈ E1}
and E2 = E1 ∪ {(u, ue), (v, ve) | e = (u, v) ∈ E1}, and `(e) = 1 ∀e ∈ E2. We claim that a
vertex cover in G1 corresponds to a 2-SPHS of G2. Suppose S1 ⊆ V1 is a vertex cover for G1.
Then S1 must be a 2-SPHS of G2 because every shortest path of length more than 2 in G2
must contain at least one edge from E1 in its interior. On the other hand, suppose S2 ⊆ V2
is a 2-SPHS of G2. Then every edge e = (u, v) ∈ E1 is covered by S2 because u, v are the
only interior vertices of the shortest path from ue to ve, and one of them must be in S2. The
claim is proved.

Finally, the SPHS problem is in NP because one can verify whether a given set of vertices
hits every shortest path of a graph of length more than r in polynomial time. J

3 The algorithm

In this section, we describe a bi-criteria approximation algorithm for the SPHS problem,
whose worst-case running time is near-linear in the size of the input graph.

Let δ ∈ [10α/r, 2/15] be a parameter. We assume that the highway dimension h and the
doubling dimension d are constants. We first give a high level overview of the algorithm,
which consists of three main steps.
(i) Compute a set C ⊆ V of “center” vertices of size O(κ/δd), such that every vertex of V

is within distance O(δr) from some center in C.
(ii) Construct a set of shortest paths, called critical paths, between center vertices of length

roughly r/2, such that between every pair of vertices in V , an approximately shortest
path can be constructed by concatenating critical paths.

(iii) Compute hitting set H̃ for critical paths, and return H̃.
Next, we describe the details of each step in the following subsections.

3.1 Computing centers
We compute the set C of center vertices using a greedy algorithm, which was originally
proposed for the k-center problem (i.e., find k vertices so that the distance to the farthest
vertex from them is as small as possible). Initially, add an arbitrary vertex c1 to C; in the

ISAAC 2016



7:6 An Efficient Algorithm for Placing Electric Vehicle Charging Stations

i-th iteration, add to C the vertex ci that is farthest from C. The algorithm terminates
when µ(v, C) ≤ δr/8 for all v ∈ V .

For i ≥ 1, let Ci be the set of chosen vertices after i iterations.

I Lemma 7. During the entire algorithm, for any pair ci 6= cj ∈ C, µ(ci, cj) ≥ δr/8.

Proof. Suppose there exist two centers ci, cj ∈ C with i < j such that µ(ci, cj) < δr/8. Then
µ(cj , Cj−1) < δr/8, which means the algorithm terminates before adding cj to C. J

The next lemma upper bounds the number of center vertices added to C.

I Lemma 8. |C| = O(κ/δd).

Proof. Let H∗ denote the optimal r-SPHS of size κ. Then by the definition of r-SPHS,
µ(v,H∗) ≤ r for all v ∈ V because otherwise a shortest path with v as an endpoint is not
r-EV feasible. By the same analysis of the greedy algorithm for the k-center problem [25], we
can claim that for all v ∈ V , µ(v, Cκ) ≤ 2r. In other words, V ⊆

⋃
c∈Cκ B(c, 2r). Recall that

the doubling dimension of the shortest path metric of G is d. By definition, a radius-2r ball
can be covered by O(δ−d) balls of radius δr/16. Thus, V can be covered by x = O(κδ−d) balls
of radius δr/16. Again by the property of the k-center greedy algorithm, adding x centers
greedily to C can guarantee that every vertex of V is within distance 2× (δr/16) = δr/8 of
some center in C. J

The greedy algorithm can be implemented efficiently, as follows. Let D denote the
diameter of G; then D ≤ αn < nδr. We maintain the distance from each vertex of V to C
in a priority queue; initially, the distance is ∞ as C = ∅. Suppose the shortest path distance
from ci to C is xi when ci is added to C. To find ci+1, we compute the shortest path tree
rooted at ci that contains vertices of V whose distances to ci are less than xi, and updates
the priority queue if the distance from some vertex v to C is decreased because of ci. We
then choose the first vertex of the priority queue (farthest from C) to be ci+1.

I Lemma 9. The greedy algorithm for computing the set C of centers takes O(n log2 n +
m logn) time.

Proof. To analyze the running time, we divide the above implementation into O(log D
δr )

phases. In phase j, the farthest distance from a vertex to C lies in (D2j ,
D

2j−1 ]. If a vertex v is
traversed when computing the shortest path tree rooted at a center c, then µ(v, c) ≤ D/2j−1.
On the other hand, any two centers chosen in phase j have distance more than D

2j . So there
can be at most 2d = O(1) centers that traverse v when computing shortest path tree in
phase j. Similarly, each edge is also traversed O(1) times in phase j. It takes O(logn) time
to traverse a vertex and O(1) time to traverse an edge in Dijkstra’s algorithm and O(logn)
time to update the priority queue. Therefore, the running time is O((m+ n logn) log D

δr ) =
O(n log2 n+m logn). J

We remark that the set C is a δ-approximate r-SPHS. However, the size of C, O(κ/δd),
can be very large when δ is small. Our algorithm computes a solution of size O(κ log κ).

3.2 Computing critical paths
For each vertex c ∈ C, we construct a shortest path tree Tc, called a center tree, rooted at
c with radius r/2, i.e., Tc contains all vertices of V that are no more than r/2 away from
c. For every c′ ∈ C with µ(c, c′) ∈ [(1− δ) r2 − α,

r
2 ], we add the shortest path π(c, c′) as a

critical path.



P.K. Agarwal, J. Pan, and W. Victor 7:7

I Lemma 10. The number of critical paths is O( κ
δ2d ), and they can be computed in O( 1

δd
(m+

n logn)) time.

Proof. Consider any center c ∈ C. We bound the number of critical paths that has c as
one endpoint. By construction, if there is a critical path between c and some c′ ∈ C, then
µ(c, c′) ≤ r/2, i.e., c′ ∈ B = B(c, r/2). By definition of doubling dimension, B can be covered
by O(1/δd) smaller balls of radius δr/16. By Lemma 7, there can be at most one center
inside each smaller ball, so, there are O(1/δd) centers in B. The bound on the number
of critical paths follows. Similarly, a vertex v ∈ V or an edge e ∈ E is traversed during
the construction of O(1/δd) center trees. Summing over all center trees, the total time is
O( 1

δd
(m+ n logn)). J

3.3 Computing approximate hitting set
We compute an approximate hitting set of the critical paths using an algorithm framework
by Agarwal and Pan [4]: Let R denote the set of ranges induced by the critical paths, i.e.,
each range in R corresponds to the set of interior vertices of a critical path. Let C = (V,R)
be the resulting range space. By Lemma 5, C has VC-dimension 2. Let λ denote the size of
the optimal hitting set of C. We guess an integer λ̃ via binary search such that λ ≤ λ̃ < 2λ.

At a high level, the algorithm works in three stages: the preprocessing stage removes
some vertices and ranges such that no remaining range contains too many vertices; the
weight-assignment stage assigns a non-negative weight to each vertex so that every range
in R is (1/2λ̃e)-heavy; and the net-construction stage computes an (1/2λ̃e)-net of C. Since
every range in R is (1/2λ̃e)-heavy, the third stage computes a hitting set of C.

Preprocessing stage. In this stage, we compute a 1
λ̃
-net H0 of (V,R) with uniform weights

on V , and include H0 in the final hitting set. We then (conceptually) remove H0 and
all ranges in R hit by H0 from consideration. By definition of ε-net, no remaining range
in R contains more than n/λ̃ vertices. This property ensures that the weight-assignment
stage has small running time. A simple ε-net construction algorithm is described in the
net-construction stage. To remove ranges of R hit by H0, we traverse all the center trees and
mark every critial path hit by H0, which takes O(

∑
c∈C |Tc|) = O(n/δd) time.

Weight-assignment stage. Recall that given a weight function w : V → R≥0, a range
R ∈ R is called ε-heavy if w(R) ≥ εw(V ); otherwise, R is ε-light. The algorithm assigns the
weights in O(log(n/λ̃)) rounds. Initially, the w(v) = 1 for all v ∈ V .

In each round, the algorithm processes every range R ∈ R one by one. If R is 1
2λ̃ -light, it

doubles the weights of all vertices in R, the so-called weight-doubling step, repeatedly until R
becomes 1

2λ̃ -heavy. Once R becomes 1
2λ̃ -heavy, it is not processed again in the current round,

even though it may become 1
2λ̃ -light again later in the current round while w(V ) increases.

If 2λ̃ weight-doubling steps have been performed in the current round, the algorithm aborts
the current round and moves to the next round. On the other hand, if all ranges have been
processed with less than 2λ̃ weight-doubling steps, the algorithm terminates.

The argument in [4] shows that if λ̃ ≥ λ, the algorithm always terminates with all ranges
being ε-heavy with ε = 1

2λ̃e . If the algorithm terminates and some ranges are still ε-light, we
double the value of λ̃ and repeat the algorithm. The data structure described below will
be used to compute the current weight of a range and to double it efficiently, the only two
nontrivial steps in this stage.

ISAAC 2016



7:8 An Efficient Algorithm for Placing Electric Vehicle Charging Stations

Net-construction stage. The algorithm returns a ε-net, for ε = 1
2λ̃e , of C as a hitting set of

C. By Lemma 4, a natural algorithm for computing an ε-net of (V,R) is to draw O( 1
ε log 1

ε )
random samples from V , with respect to the final weights on the vertices in V . We then
verify whether the set of samples is an ε-net of C: traverse all the center trees and check
whether each ε-heavy critical path is hit. This takes O(

∑
c∈C |Tc|) = O(n/δd) time. If the

samples do not form an ε-net, we repeat the above steps. In expectation, O(1) repetitions
are required. Therefore, an ε-net of the range space C of size O( 1

ε log 1
ε ) can be computed in

O( n
δd

+ 1
ε log 1

ε ) expected time.

Data structure. We maintain all the center trees and the weights of vertices in these trees
using the dynamic trees data structure [20]. The data structure was proposed to maintain
a forest of rooted trees where each tree vertex has an arbitrary number of unordered child
vertices and the vertices have weights. The main operations supported include:

root(v): Return the root of the tree containing vertex v.
link(v, u): Make vertex v a new child of vertex u by adding edge (v, u). This assumes
v, u are in different trees and v is the root of its tree.
cut(v): Delete the edge between vertex v and its parent.
path-aggregate(v): Return an aggregate, such as max/min/sum, of the weights of vertices
on the path from v to root(v).
update(v, x): Add x to the weight of each vertex on the path from v to root(v).

Each of the above operation takes O(log
∑
c∈C |Tc|) = O(logn) time [20]. In our case,

the structure of the center trees remain the same, so we do not use the link, cut operations.
We retrieve the weight of a critical path using the path-aggregate operation, which is the

sum of weights of the vertices along a path from some center vertex c to root(c). We double
the weight of an individual vertex v by running update(v, w(v)) and update(parent(v),−w(v)).
Note that a vertex v can appear in as many as O(1/δd) center trees. Thus, when we update
the weight of a vertex v, we make the update for all copies of v in O(1/δd) center trees.

The results of computing an approximate hitting set of C is summarized as follows.

I Lemma 11. A hitting set of C of size O(λ log λ) can be computed in O(( 1
δd
n log2 n +

λ log λ) log λ) expected time, where λ is the size of the optiml hitting set of C.

Proof. The size of the hitting set is equal to the size of the 1
2λ̃e -net computed in the net-

construction stage of the algorithm, which is O(λ̃ log λ̃) = O(λ log λ). The preprocessing and
the net-construction stages both involve computing an ε-net, and take time O(n/δd+λ log λ).
In each round of the weight-assignment stage, retrieving the weights of the ranges in R

takes O( κ
δd

logn) = ( n
δd

logn) time. There are at most 2λ̃ weight-doubling steps, and each
weight-doubling step updates the weights of no more than n/λ̃ vertices. Therefore, the
weight-doubling steps take O( n

δd
logn) time in each round. With O(logn) rounds in the

weight-assignment stage and O(log λ) itertions of guessing λ̃, the total running time of the
algorithm is O(( 1

δd
n log2 n+ λ log λ) log λ). J

4 Analysis

We now analyze the performance of our algorithm.

I Lemma 12. λ = O(hκ).



P.K. Agarwal, J. Pan, and W. Victor 7:9

Figure 2 Construction of EV-feasible path P̃ (dashed curve) between w0 and w4. The solid curve
denotes the shortest path.

Proof. Let H∗ denote the optimal r-SPHS of G. By definition, H∗ must hit all shortest
paths that are longer than r. On the other hand, the critical paths constructed by our
algorithm have lengths no more than r/2. Let P be a critical path between a pair of vertices
u, v. Then there is a vertex w ∈ H∗ with µ(u,w) ≤ r. So P ⊆ B(w, 3r/2). In other words,
each critical path is contained in the ball of radius 3r/2 centered at some vertex in H∗.
By definition of highway dimension, for any w ∈ H∗, there exists a subset S of at most h
vertices in B(w, 3r/2) that intersect every shortest path of length more than r/4 contained
in B(w, 3r/2). Let S denote the union of such subsets S in the balls centered at vertices in
H∗. With δ < 2/15 and α ≤ δr/10, the interior of each critical path has length more than
r/4. Therefore, S hits all the critical paths, and |S| = O(hκ). J

Let H̃ denote the hitting set computed by our algorithm. Lemmas 11 and 12 immediately
imply the following corollary:

I Corollary 13. |H̃| = O(hκ log(hκ)).

We show that H̃ satisfies the following property.

I Lemma 14. H̃ is a δ-approximate r-SPHS of G.

Proof. If µ(u, v) ≤ r, π(u, v), the shortest path between u, v, is automatically EV-feasible.
We therefore focus on the case µ(u, v) > r. We construct another path P̃ between u, v from
π(u, v) as follows. For convenience, denote w0 = u and wt = v. We find vertices w1, · · · , wt−1
along π(u, v) from u to v such that µ(wi, wi+1) ∈ [( 1

2 −
δ
4 )r−α, ( 1

2 −
δ
4 )r], for i = 1, · · · , t− 1.

Let ci ∈ C denote the nearest center to wi. We set P̃ as the concatenation of the shortest
paths π(w0, c0), π(c0, c1), · · · , π(ct−1, ct), π(ct, wt). See Figure 2. Then

`(P̃ ) = µ(w0, c0) + µ(ct, wt) +
t−1∑
i=1

µ(ci, ci+1)

≤ δ

4r +
t−1∑
i=1

(µ(ci, wi) + µ(wi, wi+1) + µ(wi+1, ci+1))

≤ δ

4r +
t−1∑
i=1

(1 + 3δ
4 )µ(wi, wi+1) (δ ≤ 2/15) ≤ (1 + δ)µ(u, v).

Next, we show that path P̃ is EV-feasible with respect to H̃. By triangle inequality, it
is easy to check that µ(ci, ci+1) ∈ [( 1

2 −
δ
2 )r − α, 1

2r]; thus π(ci, ci+1) is a critical path and
contains a vertex of H̃ in its interior. P̃ is EV-feasible since every subpath of P̃ of length
larger than r contains a vertex of H̃. J

Putting Lemmas 9, 10, 11, and 12 together, the expected running time of our algorithm
is O( 1

δd
(m+ n log2 n log κ) +m logn) = O( 1

δd
n log2 n log κ) with the assumption m = O(n).

This bound along with Corollary 13 and Lemma 14 proves Theorem 1.

ISAAC 2016



7:10 An Efficient Algorithm for Placing Electric Vehicle Charging Stations

5 Feasible path query

Given a δ-approximate r-SPHS H, we consider the task of computing the shortest r-EV-
feasible path between any two vertices u, v ∈ V with respect to H. By definition of
approximate SPHS, the length of this path is at most (1 + δ)µ(u, v). A shortest feasible path
can be compactly represented by the sequence of charging stations in H it passes through;
the distance between any two consecutive stations is at most r. We can recover the whole
feasible path by retrieving the shortest paths between consecutive stations in G.

We first show that the δ-approximate r-SPHS H̃ output by our algorithm can be postpro-
cessed and replaced with a smaller δ-approximate r-SPHS Ĥ such that |Ĥ ∩B(v, r)| is small
for any v ∈ V .2 This property of Ĥ ensures small feasible path query time with respect to a
set of charging stations Ĥ.

Postprocessing step. We show that H̃ can be replaced by another approximate r-SPHS Ĥ
such that |Ĥ| ≤ |H̃| and for any u ∈ Ĥ, |B(u, r) ∩ Ĥ| = O(1), where the constant depends
on the highway dimension of G. The algorithm works as follows.

The algorithm maintains an r-SPHS H. Initially, H = H̃. For each vertex v ∈ V , it also
maintains the set Hv = {u ∈ H | µ(u, v) ≤ r}, i.e., B(v, r) ∩H, and the value |Hv|. We fix a
constant c and call a vertex v ∈ V heavy if |Hv| > ch ln h. At each step, the algorithm checks
whether there is a heavy vertex in V . If there is no heavy vertex, it returns the current set
H as Ĥ. Otherwise, let v be a heavy vertex. Let Σv = (V,Rv) be a range space where Rv
corresponds to critical paths intersecting B(v, r). Since each critical path has length no more
than r/2, all the critical paths in Rv lie inside B(v, 3r/2). By definition of highway dimension,
there exists a hitting set of size h for Σv. We can use the same hitting-set algorithm [4]
to compute a hitting set Xv of Σv of size at most ch ln h in O( 1

δd
n log2 n) expected time.

It then replaces H with (H \Hv) ∪Xv. Finally, we compute B(u, r) for each u ∈ Xv and
update the sets Hw for all w in these balls.

Since v is heavy, each step of the algorithm except the last one reduces the size of H by
at least one, so it terminates within |H̃| rounds. Ĥ is a δ-approximate r-SPHS since it hits
every critical path. Hence, we obtain the following.

I Lemma 15. A δ-approximate r-SPHS Ĥ ⊆ V of size O(κ log κ) can be computed in
O( 1

δd
κn log2 n log κ) time so that |B(v, r) ∩ Ĥ| = O(1) for all v ∈ V .

Feasible path query. A shortest r-EV-feasible path must pass through a sequence of charging
stations, and any two consecutive charging stations on the path must be at most r apart.
Define the graph N = (Ĥ, Ê) where Ê = {(u, v) | µ(u, v) ≤ r}. For each edge (u, v) ∈ Ê,
define `(u, v) = µ(u, v). By Lemma 15, |Ê| = O(|Ĥ|) = O(κ log κ). By constructing B(u, r)
for all u ∈ Ĥ, we can construct the edges in Ê and their lengths.

As for computing a shortest feasible path between any pair of vertices of G, we maintain,
for each v ∈ V , Ĥv = B(v, r) ∩ Ĥ along with their distances from v. Given s, t ∈ V , we
augment N by adding edges from s to Ĥs and t to Ĥt, and compute a shortest path from s to
t in N using the Dijkstra’s algorithm. Putting everything together, we obtain the following.

I Theorem 16. Let G = (V,E), ` : V → R+ be a weighted graph of constant highway
dimension h, with |V | = n and |E| = O(|V |). Let r > 0 and δ ∈ [ 10α

r , 2
15 ] be two para-

2 We conjecture that H̃ already satisfies |B(u, r) ∩ H̃| = O(log κ) for all u ∈ V , and no postprocessing is
needed, but so far we have run into technical difficulties in proving this conjecture.



P.K. Agarwal, J. Pan, and W. Victor 7:11

meters where α = maxe∈E `(e), and let κ be the size of a smallest r-SPHS of G. In time
O( 1

δd
κn log2 n log κ), a δ-approximate r-SPHS Ĥ can be computed and G can be processed

into a data structure of size O(κ log κ) such that for any two vertices s, t ∈ V , a compact
representation of a shortest r-EV-feasible path from s to t, using Ĥ, can be computed in
O(κ log2 κ) time.

6 Conclusion

In this paper, we presented a bi-criteria approximation algorithm for the r-SPHS problem
whose running time is near-linear in n. The algorithm assumes the input graph has constant
highway dimension, a concept introduced to give rigorous proofs of efficiency for many
popular heuristic shortest path algorithms [3]. Our algorithm is the first for such problems
with provable guarantees on the approximation and running time. We also give an algorithm
for computing the shortest EV-feasible paths given the set of charging stations computed by
the first algorithm.

It is also interesting to know whether it is possible to improve the size of the ε-net
for the range space of shortest paths from O( 1

ε log 1
ε ) to O( 1

ε ). If so, it will improve the
approximation ratio of our algorithm from O(log κ) to O(1).

Additionally, no efficient algorithm is known for the maximum coverage version of the
SPHS problem. Given a collection P of input paths in a graph G (may or may not be
shortest) and an integer k, the goal is to compute a subset of k vertices such that the number
of EV-feasible paths in P (with respect to the subset) is maximized . This problem is not
submodular because it can take more than one vertex to make one long path in P EV-feasible.

Finally, we have shown that the SPHS problem is NP-complete for general graphs, but
we do not known whether it is NP-complete for graphs of constant highway dimension. A
proof of NP-completeness may require more insights into the structure of such graphs.

Acknowledgements. We thank Dan Halperin and Eli Packer for introducing the problem
to us and for helpful discussions.

References

1 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck.
VC-dimension and shortest path algorithms. In Proc. 38th Int’l Colloq. Conf. Automata,
Languages and Programming, pages 690–699, 2011.

2 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V Goldberg, and Renato F Werneck.
Highway dimension and provably efficient shortest path algorithms. Tech. Report MSRTR-
2013-91, Microsoft Research, 2013.

3 Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. Highway dimen-
sion, shortest paths, and provably efficient algorithms. In Proc. 21st Annual ACM-SIAM
Symp. Discrete Algorithms, pages 782–793, 2010.

4 Pankaj K Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and
set covers. In Proc. 30th Annual Symp. Comput. Geo., page 271, 2014.

5 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM J. Comput., 39(7):3248–3282, 2010.

6 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in trans-
portation networks. arXiv preprint, 2015.

ISAAC 2016



7:12 An Efficient Algorithm for Placing Electric Vehicle Charging Stations

7 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf.
Shortest feasible paths with charging stops for battery electric vehicles. In Proc. 23rd
SIGSPATIAL Int’l Conf. Advances in Geo. Info. Syst., page 44, 2015.

8 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-optimal routes
for electric vehicles. In Proc. 21st ACM SIGSPATIAL Int’l Conf. Advances in Geo. Info.
Syst., pages 54–63, 2013.

9 Vasek Chvatal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–
235, 1979.

10 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proc. 46th
Annual ACM Symp. Theory of Computing, pages 624–633. ACM, 2014.

11 Inês Frade, Anabela Ribeiro, Gonçalo Gonçalves, and António Antunes. Optimal location of
charging stations for electric vehicles in a neighborhood in lisbon, portugal. Transportation
Res. Record: J. Transportation Res. Board, 2252(2252):91–98, 2011.

12 Stefan Funke, André Nusser, and Sabine Storandt. On k-path covers and their applications.
Proc. VLDB Endowment, 7(10):893–902, 2014.

13 Stefan Funke, André Nusser, and Sabine Storandt. Placement of loading stations for electric
vehicles: No detours necessary! J. Arti. Intelli. Res., pages 633–658, 2015.

14 Michael T Goodrich and Paweł Pszona. Two-phase bicriterion search for finding fast and
efficient electric vehicle routes. In Proc. 22nd ACM SIGSPATIAL Int’l Conf. Advances in
Geo. Info. Syst., pages 193–202, 2014.

15 Sariel Har-Peled. Geometric Approximation Algorithms. American Math. Soc., 2011.
16 David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete & Comput.

Geo., 2(2):127–151, 1987.
17 RM Karp. Reducibility among combinatorial problems. Complexity Comp. Comput., 1972.
18 Nabil H Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.

Discrete & Comput. Geo., 44(4):883–895, 2010.
19 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient

energy-optimal routing for electric vehicles. In Proc. 25th AAAI Conf. Arti. Intelli., 2011.
20 Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comp.

Syst. Sci., 26(3):362–391, 1983.
21 Sabine Storandt and Stefab Funke. Enabling e-mobility: Facility location for battery load-

ing stations. In Proc. 27th AAAI Conf. Arti. Intelli., 2013.
22 Moby Khan T. Donna Chen, Kara M. Kockelman. The electric vehicle charging station

location problem: a parking-based assignment method for seattle. In Proc. 92nd Annual
Meet. Transportation Res. Board, 2013.

23 Yufei Tao, Cheng Sheng, and Jian Pei. On k-skip shortest paths. In Proc. ACM SIGMOD,
pages 421–432. ACM, 2011.

24 VN Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264, 1971.

25 Vijay V Vazirani. Approximation algorithms. Springer Sci. & Business Media, 2013.
26 Yanhai Xiong, Jiarui Gan, Bo An, Chunyan Miao, and Ana LC Bazzan. Optimal electric

vehicle charging station placement. In Proc. 24th Int’l Joint Conf. Arti. Intelli., pages
2662–2668, 2015.


	Introduction
	Preliminaries
	The algorithm
	Computing centers
	Computing critical paths
	Computing approximate hitting set

	Analysis
	Feasible path query
	Conclusion

