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RESEARCH Open Access

Cost-effectiveness of cerebrospinal
biomarkers for the diagnosis of
Alzheimer’s disease
Spencer A. W. Lee1,2, Luciano A. Sposato3,4,5, Vladimir Hachinski3,6 and Lauren E. Cipriano1,6*

Abstract

Background: Accurate and timely diagnosis of Alzheimer’s disease (AD) is important for prompt initiation of treatment
in patients with AD and to avoid inappropriate treatment of patients with false-positive diagnoses.

Methods: Using a Markov model, we estimated the lifetime costs and quality-adjusted life-years (QALYs) of cerebrospinal
fluid biomarker analysis in a cohort of patients referred to a neurologist or memory clinic with suspected AD who
remained without a definitive diagnosis of AD or another condition after neuroimaging. Parametric values were
estimated from previous health economic models and the medical literature. Extensive deterministic and
probabilistic sensitivity analyses were performed to evaluate the robustness of the results.

Results: At a 12.7% pretest probability of AD, biomarker analysis after normal neuroimaging findings has an incremental
cost-effectiveness ratio (ICER) of $11,032 per QALY gained. Results were sensitive to the pretest prevalence of AD, and the
ICER increased to over $50,000 per QALY when the prevalence of AD fell below 9%. Results were also sensitive to patient
age (biomarkers are less cost-effective in older cohorts), treatment uptake and adherence, biomarker test characteristics,
and the degree to which patients with suspected AD who do not have AD benefit from AD treatment when they are
falsely diagnosed.

Conclusions: The cost-effectiveness of biomarker analysis depends critically on the prevalence of AD in the tested
population. In general practice, where the prevalence of AD after clinical assessment and normal neuroimaging findings
may be low, biomarker analysis is unlikely to be cost-effective at a willingness-to-pay threshold of $50,000 per QALY
gained. However, when at least 1 in 11 patients has AD after normal neuroimaging findings, biomarker analysis is likely
cost-effective. Specifically, for patients referred to memory clinics with memory impairment who do not present
neuroimaging evidence of medial temporal lobe atrophy, pretest prevalence of AD may exceed 15%. Biomarker
analysis is a potentially cost-saving diagnostic method and should be considered for adoption in high-prevalence centers.

Keywords: Alzheimer’s disease, Cost-effectiveness analysis, Cerebrospinal fluid biomarkers, Neuroimaging

Background
Alzheimer’s disease (AD) is a progressive neurodegener-
ative disorder currently affecting an estimated 36 million
people globally, with prevalence predicted to double in
the next 10 years [1–3]. In the United States alone, with
5.2 million patients with AD [4], total direct costs in
2014 were estimated to be $214 billion, with another

$220 billion in unpaid care [1]. Accurate and timely
diagnosis of AD is important to initiate treatment
promptly and to avoid inappropriate therapeutic inter-
ventions in patients with false-positive diagnoses [5].
Even though current treatments (acetylcholinesterase in-
hibitors and memantine) do not reverse the underlying
neurological damage, AD treatments can delay cognitive
and functional decline and improve overall quality of life
[6, 7]. Several studies have found AD treatments to be
cost-effective in mild to moderate AD and moderate to
severe AD [8–11].
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Clinical diagnosis of AD has a relatively low and highly
uncertain diagnostic accuracy [12, 13]. To aid in diagnosis,
neuroimaging by computed tomography (CT) or magnetic
resonance imaging (MRI) is typically performed, both to
rule out non-AD causes of cognitive impairment, such as
meningioma and subdural hematoma, and to evaluate
structural indicators of AD, including medial temporal
lobe (MTL) atrophy [14]. Still, these neuroimaging tech-
niques do not provide the desired level of accuracy to
confidently diagnose AD in a considerable proportion of
patients. Single-photon emission computed tomography
(SPECT), 18F-fluorodeoxyglucose positron emission
tomography (PET), and amyloid PET are effective at
ruling out a diagnosis of neurodegenerative disease and
amyloid-β (Aβ) deposition in the brain, but the results
are complex, difficult to interpret, and have low to moder-
ate positive predictive value, especially in older patients
because brain Aβ deposition increases with age [14–16].
Cerebrospinal fluid (CSF) biomarkers have demon-

strated relatively high diagnostic accuracy even for pro-
dromal AD in patients with mild cognitive impairment
(MCI) [14, 15] and so may provide additional diagnostic
insight. However, CSF collection involves a lumbar
puncture, which has an associated cost and causes pa-
tient discomfort.
Previous cost-effectiveness analyses of AD diagnostic

technologies present conflicting findings potentially at-
tributable to differences in the clinical setting of the
diagnosis being considered [17, 18]. In two studies per-
formed in the early 2000s, researchers found the
addition of SPECT and PET to clinical assessment was
not cost-effective [19, 20]. Authors of a recent cost-
effectiveness analysis compared clinical assessment plus
florbetapir-PET with clinical assessment alone and found
the addition of florbetapir-PET to be cost-effective from
the perspective of the Spanish National Health System
[21]. However, they did not compare PET with a stand-
ard diagnostic regimen including CT or MRI analysis.
Researchers in a cost minimization study, also per-
formed from the perspective of the Spanish National
Health System, suggested that the use of CSF biomarkers
may reduce AD-related health care costs [22]. However,
that study did not account for the discomfort and risks
of undergoing lumbar puncture or improvements in
quality of life for patients accurately diagnosed with AD.
In the present study, we evaluated the cost-effectiveness
of performing CSF biomarker analysis in a cohort of pa-
tients with suspected dementia who were referred to a
neurologist or memory clinic and who remained without
a definitive diagnosis after neuroimaging.

Methods
We developed a Markov model to evaluate the lifetime
costs and benefits of performing CSF biomarker analysis

in patients referred to a neurologist or memory clinic
with suspected dementia who, after evaluation by neuro-
imaging, do not have a definitive diagnosis of AD or
another cause of dementia (Fig. 1a). In 1-month time
steps, the model followed the diagnosis and health state
progression of a hypothetical cohort of patients. We
used standard health economic methods by taking a so-
cietal perspective, considering costs and benefits over a
lifetime horizon, discounting costs and benefits at 3%
annually, and performing both probabilistic and deter-
ministic sensitivity analysis to evaluate the robustness of
our findings [23]. For determining cost-effectiveness, we
used the commonly applied thresholds of $50,000 and
$100,000 per quality-adjusted life-year (QALY) gained
[24]. We implemented the model in Microsoft Excel 2013
using Visual Basic for Applications (Microsoft Corp.,
Seattle, WA, USA).

Model overview
A schematic of the model is presented in Fig. 1. We con-
sidered two diagnostic strategies: biomarker analysis and
do nothing. Patients were divided into four groups on
the basis of their true health state and diagnosed health
state: true-positive, false-negative, false-positive, and
true-negative (Fig. 1b). Similar to previously published
model-based analyses of AD [19], individuals who had
AD were divided into 12 health states on the basis of the
severity of their disease, whether or not they were on
treatment, and their location (Fig. 1c). In the base case
analysis, we assumed that patients who did not have AD
had another disease causing stable MCI, so individuals
who did not have AD were divided into four health
states on the basis of whether they were on AD treat-
ment (because of false diagnosis) and their type of resi-
dence (Fig. 1d). We performed structural sensitivity
analysis exploring alternative assumptions for the natural
history for the non-AD patients, including modeling it
as a stable, moderate cognitive impairment and as a
progressive cognitive impairment with transition rates
similar to AD.
In each month, patients could die or transition from

one health state to another. We estimated the rate of
transition between disease states, the influence of treat-
ment on those transitions, as well as costs and utilities
associated with each health state from the medical lit-
erature (Table 1). When multiple sources were available
to inform parameters, we selected studies that were
more generalizable to the modeled population (i.e.,
large, U.S.-based cohorts) and those using more recent
datasets. When the literature reported conflicting evi-
dence or wide uncertainty, we selected a central value
for the base case and performed extensive sensitivity
analysis over the entire range of values reported in the
literature. We validated model outcomes by replicating
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the analysis of previously published model-based cost-
effectiveness studies of AD diagnosis [20, 25].

Data and assumptions
Patient cohort
The prevalence of AD in a cohort of patients with pos-
sible dementia varies across referral centers and in-
creases with patient age and family history [1]. Of the
8495 patients referred to 30 U.S. Alzheimer’s disease
centers, 24% were diagnosed with mild AD [26]. We es-
timated the true prevalence to be 21%, adjusting for the
accuracy of diagnosis with clinical assessment and MRI
(as the status quo), where proportion diagnosed = preva-
lence × sensitivity + (1 − prevalence) × (1 − specificity).

Clinical assessment and MTL atrophy seen on MRI
would help identify approximately half of the patients
with AD in the referral population (sensitivity of mem-
ory impairment plus MRI is 54% [13]). Accounting for
the diagnosis of AD after MRI, the approximate preva-
lence of AD in the remaining patients is 12.7% (Fig. 1a).
In addition, MRI may provide another definitive diagno-
sis where the possibility of concomitant AD is highly un-
likely and thus further consideration of AD using
biomarkers is no longer clinically relevant. This patient
selection will increase the pretest prevalence of AD (by
which we mean the probability of AD in the cohort of
patients with memory impairment, no abnormal MTL
atrophy, and no alternative diagnosis precluding AD) in

Fig. 1 Patient cohort and decision model. a Flowchart of patients referred to a memory clinic or neurology practice with suspected dementia,
some of whom would be diagnosed with probable AD after clinical assessment and MRI. If MRI does not provide a definitive non-AD diagnosis
for any patients, and if all patients remain candidates for biomarker analysis, the pretest prevalence of AD is 12.7%. If MRI provides a definitive
non-AD diagnosis for some patients, the pretest prevalence of AD in the cohort patients who continue to have suspected AD is greater than
12.7%. b Schematic of a decision tree. The blue square represents the decision whether to use CSF biomarkers. Green circles represent chance
events. The population is divided into four groups on the basis of whether the patients have Alzheimer’s disease and the outcome of the diagnostic
strategy: true-positive, false-negative, false-positive, and true-negative. The proportion of patients in each group is determined by the prevalence of AD
in the evaluated cohort and the sensitivity and specificity of each diagnostic strategy. c Markov model of Alzheimer’s disease. Patients begin in the
health states for community-dwelling mild, moderate, and severe AD. Each month, patients may die, progress or regress in terms of disease severity,
discontinue or reinitiate treatment, transition from living in the community to living in a long-term care facility, or stay in the same health state. In the
model, patients living in a long-term care facility cannot return to living in the community. d Markov model for patients with non-AD dementia.
Patients begin in the community-dwelling non-AD dementia state. Only those with a false-positive diagnosis of AD receive AD treatment. Each month,
patients may die, discontinue or reinitiate treatment, transition from living in the community to living in a long-term care facility, or stay in the same
health state. AD Alzheimer’s disease, BM Biomarker, CSF Cerebrospinal fluid, MRI Magnetic resonance imaging, MTL Medial temporal lobe, SN Sensitivity,
SP Specificity
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Table 1 Base case inputs, ranges for sensitivity analysis, and sources

Parameter Base case Low value High value Source [reference]

Patient population

Start age, years 65 55 75 [4]

Initial AD severity distribution (%)

Mild 70 0.5400 0.783 [67]

Moderate 28 0.1850 0.427 [67]

Severe 2 0.0170 0.033 [67]

Diagnosis

Diagnostic test accuracy

Status quo: clinical assessment plus MR neuroimaging (CA + MR)

Sensitivity (SNMR) 0.54 0.46 0.62 [13]

Specificity (SPMR) 0.84 0.79 0.89 [13]

Revised criteria: clinical assessment plus MR neuroimaging and/or biomarker analysis

Sensitivity (SNMR+BM) 0.86 0.80 0.92 [13]

Specificity (SPMR+BM) 0.79 0.74 0.84 [13]

Diagnostic accuracy of CSF biomarkers in patients with no medial temporal lobe atrophy on MRI

Sensitivity (SNBM|MR−) 0.698 0.54 0.86 Calculateda

Specificity (SPBM|MR−) 0.941 0.89 0.98 Calculateda

Biomarker analysis (see Methods)

Cost 463 250 600 [50]

QALY toll −0.008 0 −0.02 [19, 57]

AD natural history model

Mortality

Age-specific mortality due to causes other than AD Annual mortality rate = 3.53e0.0909×Age Estimatedb [53, 68]

HRs for AD-specific mortality

Mild 2.92 2.34 3.52 [29]

Moderate 3.85 2.94 5.05 [29]

Severe 9.52 6.60 13.4 [29]

Disease progression without AD treatment (annual rate per 100,000)

From mild

To moderate 27,710 24,939 30,481 [25, 31]

To severe 1385 1247 1524 [25, 31]

From moderate

To mild 4478 4030 4925 [25, 31]

To severe 31,829 28,647 35,012 [25, 31]

From severe

To mild 385 347 424 [25, 31]

To moderate 5332 4799 5865 [25, 31]

Transition to long-term care facility (annual rate per 100,000)

From mild 2110 500 4000 [31, 43, 44]

From moderate 6957 1500 8000 [31, 43, 44]

From severe 11,747 2500 15,000 [31, 43, 44]
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Table 1 Base case inputs, ranges for sensitivity analysis, and sources (Continued)

AD treatment

Treatment uptake and adherence

Treatment initiation

Donepezil, at diagnosis 0.45 0.27 0.56 [37, 39, 41]

Memantine, at transition to severe AD 0.36 0.22 0.45 [38]

Treatment discontinuation (annual rate per 100,000)

Donepezil, community dwelling 28,768 10,536 35,667 [36]

Donepezil, long-term care facility dwelling 62,362 51,083 69,315 [42]

Memantine 30,111 12,783 44,629 [6]

Treatment reinitiation after quitting (annual rate per 100,000)

Donepezil 33,142 23,105 40,132 [38]

Memantine 22,314 17,834 25,541 [6]

Treatment effectiveness

Donepezil HRs

Transition from mild to moderate 0.5 0.253 0.989 [25]

Transition from moderate to mild 2.36 0.802 6.95 [25]

Transition from community to long-term care facility 0.37 0.2 0.5 [43]

Memantine

Incremental utility (annualized) 0.051 0 0.1 [7]

HR, transition from community to long-term
care facility

0.37 0.2 0.5 Assumed same as donepezil

Costs (US$)

Age-specific baseline costs Annual costs = 893e0.0404×Age Estimated (see Methods)

45–64 years 5499 4000 8000 [51]

65–84 years 12,336 11,000 16,000 [51]

>84 years 27,674 25,000 34,000 [51]

Annual incremental costs by disease severity (including costs of informal caregiving)

Community dwelling

Patients without AD 24,128 17,369 30,369 Assumed the same as Mild AD

Mild AD 24,128 17,369 30,369 (see Additional file 1)

Moderate AD 33,845 25,000 40,000 (see Additional file 1)

Severe AD 60,160 50,000 69,000 (see Additional file 1)

Long-term care facility dwelling

Facility cost 83,950 70,000 95,000 [52]

Patients without AD 9872 7000 12,000 Assumed the same as Mild AD

Mild AD 9872 7000 12,000 (see Additional file 1)

Moderate AD 9872 7000 12,000 (see Additional file 1)

Severe AD 9847 7000 12,000 (see Additional file 1)

Medication (annual)

Donepezil, 10 mg/day 2473 2000 4288 [69]

Memantine, 10 mg/day 3192 2500 5957 [69]

Age-specific annual health care costs in the year of death

<90 years 35,158 32,000 39,500 [70]

>90 years 25,455 22,000 28,000 [70]

Lee et al. Alzheimer's Research & Therapy  (2017) 9:18 Page 5 of 14



patients still considered candidates for biomarker ana-
lysis. Specifically, if 10%, 20%, or 40% of non-AD pa-
tients are correctly identified as having an alternative
diagnosis (and not having AD) after MRI, then the pre-
test prevalence of AD increases to 14%, 15%, or 19%,
respectively. Furthermore, if patients without memory
impairment are excluded, the prevalence of AD in the
cohort of patients considered for biomarker analysis in-
creases to 39% (the sensitivity and specificity of memory
impairment alone are 93% and 68%, respectively [13]).
Variation in the case mix across referral centers, including
the prevalence of AD and the distribution of causes for
non-AD dementia, creates high uncertainty in the preva-
lence of AD in patients who remain without a definitive
diagnosis after neuroimaging. Therefore, base case re-
sults are presented over the full range of possible AD
prevalence.

Diagnostic accuracy
Bouwman et al. retrospectively evaluated the diagnostic
accuracy of clinical assessment plus neuroimaging by
MR and the revised AD diagnostic criteria [27] in 138
patients with AD and 223 memory clinic patients with-
out AD [13]. Under the revised AD diagnostic criteria,

patients were defined as having AD when clinical assess-
ment indicated episodic memory impairment and either
evidence of MTL atrophy and/or an abnormal bio-
marker profile [13, 27]. MTL atrophy was scored visually
on a scale of 0 (no atrophy) to 4 (severe atrophy) for
both left and right hippocampi and then averaged to
generate a single score. Positive AD findings were based
on age-specific thresholds: ≥1 was considered abnormal
for patients aged <65 years; ≥1.5 was considered abnormal
for patients aged 65–75 years; and >2 was considered ab-
normal for patients >75 years of age. For CSF biomarker
analysis, CSF was obtained using a standard lumbar punc-
ture procedure and measured by commercially available
sandwich enzyme-linked immunosorbent assays. Positive
AD findings based on CSF biomarkers required at least
two of the three biomarker criteria to be satisfied: low
Aβ42 concentrations (<495 ng/L), increased total tau con-
centrations (>356 ng/L), or increased phospho-tau con-
centrations (>54 ng/L). (For further information, refer to
Bouwman et al. [13].)
We calculated the sensitivity and specificity of bio-

marker analysis performed in patients without evidence
of MTL atrophy on MRI by solving for the values that
would achieve the overall sensitivity and specificity

Table 1 Base case inputs, ranges for sensitivity analysis, and sources (Continued)

Utilities

Age-specific weights [54, 55]

60–64 years 0.83 0.822 0.835

65–69 years 0.82 0.820 0.826

70–74 years 0.81 0.803 0.818

75–79 years 0.79 0.786 0.794

>79 years 0.74 0.730 0.742

Health state-specific weights

Community dwelling

Patients without AD 0.68 0.52 0.80 Assumed same as mild AD

Mild AD 0.68 0.52 0.80 [25]

Moderate AD 0.54 0.30 0.70 [25]

Severe AD 0.37 0.25 0.50 [25]

Long-term care facility dwelling

Patients without AD 0.71 0.55 0.80 Assumed same as mild AD

Mild AD 0.71 0.55 0.80 [25]

Moderate AD 0.48 0.30 0.60 [25]

Severe AD 0.31 0.20 0.45 [25]

Abbreviations: AD Alzheimer’s disease, BM Biomarker, CA Clinical assessment, CSF Cerebrospinal fluid, MR Magnetic resonance, MRI Magnetic resonance imaging,
QALY Quality-adjusted life-year, SN Sensitivity, SP Specificity
aThe sensitivity of biomarker analysis in patients without abnormal medial temporal lobe atrophy on MRI (SNBM|MR-) was calculated using the sensitivity of the
revised criteria (in which patients are diagnosed with AD if they have abnormal findings on MRI or abnormal biomarkers, denoted SNMR+BM) and the sensitivity of
clinical assessment and MRI alone (SNMR) using the formula: SNMR+BM = SNMR + (1 − SNMR) × SNBM|MR−.The specificity of biomarker analysis in patients without
abnormal medial temporal lobe atrophy on MRI (SPBM|MR−) was calculated using the specificity of the revised criteria (SPMR+BM) and the specificity of clinical
assessment and MRI alone (SPMR) using the formula: SPMR+BM = SPMR × SPBM|MR−
bTo avoid double-counting the deaths caused by AD, the age-specific mortality rate due to AD was subtracted from the all-cause mortality rate using an excess
mortality model. The resulting “other-cause” age-specific mortality rate was smoothed using an exponential fit
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observed using the revised AD diagnostic criteria. In
sensitivity analyses, we considered a wide range of values
for biomarker sensitivity and specificity after a normal
MRI, with sensitivity ranging from 54% to 86% (base
case 69.6%) and specificity ranging from 89% to 98%
(base case 94.1%).

Mortality
All-cause mortality was estimated using 2009 U.S. life
tables [28]. To estimate the total mortality rate for a patient
with AD at each stage of the disease, we multiplied the
age-specific mortality rate for death due to other causes by
AD severity-specific mortality HRs [29]. In our model, AD
treatments did not influence mortality, because an analysis
of the National Alzheimer’s Coordinating Center (NACC)
Uniform Data Set indicated that AD treatment did not in-
fluence the rate of death after adjusting for disease severity
and other factors influencing treatment use [30].

Natural history of AD
Transition rates between AD severity health states and
between living in the community to living in a long-term
care facility (LTCF) were estimated using the NACC
Uniform Data Set [31]. Despite the progressive nature of
AD, this analysis and a similar analysis of the Consortium
to Establish a Registry for Alzheimer’s Disease dataset esti-
mated a positive probability of transitioning backward
(e.g., from moderate to mild AD) [32]. Possible explana-
tions for backward transition include variation in clinical
presentation and assessment, concomitant disease, and
treatment adjustments resulting in noisy observations over
time or masking the true disease severity [32]. We used
the severity-specific proportion of patients with AD on
acetylcholinesterase inhibitor treatment and the HRs for
progression on treatment to calculate treatment-stratified
transition rates (details in Additional file 1: Section 1.1).

Treatment regimens, adherence, and efficacy
Treatment dosage and schedule were incorporated in ac-
cordance with various guidelines: donepezil 10 mg per
day in mild and moderate AD [33–35] and memantine
10 mg per day in severe AD [33]. We represented all
acetylcholinesterase inhibitors with donepezil because it
is the most commonly prescribed of these drugs [36].
Acetylcholinesterase inhibitor uptake rates vary signifi-

cantly across study cohorts, with initiation rates ranging
from 27% [37] to 97% [38] in newly diagnosed patients
with AD in the community. We estimated a moderate up-
take rate of 45% on the basis of a study of community-
dwelling patients who screened positive for dementia in a
primary care setting [39]. Specialized or coordinated care
increases treatment uptake rates [40]; therefore, we con-
sidered uptake rates from 27% to 56% in sensitivity ana-
lysis [37, 41]. Base case treatment discontinuation and

reinitiation rates were informed by large observational
cohorts such that 25% of community-dwelling patients
and 46.4% of facility-dwelling patients discontinued AD
treatment each year [36, 42], and 63% of community-
dwelling patients and 36% of facility-dwelling patients
who had discontinued AD treatments restarted treat-
ment within 1 year [6, 38].
Consistent with previous model-based analyses of AD,

acetylcholinesterase inhibitor treatment reduced the
transition rate from mild AD to moderate AD and in-
creased the transition rate from moderate AD to mild
AD [25]. The benefit of memantine treatment was incor-
porated into our model by an improved quality of life
for patients with severe AD by 0.051 QALYs per year,
which we estimated on the basis of average improve-
ment in activities of daily living reported in a meta-
analysis [7]. In the base case, consistent with previously
published model-based analyses of AD treatment [25],
we assumed that donepezil treatment does not reduce
the rate of transition between moderate and severe disease,
although we explored this possibility in sensitivity analysis.
In the model, patients not on AD treatment are 2.7 times
more likely to transition to an LTCF, as specifically re-
ported by authors of a large U.S. medical claims database
analysis including more than 5000 patients with AD [43]
and consistent with other literature reports [31, 44–46].
In the base case analysis, patients without AD received

no benefits from AD treatment, but we varied this as-
sumption in sensitivity analysis. Occupational or psycho-
social treatments were not included in the model,
because they likely incur similar costs and provide bene-
fits to patients with AD dementia and non-AD dementia
[47–49].

Costs
We identified the clinical visit and laboratory testing
codes with the Healthcare Common Procedure Coding
System (HCPCS) and Current Procedural Terminology
(CPT), then we estimated their cost using the 2013
Medicare reimbursement schedule [50]. We assumed bio-
marker analysis required a lumbar puncture procedure for
the collection of CSF (CPT code 62270), an immunoassay
analysis (HCPCS code 83520), and a follow-up visit with a
neurologist in which the diagnosis is reported (CPT code
99213), resulting in a total cost of $463.
In each month, individuals accrued age-specific health

care costs unrelated to AD, additional AD severity-
specific health care costs, and location-specific (community
or LTCF) supportive care costs (paid and unpaid). Age-
specific health care costs unrelated to AD, including
out-of-pocket health care expenses, were based on the
U.S. national average, which we smoothed using an ex-
ponential fit with a cap at the average annual cost of
$33,870 for patients aged 90 years and older [51]. AD
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severity-specific costs of inpatient care, outpatient care,
emergency care, and unpaid caregiving are detailed in
Additional file 1: Section 1.2. The annual cost of living
in an LTCF was estimated to be $83,950 (in 2013 U.S.
dollars), based on the U.S. national average cost of a
semiprivate room in a nursing home [52]. Costs were
adjusted for inflation to constant 2013 U.S. dollars
using the gross domestic product deflator [53].

Quality of life
We estimated baseline age-specific utilities from the
Medical Expenditure Panel Survey data [54, 55]. Age-
and AD severity-specific utilities were incorporated into
the model by multiplying the age-specific utility by the
AD severity-specific utility. Utility weights for each AD
disease state were estimated on the basis of a prior cost-
effectiveness analysis [25]. To our knowledge, no study
to date has evaluated the one-time utility toll associated
with embarrassment and discomfort before, during, and
after a diagnostic test requiring lumbar puncture, including
the risk and consequences of lumbar puncture-associated
moderate to severe headache [56]. We assumed the one-
time reduction in quality of life associated with lumbar
puncture is approximately the same as the reduction in
quality of life associated with breast biopsy, which has been
measured to be equivalent to 2.92 quality-adjusted life-
days (annualized to a one-time toll of 0.008 QALY incurred
at the time of the test) [57].

Analysis
We calculated the average lifetime discounted costs and
QALYs for each diagnostic outcome and for each diag-
nostic strategy. If neither strategy cost less and provided
more QALYs than the other, we calculated the incre-
mental cost-effectiveness ratio (ICER). In a probabilistic
analysis, we ran 10,000 independent simulations in which
inputs were selected randomly from the probability distri-
butions described in Additional file 1: Section 1.3 to deter-
mine 95% CIs for each outcome. We also performed
deterministic sensitivity analyses to evaluate the robust-
ness of our findings to uncertainty in model parameters
and assumptions.
To provide general insight into the test characteristics

that would make a new test or test combination both
clinically and economically attractive after MRI, we
identified the “challenge region” as described by Phelps
and Mushlin at the willingness-to-pay (WTP) thresh-
olds of $50,000 and $100,000 per QALY gained [58].
The boundary of the challenge region is identified as
any set of new test characteristics, sensitivity r1 and
specificity r2 , for which the incremental net monetary
benefit (INMB) compared with the current technology,
with sensitivity q1 and specificity q2, at the WTP threshold

(denoted λ) is greater than 0. The INMB comparing the
two tests is calculated as

INMB ¼ p r1−q1ð Þ
�
λ QALYTruePositive−QALYFalseNegative

� �
− CostTruePositive−CostFalseNegative
� �

�

þ 1−pð Þ r2−q2ð Þ�λ QALYTrueNegative−QALYFalsePositive

� �
− CostTrueNegative−CostFalsePositive
� �

�

−ΔTestCost−λΔTestQALY

where p is the prevalence of the disease, r1 � q1 is
the improvement (or reduction) in sensitivity, r2 � q2
is the improvement (or reduction) in specificity,
λ QALYTruePositive �QALYFalseNegative

� �� CostTruePositive � CostFalseNegative
� �� �

is the INMB of preventing a false-negative diagnosis,
λ QALYTrueNegative �QALYFalsePositive

� �� CostTrueNegative � CostFalsePositive
� �� �

is the INMB of preventing a false-positive diagnosis,
ΔTestCost is the difference in cost between the new
and old diagnostic strategies, and ΔTestQALY is the
difference in the short-term quality-of-life effects as-
sociated with the test strategy.

Results
Lifetime costs and benefits of each diagnostic outcome
The lifetime discounted costs and QALYs associated with
each possible diagnosis are shown in Table 2. Accurate
diagnosis of AD decreased lifetime discounted costs by
$9954 and increased lifetime QALYs by 0.248. In non-AD
patients, a false diagnosis of AD increased lifetime costs
by $11,345 due to unnecessary treatment costs.

Effectiveness and cost-effectiveness of diagnostic
alternatives
At a 12.7% pretest probability of AD, biomarker ana-
lysis increased the average cost per patient by $165
(95% CI −$1865 to $1625) and increased the average
QALYs per patient by 0.015 (95% CI −0.011 to 0.051).
The relatively small gain in QALYs was due primarily
to the short-term discomfort associated with the lum-
bar puncture procedure (−0.008 QALY), which was ex-
perienced by all patients. At this pretest probability of
AD, the ICER of biomarker analysis was $11,032 per
QALY gained (Fig. 2a). Probabilistic analysis identified
extremely high uncertainty: a 40% probability that bio-
marker analysis will decrease costs and increase QALYs,
and a 7% probability that it will do the opposite (increase
costs and decreased QALYs). Overall, at an expected pre-
test prevalence of 12.7%, biomarkers were identified as
cost-effective in 72% of simulations using a WTP thresh-
old of $50,000 per QALY gained and 82% of simulations
using a WTP threshold of $100,000 per QALY gained
(Fig. 2b).
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The results are highly influenced by the pretest preva-
lence of AD (Fig. 3a and b). The ICER rapidly increases
as the pretest prevalence decreases (Fig. 3a); for pretest
prevalence less than 9.1%, biomarker analysis costs more
than $50,000 per QALY gained, and for pretest preva-
lence less than 7.5%, biomarker analysis costs more than
$100,000 per QALY gained. For higher pretest preva-
lence, the ICER for biomarkers rapidly decreases, and
for a pretest prevalence exceeding 15%, the probability
that biomarkers are cost-effective is 74%, and deter-
ministic analysis indicates biomarkers are cost-saving.

Deterministic sensitivity analysis
At a pretest prevalence greater than 9%, deterministic
sensitivity analysis indicated that biomarker analysis

continued to be cost-effective within the ranges of un-
certainty to disease progression rates, the rate of transi-
tion from living in the community to living in an LTCF,
the cost of care in an LTCF, and the cost of biomarker
testing. However, at a base case pretest prevalence of
12.7%, our findings were sensitive to patient age, rate of
transition into an LTCF, the costs of long-term care, test
performance, and treatment adherence (Additional file 1:
Table S3). High rates of AD treatment adherence decrease
the cost-effectiveness of biomarker analysis because they
increase the costs associated with false-positive diagnoses.
However, in a sensitivity analysis in which we considered
that AD treatment may provide 50% of the benefit to
patients with a false-positive diagnosis [59, 60], biomarker
analysis costs more than $50,000 per QALY gained.

Fig. 2 a Cost-effectiveness plane: incremental costs and incremental QALYs of CSF biomarker analysis. b Probability of each diagnostic strategy
being the cost-effective alternative at various willingness-to-pay thresholds when all model input parameters are varied simultaneously. AD Alzheimer’s
disease, BM Biomarker, CA Clinical assessment, MR Magnetic resonance, QALY Quality-adjusted life-year

Table 2 Average per-patient lifetime discounted costs and quality-adjusted life-years, by diagnostic outcome and strategy

Cost (U.S.$) LYs QALYs Probability of each outcome

Lifetime discounted costs and benefits by diagnostic outcome

AD

True-positive $298,632 6.781 2.916 8.9%

False-negative $308,586 6.555 2.660 3.8%

Not AD

False-positive $294,732 9.157 5.048 5.2%

True-negative $283,387 9.157 5.048 82.1%

Lifetime discounted costs and benefits by diagnostic strategy

Do nothing $286,587 (244,438 to 337,270) 4.745 (3.88 to 5.42)

Biomarker analysis (BM) $286,752 (244,044 to 337,163) 4.760 (3.89 to 5.44)

Incremental (BM vs. do nothing) $165 (−1865 to 1625) 0.015 (−0.011 to 0.051)

Incremental cost-effectiveness ratio ($ per QALY gained) $11,032a

Abbreviations: AD Alzheimer’s disease, LY Life-year, QALY Quality-adjusted life-year
aThe empiric distribution of incremental cost-effectiveness ratios (ICERs) over the 10,000 simulations identified a 40% probability that biomarker analysis (BM) will
decrease costs and increase QALYs and a 7% probability that BM will increase costs and decrease QALYs, assuming an average AD prevalence of 12.7%. Therefore,
the 95% CI over the ICER ranges from BM is cost-saving to BM is dominated. Empiric 95% CIs were estimated from 10,000 simulations in which all input parameters were
varied simultaneously

Lee et al. Alzheimer's Research & Therapy  (2017) 9:18 Page 9 of 14



We relied heavily on the study of Bouwman et al. to
estimate the sensitivity and specificity of biomarker
analysis [13]. However, this study had relatively small
sample size and used a gold standard of multidisciplinary
team consensus rather than autopsy, the only true gold
standard in AD diagnosis [61]. As such, we considered a
wide range of sensitivities and specificities lower than in
our base case (Additional file 1: Table S3). At moderately
lower diagnostic accuracy (sensitivity 62%, specificity
92%), biomarker analysis remains the preferred alter-
native. At a low diagnostic accuracy (sensitivity 54%,
specificity 89%), the ICER of biomarker analysis in-
creases to $87,000 per QALY gained. Lowering the speci-
ficity further (sensitivity 54%, specificity 84%), the ICER of
biomarker analysis exceeds $100,000 per QALY gained.
Additionally, there is uncertainty about the proportion of
patients who would receive a definitive non-AD diagnosis
prior to biomarker analysis, which would increase the pre-
test prevalence of AD in the tested cohort. In this case of
very low test accuracy, if AD prevalence in the tested co-
hort is 15%, the ICER is $87,600 per QALY gained.
Two-way sensitivity analysis of prevalence and age re-

vealed that, for younger patients, biomarker analysis is
cost-effective at pretest probabilities of AD less than 8%
at WTP of $50,000 per QALY gained (Fig. 4a). For older

patients, such as those over the age of 75 years, biomarker
analysis is cost-effective only in highly selected patient co-
horts with pretest prevalence >27% and >20% at WTP of
$50,000 or $100,000 per QALY gained, respectively (i.e.,
those with memory impairment). Two-way sensitivity
analysis also identified that either increasing the cost of
biomarker analysis by $1400 or increasing the utility
decrement by 0.020 QALYs was sufficient for biomarker
analysis to no longer be cost-effective (Fig. 4b).
Structural sensitivity analysis on the natural history of

non-AD patients indicated that biomarker analysis is
slightly more cost-effective if the conditions affecting pa-
tients without AD are more severe than we assumed in
our base case. Biomarker analysis is less cost-effective if
patients without AD but who are falsely diagnosed with
AD receive a small benefit from acetylcholinesterase in-
hibitor treatment (Additional file 1: Table S3). Biomarker
analysis is also less cost-effective if correction is made
when disease progresses for patients with initially false-
negative results (Additional file 1: Table S3).

Challenge region
When developing a diagnostic test, a trade-off exists be-
tween test sensitivity and specificity. In the case of AD,
improved test sensitivity prevents delay in access to
quality-of-life treatments caused by false-negative diag-
noses (valued at $9954 per false-negative avoided), and
improved test specificity prevents unnecessary treatment
resulting from false-positive diagnoses (valued at $11,345
per false-positive avoided). The challenge region presented
in Fig. 5 identifies the collection of all sensitivity and spe-
cificity pairs where a hypothetical test, with a cost and
short-term disutility similar to those of CSF biomarkers,
would be cost-effective compared with no test at four
levels of pretest prevalence: 7.5%, 12.7%, 15%, and 30%.

Discussion
For biomarker analysis to be cost-effective at a WTP of
$50,000 per QALY gained, the pretest prevalence of AD
in the tested cohort must be more than 1 in 11 patients.
Overall prevalence of AD in the referral population varies
substantially across referral centers, with specialized cen-
ters diagnosing AD in approximately one-fourth of re-
ferred patients [26, 61]. Evaluation of MTL atrophy by
MRI will diagnose at least half of patients with AD. MRI
may also identify a definitive diagnosis other than AD,
which may preclude the need for continued evaluation in
some patients. The optimal policy may therefore vary
across clinics and may further depend on specific patient
risk factors. In patients presenting to memory clinics with
memory impairment without MTL atrophy, AD pretest
prevalence may be greater than 14.5%; in these patients,
biomarker analysis has the potential to be cost-saving. In
addition to the benefits measured in the present study,

Fig. 3 a Incremental cost effectiveness ratio (in U.S. dollars per QALY
gained) of biomarker analysis for various pre-test probabilities of AD.
b Incremental cost effectiveness ratio at various pre-test probabilities
of AD. AD Alzheimer's disease, BM Biomarker, ICER Incremental
cost-effectiveness ratio, QALY Quality-adjusted life-year
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timely diagnosis would also enable patients and their
families to make informed decisions in planning future
caregiving at a time when all parties achieve the greatest
benefit and enable patients to have a greater role in
making their own health care decisions before cognitive
impairment interferes [62].
In practice, treatment uptake and adherence are low

[63]. However, even with very low rates of treatment up-
take and high rates of treatment discontinuation, biomarker
analysis remains the preferred alternative (Additional file 1:
Table S3). However, if patients without AD who receive a
false-positive diagnosis of AD (and therefore initiate treat-
ment at the same rates as patients with a true-positive diag-
nosis of AD) receive moderate benefits from donepezil and
memantine for a disease with a similar progression to AD,

biomarker analysis is no longer the cost-effective option at
a WTP of $50,000 per QALY gained (Additional file 1:
Table S3). This finding indicates that if patients with a
false-positive diagnosis, for whom the cost of treatment will
be incurred, receive a benefit from that treatment, the eco-
nomic benefit derived from reducing the number of false-
positives decreases. This finding does not indicate that
donepezil or memantine treatment for patients without
AD is necessarily cost-effective. The cost-effectiveness
of cholinesterase inhibitor treatment in patients with
non-AD disease has been demonstrated for Lewy body
dementia [64], but acetylcholinesterase inhibitors have
not shown clinical benefit for patients with MCI [65].

Fig. 5 Challenge region. The challenge region identifies the test
sensitivity-specificity combinations for a hypothetical new test, with
a similar cost and short-term disutility as CSF biomarkers, that would be
cost-effective compared to no test at four levels of pre-test prevalence:
7.5% (black area), 12.7% (dark grey area), 15% (medium grey area), and
30% (light grey area). The test accuracy of CSF biomarkers (white
triangle) is also plotted for ease of comparing its test accuracy to
the challenge region. (a) Willingness to pay threshold of 50,000 per
QALY gained; (b) Willingness to pay threshold of 100,000 per QALY
gained. CSF cerebrospinal fluid, WTP Willingness-to-pay, QALY
Quality-adjusted life-year

Fig. 4 Two-way sensitivity analyses simultaneously varying (a)
patient age and pre-test probability of AD and (b) utility detriment
from lumbar puncture and the cost of biomarker analysis. Triangle:
base case; White area: Cost saving at willingness-to-pay of 50,000
per QALY gained; Grey area: ICER of 50,000 100,000 per QALY
gained; Black area: ICER> 100,000 per QALY gained. AD Alzheimer's
disease, ICER Incremental cost-effectiveness ratio, QALY Quality-adjusted
life-year
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In general, the cost-effectiveness of a treatment de-
pends on the natural history of the disease as well as
the cost and efficacy of all treatment alternatives avail-
able to patients with that condition.
Studies in which researchers have estimated the diag-

nostic accuracy of clinical assessment, neuroimaging,
and CSF biomarkers vary widely in their findings [66].
We used the study by Bouwman et al., who retrospectively
applied each potential diagnostic strategy to 138 patients
with AD and 223 memory clinic patients without AD [13].
Relying on a single study provided internally consistent es-
timates for the sensitivity and specificity of each test and
the tests compared with each other, which may not have
occurred had we collected test accuracy information
from independent studies performed with different pa-
tient populations. At low pretest probabilities (<9%),
the incremental cost of biomarker analysis was not ro-
bust to the uncertainty in test accuracy or many other
input parameters. However, at higher pretest probabil-
ities, the finding that biomarkers are cost-effective is
robust to uncertainty in biomarker test accuracy (Fig. 5).
This is relevant because specificity in particular may
vary across referral centers, depending on the mix of
patients composing the non-AD cohort. Greater confi-
dence in the accuracy of diagnostic strategies can be
established with larger sample size studies similar in de-
sign to that of Bouwman et al., in which multiple diagnos-
tic criteria were applied to the same patients [13].
Our analysis has limitations, including a limited number

of health states that do not fully represent the complex
and multifaceted nature of AD and other neurological or
psychiatric diseases represented in the non-AD population
[18]. However, in addition to modeling cognitive func-
tional decline, we included whether the patient was
dwelling in the community or in an LTCF to incorpor-
ate elements of functional dependence, and we included
disease severity-specific unpaid caregiving. Our inputs
were derived from the medical literature. Specifically,
transition rates for AD progression were based on an
observational cohort not stratified by treatment status.
In addition, several model parameters, including the ac-
curacy of both diagnostic strategies, relied on studies
with relatively small sample sizes and AD diagnosis
based on clinical assessment, not on autopsy.

Conclusions
Biomarker testing reduces the number of false-negative
diagnoses and therefore connects patients to treatment
earlier, improving their quality of life. Although the cost-
effectiveness of biomarker analysis depends critically on
the prevalence of AD in the tested population, it is cost-
effective at a WTP of $50,000 per QALY gained in pa-
tient cohorts in which at least 1 (9%) in 11 patients has
AD. In patients presenting to memory clinics with memory

impairment without neuroimaging evidence of MTL atro-
phy, AD prevalence likely exceeds 15%. Biomarker analysis
is potentially cost-saving and should be considered for
adoption in high-prevalence centers.

Additional file

Additional file 1: Cost-effectiveness of cerebrospinal biomarkers for
Alzheimer’s diagnosis: supplemental Methods, Results, figures and tables
as referenced in the text. (DOCX 91 kb)
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