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Abstract 

The continued increasing use of the Internet drives the need to enlarge the transport 

capacity of optical networks. Current Wavelength Division Multiplexing (WDM) 

technologies are limited as the conventional waveband (C-band) provides a bandwidth 

of around 35 nm associated with the minimum-loss window of standard single mode 

fibre. In order to maximize the capacity using these wavelengths, more and more effort 

has to be exerted by the equipment providers to increase capacity and suppress cross 

talk between adjacent channels. To overcome this capacity saturation around 1.55 µm, 

the next generation optical networks require technological developments in new 

wavelength regions. This will not only extend the current effective transmission band 

but also address limitations such as loss and non-linearity of silica-core fibers. The 

waveband at 2 µm can be recognized as a potential candidate due to the low loss 

window in Hollow Core Photonic Band Gap Fibers (HCPBGF) and the gain 

bandwidth from Thulium Doped Fiber Amplifier (TDFA). Furthermore this waveband 

can take advantage of the previous research and development ideas based on 1.55 µm 

while extending the technologies related to materials and processing for the passive 

and active components. To satisfy the system-level applications at this new wave 

band, opto-electronics devices at 2 µm should be developed.  

In this thesis, we present the building blocks regarding material optimization, device 

design, process development and performance characterizations of high speed 

photodiodes and associated 90° optical hybrids at 2 µm. To get the high speed signal 

from the optical carrier, the photodiode properties of 3dB-cut-off frequency, dark 

current and photoresponse at this wavelength have been addressed. To achieve higher 

transmission efficiency per single wavelength, a 90° optical hybrid needs to be 

developed for a balanced receiver to permit the implementation of advanced 

modulation formats such as Quadrature Phase Shift Keying (QPSK). 

For the photodiodes, edge-coupled device based on InGaAs/InGaAs strained 

quantum wells shows small signal bandwidth more than 10 GHz, responsivity of 

around 0.38 A/W at 2 µm with a leakage of 2.55 nA at -1 V bias. The surface-

illuminated photodiodes based on a strain-relaxed InGaAs absorbing layer sandwiched 

by AlInGaAs claddings has also been realized on InP substrate with the help of  



Abstract 

6 
 

 

parabolic grading buffer. The layer thicknesses, p-doping profile as well as the 

sidewall passivation process were optimized. The 50-µm diameter mesa demonstrates 

high Radio Frequency (RF) bandwidth up to around 10 GHz while maintaining 2 µm 

photoresponse approaching 1 A/W with a small leakage of 0.52 µA. 15 Gbit/s eye 

diagram and Bit Error Rate (BER) of 10-12 are demonstrated with the same type of 

photodiode. All types of the photodiode devices have been packaged with the support 

from the package group for high speed test to prove the ability to work in the real 

optical communication system. 

For the optical 90° hybrids, design of large spot size diluted waveguide, dimension 

optimization of 4×4 Multiple Mode Interference (MMI) coupler, and monolithic 

integration test structure involving hybrid and Mach-Zehnder Interferometer (MZI) 

are achieved. The quadrature phase condition around 2 µm was measured from the 

outputs of the device for the first time demonstrating a phase deviation around ±10°, 

Common Mode Rejection Ratio (CMRR) > 15.6 dB and an excess loss of 2.2 dB. The 

devices have displayed the potential to be applied in real 2 µm optical communication 

systems while the photodiode is also useful in gas sensing area such as carbon dioxide 

mapping of the atmosphere on the earth. 
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MBE=Molecular Beam Epitaxy 

MQW=Multiple Quantum Well 

MZM=Mach–Zehnder Modulator 

 

N 

 

O 
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OFDM=Orthogonal Frequency Division Multiplexing  

OSA=Optical Spectrum Analyser 

OOK=On-Off-Key  

 

P 

PDM=Polarization Division Multiplexing 

PD=Photodiode 

PL=Photoluminescence 

PECVD=Plasma Enhanced Chemical Vapour Deposition 

PR=Photoresist 

PPG= Pulse Pattern Generator 

 

Q 

QPSK=Quadrature Phase Shift Keying  

QAM=Quadrature Amplitude Modulation 

Q=Quadrature 

QW=Quantum Well 

SOI=Silicon-on-insulator 

QWI=Quantum Well Intermixing 

OSNR=Optical Signal to Noise Ratio 

 

R 

RF=Radio Frequency  

PECVD= Plasma-Enhanced Chemical Vapour Deposition 

RC= Resistance-Capacitance 

 

S 

SMF=Single Mode Fibre 

SNR=Signal-to-Noise-Ratio 

SSMBE=Solid Source Molecular Beam Epitaxy 

SEM=Scanning Electron Microscopy 

SMA= SubMiniature version A 
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T 

TDFA=Thulium Doped Fibre Amplifier 

TIA=Trans-Impedance Amplifier 

TE=Transverse-Electric 

TM=Transverse-Magnetic 

 

U 

UK=United Kingdom 

USA=United States of America 

UV=Ultraviolet 

 

V 

 

W 

WDM=Wavelength Division Multiplexing 

 

X 

 

Y 

 

Z 

 



List of used parameters 

21 
 

 

List of used parameters 

 

𝐸𝑔- Band gap energy of the material.  

π- the ratio of a circle's circumference to its diameter, value- 3.14159. 

𝑅- the total resistance involving both 50 Ω load resistor and serial resistance of the  

     photodiode. 

𝐶- is the total capacitance containing the natural junction capacitance and parasitic    

     capacitance of the pad. 

𝑓−3𝑑𝐵- -3dB cut-off frequency of the photodetector. 

𝜆0- free space wavelength. 

𝑘0- free space wave number. 

𝑁𝑒𝑓𝑓- effective index of the transmission mode. 

𝜂- coupling efficiency. 

𝛼- propagation loss. 

𝑛𝑟- the (effective) refractive index of the ridge waveguide. 

𝑛𝑐- the refractive index of the cladding region.  

𝑊𝑚- the physical width of the multimode waveguide. 

𝑊𝑒- the effective width of the multimode waveguide. 

𝐿𝜋- the beat length of the two lowest-order modes.
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Chapter 1 Introduction 

1.1 Background 

The increasing bandwidth requirement from the increasing web page and video 

flows of the Internet is driving the increasing transmission capacity in the commercial 

optical networks. As a result, the current networks based on Wavelength Division 

Multiplexing (WDM) techniques meet a real challenge from the limited spectrum 

width of 35 nm in the C-band and physical boundaries such as loss and nonlinearity 

of the single mode fibre.  

Due to the minimum-loss window of the single mode fibre and optical gain region 

of the Erbium Doped Fiber Amplifier (EDFA), the conventional band (C-band) which 

is typically used in the commercial systems and networks only provides an available 

bandwidth around 35 nm (1530~1565 nm). While, the latest Dense Wavelength 

Division Multiplexing (DWDM) standard (G.694.1) from ITU has clarified that the 

minimum channel spacing was down to 12.5 GHz corresponding to approximated 0.1 

nm in wavelength domain around 1.55 μm [1]. Those limitations make the equipment 

suppliers suffer from frequency saturation as well as carrier stability maintenance 

which promotes the desires for another appropriate wavelength region.  

Also, in the past decades, researchers concentrated on the improvement of single 

carrier capacity over standard Single Mode Fibre (SMF). By utilizing coherent 

detection, various modulation formats like Quadrature Amplitude Modulation (QAM), 

Polarization Division Multiplexing (PDM), and Orthogonal Frequency Division 

Multiplexing (OFDM) have been successfully achieved to enlarge the capacity of a 

single channel [2]. However, the fundamental properties of standard SMF still play 

the main role to limit the capacity extension potentials for the total system transmission 

[3]. Silica-based optical fibre suffers not only from the loss whose average value is 

0.22 dB/km at 1.55 μm [4] but also from the nonlinear dependence of refractive index 

and the intensity of the light guided in the fibre [5]. New transmission medium needs 

to be introduced into the fibre to further decrease the loss and suppress the nonlinearity 

of the SMF. 
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Therefore, next generation optical networks are searching for the break-through 

regarding a new wavelength region as well as transporting in a new type of optical 

fibre to extend the numbers of available channels if the same scheme of WDM is 

applied.  

Recently, WDM transmissions on wavelengths around 2 μm in Hollow Core 

Photonic Band Gap Fibers (HC-PBGFs) has attracted more attention showing the 

potential to satisfy the above-mentioned requirements [2]. Due to the physical 

properties of HC-PBGFs, an ultra-low attenuation of ~0.1 dB/km could be estimated 

by shifting the channels from the C-band to 2 μm [6]. Compared to standard SMF, 

HC-PBGFs also demonstrate much lower nonlinearity [7] as well as near-vacuum 

latency [8] which are appealing in long haul network deployment in addition with a 

gain bandwidth spanning over 100 nm from the 2 μm Thulium Doped Fibre Amplifiers 

[9].  

To achieve large transport capacity at 2 μm optical communication system, photonic 

devices need to be designed and fabricated to work at this new wave band. As a core 

active component in charge of optical-electrical signal conversion at the receiving end, 

the photodiode (PD) requires optimization with respect to the high Radio Frequency 

(RF) working bandwidth, small leakage current under reverse bias while maintaining 

high photoresponse in 2 μm spectrum range. In order to further extend data 

transmission rate of one single channel, advanced modulation format such as 

Quadrature Phase Shift Keying (QPSK) or QAM should be applied on single carrier 

wavelength. This needs a 90° optical hybrid which should be designed around this 

particular wavelength to separate the In-phase (I) and Quadrature (Q) part of the signal 

for coherent detection. In the following sections, we are going to summarize the state-

of-art works on these devices from the published literature.  
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1.2 Review of the state of art work 

2 micron photodiodes have been widely used for carbon-based gas sensing such as 

environment monitoring regarding the greenhouse effect. This is due to its working 

range covering the absorption peak of CH4, CO and CO2 which is located at the 

spectrum region of 1.5~2.5 µm [10]. To efficiently use this special absorption property, 

sensor systems require high Signal-to-Noise-Ratio (SNR) specially relied on the low 

photodetector leakage current. This is subjected to the dislocations in the absorber due 

to the lattice constant misfit between the absorption layer and the substrate. In addition , 

due to the low loss window of HC-PBG fibres appearing around 2 µm wavelength, 

renewed attention on telecommunication application which has a strong connection 

with high speed characters of the photodiode dominated by the natural capacitance of 

the p-n junction and transition time of the carrier over the intrinsic layer. Optimizations 

mainly regarding material design and growth have been developed to decrease the 

leakage and improve the Radio Frequency (RF) bandwidth of the device. To 

summarize the evolution of the related technologies, review of the published papers 

will be presented in the following section with the key parameters listed in Table 1.1. 

 

1.2.1 InGaAs photodectors at 2 µm range 

Photodiodes around the region of 2 µm have been successfully achieved based on 

the InGaAs/InP material system by taking advantages of fast epitaxy growth rate 

through Hydride Vapor Phase Epitaxy (HVPE) or Metal Organic Chemical Vapor 

Deposition (MOCVD) associating with mature device fabrication technologies. By 

use of Indium-rich component to narrowly tailor the band gap of the InxGa1-xAs 

absorption layer, the photo-response of the photodiode could cover the above-

mentioned wavelength band. The large lattice mismatch between the high-Indium-

content intrinsic layer and the substrate was released by introducing a buffer layer by 

special schemes such as composition-grading [11] [12] [13] or fixed-compound 

interface layers [14]. 

For the surface normal photodetector with the input light illuminating on the 

top/bottom absorption window, a thick absorption region is necessary for the sufficient 

photo-absorption as the light propagation path is overlapped with the material growth  



Chapter 1  Introduction 

25 
 

 

direction. A buffer layer is typically adopted to maintain the quality of the thick  

intrinsic layer by precluding the upward diffusion of the mismatched dislocations 

generated from the lattice-misfit between the high-indium absorption layer and the 

substrate. Up to now, ternary III-V materials such as InGaAs, InAsP, and InAlAs have 

been used to establish the buffer layer by composition grading one of the binary 

components. 

Due to the convenience of controlling the group III ratio, the In1-xGaxAs system is 

widely applied for the growth of high quality epitaxial layers. Especially, to establish 

the buffer region for the long wavelength photodetector, changing the lattice parameter 

is easier to achieve by avoiding the competition of group V elements on the surface 

within the epitaxial process [12].  

In 1986, In0.72Ga0.28As/In0.72Al0.28As heterojunction photodiodes with a 

photoresponse cut-off wavelength extending out to 2.4 μm were fabricated by A. J. 

Moseley et al. in Plessey Research (Caswell) Ltd. at UK by applying a ~10 μm-thick 

n+ In1-xGaxAs buffer layer in a linearly composition-graded scheme until 

In0.72Ga0.28As. On top of the buffer, a constant-composition 4 μm-thick In0.72Ga0.28As 

layer was then grown (n-type, ~1×1016 cm-3) followed by a p-type In0.72Al0.28As layer. 

100 micron-diameter mesa devices exhibited a photoresponsivity of 1.31-1.58 A/W 

corresponding to the peak efficiency as high as 95 % over the 1.7-2.05 µm with the 

dark current down to 35 nA at the bias of -0.5 V [15]. The schematic of the device 

structure can be seen from Figure 1.1.  

 

 

Figure 1.1: Schematic of the cross section for the 2 micron photodiode from Plessey 

Research (Caswell) Ltd. [15]. 
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In 1988, a homojunction p-n photodiodes with spectral response as long as ~2.65 

μm was achieved by Ramon U. Martinelli, et al. at the David Sarnoff Research Center, 

USA using In0.82Ga0.18As on n-doped InP substrate. A linearly-graded InxGa1-xAs layer 

with x ranging from 0.53 to 0.81 over about 20 μm accommodated the 2% lattice 

mismatch between the substrate and the absorber. At room temperature, the leakage 

density of the device was 32 mA/cm2 at the voltage bias of -2 V. At the same reverse 

bias, the 5 μm thick In0.82Ga0.18As layer (net donor density ~2 × 1015 cm-3) realized a 

device photoresponsity of 1.25-1.55 A/W (quantum efficiency: 70-75%) over the 

wavelengths of 2.1-2.6 μm [16].  

Buffer layers in the InAsyP1-y system has been used to achieve a smooth 

morphological surface [11] as well as larger band gap energy comparing to the 

intrinsic absorption layer which promotes the reduction of the device leakage [17]. 

Also, light across a broader spectral range is able to pass through the buffer layer (back 

side-illuminated) or the p-cap region (top side-illuminated) to be absorbed by the 

photodetector. The increased lattice constant along the growth sequence starting from 

the substrate keeps the compressive strain which protects the following epitaxy layers 

from cracking [18].  

In 1992, involving the compound of In0.72Ga0.28As (Eg= 0.57 eV or g = ~2.2 μm) 

as the absorption layer, Abhay Joshi, et al. at the Discovery Semiconductors, USA 

developed the top-illuminated planar photodiodes with the buffer layer of graded 

InAsyP1-y (n-doped) [19]. As it is demonstrated in Figure 1.2, compositionally abrupt 

interfaces within the buffer layer suppressed the diffusion of misfit dislocations to 

minimize the unintentional background doping of the intrinsic layer [20, 21]. Another 

InAs0.33P0.67 layer was grown on top of the absorber to achieve the anode. The active 

region was defined by p+-Zn diffusion and then passivated with a coating of Silicon 

Nitride. With material growth optimization, the device  could present a diode ideality 

factor of ~1.3 at 20 °C and an unintentional background doping of ~8×1015 cm-3 in the 

intrinsic layer. The leakage density of the 50 μm diameter mesa was ~50.93 mA/cm2 

at -5 V and the photoresponsivity was up to 1.2 A/W (quantum efficiency: ~72 %) at 

the input wavelength of 2.05 μm [21, 22].  
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Figure 1.2: Schematic of the cross section for the 2 micron photodiode from Discovery 

Semiconductors, Inc. [19]. 

 

With the In0.82Ga0.18As content in the intrinsic layer, M. D'Hondt, et al. at the 

University of Ghent-Interuniversity Microelectronics Centre (IMEC), Belgium 

fabricated the planar photodiode similar to the structures from Reference No.19 by use 

of 4 μm thick InAsyP1-y buffer layer graded in composition over 20 steps from y=0 to 

y=0.61. The not-intentionally-doped device with 2-μm thick In0.82Ga0.18As absorbing 

layer resulted in a response of 1.11 A/W at 2 μm corresponding to a quantum 

efficiency of 66 % [23]. One buffer layer may not be sufficient to fully suppress the 

device dark current generating from the lattice mismatching, which expects for more 

complex strain-releasing scheme. By the combination of a 2.5 μm thick InAsyP1-y 

content-graded buffer (y is from 0 to 0.5), 1 μm thick fixed-component InAs0.5P0.5 

buffer and 0.9 μm thick superlatice strained InAsP/InGaAs buffer followed by the 4 

μm In0.8Ga0.2As absorber, M.A. di Forte-Poisson in the Laboratoire Central de 

Recherches Thomson-CSF, France achieved the 2.4 μm InGaAs/InAsP/InP double-

heterojunction photodiode with the epitaxial layers grown by Low Pressure Metal 

Organic Chemical Vapour Deposition (LPMOCVD) on n+-doped InP substrate. The 

planar type device displayed a leakage density of 0.8 mA/cm2 (300 K) at -1 V bias and 

unintentional doping level of 2×1016 cm-3 deduced from the CV test results [24].  

InxAl1-xAs can be approximately lattice-fitted to InxGa1−xAs under the same content 

of indium (x) with a bandgap energy larger than the InAsyP1-y material system which 

is more suitable for the back-side-illuminated photodetector. The lattice constant of 

this system could be adjusted to the range matched to InP and to InAs [13].  
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In addition, applying this material system can successfully get rid of the related 

issue of controlling the fluxes of the V component for accurate epitaxy growth [25]. 

In 2008, with a 3 μm thick n-doped linearly-graded InxAl1-xAs (x is from 0.53 to 

0.8) as the buffer layer on (100) oriented semi-insulating (S. I.) InP substrate, a 2.42 

micron mesa type photodetector working at room temperature has been successfully 

developed by Yonggang Zhang, et al. in Shanghai Institute of Microsystem and 

Information Technology, Chinese Academy of Sciences. Hetero-junction structure 

involving 2.5-μm thick In0.8Ga0.2As absorber and In0.8Al0.2As cap layer were grown 

by Gas Source Molecular Beam Epitaxy (GSMBE). When it is biased at -10 mV, the 

sample leakage density is 8.15 ×10-2 mA/cm2 with a doping level of 1×1017 cm-3 in 

the absorption layer at 290 K [13]. The schematic of the device in cross section view 

is shown in Figure 1.3 as follows,  

 

 

Figure 1.3: Schematic for the 2 micron photodiode based on InAlAs buffer from the 

group in Shanghai Institute of Microsystem and Information Technology, Chinese 

Academy of Science [13]. 

 

Optimizations were carried out on several aspects such as using high-level Be 

doping in the composition-graded buffer layer rather than Si, applying n-on-p structure 

for launching the light close to the depletion region in the case of back-illumination 

[26], increasing the indium content up to 0.9 in both absorption and cap layer to extend 

the cut-off wavelength as long as 2.9 μm [27], utilizing new buffer schemes like 

continuous-grading and step-grading for better material metamorphy [28]. In 2014, 

with the similar linearly-graded buffer structure adjusting the Al mole fraction from 

0.52 to 0.83 and grown by Solid Source Molecular Beam Epitaxy (SSMBE), Yetkin 

Arslan, et al. from the Middle East Technical University, Turkey demonstrated a wet- 
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etched mesa photodiode with a cut-off wavelength of 2.6 μm, leakage density of 

4.8×10-4 mA/cm2 (25 mV, 180 K) and quantum efficiency of ~52 % at 2.5 μm. The 

thickness of the buffer layer was reduced to 1.5 μm which was effective to suppress 

the defect doping density down to 9×1014 cm-3 in the intrinsic absorption layer [29].  

As mentioned above, most of the epitaxy layers for 2 µm photodiode were grown 

on InP substrate. If the GaAs substrate is considered, the epitaxial layers in InGaAs 

material system would face the challenge of larger lattice mismatch within the intrinsic 

absorber and the substrate. However, it is still very attractive to obtain the devices on 

such substrate due to the robust mechanical property, high crystalline quality, as well 

as low cost of the GaAs substrate. Especially, commercial gallium arsenide substrate 

is able to reach as large as 6 inch allowing larger product volume to further reduce the 

production cost per device unit[30].  

In 2002, P. Merken et al. from IMEC, Belgium published a homo-junction 

In0.78Ga0.22As n-on-p photodiode on top of 5 μm Al0.22In0.78As buffer on a 3 inch semi-

insulating GaAs substrate grown by Molecular Beam Epitaxy (MBE). Back-side 

illuminated 320×256 focal-plane array were fabricated with the single 25×25 μm2 

pixel displaying a dark current in the order of 10-8~10-7 A (leakage density–1.6~16 

mA/cm2) at the bias of -0.1 V at 300 K and responded to those wavelengths from 1.3 

to 2.3 μm [31]. Later in 2003, standard metamorphic InGaAs or IR-transparent InAlAs 

buffers were applied with different thicknesses varying from 2.3 to 7.3 μm 

demonstrating the leakage reducing with wider-gap buffer as well as thicker buffer 

thickness which are associated with the accommodation of those generation-

recombination centers referring to threading dislocation defects. Also, as it is shown 

in Fig. 1.4, the active junction structure adopted a p-graded layer following 2 μm 

InGaAs absorption region were optimized for the applications in the temperature of 

250 K and sandwiched by highly doped n and p cap. For the n-on-p device with 7.3 

μm thick InAlAs buffer, the sensitive range could be extended up to 2.4 μm with a 

quantum efficiency of >30% at 2.0 μm and 46% at 1.6 μm without anti-reflective (AR) 

coating [14].  
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Figure 1. 4: Schematic for the n-on-p structure of the 2μm photodiode based on InAlAs 

buffer from IMEC [14] 

 

In 2014, L. Zhou, et al. in Shanghai Institute of Microsystem and Information 

Technology, Chinese Academy of Sciences released a 2.6 μm 

In0.83Ga0.17As/In0.83Al0.17As/InxAl1-xAs photodetector grown on n+-type GaAs 

substrate by GSMBE system. To accommodate the +5.9 % lattice misfit between the 

intrinsic absorption layer and the substrate, a 1.9 µm thick continuously-graded InxAl1-

xAs (x is from 0.1 to 0.83) buffer in combination with a 0.6 micron constant-

composition In0.83Al0.17As buffer were utilized as that is shown in Figure 1.5. The wet-

etched mesa device showed a dark current density of 3.23 mA/cm2 at -10 mV as well 

as 50% cut-off wavelength as long as 2.58 μm at 300 K [32]. 

 

 

Figure 1.5: Schematic for the In0.83Ga0.17As/In0.83Al0.17As/InxAl1-x As surface normal 

photodiode [32]. 



Chapter 1  Introduction 

31 
 

 

One of the most attractive properties of the InGaAs material is the large carrier 

mobility which plays the main role for the high speed detector requiring short traverse 

time across the intrinsic region under reverse bias. 

 On 2008, Abhay Joshi and Don Becker in Discovery Semiconductors, USA 

reported the top-illuminated In0.72Ga0.28As/InAsyP1-y photodiode with the 3-dB cut-off 

frequency up to 6 GHz in use of the scheme of Dual-Depletion Region (DDR). A 

photo-responsivity of 1.34 A/W at 2.05 μm wavelength and a dark current of 400 nA 

were measured at -5 V bias [33]. Later, a 2 micron high speed photodiodes based on 

extended InGaAs was also developed in the same company on the InP substrates 

(2012). The dislocation defects in the In0.72Ga0.28As absorber was qualified by an 

unintentional background doping of 8 × 1015 cm-3 leading to a diode ideality factor of 

<1.3 at room temperature. By the integration of the trans-impedance amplifier (TIA), 

the detector demonstrated a small signal bandwidth of 6 GHz mainly suffering from 

the capacitance of the p-i-n junction (0.45 pF) [10].  
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1.2.2 2 µm photodiodes based on the material containing Sb  

The band edge of the materials containing Sb could be extended to longer 

wavelengths. The working wavelength of GaInAsSb can cover the near-and mid-

infrared wavelengths ranging from 1.7 to 4.3 μm while maintain lattice-matching 

property to the GaSb substrates.  

In 2006, M. H. M. Reddy, et al. in the University of Iowa, USA demonstrated a 

photodetector with a 2 μm-thick Ga0.79In0.21 As0.19 Sb0.81 intrinsic layer grown by MBE. 

An unintentionally p-doping level of ~5 × 1016 cm−3 in the intrinsic layer, 90% of the 

maximum response over a range of 2-2.4 μm and a maximum responsivity of 1.19 

A/W between 2.2 and 2.35 μm related to a quantum efficiency of 65 % were obtained. 

[34]. H. Shao, et al. in Columbia University, USA published a GaInAsSb/AlGaAsSb 

heterojunction p–i–n photodetectors grown by solid source molecular beam epitaxy 

(year 2008). Valved crackers were introduced to further release the lattice-matching 

between GaInAsSb absorber and the GaSb substrates. A rectangular mesa device (320 

µm×140 µm) with a Al0.25Ga0.75As0.03Sb0.97 (0.5 µm) as the n-type layer (5×1017 cm-3) 

and a 2.5 µm unintentionally-doped (p-type, 1×1016 cm-3) In0.24Ga0.76As0.21Sb0.79 as an  

intrinsic layer were fabricated displaying a breakdown voltage of 32 V, 50 % cut-off 

wavelength up to 2.57 µm and a leakage density of 4.0 mA/cm2 at room temperature. 

The peak responsivity from the top side illumination is 1.16 A/W at the wavelength of 

2.36 µm corresponding to an external quantum efficiency of 63 % [35]. B. Liang, et 

al. from Carleton University, Canada developed a 2-2.8 μm vertically stacked 

multiple-junction PIN GaInAsSb/GaSb photodetectors in 2011. The intrinsic 

absorption region consisted of five periods p+/p−/n+ Ga0.7 In0.3As0.273Sb0.727 based on 

GaSb (100) substrate with a 200 nm GaSb buffer layer in between. A response 

quantum efficiency (RQE，product of internal quantum efficiency and external 

quantum efficiency ) of 52-69 % was obtained [36]. 

Benefiting from the lattice-matching property of the InGaAs/GaAsSb type II 

quantum wells, the high epitaxy growth quality can be achieved for the long 

wavelength photodetectors based on InP substrate. In addition, longer wavelength 

absorption is possible due to the indirect transition of the light-induced electrons to  

the conductive band of the adjacent layers which achieves an effective bandgap 

reduction compared to the native bandgaps of the well and barrier material [37]. 
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In 2009, Hiroshi Inada et al. from the transmission Devices R&D Laboratories, 

Japan exhibited a p-i-n photodiode covering the wavelengths up to 2.5 μm with a 250-

pair InGaAs (5nm)/GaAsSb (5nm) type II quantum wells structure as the intrinsic 

layer grown on S-doped InP (100) substrate by solid source MBE. A 1.3 μm thick 

InGaAs layer was used as the cap layer. A planar circular mesa device in the diameter 

of 140 μm showed a leakage density of 0.92 mA/cm2 (140 nA, -1 V) and responsivity 

of 0.6 A/W at 2.2 μm [38]. Later on 2011, with 100-pairs In0.34Ga0.66As (7 

nm)/GaAs0.25Sb0.75 (5 nm) strain compensated type-II quantum wells as the intrinsic 

absorption layer, Baile Chen, et al. in the University of Virginia, USA presented a InP-

based p-i-n photodiode grown by MBE with the response extended to 3.4 µm 

wavelength. The device dark current density was suppressed to 9.7 mA/cm2 at the bias 

of −0.5 V in the temperature of 290 K [39]. A new strain compensation scheme was 

proposed involving one 5 nm GaAs0.35Sb0.65 layer sandwiched by two 5 nm 

In0.75Ga0.25As layers as the compressive-strain quantum well (QW) which is 

compensated by two 3.4 nm tensile-strain In0.2 Ga0.8As layers. This leads to a small 

device leakage density of 2.6 mA∕cm2 in the same temperature and bias condition (−0.5 

V, 290 K) benefiting from a thinner absorption region [40]. In 2012, Fujii. Kei, et al. 

at the Semiconductor Technologies R&D Laboratories, Japan reported pin-PDs with 

the lattice-matched In0.53Ga0.47As (5 nm)/GaAs0.51Sb0.49 (5 nm) type-II QWs grown by 

MOCVD on InP (100) substrates (S-doped). By using a InP cap layer, the surface 

leakage density was suppressed to 9.0 μA/cm2 (233 K). A peak wavelength of 2.52 

μm, a maximum external quantum efficiency of 48 % (450-pairs QWs) at 2 micron 

wavelength, and an ideality factor of 1.2 were obtained [41]. 

Silicon photonics platform is more suitable for massive production benefiting from 

the CMOS compatible fabrication process. Integration of absorption region on this 

platform can achieve the photodetectors at a low cost in the photonics integrated circuit.  

In 2011, Nannicha Hattasan et al. in Ghent University presented the first GaSb-

based Ga0.79In0.21As0.19Sb0.81/InAs0.91Sb0.09 p-i-n photodiodes heterogeneously 

integrated on silicon-on-insulator (SOI) waveguide circuits in use of the adhesive 

bonding agent of DVS-BCB (Benzocyclobutene). A dark current density of 186 

mA/cm2 at -0.1 V and a responsivity of 0.44 A/W at 2.29 μm (external quantum 

efficiency ~24 %, room temperature) were successfully realized [42]. Then, Ruijing 

Wang from the same affiliation pulished the work further on the year of 2014 that the  
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InP-based InGaAs (2.6 nm)/GaAsSb (2.9 nm) type-II quantum well photodiodes was 

integrated on a silicon photonics integrated circuit with the same bonding technology. 

By excluding the coupling efficiency of −11 dB (2.3 μm), a responsivity of 1.2 A/W 

at 2.32 μm was obtained corresponding to a quantum efficiency of 65 %. The dark 

current of this device was 12 nA under −0.5 V bias at room temperature. [43]  

The main properties of several representative photodiodes (above-mentioned) are 

listed in Table 1.1 as follows, 
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Table 1.1: Main properties of several representative 2 µm photodiodes published 

until recently 
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1.2.3 90 ° optical hybrid based on the MMI structures  

Based on the the multimode interference (MMI) proterty of the multimode 

waveguide, optical coupler can be realized by connceting its input/output ports with 

multiple single-mode waveguides. 

 It can take the advantage of the planar ridge waveguide geometry which is easy to 

be integrated with other active or passive devices. Simple rectangular structure 

provides more facility for the design optimization and more tolerance for device 

manufacture. Moreover, benefiting from the self-imaging property of the interference 

section (multimode waveguide), balanced output power and fixed phase relationship 

between output ports are obtained. Therefore, a single 4×4 general-interference MMI 

coupler is able to realize the 90° optical hybrid function demonstrating quadrature 

phase relations and even output power when any two asymmetric entrance waveguides 

are selected as the input. In addition, this type of device exhibits special abilities 

involving non-sensitive to wavelength and temperature stability which suit well to be 

integrated with the balanced photodiodes for the detection in coherent optical 

transmission systems.  

InP-based III-V material system permits a natural vertical mode confinement by the 

heterogeneous semiconductor epitaxy layers grown by MOCVD. Mainwhile, 

horizontal definition of the waveguide geometry is able to be realized in planar process 

involving UV lithography and dry etching which is suitable for the hybrid based on 

MMI coupler schemes. In 1993, a GaInAsP/InP 4×4 MMI device was exhibited to 

achieve 90° optical hybrid function by E. C. M. Pennings from Philips Research 

Laboratories, The Netherlands. The optimized devices displayed an output power 

distribution of 97:99:104:99, insertion loss ≤ 1 dB, ± 3° deviation from phase 

quadrature condition and polarization-insensitive character at 1523 nm [44]. Also, new 

scheme has been proposed to further simplify the access such as releasing waveguide 

intersection at the output. On 2009, Seok-Hwan Jeong and Ken Morito from Fujitsu 

Laboratories Ltd., Japan presented an optical 90° hybrid on InP substrate based on 

MMI devices with no waveguide intersection at the output. As it is shown in Figure 

1.6, this device was constructed by a 2×4 MMI coupler combining a 2×2 MMI coupler 

through a –π/4 phase shifter to any paired output ports of the 2×4 MMI coupler.  
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Experiment results exhibited a quadrature phase behavior cross a 94 nm wavelength 

region around 1550 nm. [45, 46] 

 

 

Figure 1.6: Schematic for the 90° optical hybrid consisting of a 2×4 MMI coupler, a 

phase shifter and a 2×2 MMI coupler [45, 46]. 

 

Later in 2011, a novel GaInAsP/InP 90º optical hybrid were exhibited from the same 

group by applying a linearly-tapered 2×4 MMI coupler directly combined with a 2×2 

MMI at the paired output waveguides (Figure 1.7). A short device length of ~227 μm 

without any waveguide intersections and a phase deviation from quadrature condition 

of < ± 5º covering the C-band were obtained [47].  

 

 

Figure 1.7: Schematic for the novel 90° optical hybrid consisting of a 2×4 MMI 

coupler and a 2×2 MMI coupler [47]. 

 

Integrated 90° optical hybrid based on MMI coupler structure in silicon-on-insulator 

(SOI) material gains not only the merit of high device compactness benefitting from 

the large refractive index contrast between the silicon waveguide and its surrounded 

claddings (SiO2 and Air) but also the Complementary Metal–Oxide–Semiconductor 

(CMOS) process in silicon foundries for massive production at a low cost. In 2008, 

compact optical 90°-hybrid devices based on fully passive 4×4 multimode interference 

couplers were achieved by K. Voigt, et al. from Technische Universität Berlin,  
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Germany in use of rib waveguide SOI technology. The 2-µm deep nominal rib was 

defined by applying reactive-ion etching on the bonded and etch-back material. For 

the fabricated devices, 1-dB excess loss penalty, stable quadrature-phase property, 

temperature-insensitive behavior were observed all over the C-band wavelengths [48]. 

Later on the year of 2011, the same group developed a 90° optical hybrid based on the 

same scheme using 200 mm SOI wafers (silicon-0.22 μm, buried oxide-2 μm) in 

nanowire technology. With 248 nm Deep-UV-lithography and decoupled plasma 

source etching, the 10 μm × 200 μm fabricated device showed an excess loss smaller 

than 0.5 dB and phase error within 5° around 1550 nm [49].  
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1.3 Summary  

Until now, the photodiodes with the absorption response wavelength up to around 

2 micron have been realized in InGaAs and Sb-containing material on various 

platforms such as InP, GaAs, etc. Comparing to the Sb-containing system, 

manufacture process turns to be mature for the InGaAs devices which results in more 

attentions for the industry level applications. High indium-content can achieve large 

electron mobility promoting the transmission speed which is suitable for the high 

speed applications such as the receiver of the optical communication system. As the 

relatively-small lattice-constant difference between the intrinsic layer and the 

substrate, high-quality epitaxial growth of GaxIn1-xAs layers on InP substrate is easier 

to be achieved by the method of MOCVD. While, the thickness of the linear-grading 

GaxIn1-xAs is typically much more than 1 micron which would take long growth time 

limiting the production efficiency. Therefore, to realise the key aim of obtaining the 

photodiode with a high bandwidth as well as high responsitiy at 2 µm wavelength used 

for the practical communucation, more work should be focused on maintaining the 

efficient suppression for the diffusion of the mis-fit dislocations into the InGaAs 

intrinsic layer while finding the new buffer scheme to reduce the time cost of the buffer 

growth . 

At this moment, most of the 90° optical hybrid based on the MMI devices were 

fabricated around the wavelength band at 1550 nm for the optical communication 

systems. New waveguide structure would be proposed to maintain the single mode 

property and optimizations on the device dimension should also be considered to 

obtain the hybrid function around the new wavelength region.  

This thesis would present the theoretical simulation, design, optimization, device 

fabrication and characterizations on solving the above-mentioned challenges to obtain 

the high speed photodiodes and 90° optical hybrid working around 2 µm.  
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1.4 Structure of this thesis  

In this document, review of the published works about the 2-µm wavelength 

photodiode and 90° optical hybrid are presented in the Chapter 1. In Chapter 2, we 

discuss the theories used in the design and characterization of the material exhibiting 

the bandgap around 2 µm wavelengths. Fabrication and characterization process of the 

optoelectronic devices will also be generally presented. In Chapter 3, we demonstrate 

the design, fabrication as well as characterization of both the edge-coupled 

photodiodes based on strained quantum wells and surface-normal type photodectors 

in strain-relaxed InGaAs bulk material with a photoresponse up to 2-µm wavelength 

region. In Chapter 4, design, optimization and characterization of a 2-µm wavelength 

90° optical hybrid based on the 4×4 MMI coupler are displayed. In Chapter 5, the 

design and assembly of the module for packaging the high speed ridge waveguide and 

surface-illuminated photodetectors are explained with the evaluation results of the 

large signal test. Finally, the above-mentioned works as well as the further 

improvement on the devices are summarized in Chapter 6. The final section would be 

the appendix demonstrating the fabriaction process flows for the high speed top-

illuminated mesa type photodiode on n-doped InP substrate as well the balanced 

photodetector based on the paired mesa detectors in serial conection on semi-

insulating InP substrate for the applications around 2-µm wavelength. 
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Chapter 2 Overview of technical theories 

In this chapter, we introduce the basic theories regarding the design and evalution 

method for the materials at 2 micron wavelengths. Experience formulas to estimate 

the bandgap of ternary InGaAs and quaternary AlInGaAs compound would be 

introduced with the corresponding characterization system through the visulazation of 

laser-excited photoluminece spectrum. 

Explanations about the fabrication and characterizaition for optical-electronic 

devices will also be demonstrated here involving general process steps, I-V, C-V 

measurement, high-speed characterization and transmission spectrum 

characterization. 

 

2.1 Material design and characterization 

The material system of InGaAs can be used to build the active region of 2-µm 

wavelength photodiodes on InP substrate benefiting from the absorption spectrum 

envolving this wavelength range as well as the large carrier mobility for high speed 

application. By introducing a small portion of Al, the bandgap (AlInGaAs) could be 

relatively enlarged which is suitable to achieve the cladding layer acting as a window 

to let the light in shorter wavelengh (compare to the absorption wavelength edge of 

the intrinsic layer) pass through. Here, estimation of the bandgap for the material 

system used in this thesis will be presented in the following sections. 

  

2.1.1 Bandgap of ternary InGaAs and quaternary AlInGaAs 

compound 

By increasing the indium content of the ternary InGaAs alloy, the edge of the 

absorption spectrum can be extended to 3.4 µm at room temperature [1]. The direct-

gap character can be maintained over the entire composition range.Using this material 

as the aborption layer, photodiodes can achieve high photoresponsivity covering the 

wavelengths around 2 microns which is matched with the low-loss window of the 

HCPBG fibre.  
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For the InGaAs ternary alloys establishing the absorption layer, the energy gap of 

𝐸𝑔 can be estimated as a quadratic function as Eq. 2.1.1, 

 

𝐸𝑔(𝐼𝑛𝑥𝐺𝑎1−𝑥𝐴𝑠) = 𝑥𝐸𝑔(𝐼𝑛𝐴𝑠)+(1 − 𝑥)𝐸𝑔(𝐺𝑎𝐴𝑠) − 𝑥(1 − 𝑥)𝐶 

(2.1.1) 

 

Where, x represents the alloy composition of InAs in the compound which could be 

considered as the combination of two binaries of InAs and GaAs, 𝐶 is the bowing 

parameter which is positive and assumed to be temperature-independent for the 

InGaAs material. The bandgap of each binary component can be fitted in the empirical 

Varshini form considering the temperature-dependent character of bulk 

semiconductors [2].  

Ascribed to the high light absorption efficiency benefiting from the wide-bandgap 

cap which acts to be a transparent window for the wavelengths between the cut-off 

peaks of absorber and cap, heterogeneous structure is utilized to create the junction 

area of the 2 micron photodiode. Here, a small composition of aluminum (Al) is 

introduced into the above-mentioned InGaAs alloy of the absorber so that a larger 

energy gap is created indicating a peak blue-shifting in the photoluminescence (PL) 

spectrum [3]. Considerring the lattice-mismatching potentials of the new alloys, an 

empirical formula in molar fraction expression would like to be used for estimating 

the AlInGaAs bandgap involving the sum of the weighted terms based on the bandgap 

energy of corresponding binary compounds and the bowing parameters of ternary 

alloys, in addition with a surface bowing estimation for the error correction [4]. It 

could be more generally used comparing to the lattice-matching limitation case in Ref. 

2 explained by the linear interpolation between the bandgap energy of the two ternaries 

lattice-matched to InP substrate (Al0.48In0.52As and In0.53Ga0.47As) with a direct-gap 

bowing term.  

The above-mentioned function could be constructed based on the main term of 𝐸𝑔0 

(fundamental estimation of the bandgap energy for the compound) in addition with a 

deviation of ∆𝐸𝑔  as Eq. 2.1.2, 

 

𝐸𝑔(𝐴𝑙𝑥𝐼𝑛𝑦𝐺𝑎𝑧𝐴𝑠) = 𝐸𝑔0(𝐴𝑙𝑥𝐼𝑛𝑦𝐺𝑎𝑧𝐴𝑠) + ∆𝐸𝑔         (2.1.2) 
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𝐸𝑔0(𝐴𝑙𝑥𝐼𝑛𝑦𝐺𝑎𝑧𝐴𝑠) can be expressed as Eq. 2.1.3,  

 

𝐸𝑔0(𝐴𝑙𝑥𝐼𝑛𝑦𝐺𝑎𝑧𝐴𝑠) = 𝑥𝐸𝑔(𝐴𝑙𝐴𝑠)+𝑦𝐸𝑔(𝐼𝑛𝐴𝑠)+𝑧𝐸𝑔(𝐺𝑎𝐴𝑠) 

−𝑥𝑦𝐶(𝐴𝑙𝐼𝑛𝐴𝑠) − 𝑦𝑧𝐶(𝐼𝑛𝐺𝑎𝐴𝑠) − 𝑥𝑧𝐶(𝐴𝑙𝐺𝑎𝐴𝑠) 

(2.1.3) 

 

Where, 𝐸𝑔(𝐴𝑙𝐴𝑠, 𝐼𝑛𝐴𝑠, 𝐺𝑎𝐴𝑠) is the band gap energy of the binary compound with 

the value of 3.0067 eV for AlAs, 0.3556 eV for InAs and 1.4256 eV for GaAs at the 

temperature of 20 °C; 𝐶(𝐴𝑙𝐼𝑛𝐴𝑠, 𝐼𝑛𝐺𝑎𝐴𝑠, 𝐴𝑙𝐺𝑎𝐴𝑠) is the bowing parameter of the 

corresponding ternary alloy with the value of 0.70 for AlInAs, 0.477 for InGaAs, and 

0.5018 for AlGaAs; 𝑥, 𝑦 and 𝑧 represent the fractions of AlAs, InAs and GaAs in the 

alloy satisfying the condition of 𝑥 + 𝑦 + 𝑧 = 1. 

The correction expression of ∆𝐸𝑔 is as follows, 

 

∆𝐸𝑔 = −0.9272𝑥𝑦𝑧                                    (2.1.4). 

 

The final expression at the room temperature (20 °C) can be expressed as follows,  

 

𝐸𝑔(𝐴𝑙𝑥𝐼𝑛𝑦𝐺𝑎𝑧𝐴𝑠) = 3.0067𝑥 + 0.3556𝑦 + 1.4256𝑧 − 0.7𝑥𝑦 − 

0.477𝑦𝑧 − 0.5018𝑥𝑧 − 0.9272𝑥𝑦𝑧  

(2.1.5), 

 

Correction terms with more accuracy could also be applied by fitting with the results 

of the pre-designed material [4].  

The lattice misfit between the high-indium content layer and the InP substrate (5.87 

Å) would like to be enhanced due to that the lattice constant of the InGaAs is increased 

linearly with the increasing composition of InAs (6.06 Å) [5]. Threading dislocations  

would be induced during the material growth and disperse into the intrinsic layer. 

Those defects would degrade the photodiode performance by introducing generation- 

recombination centers for leakage generation as well as interstitial sites resulting in 

larger reverse voltage for fully depleting the intrinsic layer [6]. To overcome this, a  
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metamorphic buffer layer was introduced in between the junction layers and the InP 

substrate to release the lattice mismatching and suppress the defect diffusion. 

Considering the large thickness of linearly-graded InGaAs buffer as well as the growth 

control complexity of InAsP epitaxy, we used an InGaAs parabolic grading layer to 

let the defect mainly disperse in the transverse plane vertical to the layer growth 

direction rather than into the intrinsic layer. Thus, a thin buffer layer could be achieved 

for saving the total growth time as well as maintaining element source type to be the 

same [7, 8].  

Most of the 2 micron epitaxial structures mentioned in this thesis were grown in use 

of the MOCVD method by the Epitaxy and Physics of Nanostructures Group at 

Tyndall. This permits digitally controls on the composition of each element of the 

alloy as well as fast growth rate satisfying the efficiency requirement of the industrial 

production.  

 

2.1.2 Characterize the material bandgap property 

It is important to identify the energy band gap for the grown wafers in quantum 

wells or bulk material especially for those working at 2 µm wavelength band. To 

achieve a clear view on the energy bandgap of the grown 2 µm material, optical 

characterization tests regarding PL spectrum and light absorption spectrum need to be 

done. 

Photoluminescence spectrum measurement system plays the key role to clarify the 

band structure by analysing the spontaneous emitting output generated from the 

recombination of electron-hole pairs with corresponding carriers distributed in 

different energy band. As it is shown in Fig. 2.1, a laser is used to pump the material 

for activating electrons and holes, and then the broad band self-emitted light due to 

the carrier pair recombination is coupled into the monochromator by the focus lens so 

that it could be analysed by the scanning step of several nanometres. In order to 

amplify the small signal while supressing the noise, a lock-in amplifier is used together  

with the photodiode to convert the weak projected light into electrical signal. The 

whole setup was controlled by the computer with LabVIEW programs. 
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Figure 2.1: 2 micron wavelength PL spectrum characterization system 

 

As the main component of this system, the photodetector should have a working 

wavelength range covering the 2 micron wavelength region. Fig. 2.2 shows the 

photoresponsivity of the 2 micron commercial PD from Thorlabs company working 

in the PL characterization setup. Its responsivity ranges from 1.2 microns to 2.5 

microns which provides spectrum detection across the band edge of all the 2 microns 

materials grown in Tyndall.  

 

 

Figure 2.2: Photoresponsivity for the commercial 2 micron photodetector from 

Thorlabs Company. 

 

By use of this system, we could get the PL spectrum of the 2 micron materials on 

both quantum well as well as bulk structure shown in Fig 2.3. For quantum well  
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materials, the band edge wavelength of the barrier layer would also be estimated from 

the scanning results. Though affected by the falling of the PD photoresponse at long 

wavelengths > 2.3 µm, the system is still able to provide PL peak detection longer than 

2.1 µm proved by the different cut-off wavelength position exhibited in Fig. 2.3. 

 

 

Figure 2.3: PL spectra of different materials for 2 micron applications 

 

The band gap enlarging of the original quantum well structure due to the quantum 

well intermixing (QWI) process (change the bandedge by intermxing the wells and 

barriers) can be characterized by observing the blue-shifting of the PL spectrum peak 

by this setup. With the broad working band of the monochromater and photodiodes, 

we were able to observe the shift of hundreds nm for the 2 micron quantum well 

structures which are shown in Fig. 2.4. It could be seen that fluctuations appear on 

some curves indicating the low signal to noise ratio (SNR). This is due to the low 

emission efficiency resulting from the defects within the epitaxial layer. To obtain 

more accurate results, a high-power injection laser is required to provide sufficient 

pumping level.  
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Figure 2.4: PL spectrum for2 micron quantum well material after quantum well 

intermixing. 

 

In addition, the band gap of the material is also available to be extracted from the 

sharp dropping edge of the optical absorption spectrum. Using a white light source, 

the final results could be deduced after excluding the part coming from reflection and 

transmission in the absorption spectrum test system.  

 

2.2 Device fabrication and characterization 

2.2.1 Main steps for device fabrication 

Standard III-V component fabrication processes have been applied on all 2 µm 

photodiodes and 90° optical hybrids. Patterns were defined via Ultra-violet (UV) 

lithography after the photoresist was spun on the wafer surface. Then dry etching is 

applied in order to create three-dimensional (3D) structure for the device. After that, 

passivation on the device surface and its side wall could be realized through Plasma-

Enhanced Chemical Vapour Deposition (PECVD) with silicon oxide or silicon nitride 

deposition. Then, window opening is achieved by use of the plasma asher after 

patterning the intentionally-exposed area by UV lithography. For the photodiode, the 

lift-off process after the metal evaporation was operated to create contact pad. Finally,  
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devices in bar or single device were cleaved from the wafer after thinning the substrate 

for electrical and optical test or packaging in a module. 

During the fabrication of the photodiode, p metal deposition followed by the thermal 

annealing could be the first step due to that it acted as a protective layer preventing 

contact surface from the plasma damage during the dry etching in the mesa formation 

and window opening. In addition, wet etching will be utilized to polish the side wall 

after the dry etching to preclude the leakage generation associated with the surface 

roughness. Temperature control during the PECVD passivation was also considered 

to minimize the dark current generation from the side wall. More techincal details 

regrading the fabrication processes can be found in the Appendix 1 and 2. And, 

innovation points will be described in the latter chapter (Chapter 3). 

 

2.2.2 General I-V and C-V characterization  

For electrical characterization, current-voltage (IV) test is applied to evaluate the 

quality of the p-n junction as well as the leakage of the device while capacitance-

voltage (CV) test indicates the radio frequency (RF) bandwidth of the photodiode 

limited by the resistance-capacitance (RC) constant. 

After finishing the fabrication processes, basic IV test was applied as the first step 

test to check the forward current plot in log form in a range from 10-8 to 10-3 A as a 

function of linearly-increased bias voltage, so that the ideality factor of the diode could 

be obtained. Typically this factor is smaller than 2. When it is coming close to 1, it 

means diffusion current is the dominant current source. When it is coming close to 2, 

the generation-recombination current will be a key factor which we try as best as 

possible to supress.  

Additional capacitance of the device are either generated from the pn junction or 

the interval between the top bonding pad and the conductive substrate such as n-doped 

InP substrate. Those capacitances suppress the effective range of the device’s 

electrical response which is setting an extra limitation on working bandwidth of the 

photodiode in cooperating with the load and serial resistance. Therefore, the -3dB cut-

off frequency confined by RC constant could be derived from the Eq. 2.2.1,  

 

 



Chapter 2                                              Overview of technical theories 

54 
 

 

𝑓−3𝑑𝐵 =
1

2𝜋𝑅𝐶
                                             (2.2.1) 

 

𝑅 is the total resistance involving both 50 Ω load resistor and serial resistance of the 

PD, 𝐶 is the total capacitance containing the natural junction capacitance and parasitic  

capacitance of the pad. The serial resistance is able to be deduced from the linear 

region of the forward IV test result. And, the total capacitance at different direct-

current (DC) bias voltage could be abstracted by detecting the image part of current 

under small alternative-current (AC) voltage modulation by use of the Agilent 

semiconductor analyser (CV Enabled B1500 (1)). 

 

2.2.3 High speed characterization  

A photodiode plays a key role to convert the optical signal into electrical signal for 

further processing. In order to evaluate its performance in the real optical 

communication system, high speed characterization tests with respect to S21 parameter 

and eye pattern were performed in cooperation with the illumination of the modulated 

light. 

For demodulating the high speed light signal, the photodiode should have a RF 

response more than or at least equal to the signal modulated frequency. Not only the 

capacitance but also the carrier traverse time across the junction affects the frequency 

of the photodiode. Therefore, small signal dynamic measurements should be 

performed on the photodiode in order to get the -3 dB roll-off bandwidth via extracted 

S21 parameter as a standard to analyse its high frequency response.  

To further analyse the opto-electric signal transferring of the photodiode, eye pattern 

test system has to be built at a specific bit rate. Regarding the eye diagram results, the 

eye amplitude reflects the electrical signal amplitude while eye opening clearance 

shows the SNR. Most importantly, the slope of the rising edge shows how the high 

frequency components of the signal transferring through the device. 
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2.2.4 Transmission spectrum characterization 

By using a lens-ended single mode fibre (SMF) specially designed for the 

application around 2 µm wavelengths, the broad-band light from the Amplified 

Spontaneous Emission (ASE) of the Thulium Doped Fibre Amplifier (TDFA) was 

optimally coupled into the test devices. At each of the output ports, the transmitted 

light was then collected again by the lens-ended SMF fiber and delivered to an Optical 

Spectrum Analyser (OSA) to evaluate the resulting spectrum. 

 

2.3 Summary 

Here, basic theories used to design and evalute the bulk and quntum well materials 

at 2 micron wavelengths have been explained. Main steps of fabrication and 

measurement are also introduced to obtain the I-V, C-V, bandwidth and transmission 

spectrum characterizations for the optoelectronic devices displayed in this thesis.  
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Chapter 3 2 µm wavelength high speed 

photodiodes 

3.1 Introduction 

The desirable properties of photodiodes (PD) for communications include high 

speed, high responsivity at particular wavelength as well as low dark current. These 

properties are significantly dependent on the design of the material, device structure 

and the fabrication process. InxGa1-xAs is a suitable material with the feasibility to 

obtain a bandgap of 2000 nm by increasing the Indium composition in the compound 

from x=0.53 which is lattice-matched to InP to x=0.74. However, this introduces strain 

(~1.5 %) because of the lattice mismatch with the InP substrate, making it be 

challenged to obtain a high quality epitaxial crystal and potentially resulting in a high 

dark current. This can be accommodated by using strained quantum wells structure or 

by using buffer layers to release the strain due to the lattice mismatching. By using the 

compressively strained multiple In0.74Ga0.26As/In0.53Ga0.47As quantum well (MQW) 

structure (low number of quantum well layers, not strain-relaxed), a ridge waveguide 

type photodiode demonstrating a photoresponse at 2 µm wavelength as well as a low 

leakage current. The thin intrinsic layer will take less time for the carrier to transverse 

so that higher working bandwidth can be expected. While, subjected to the small 

acceptance aperture of the waveguide geometry and tens of nm thick active layer 

stacks, the coupling efficiency is low (external quantum efficiency is only 23.46 % 

involving the coupling loss) which results to the limited tolerance of fibre alignment 

during the test and package assembling. To improve the photoresponse of the detector 

for larger optical SNR as well as better optical alignment tolerance, a 2 µm surface 

normal type PD based on the strain-relaxed InGaAs absorber with AlInGaAs 

claddings is realized benefitting from the strain accommodation from a parabolic 

graded buffer. By optimizing the layer stack structure, a 3-dB bandwidth of ~10 GHz 

is achieved while maintaining a polarization-insensitive photoresponsivity up to 0.93 

A/W taking the advantage of the round mesa geometry and thick absorption layer.  
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An eye pattern of 15.6 Gbit/s has been obtained with the sample attached on the test 

submount to prove the ability to work at the 2 micron optical communication system. 

Finally, balanced photodetector was realized based on the top-illuminated type high 

speed photodiode on the semi-insulating substrate. 

 

3.2 Ridge waveguide structure in compressively strained 

quantum wells  

3.2.1 Epitaxial layers design 

Due to the large crystal mismatch between the active layer and the substrate, 

InGaAs material with absorption band around 2 µm wavelengths is strongly strained 

when it is grown on InP substrate. If this is not accommodated properly, dark current 

generated from defects would like to be highly increased for the photodiode fabricated 

on the same material. Therefore, the SNR of the device working in optical 

communication system would be further degraded. A quantum well structure is able 

to keep such strain effect within an acceptable layer thickness though more technical 

control is required for the epitaxy growth. Meanwhile, due to the short optical 

transmission path along the layer growth direction, the absorption rate is low with 

most of the light energy transmitted when it is vertically projected on to the material 

stacks. The ridge waveguide geometry structure in which the light can be illuminated 

at the device facet is proposed to improve the absorption efficiency with light 

horizontally propagating within the quantum well absorption region. In addition, 

higher working speed can be expected due to the carrier transportation path being 

perpendicular to the light transportation direction is very short probably proportion to 

the total thickness of quantum wells in such structure.  

Here, two kinds of strained quantum well material were selected and grown by 

Metal Organic Chemical Vapour Deposition (MOCVD) to develop the 2 micron 

absorption region on InP substrate. QW1 is similar to the epitaxy layer structure of the 

laser in Reference No.1 from Eblana Company. The MQW structure consisted of three 

compressively-strained In0.74Ga0.26As quantum wells and four lattice-matched 

In0.53Ga0.47As barriers. Material QW2 were designed and fabricated in Tyndall on  
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semi-insulating substrates with two 9-nm-thick In0.82Ga0.18As quantum wells 

separated by a 10-nm-thick AlInGaAs (PL=1240 nm) barrier layers sandwiched by 80 

nm and 110 nm thick un-doped lattice-matched AlInGaAs layers on the top and 

bottom respectively. Then, a InGaAsP layer was also grown as an etch stop selectively 

from InP followed by a 1.7 µm thick highly p-doped (Zn~1×1018) InP layer to reduce 

the loss from mode leakage into the top contact layer. Finally, the highly Zn-doped 

InGaAs (100 nm) is formed as the contact layer [2]. The whole designed epitaxial 

material structure is shown in Fig. 3.1. 

 

 

Figure 3.1: The epitaxial layer structure for QW2 material 

 

3.2.2 Device structure and fabrication 

As shown in Fig. 3.2, coplanar electrodes with Ground-Signal (GS) structure have 

been used to improve the high frequency property of our photodiodes. BCB material 

was applied under the electrode pads for both types of quantum well material which 

achieved the planarization for the electrical contact in the same plane and minimizes 

the parasitic capacitance coming from the p-contact metal pad relative to the n-doped 

InP substrate for QW1 material. The ridge waveguide geometry was obtained through 

dry etching with Cl2/CH4/H2 in an Oxford 100 ICP system where a 500 nm thick SiO2 

layer was used as the etching mask[3]. Following the deposition of a 150 nm thick 

SiNx passivation layer, BCB 4024-35 was spin-coated and cured at 250 ºC for one 

hour, followed with etching back of the BCB in a SF6/O2 Inductively Coupled Plasma 

(ICP) process until a planarized ridge is obtained. Then, a layer of 150 nm thick SiNx  

SI-InP substrate
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was deposited on top of the BCB to improve the adhesion with the metal electrodes. 

Windows for p and n-type ohmic contacts were opened by dry etching with the gas of  

etching back through the SiNx and BCB. Finally, a 300 nm thick Ti-Au layer was 

evaporated for both p and n contact pads using electron beam evaporation.  

 

 

Figure 3.2: Device scheme for the ridge type photodiode in QW1 and QW2 materials 

 

The overview of the processed samples can be seen from Fig. 3.3 (a). In addition, 

to form the facets of the device, accurate cleaving along the indicated red line shown 

in Fig. 3.3 (b) has been realized . 

 

 

Figure 3.3: Top view of the ridge photodiodes (a) overview of all the fabricated 

samples, (b) cleaving location on one single device. 

  

(a) (b)
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3.2.3 I-V C-V and photoresponse characterizations 

Limiting the Signal To Noise Ratio (SNR), the device dark current as a noise source 

and photoresponsivity defining the recovered signal magnitude should be 

characterized. 

 

 

Figure 3.4: I-V property of ridge waveguide PD in QW1 material (ridge width: 3 µm, 

device length: 440 µm) (a), Leakage density characters with biased voltage for 

different quantum well materials (b).Captacitance per area for the ridge waveguide 

photodetectors made in QW1 and QW2 material. 

 

As it is shown in Fig. 3.4 (a), the leakage of the ridge waveguide photodiode in 

material QW1 is approaching to 2.55 nA at -1 V bias proving that the lattice-mismatch 

has been suppressed by using the strained quantum well structures. While, at the same 

reverse bias, the photodiode in QW2 material on the semi-insulating substrate 

demonstrates a dark current density (46.94 mA/cm2) nearly 5 times higher than the 

QW1 material on n-doped substrate (8.97 mA/cm2) (Fig. 3.4 (b)). This results from the 

higher indium content of material QW2 with larger lattice constant difference relative  
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to the substrate which may generate more lattice-mismatch defects during the epitaxy 

growth.  

To figure out the Resistance-Capacitance (RC) factor which confines the work 

speed of the detector, the CV measurement is appled on the cleaved devices to extract 

the capacitance vaule under different reverse biases. Due to the ultilization of BCB 

taking the merit of low dielectric constant, the parasitic capacitance (between the metal 

pad and conductive substrate) is fully suppressed and the main source of the device 

capacitance per area can be estimated mainly from the pn junction of the material.To 

accurately demonstrate the natural capacitance property away from the limitation of 

the ridge dimension, the capacitance per area under different bias voltages is ploted in 

Fig.3.4 (c). Obviously, we can see that the device in use of QW1 layer stacks exhits a 

number of 37237 pf/cm2 in -5 V which is much lower than the one using QW2 material 

(50130 pf/cm2) under the same bias. Therefore, the detectors made in the junction of 

QW1  material can demonstrate smaller capacitance comparing to those in QW2 juction 

patterned in the same ridge dimension.  

 

 

Figure 3.5: Photoresponsivity for the ridge type photodiodes in different quantum well 

materials, red for the QW1 material with the length of 440 µm, width of 3 µm, black 

for the QW2 material with the length of 542 µm, width of 3 µm. 

 

With a lensed-ended single-mode fibre and a 2-µm wavelength single mode laser, 

the photoresponse of the fabricated ridge type detector has been characterized with the  
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results shown in Fig. 3.5. From the red line of Fig. 3.5, we can see that the 

photoresponsivity of the 400 µm long photodetector in QW1 material can be up to 0.38 

A/W (-3 V) excluding the fibre loss and non-sensitive to the reverse bias. In contrast, 

the device made in QW2 material is very sensitive to the bias voltage probably due to 

the valence band offset between the non-doped InP layer and the deep-valence-band 

AlInGaAs barrier (of the QW), which acts as a barrier to block the hole carrier 

movement to the anode electrode. This can be indicated by the band structure 

shematics of this layer stack which is visilized by using the software of SimWindows 

(Fig. 3.6). Correspondingly, the holes accumulation close to the barrier would 

establish an electric field partially shielding the reverse bias field. In addition, less 

quantum well pairs could decrease the coupling efficiency with smaller acceptance 

aperture which further degrades the external quantum efficiency referring to the 

photoresponsivity of the QW2 detectors (Fig. 3.5, black line). The responsivity can be 

potentially improved by use of the AR coating on the input waveguide facet or further 

by the integration of the spot size converter to match the fibre mode. Moreover, the 

polarization state of the input light should be optimized (may bend the fibre or use a 

fibre polarization mentainer) due to the polarization-sensitive propety of the strained 

quantum wells. 

 

 

Figure 3.6: Band structure for QW2 material on the semi-insulating substrate 
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3.2.4 High speed characterizations 

Another important property for the photodiode is the small signal bandwidth 

determining how much capacity it could provide in real optical communication 

system. A high frequency test system as Fig. 3.7 was built to test the chips on the bar 

cleaved from the wafer by use of GS probe to collect the electrical signal and lensed 

fibre for light coupling. Meanwhile, a network analyser was applied to load the 

modulated broad band signal on to the opitcal modulator converting the electrical 

signal to optical domain. Then, the S21 parameter of each frequency was extracted after 

signal recovering back to the electrical domain by the photodiode and plotted. The 

frequency corresponding to the -3 dB cut-off point in the S21 curve indicates the small 

signal working bandwidth of the photodetector. 

 

 

Figure 3.7: High frequency test setup for the evaluation of photodetector chips on the 

bar. 

 

As it shown in Fig. 3.8, the bandwidth of the 300 µm long ridge type photodiode in 

QW1 material on n-doped substrate with BCB could reach as high as 7 GHz at -7V 

which was limited by the ~6 GHz GS probe. 
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Figure 3.8: S21 of the ridge waveguide photodetector fabricated in QW1 materials with 

BCB on n-doped substrate at 2 micron wavelengths. 

 

The photodiode fabricated in QW2 material with BCB on semi-insulated InP 

substrate just reach up to 5 GHz under -12 V bias which is also sensitive to the 

amplitute of the reverse bias (Fig. 3.9). This may be due to the same reason 

demonstrated in Fig. 3.5 that the valance band offset between InP and AlInGaAs 

barrier layer leads to holes accumulating which partially neutralize the electrical field 

driving the hole carriers to transport over the intrinsic region. 

 

 

Figure 3.9: S21 of the ridge waveguide photodetector fabricated in QW2 materials with 

BCB on semi-insulated substrate at 2 micron wavelengths. 
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Due to the bandwidth limit of the GS probe, photodiode chips on a bar could not be 

characterized at more than 7 GHz. However, packaging would help the device to be 

tested at much higher frequency over such limitation due to the probe. Similar to the 

setup in Fig. 3.7, high speed electrical signal was converted to the light singal by the 

application of an optical modulator and the network analyser was used to obtain the 

S21 parameter of the 2 micron packaged photodiode through the RF cable (Fig. 3.10). 

In addition, the ridge waveguide and strained quantum well structure make the 

photodiode sensitive to the polarization of the input light. But this could be 

compensated by bending the input fibre in front of the packaged photodiode to let it 

maintain the best polarization state. 

 

 

Figure 3.10: High frequency test setup for the 2 µm packaged ridge photodiode 

 

High frequency test was first carried out at 1550 nm wavelength due to that the 

available 20 GHz 1550nm modulator could provide larger bandwidth to accurately 

characterize the photodiode. In addition, narrow band gap material is able to absorb 

the light shorter than the local band gap wavelength. 

As it can be seen from Fig. 3.11, the packaged module containing the 2 µm 

photodector in QW1 material planarized with BCB could provide the working 

bandwidth as high as 12.9 GHz under -5 V bias at 1550 nm wavelength. 
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Figure 3.11: S21 parameter at 1550 nm for packaged ridge photodiode in QW1 material 

with BCB on n-doped substrate. 

 

Meanwhile, a degradation of the photoresponse during the light coupling process 

was observed due to the low tolerance of fibre alignment subjected to the small spot 

size of the ridge waveguide geometry and the thin absorption layer of the quantum 

well structure. Finally, the photoresponsivity of the packaged device dropped from 0.3 

A/W to the 0.14 A/W at 0 V bias due to the fiber coupling misalignment loss after the 

completion of the packaging process [4]. 

 

3.3 Surface-normal-illuminated photodiode in strain-

relaxed bulk material 

A surface-normal-illuminated configuration is preferred in the real applications not 

only due to the better light coupling efficiency and higher signal to noise ratio (SNR) 

but also due to better fiber alignment tolerance for packaging which takes the 

advantages of the circular geometry for mode matching with the input fiber. Here, to 

obtain a thick enough absorption layer along the light transporting path while 

maintaining the epitaxial material quality, a thin parabolic-graded buffer is proposed 

to release the heavy strain due to the large lattice mismatch between the 2 µm intrinsic 

layer and the InP substrate. Layer epitaxial structures and fabrication processes have 

been optimized to achieve high bandwidth, small leakage and large photoresponsivity  
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at 2 µm wavelengths. All the layer structures were grown using MOVPE by the 

Epitaxy and Physics of Nanostructures Group in Tyndall. 

 

3.3.1 Material Design for the surface normal photodiodes at 2 µm 

wavelengths  

The InGaAs material system is appropriate for long wavelength applications due to 

flexible growth by MOCVD and mature processing technologies for device 

fabrication. We use In0.7Ga0.3As as the intrinsic absorbing layer material which has a 

band edge of around 2.2 µm (Fig. 3.12). A thin buffer layer (thickness of 500 nm) 

obtained by parabolic grading of the indium content from 0.53 to 0.8 is used to relax 

the lattice constant difference between the absorbing layer and the InP substrate [5]. 

By adding aluminum to the In0.7Ga0.3As, the bandgap is blue shifted to approximated 

1.8 µm (Fig. 3.12, solid) and used as cladding layers.  

 

 

Figure 3.12: Photoluminescence (dot) and absorption (solid) spectrum of Design-1 on 

n-doped substrate. 

 

The p-doping profile and layer thickness are optimized to achieve high speed 

operation. Two different designs for the 2 µm surface normal photodiode are 

investigated here. We compare active region thicknesses of 2500 nm and 2000 nm and 

in the second design we increase the p-doping level at the upper cladding and remove  

 

Absorption edge of

In0.7(Al0.2Ga0.8)0.3As

1600 1800 2000 2200 2400
0.0

0.2

0.4

0.6

0.8

1.0

P
L

 (
a
.u

)

Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

A
b

s
o

rp
ti

o
n

 (
a
.u

.)



Chapter 3                                     2 µm wavelength high speed photodiodes 

69 
 

 

the un-doped AlInGaAs layer in order to promote hole transport. The structural details 

of the two designs which were grown by MOCVD are presented in Table.3.1. SEM 

graph for viewing the layer stacks of the Design-2 material can be found in Fig.3.16. 

 

Table 3.1: Epistaxial structures design for 2 µm surface normal photodiodes 

Material Dopant 
Design-1 Design-2 

Note 
Thick. Level Thick. Level 

    (nm) (cm-3) (nm) (cm-3) 

In0.7Ga0.3As Zn/C 100 3×1019 100 3 ×1019 Contact 

In0.7(Al0.2Ga0.8)0.3As Zn 600 1×1018 500 
2-

3x1018 
p-cladding 

In0.7(Al0.2Ga0.8)0.3As   100   0     

In0.7Ga0.3As   2500   2000   absorption 

In0.7 (Al0.2Ga0.8)0. 3As Si 700 1x1018 1000 1x1018 n-cladding 

InxGa1-

xAs(x=0.53→0.8) 
  500   500   

parabolic 

grade 

In0.53Ga0.47As   50   50     

InP substrate           n-doped 

 

3.3.2 Device fabrication 

Isolated mesa photodiodes in different diameters were fabricated. The p contact 

metal was deposited and alloyed then followed by self-aligned removal of the exposed 

InGaAs contact material within the absorption window. A mesa was etched until the 

n contact layer by Inductively Coupled Plasma with a short wet etching 

(H2SO4:H2O2:H2O=1:1:8) to remove any damage on the sidewall while removing the 

damaged surface of the n-doped layer to reduce the contact resistance. A mesa sidewall 

encapsulation (passivation) using SiNx was deposited by Plasma Enhanced Chemical 

Vapour Deposition (PECVD). Ti-Au and Au-Ge-Ni were deposited as the contact 

metal for the anode and cathode pads respectively. For high speed application, 

benzocyclobutene (BCB) was used under the anode contact pad to suppress the 

parasitic capacitance between the pad and the n-doped substrate. Details of fabrication 

process can be found in Appendix 1  

 

http://en.wikipedia.org/wiki/Plasma-enhanced_chemical_vapor_deposition
http://en.wikipedia.org/wiki/Plasma-enhanced_chemical_vapor_deposition
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3.3.3 I-V and photoresponsivity characterization 

After device fabrication, the basic properties of the PD, such as current-voltage (I-

V), dark current, and photoresposivity at room temperature (20 °C) were obtained to 

profile the material quality.  

 

 

Figure 3.13: Forward I-V and log |I|-V (inset) of 50 µm diameter mesa (a), reverse 

leakage of 50 µm diameter mesa (b), leakage density characteristic for mesas from 

Design-1 material (c) and photoresponsivity (d) for 2 µm surface normal photodiodes 

at 20 °C. 

 

The I-V characteristics (Fig. 3.13 (a)) showed diode ideality factors of 1.50-1.52 for 

both designs, indicating low defect density in the intrinsic layer. These dark current 

measurement is shown in Fig. 3.13 (b) with leakage as low as 1.7 µA at -5 V bias for 

50 µm diameter mesas on Design-1 material. The dark current from mesas with 

diameters ranging from 100 µm to 500 µm were measured in order to clarify the source 

of the current leakage. As shown in Fig. 3.13 (c), the leakage density decreased non-

linearly with the mesa diameter (D). This suggests that the dark current is mainly 

generated from the sidewall rather than from the bulk material. We can conclude that 

the parabolic graded buffer was effective in relieving the lattice mismatch so that the  
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defects in the intrinsic layer were minimized. To further suppress current leakage from 

the mesa sidewall, the samples were loaded at 20 °C and the temperature ramped to 

300 °C for the mesa PECVD passivation on the Design-2 devices. From Fig. 3.13 (b), 

we see that the leakage is further reduced to 0.52 µA for 50 µm diameter mesas 

corresponding to a leakage current density of 26.6 mA/cm2 at a bias of -5 V. 

The photoresponsivity of the photodiodes was obtained by coupling the light from 

a 2 µm single mode laser (Reference [1]) with a lens-ended fibre. The loss of the fibre 

was excluded in the responsivity shown in Fig. 3.13 (d). The measured 

photoresponsivity at 2 µm was up to 1.3 A/W (at -10 V) with the dark current of -8.92 

µA for a 60 µm mesa in Design-1 material, which is not far away from the theoretical 

maximum of 1.6 A/W [6]. The measured photoresponsivity corresponds to a quantum 

efficiency of 81 % in the 2.5 µm thick intrinsic layer with SiNx as the anti-reflecting 

(AR) coating film. When the absorption layer thickness was reduced to 2000 nm 

(Design-2), for the mesa of 50 µm diameter, the resulting photoresponsivity was up to 

0.93 A/W with the dark current of -2.88 µA which corresponds to a quantum 

efficiency of 58 % at -10 V. 

 

3.3.4 Capacitance and small signal characterization 

For high-speed system applications, the modulation bandwidth is a key requirement  

which is limited by the device capacitance and carrier transit time. Capacitance-

Voltage (C-V) measurements were made on devices with BCB so that the capacitance 

of the p-n junction was dominant. The inset of Fig. 3.14 shows that the capacitance 

reaches around 0.3 pF when the bias is less than -2 V which means that the background 

doping of the intrinsic layer is suppressed [7].A corresponding background doping 

concentrations of 1×1015 cm-3 for Design-2 is obtained. Although the intrinsic layer 

thickness of the photodiode of Design-2 material is thinner, the capacitance (C) could 

be optimized to be nearly the same as that of Design-1 material (mesa diameter 60 

µm) by reducing the mesa diameter to 50 µm. A 3-dB Radio Frequency (RF) 

bandwidth of 10 GHz can be expected, limited by the RC time constant with a 50 Ω 

load resistor. 

To accurately evaluate the operating bandwidth, small modulation signal 

characterization was carried out on devices mounted on a test sub-mount including a  

http://en.wikipedia.org/wiki/Quantum_efficiency
http://en.wikipedia.org/wiki/Quantum_efficiency
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50 Ω parallel resistor, heat sink, microwave transmission line, and a SMA connector. 

A lens-ended fiber was used to couple 2 µm wavelength laser light to the top 

acceptance window of the device. An external LiNO3 Mach–Zehnder Modulator 

(MX2000-LN-10, Photline) was used to convert the small electrical modulation from 

a Vector Network Analyzer (VNA) into the optical domain, and hence to analyze the  

S21 parameter (normalized to the pre-characterized background of a commercial 

photodiode). 

 

Figure 3.14: S21 characterization results at -10 V tested at 2 µm wavelength; and 

capacitance versus reverse voltage (inset) for the 2 µm surface normal photodiode 

with BCB. 

 

The S21 results displayed in Fig. 3.14 show that the devices made from Design-2 

material reached a 3-dB cut-off frequency of around 10 GHz at -10 V, limited by the 

small signal bandwidth of the 2 µm modulator [7]. This was much larger than the 

devices from Design-1 material which only reached 6.5 GHz. The measured 

fluctuations in the response are mainly due to electrical reflections between the sub-

mount and external RF cable connected to the receiver port of the VNA. Since both 

devices have nearly the same capacitance, the main reason for the bandwidth 

limitation is from the carrier transport. The doping modification at the p-cladding 

layer, removal of the un-doped AlInGaAs layer and the thickness reduction of the 

intrinsic layer have enhanced the RF bandwidth by facilitating carrier transport over 

the p-i interface and across the intrinsic layer.  
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3.3.5 Eye diagram and bit error rate characterization 

To analyse the device for use in a practical 2 µm optical high speed communication 

systems, the eye diagram and the Bit Error Rate (BER) of the fabricated PD were 

evaluated (Diameter-50 µm, Material of Design-2 with BCB). The setup for this was 

similar to the RF bandwidth analysis, with a 2 µm laser, followed by the LiNbO3 

modulator in the transmitter, a TDFA to amplify the signal from the transmitter, and 

an attenuator to adjust the input power to the photodiode. An optical filter with a 

bandwidth of 1.6 nm was also used after the TDFA to suppress the Amplified 

Spontaneous Emission (ASE) outside the signal bandwidth, minimizing spontaneous 

bit noise at the detector. Then, the signal light was delivered to the top window of the 

device by a flat facet fiber adjusted by a manual fiber stage. In addition, the output of 

the PD was amplified by a RF amplifier (Gain=26 dB, Saturation power=20 dBm) 

before measurement on a sampling oscilloscope. 

 

 

Figure 3.15: 15.6 Gbit/s eye diagram in -3.07 dBm obtained with the PD biased at -

10 V (a); and BER versus input power (b) at 2 µm for the high speed photodiode 

fabricated on Design-2 material with BCB. 

 

Fig. 3.15 (a) shows a clear and open eye at an input power of -3.07 dBm under a bias 

of -10 V with an additional noise source arose from ASE of TDFA. A receiver is 

proved to be more sensitive if it achieves a specific BER with less optical power 

incident on it [8]. For our photodetector, a BER as low as 1x10-12 was obtained at an  
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input optical power of -9.9 dBm (Fig. 3.15 (b))[9][10]. Comparing to the latest result 

of the published photodiode (2 µm wavelength) characterized at 1550 nm (5 Gbit/s) 

[11], the BER data of our detector is obtained at 2 micron wavelength under much 

higher modulation speed up to 10 Gbit/s.  

 

3.3.6 Reasons for the large-bias needed to obtain the optimum 

photoresponse bandwidth and eye diagram results 

As it is demonstrated in Fig. 3.13, Fig. 3.14 and Fig. 3.15, those optimum results of 

the photodetector related to the photoresponsivity, small signal working bandwidth 

and eye pattern characterizations are obtained under the high voltage reverse bias up 

to 10 V.  

One of the possible reasons is the offset between the valence band of the InGaAs 

absorber and the one for the AlInGaAs cladding layer which protects the hole’s 

transporting to the anode. This is similar to the case of the ridge waveguide 

photodetecor made of QW2 material which contains AlInGaAs in the QW region and 

non-doped InP as the cap layer (See the section 3.2.3).  

 

Figure 3.16: SEM photo of the layer stacks for the grown Type-2 material 
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In addition, the background doping within the intrinsic layer due to both of the 

defects diffusion generating from lattice-mismatching and dopant diffusion from the 

N layer can increase the bias-voltage cost (for the voltage value referring to the 

delepletion starting point) to achieve the optimum depletion width. Material 

optimization like introducing a graded buffer in the intrinsic layer/p cladding interface 

and using a diffusion-protection layer between the N and intrinsic layer could be 

investigated together with the calibration of the MOCVD growth accuracy to further 

decrease the biased-voltage in the future. 

 

3.3.7 Comparison between the ridge type waveguide and surface 

normal type mesa photodiode. 

Both types of photodiodes in ridge waveguide geometry and surface normal 

schematic have been fabricated and characterized in the last sections. Comparing the 

main performances of those two kinds of devices are necessary to check which is more 

suitable for the optical system application around 2 µm wavelengths.We can see from 

Fig. 3.17 (b) that the photoresponse of the surface normal type photodiode could be as 

high as ~0.75 A/W (-3 V) even up to 0.93 A/W (-10 V) which is much higher than the 

ridge waveguide type (0.38 A/W, -3 V) though the leakage density of the former is 

around twenty times of the latter (see Fig. 3.17 (a) and Table 3.2).  

 

 

Figure 3.17: Current density (a) and photoresponsivity at 2 micron wavelength (b) 

varied with biased voltages for different types of photodiodes. 
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Considering that the ASE noise of the optical amplifier could be the main noise 

source comparing to the noise from the dark current in the receiver end, the signal 

recovering ability referring to the detector photoresponsivity would determine the 

SNR after the conversion of light to current, a surface normal type photodiode is more 

suitable to be used in the real system. benefiting from the circular aperture which is 

mode-matched with the coupling fiber.  

 

Table 3.2: Main parameters for the ridge waveguide and surface normal types of 2 

µm photodiodes 

 Ridge waveguide Surface normal 

Serial resistance (Ω) 9.17 7.72 

Ideality factor 1.37 1.52 

Maximum photoresponsivity (A/W) 0.38 0.93 

Leakage density at -3 V (A/cm2) 0.0008 0.0168 

 

3.4 Balanced photodiode based on the surface-normal 

type detector 

A balanced photodetector can be used to achieve the differential detection for 

further suppressing the relative intensity noise (RIN). As it is shown in Fig. 3.18, the 

device has been designed based on the serial connection of two single surface-normal 

type detectors taking advantage of the high coupling efficiency.  

 

 

Figure 3.18: Mask pattern design for the 2 µm balanced photodiode. 

 

Due to the high electrical isolation requirement between the two mesas, semi-

insulating substrates are required to protect the potential short circuit of the p and n  
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contact after linking the paired photodiodes via metal connection. With the same 

epitaxial layer design as the Design-2 shown in Table.3.1, the new material was grown 

on the semi-insulating substrate with an InP(100 nm)/InGaAs(2 nm)/AlInAs(15 nm)  

buffer in between as the diffusion-stop layer to protect the dopant diffusing from the 

n layer into the semi-insulating substrate. The balanced photodetector working at 2 

µm wavelengths was fabricated following the main steps of the process flow similar 

to the fabrication of the high speed surface normal photodiode. To further suppress 

the extra dark current and simplify the process, dry etching steps are optimized. First, 

the larger mesa pattern was etched until the N layer. Then, the intrinsic mesa and N 

contact mesa (until the semi-insulating substrate) was able to be achieved at the same 

time in the following etching process by using a smaller (inner) mesa pattern and 

sharing the same SiO2 hard mask. No extra hard mask deposition was needed and the 

sidewall surface could avoid a risk of failure for the coverage of SiO2 hard mask layer 

which is different from the final passivation layer of SiNx. Schematics showing the 

main process steps are demonstrated as Fig. 3.19 and details can be found in Appendix 

2.  

 

Figure 3.19: Main process steps for the 2 µm balanced photodiodes. 
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As it is shown in Fig. 3.20, the device was successfully fabricated with electrical 

contact connection from the p contact of one single photodiode to the n contact of the 

other one.  

 

 

Figure 3.20: SEM graph of the top view for the fabricated balanced photodetector at 

2 micron wavelength based on the surface normal type paired photodiodes in serial 

connection. 

 

Stripe mesas are also fabricated at the same run and cleaved for taking the SEM 

photo on the transverse section to check the process results.  

 

Figure 3.21: SEM graph of the transverse section for the stripe mesa with the same 

material and processed at the same run of 2 µm balanced photodiode. 

N
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From Fig. 3.21, we can see that the intrinsic layer has been etched through 

demonstrating a thickness of ~2.839 µm while an over-etch of ~2.433 µm deep into 

the semi-insulating InP substrate is achieved. 

I-V characterization demonstrated a leakage of -10.4 µA under -7 V for one single 

device (Diameter: 50 µm) within the paired photodiodes. 

 

 

Figure 3.22: Dark current under differnt bias voltage for one of the single photodiodes 

(Diameter: 50 micron) within the 2-µm wavelength surface normal balanced 

photodiode.. 

 

The leakage of the single detector within the 2 micron paired balanced photodiode 

is approximately one order higher comparing to the surface normal high speed 

photodiode with the same mesa diameter of 50 micron. This may be due to the p 

contact ring closing to the mesa edge and the larger side wall area exposed to the dry 

etching plasma from the intrinsic layer thickness (~2.839 µm) shown in Fig. 3.21. 

The CV result of this device obtained under different reverse biases are shown in 

Fig. 3.23. A capacitance of 1.11 pF (single detector) expected to a bandwidth of 2.87 

GHz (assuming the total serial resistance is 50 Ω) is able to be obtained at the same 

bias voltage.  
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Figure 3.23: Capacitance under differennt bias voltages for one single device 

(diameter 50 µm) within the paired balanced photodiode at 2 µm wavelengths 

 

Its capacitance at -7 V is much higher than the one for the 50 µm diameter high 

speed photodiode which is around 0.3 pF under the same bias. The extra parasitic 

capacitance may come from the current leakage generated from the roughness of the 

semi-insulating substrate after the process.  

 

 

Figure 3.24: Photoresponsivity changed with bias voltage for one single photodiode 

(Diameter: 50 micron) in the paired balanced photodiode at 2 µm wavelengths. 
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This can be solved by stopping the dry etching on the level which is a few hundred 

nm up from the semi-insulating substrate and finish with selective wet etch to remove 

the remaining epitaxial material and leave a smooth slightly over-etched substrate 

surface. Another way to further reduce the capacitance is cleaving part of the contact 

pad for shrinking the effective area of the parasitic capacitance.  

The thick intrinsic layer helps the light absorption efficiency to provide a large 

photoresponsivity. As it is shown in Fig. 3.24, the photoresponsivity of the single 

device is enlarged to 1.39 A/W when the device is biased at -7 V.  
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3.5 Conclusion 

In this chapter, we have demonstrated the edge-coupled high speed photodiodes 

based on strained In0.74Ga0.26As/In0.53Ga0.47As (QW1) and In0.82Ga0.18As/AlInGaAs 

(QW2) quantum wells for operations at the 2 µm wavelength region. The fabricated 

device in QW1 material has a leakage current as small as 2.55 nA at -1 V bias and 

responsivity of 0.38 A/W under -3 V bias at 2000 nm excluding the fibre loss. The 

packaged device shows a 3 dB bandwidth up to 12.9 GHz characterized at 1550 nm. 

For the surface illuminated type photodetector, by introducing a high quality 

parabolic-graded buffer layer and AlInGaAs cladding layers in the material design, a 

sensitive 2 µm InGaAs surface normal photodiode has been achieved with the 2 

micron wavelength photoresponsity up to 0.93 A/W. In addition to high photoresponse 

and low leakage current, a high speed device was successfully obtained by optimizing 

the layer doping and thickness. We show successful operation at 15.6 Gbit/s, with a 

clear eye diagram while maintaining a BER of 1x10-12 for -9.9 dBm input power at 2 

µm wavelength. A balanced photodiode was also achieved based on the paired top-

illuminated type photodetectors in serial connection. One single device in the paired 

photodiodes demonstrated a leakage current of -10.4 µA under -10 V and 

photoresponsity of 1.39 A/W when biased at -7 V. Further work should be focused on 

the etching process optimization to suppress the extra parasitic capacitance and the 

package design together with the 90º optical hybrid to achieve the coherent detector 

scheme for the detection of higher order modulated format in the real optical 

commuincation system at 2-µm wavelengths.  
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Chapter 4 90° optical hybrid working at 2 

µm region 

4.1 Introduction 

In order to achieve higher capacity at 2 μm wavelength, advanced order modulation 

formats such as QPSK or QAM needs to be applied to optimize the spectral efficiency. 

Recovering the In-phase and Quadrature (IQ) information of this signal requires 

coherent detection by use of a suitable 90° optical hybrid at a specific wavelength 

range. The function of this kind of device is to combine the incoming signal with the 

local oscillating source to generate a quadrature phase relationship at the output 

followed by a pair of balanced photodiode to demodulate the I/Q part of the QPSK or 

QAM signal separately. The waveguide-based MMI coupler structure is of special 

interest due to that it can be conveniently integrated with other active or passive 

elements on the same chip by the planar semiconductor fabrication processing. 

Benefitting from the self-imaging property of the multimode waveguide, a simple 

rectangular coupler has been achieved which can image the input mode field 

distribution onto the output ports periodically along the waveguide length. When any 

two asymmetric entrance ports are selected as the inputs, each of the 4 output ports 

demonstrates an equal amplitude with a 90° phase difference between them. In this 

chapter, we present the design, optimization and characterization of a 90° optical 

hybrid based on the MMI general inference scheme (From the theory scheme side, it 

is explained as 4×4. From the device physical structure side, it can also be explained 

as 2×4 if  the number of input and output ports are considered) for the operation around 

2 µm wavelengths. In addition, as the main building block, a single mode diluted 

optical waveguide is shown with a large spot size for improving the light coupling 

between the waveguide and the 2 µm optical fibres. Analysis on the epitaxial layer, 

device design, fabrication process, and evaluation test are carried out to estimate the 

reason of loss and deviations away from the original simulation results. 
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4.2 Diluted waveguide at 2 micorn wavelength 

4.2.1 Waveguide design and simulation 

To ensure high coupling efficiency between the MMI and a single optical fiber, the 

epitaxial structure of the waveguide is designed to take account the mode mismatch 

between the fibre and ridge waveguide facet. This is achieved by introducing a diluted 

waveguide, expanding the mode distribution along the layer growth direction [1]  to 

form a near circular mode shape and large spot size matching the transmisson mode 

of the single mode fiber. 

Here, we propose a waveguide based upon a lattice matched quaternary compound 

of InGaAsyP1-y where y is equals to 0.43 corresponding to a bandgap of λg =1.117 µm. 

At 2-µm wavelength, this material has a refractive index of 3.2837 while InP has an 

index of 3.1527 based upon the Adachi model which is used in FIMMWAVE 

software. A diluted waveguide with quaternary insertions minimises the thickness of 

quaternary needed and thus eases the requirement on precise lattice matching for a 

large thickness.  

 

Table 4.1: 2 micron diluted waveguide layers structure 

Thickness 

(nm) 
Material 

1000 InP 

150 InGaAsP (λg = 1.117 µm) 

700 InP 

150 InGaAsP (λg = 1.117 µm) 

700 InP 

150 InGaAsP (λg = 1.117 µm) 

700 InP 

150 InGaAsP (λg = 1.117 µm) 

Substrate InP 
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As it is shown in Table.4.1, an epitaxial wafer structure which includes four 

InGaAsP layers separated by 700 nm-thick InP layers is used to achieve a transverse 

mode size of more than 3.6 μm in the vertical direction. Simulation results from the 

FIMMWAVE software indicates that a 4 μm wide, 5.5 μm deep ridge diluted 

waveguide is able to achieve single mode operation (Fig. 4.1) with an effective index 

of ~3.16 but with a small birefringence (~1x10-3) for both TE and TM polarization at 

the wavelength of 2 μm (Table 4.2).  

 

Table 4.2: Simulated effective and group index values for the diluted waveguide 

structure 

 

 

The effective index variation due to etch depth change is also simulated by use of 

the same software platform. With the fixed ridge width of 4 µm, the effective index 

would like to be slightly decreased (1x10-4) when the etching depth is increased but it 

becomes stable when the depth is more than 5 µm for both polarization states. This 

can be visualized by recording the effective index of each etch depth which is 

presented in Fig. 4.2. Therefore, we can estimate the proper depth limitation for the 

etch process during the device fabrication which should be no less than 5 µm. 

 

 

Figure 4.1: Simulated modes of a diluted waveguide with the ridge width of 4 μm and 

depth of 5.5 μm at 2-μm wavelength. (a) TE mode (b) TM mode 

Polarization 
Ridge 

width (m) 

Effective 

index (nr) 

Group 

index 

Vertical 

Width (m) 

Horizontal 

Width (m) 

TE 4.0 3.16136 3.277 3.6410 3.0594 

TM 4.0 3.16061 3.273 3.6927 3.2214 

 

(a) (b)
(b)(a)
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Figure 4.2: The effective index variated with the etch depth for the 4 μm wide diluted 

waveguide at 2-μm wavelength. (a) TE mode (b) TM mode 

 

The etching depth may also affect the potential cross talk between two adjacent 

waveguides in parallel with each other. When the two waveguides come close to each 

other, the whole structure can be seen as a simple directional coupler and the leakage 

light from one waveguide would become the cross talk for the other. As it is shown in 

Fig. 4.3 and Fig. 4.4, a mode confined in the input waveguide would be partly coupled 

into the parallel waveguide (coupling waveguide) after transporting a distance of 1 cm. 

Simulation results from the FIMMPROP software reveal that the cross-talk could be 

suppressed when the etching depth is increased.  

 

Figure 4.3: Cross talk dependence on etching depth ((a)4 µm and (b) 5.5 µm) for the 

adjacent 4-µm wide diluted waveguides in TE mode at 2-µm wavelength. 
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From Fig. 4.3 and Fig. 4.4, we could see that the isolation between the adjacent 

waveguides (interspacing 2 µm) is obviously improved when the etching depth is 

increased from 4 to 5.5 µ m corresponding to the cross talk from -14.32 to -42.36 dB 

for Transverse-Electric (TE) mode and from -13.59 to -40.50 dB for Transverse-

Magnetic (TM) mode. 

 

 

Figure 4.4: Cross talk dependence on etching depth ((a) 4 µm and (b) 5.5 µm)) for the 

adjacent 4-µm wide diluted waveguides in TM mode at 2 µm wavelength. 

 

4.2.2 Waveguide fabrication and characterizaiton 

To realise the diluted waveguide structure, deeply-etched ridge waveguides with the 

depth of > 5 µm and width of 4 m were fabricated using III-V device process mainly 

focused on the optimization of inductively-coupled plasma etching [2]. A hard mask 

of 600 nm SiO2 followed by 100 nm SiNx was deposited by Plasma Enhanced 

Chemical Vapour Deposition (PECVD) at 300 °C. After spinning the photoresist (PR) 

of AZ5214E, the wafer was exposed with mask aligner under the Ultraviolet (UV) 

light source and developed in the solvent of AZ400K/DI to reveal the PR pattern. This 

pattern was transferred to the hard mask by dry etch with a gas of CF4/CHF3 in a STS 

ICP system. To clean the photoresist after the hard mask formation, the sample was 

etched by an O2 plasma and put into 1165 solvent at 90 °C. Then, it was held on a 

silicon carrier wafer and using an Oxford ICP etch system, the epitaxy layers were 

etched by a gas recipe of Cl2/CH4/H2 (10:18:12 sccm). As it is shown in Fig. 4.5, a  

(a) (b)

4 µm
5.5 µm

Input waveguide Coupling waveguide
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smooth side wall after the dry etch has been obtained by taking the SEM graph. After 

dipping the sample in the Buffered Oxide Etchant (BOE) to remove the remaining 

dielectric layer, a 600 nm-thick SiO2 layer was deposited by PECVD as a protective 

layer on the top and sidewall of the diluted waveguide. Finally, waveguides were 

cleaved into different lengths for the characterization. 

 

a  

Figure 4.5: SEM graph for the side wall of the diluted waveguide at 2-µm wavelength 

after dry etch. 

 

Transmission spectra from the cleaved waveguides were characterized and analysed 

to estimate the transmission loss due to the roughness of the waveguide side wall and 

coupling loss from the mode mismatch between the waveguide acceptance aperture 

and the coupling fiber. By using a 2 m lens-ended fibre, broad band light covering 2 

m wavelengths generated from the Amplified Spontaneous Emission (ASE) of a 

TDFA was optimally coupled into the ridge of the diluted waveguide.  The transmitted 

light at the output was then coupled into an Optical Spectrum Analyser (OSA) using 

the same type of lens-ended fibre and the resulting Fabry-Perot (FP) fringes were 

monitored. Those output results are normalized to the input ASE broad band spectrum 

to remove the background so that the pure effect of the cavity based on diluted 

waveguide could be abstracted to further deduce the factors affecting the total loss of 

the waveguide.  
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4.2.3 Methods for deducing waveguide loss 

As an uncoated single-mode waveguide can be treated as a Fabry–Pérot (FP) cavity, 

the corresponding power transmission behaviour can be modeled based on the Airy 

transmission function which describes the transmission spectrum of the standard FP 

resonator [3]. Therefore, the transmission spectrum TFP for a single mode waveguide 

could be explained in Eq. 4.2.1 as follows: 

 

𝑇𝐹𝑃 =
𝑇2×𝑒−𝛼𝐿

(1−𝑅̂)2+4𝑅̂𝑠𝑖𝑛2(𝛷/2)
× 𝜂                                       (4.2.1) 

 

Where R  is the facet reflectivity used in the Fresnel formula of R =

(
𝑁𝑒𝑓𝑓−1

𝑁𝑒𝑓𝑓+1
)2considering the waveguide end as a perfect facet. 𝑇 represents the end-facet 

transmission which could be obtained through the conservation relationship of 𝑇 =

1 − 𝑅. The loss of 𝑅̂ involves the combination of the facet reflection 𝑅 and the mode 

propagation intensity loss of 𝛼 in the form of 𝑅̂ = 𝑅 × 𝑒−𝛼𝐿 . 𝜂  is the coupling 

efficiency. The total phase 𝛷 of the transmission fringes can be presented as 𝛷 =

2𝑘0𝑁𝑒𝑓𝑓𝐿 + 𝛷0, with 𝛷0 as the natural phase deviation; 𝑘0 as the free space wave 

number ordinarily expressed in 𝑘0 =
2𝜋

𝜆0
, 𝑁𝑒𝑓𝑓  as the effective index of the 

transmission mode, and 𝐿 as the waveguide length.  

From the output spectrum, we can abstract the 𝑅̂ by Eq. 4.2.2 from the maximum 

and minimum value of the periodically varying transmission shown in Fig. 4.6: 

 

𝐾 =
(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)

(𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛 )
, 𝑅̂ =

(1−√1−𝐾2)

𝐾
                                           (4.2.2). 

 

Then the propagation loss can be expressed as: 

 

𝛼 =
ln(

𝑅

𝑅̂
)

𝐿
                                                         (4.2.3). 
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Other parameters such as coupling loss can be deduced by fitting the spectrum with 

the power transmission function of Eq. 4.2.1 based on the least squares method[3].   

For our 2 µm wavelength diluted waveguide, it will be a challenge to apply the 

above-mentioned theory not only due to that it is difficult to obtain the accurate value 

of the refractive index for the layer with the epitaxial material at this wavelength range 

but also as that the reflectivity is hard to calculate due to the failure of effective index 

approximation for the semiconductor waveguide indicated by reference No.3. In 

addition, one fixed value of 𝑅̂ can refer to several pairs of 𝑅-𝛼 combinations due to 

the relation of 𝑅̂ = 𝑅 × 𝑒−𝛼𝐿.  

Furthermore, resulting from this relationship, small change in the reflectivity would 

cause a large variation for the fitted value of propagation loss along the waveguide. It 

can be seen from Fig. 4.6 that the fitted value of the transmissions loss 𝛼 variates from 

1.9339 dB/cm (Fig. 4.6 (a)) to 6.0584 dB/cm (Fig. 4.6 (b)) presented from the red-

high-lighted part at Table.3 when the facet reflectivity is changed from 0.2677 to 0.25 

(high-lighted in green at Table 4.3), even though both of the fitted curves are quite 

converged to the original transmission spectrum from the 1.6 mm long diluted 

waveguide around 2 µm wavelengths by use of the two different 𝑅-𝛼 groups.  

 

 

Figure 4.6: Light power transmission changed with wavelengths around 2 µm and 

corresponding fitting results with reflectivity of 0.2677 (a) and 0.25 (b) for 1.6mm 

long diluted waveguide. 

 

  

(a) (b)
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Table 4.3: Fitted results with different reflectivity for the 1.6 mm long diluted 

waveguide 

Reflectivity 𝛼 (/cm) 
Transmission 

loss(dB/cm) 

Coupling 

loss(dB) 

Fitted 

effective 

index 

0.2677 0.4453 1.9339 0.913 

3.144 

0.25 1.395 6.0584 0.4605 

 

 

To deduce the transmission loss independent of the reflectivity effect, an involved 

method has been developed by taking account of both transmission and reflection 

spectrum from the same waveguide [4]. As it is shown in Eq. 4.2.4, the ratio of 

reflection relative to the transmission for a single-mode waveguide cavity can be 

presented as follows: 

 

𝑅𝐹𝑃

𝑇𝐹𝑃
=

(1+𝑒−2𝛼𝐿−2𝑒−𝛼𝐿 cos(𝛷))𝑅

𝑇2𝑒−𝛼𝐿
                                 (4.2.4) 

 

Where, 𝑅𝐹𝑃  is the power reflection of a single-mode waveguide which can be 

modeled as a FP cavity and other parameters have the same meaning as Eq. 4.2.1. 

From this formula, we can see that the coupling loss has been excluded by such 

division operation.  

When 𝛷 equals to2 𝑚𝜋 (𝑚 = 1,2 … …), the function will be: 

 

𝑅𝐹𝑃

𝑇𝐹𝑃 (𝛷=2𝑚𝜋)
=  

(1−𝑒−𝛼𝐿)2𝑅

𝑇2𝑒−𝛼𝐿
                                       (4.2.5). 

 

When 𝛷 equals to(2𝑚 + 1) 𝜋, the function will be: 

 

𝑅𝐹𝑃

𝑇𝐹𝑃 (𝛷=(2𝑚+1)𝜋)
=  

(1+𝑒−𝛼𝐿)2𝑅

𝑇2𝑒−𝛼𝐿
                                    (4.2.6). 
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Combine the last two equations, we have the new formula as follows: 

 

𝑅𝐹𝑃
𝑇𝐹𝑃(𝛷=2𝑚𝜋)

𝑅𝐹𝑃
𝑇𝐹𝑃(𝛷=(2𝑚+1)𝜋)

=  
(1−𝑒−𝛼𝐿)

2

(1+𝑒−𝛼𝐿)2
= 𝑡𝑎𝑛ℎ2 (

𝛼𝐿

2
)                      (4.2.7). 

 

Note that the waveguide cavity facet reflectivity 𝑅 has been removed. 

Meanwhile, according to the physical meaning of 𝑅𝐹𝑃 and 𝑇𝐹𝑃 when 𝛷 equals to 

2 𝑚𝜋 or (2𝑚 + 1) 𝜋, we can have this function in another form of: 

 

𝑅𝐹𝑃
𝑇𝐹𝑃(𝛷=2𝑚𝜋)

𝑅𝐹𝑃
𝑇𝐹𝑃(𝛷=(2𝑚+1)𝜋)

=
𝐼𝑅𝑚𝑖𝑛

𝐼𝑇𝑚𝑖𝑛

𝐼𝑅𝑚𝑎𝑥𝐼𝑇𝑚𝑎𝑥

                                 (4.2.8) 

 

Where, 𝐼𝑅𝑚𝑖𝑛
 (𝐼𝑅𝑚𝑎𝑥

) and 𝐼𝑇𝑚𝑖𝑛
 (𝐼𝑇𝑚𝑎𝑥

) are the minimum (maximum) value of 

reflective and transmitted intensity in the resulting spectrum fringes respectively.  

Therefore the final expression related to the waveguide propagation loss could be:  

 

𝑡𝑎𝑛ℎ2 (
𝛼𝐿

2
) =

𝐼𝑅𝑚𝑖𝑛
𝐼𝑇𝑚𝑖𝑛

𝐼𝑅𝑚𝑎𝑥𝐼𝑇𝑚𝑎𝑥

                                   (4.2.9). 

 

It is clear that the propagation loss of the diluted waveguide can be deduced from 

Eq. 4.2.9 by introducing the averaged maximum/minimum value from the 

transmission and reflection spectrum after the waveguide [4]. 

A simple setup as shown in Fig. 4.7 (a) was built to characterize the transmission 

and reflection properties of the 2 µm diluted waveguide with the broad band light 

source from the TDFA. An optical circulator working around 2 micron wavelengths 

was achieved by using the isolator to block the reflected light travelling to the soucce 

while the 1×2 coupler leads the light (refelected) to go to the other port. The resulting 

output were collected by a 2 µm Optical Spectrum Analyser (OSA) and normalized to 

the background spectrum of the TDFA, which is displayed in Fig. 4.7 (b). Then, the 

peaks and valleys were located to obtain the averaged maximum and minimum so that 

we can have the transmission loss of 𝛼 which equals to 17.06 dB/cm or -3.93 /cm. 



Chapter 4                                   90° optical hybrid working at 2 µm region 

95 
 

 

 

Figure 4.7: Light power reflection and transmission characterization used to obtain 

the loss of the diluted waveguide around 2-µm wavelengths. (a) Test setup with an 

optical isolator and a 1×2 coupler, (b) Spectras for the light which transmits through 

and reflects back from the 2-µm wavelength diluted waveguide. 

 

Obviously, this method requires a shot waveguide cavity length to provide sufficient 

numbers of peaks and valleys in the transmission spectrum. This suffers from the non-

uniform quality of the wavguide cut from different regions of the wafer. 

Generally, having the estimation of the average propagation loss and facet coupling 

loss are appropriate to evaluate the waveguide quality for further fabrication of 

waveguide-based passive devices. By suppressing the reflection loss of a waveguide, 

we can approximately qualify the average propagation loss and coupling loss. One of 

the diluted ridge waveguides with a length of 4.8 mm was sputtered with a layer of 

SiO2 film as an anti-reflection (AR) coating. The transmission characterization was 

then achieved with the output spectrum test setup mentioned in Section 2.2.4. Seen 

from the transmission results around 2 µm wavelengths through the 4.8 mm long 

diluted waveguide before (black) and after (red) AR coating as shown in Fig. 4.8, the 

significant reduction in reflection loss (suppression of the FP effect) is observed as a 

result of the AR coating. The excess loss is around 1.8 dB at 2 µm wavelength which  
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can be only assigned to the transmission loss along the waveguide in combination with 

the coupling loss between the waveguide facet and the input/collected lensed-ended 

fibre.  

 

 

Figure 4.8: Transmission through 4.8 mm long straight diluted waveguide with and 

without AR coating. 

 

Then, we can make the assumption that the maximum coupling loss would be smaller 

than 0.9 dB per facet if the mode tranmission loss is very small. The mode transmission 

loss can be estimated as < 3.6 dB/cm if  the facet loss could be eliminated. Due to the 

small transmission loss for this type of waveguide, the same test on waveguides in 

shorter length such as 1 mm are not necessary. Also, the result from the cut-back 

method (deducing the attenuation parameter based on the single wavelength 

transmission data of the wacveguides in different lengths) is not reliable due to the 

same reason.  

  

1998 1999 2000 2001 2002
-6

-5

-4

-3

-2

-1

 

 

T
ra

n
s
im

m
is

o
n

(d
B

)

Wavelength(nm)

 No AR coating

 WIith AR coating



Chapter 4                                   90° optical hybrid working at 2 µm region 

97 
 

 

4.3 Multimode interference coupler based on the single-

mode diluted waveguide around 2 micron wavelength 

Due to the natural characteristics of the multimode waveguide, an input profile is 

able to be mirrored as a single or multiple images at certain positions which 

periodically appears along the propagation direction of the waveguide. The 

longitudinal position of the image has a strong connection with the parameter of 𝐿𝜋 

which is defined as the beat length of the two lowest-order modes. It could be 

explained as follows: 

 

𝐿𝜋 ≈
4𝑛𝑟𝑊𝑒

2

30
                                             (4.3.1) 

 

Where, 𝑛𝑟 is the (effective) refractive index of the ridge, 0 is the wavelength in the 

free space, and 𝑊𝑒  is the effective width of the multimode waveguide which is 

dependent on the light polarization shown in Eq. 4.3.2 [9]: 

 

𝑊𝑒 = 𝑊𝑚 + (
0

𝜋
) (

𝑛𝑐

𝑛𝑟
)

2𝜎
(𝑛𝑟

2 − 𝑛𝑐
2)−(

1

2
)
            (4.3.2) 

 

Where,𝑛𝑐 is the refractive index of the cladding region, 𝑊𝑚 is the physical width of 

the multimode waveguide, 𝜎=0 when it is TM mode and 𝜎=1 when it is TE mode.  

According to the general-interference mechanism which includes all the excited 

modes,  

 

Figure 4.9: Simulated mode transmission within the N×N MMI coupler (N=4).  
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A N×N coupler could be achieved on the multimode interference (MMI) structure 

with the shortest length of 3 × 𝐿𝜋/𝑁 corresponding with the longitude position of the 

first N-fold image, where N is the number of input and output waveguide [5]. The 

simulated propagation properties of the coupler with N=4 is demonstrated in Fig. 4.9. 

Therefore, the MMI scheme can be applied to achieve the waveguide-based coupler 

for the monolithic integration on one single chip by taking the advantage of the self-

imaging property of the multimode waveguide while connecting a few single-mode 

waveguides at the beginning and the end of the multimode waveguide as the input and 

output ports.  

Due to the high fibre coupling efficiency of the diluted waveguide, establishing the 

couplers based on this type of waveguide would help to further reduce the loss at the 

input/output of the chip and provide more facility and tolerance for coupling alignment 

during the following package process. While, most of the MMI couplers have been 

designed for applications at the wavelength of 1.55 µm, moving the working range of 

these device up to 2 µm wavelengths requires care on the refractive indices and device 

dimension variation at this new wavelength. In this section, we introduce the design 

and fabrication of the 1×2 and 1×4 MMI optical couplers at 2 µm wavelengths based 

on the single-mode diluted waveguide which has been achieved in the last section. 

  

4.3.1 2 micron wavelength 3 dB coupler based on 1×2 MMI 

scheme 

In a Photonics Integrated Circuit (PIC), a 3 dB coupler based on 1×2 MMI scheme 

works as a power splitter to separate the launched light into two evenly outputs. Here, 

we design this kind of device by using the symmetric interference mechanism with the 

first 2-fold image distance in the form of 
3𝐿𝜋

8
 (𝐿𝜋is the beat length) resulting in the 

relatively short device length along the light transport direction in comparison with  

other interference schemes such as general inference [5]. By setting the width of the 

multimode waveguide as 14 micron and etching depth of 5.5 micron, a beat length 

(𝐿𝜋) of 414 micron for TE and 426 micron for TM mode are obtained by use of both 

Eq. 4.3.1 and Eq. 4.3.2  with the ridge effective index of the above-mentioned 4 micron 

wide single-mode diluted waveguide and the refractive index of the cladding layer as  
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the same as the air (or free space). Therefore, a polarization-independent multimode 

waveguide length can be estimated around 158 µm deriving from the mean value of 

the calculated lengths corresponding to the first location of the 2-fold imaging point 

along the light transport direction within the waveguide for both polarization states.  

 

 

Figure 4.10: Top view of the light transmission for the 3 dB coupler at 2 µm wavelength 

in TE (a) and TM (b) polarization. 

 

Using the 3-D simulation of the light launching into, propagating through, and 

coupling out from the device by use of FIMMPROP software (Fig. 4.10), an optimized 

MMI waveguide length of 157 µm is obtained demonstrating an output power 

imbalance of <0.002 dB, minimum loss of around 0.07 dB and polarization dependent 

loss as small as 0.0075 dB, which is summarised in Table 4.4.  

 

Table 4.4: Simulation results for the 2 µm wavelength 1×2 MMI optical coupler 

based on the single mode diluted waveguide 

Polarization 
Output imbalance 

(dB) 
Loss (dB) 

Polarization dependent 

loss (dB) 

TE 0.000475 0.0659 
0.0075 

TM 0.0013 0.0734 

 

The dimensions of the coupler involving the positon of the output waveguides are 

shown in Fig. 4.11. The waveguide width is 4 µm for both of the device input and 

output port while the etch depth is 5.5 µm which is not displayed in this planar view 

in Fig. 4.11. The interspacing between the two output waveguides is 3 µm and the  

(a) (b)(b)(a)
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distance from the outer edge of one single-mode output waveguide to the edge of the 

multimode waveguide is 1.5 µm which is still over the general resolution limitation of 

1 µm for the UV light expose process.  

 

 

Figure 4.11: Top view of the design scheme for the 2 micron wavelength 3dB coupler 

in 1×2 MMI coupler structure (single mode waveguide width: 3.5 µm). 

 

4.3.2 2 micron wavelength 1×4 optical coupler based on 4×4 MMI 

scheme 

Based on the general interference MMI scheme (N=4), a design of 1×4 optical 

coupler with one input port (single mode waveguide) and four output ports (single 

mode waveguide) connecting with the wide multimode waveguide is proposed. 

Similar to the process of designing the 1×2 MMI optical coupler, the multimode 

waveguide width is fixed at 31 micron considering to beat more high-order modes for 

better imaging quality [5].  

 

 

Figure 4.12: Transmission of each port (a) and excess loss (b) for TE and TM 

polarization with the variation of the multimode waveguide length. 

1.5 µm
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Considering the effective index presented in Table 4.2, simulations to find the 

optimal length of the multimode waveguide for the coupler are carried out by use of 

FIMMPROP software. Fig. 4.12 (a) and (b) display the optical power transmission 

through each output port of the coupler as well as total excess loss of the device in 

different multimode waveguide lengths for both TE and TM polarisations. The optimal 

length is found to be approximately 1525 m taking into account the power balance of 

the output waveguides and polarization insensitivity. 

 

 

Figure 4. 13: Top view of the light field distribution when it is transporting into, through 

and out of the 1×4 optical coupler at 2 μm wavelength in TE mode (a) and TM mode 

(b) 

 

Figure 4.13 illustrates the light power distribution along the transport path into, 

through and out of this 31 µm wide and 1525 µm long multimode waveguide for the 

1×4 optical coupler with non-equally spaced output waveguides.  

 

 

Figure 4.14: Transverse view of the balanced output field from the 1×4 optical coupler 

at 2 μm wavelength in TE mode (a) and TM mode (b) 
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Crucially, the power is balanced for both polarization states indicated by the mode 

field distribution from the transverse view of the output waveguides shown in Fig 4.14.  

In Fig. 4.15, the complete design of the 1×4 coupler involving the positon of the 

output waveguides are demonstrated. It is obvious that the interspacing between the 

nearest waveguides is not the same value which indicates that the imaging is not fully 

symmetric to the middle of the multimode waveguide along the width direction.  

 

 

Figure 4.15: Top view of the design scheme for the 1×4 optical coupler at 2 µm 

wavelength.  

 

This is due to the natural imaging property of the 4×4 MMI multimode waveguide 

(general-interference) that the optimum imaging locations (for the paired waveguides) 

at the output are symmetric with respect to the ¼ width point [9]. 

 

  

Figure 4.16: SEM images for the output ports of the 1×4 MMI coupler (a) and etched 

side wall (b) around the multimode waveguide 

4 µm

1531  µm

2 µm

31 µ
m

3.5 µm

(a) (b)(b)(a)



Chapter 4                                   90° optical hybrid working at 2 µm region 

103 
 

 

With the same fabrication process of the diluted waveguide, the 1×4 optical coupler 

was achieved with regular rectangular device geometry and smooth surface as 

demonstrated in the SEM images of Fig. 4.16 (a) and (b). 

Having verified the quality of the diluted waveguide structure after the device 

fabrication, we examined the 1×4 optical coupler. In order to ensure that the optimal 

dimensions of the multimode waveguide were found, a number of MMI couplers were 

fabricated with various lengths and offsets from equal spacing (only for the output 

waveguides close to the edge).  

 

 

Figure 4.17: Imbalance (a) and excess loss (b) for different device lengths and output 

waveguide offsets. 

 

The power imbalance and loss of these devices were then measured using the same 

setup to characterize the diluted waveguide but fixed at the wavelength of 2 micron, 

the results of which are presented in Figure 4.17. Note, these results are normalized to 

the loss of a straight diluted waveguides, effectively removing the coupling loss as well 

as waveguide transmissioin loss.. From these results, it can be seen that a minimum 

excess loss of 1.54 dB and power imbalance in the output ports of 1.5 dB can be 

obtained for the optimally-designed multimode waveguide dimension.  

 

4.4 90̊° optical hybrid at 2 µm wavelengths  

Based on the 1×4 optical coupler in the general interference scheme, an optical 90° 

optical hybrid can be obtained by exhibiting not only the balanced output power at the  
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output ports but also a quadrature phase relationships between the output waveguides 

when the signal and oscillator light are launched into any two asymmetric input 

waveguides. (Figure 4.18). 

 

 

Figure 4.18: Schematic of a 90° optical hybrid based on the 44 MMI (general 

interference) scheme 

 

The imaging property of 4×4 MMI in general interfenrence leads to the optimum 

locations for the input waveguides which are symmetric with respect to the ¼ width  

point on the multimode waveguide[9]. By setting a fixed width, the basic geometry of 

the multimode waveguide as well as the input/output port locations of the 90° optical 

hybrid in one particular wavelengths can be figured out by the above-mentioned 

theories. 

 

4.4.1 Optical hybrid design and optimization  

The width of the optical hybrid device is set to 32 μm in order to have the input and 

output channel with an equal center-to-center spacing of 8 μm considering that the 

adjacent images of the input mode should be symmetrically distributed around the ¼ 

width point at the end facet of the multimode waveguide (compared to the case of 31 

μm width device). With the fixed width of the multimode waveguide (32 μm) and 

using one entrance waveguide as the input port (Fig. 4.19 (a)), the transmission 

property (at 2 μm wavelength) from each output port was simulated on the platform 

of FIMMRROP by scanning the multimode waveguide length around the estimation  
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value calculated in use of the formulars mentioned above (Section 4.3). The final result 

is demonstrated in Fig. 4.19 (b).Therefore, an optimum length of 1629 μm free from  

polarization dependence and minimizing the power imbalance between output ports 

can be obtained.  

 

 

Figure 4.19: Simulated results for the optical hybrid device working at 2 μm. (a) 

Planar view of the transmission. (b) Simulated output port power change due to 

variation in the multimode waveguide length for both TE and TM polarization. 

 

 

Table 4.5: CMRR and total excess loss deduced from the FIMMPROP simulation 

result for the 90° optical hybrid at 2 µm wavelength. 

 Channel TE TM 

CMRR (dB) 

Ch1-Ch4 from Input1 39.1958 76.4739 

Ch2-Ch3 from Input1 46.6608 37.8091 

Ch1-Ch4 from Input3 46.6030 37.8156 

Ch2-Ch3 from Input3 39.4260 58.1625 

Total loss (dB) 

All ports to Input1 0.4186 0.4422 

All ports to Input3 0.4820 0.4617 
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Typically, the power imblance can be qualified in the form of Common Mode 

Rejection Ratio (CMRR) which is more sensitive to the imaging error of the 

multimode waveguide. From Table. 4.5, it can be seen that the CMRR for each output 

port of the device is greater than 37 dB at the optimized multi-mode waveguide length 

when the input light wavelength is 2 µm. Also, the total excess loss of the same device 

can be smaller than 0.5 dB deriving from the same simulation result shown in Fig.4.19 

(b). 

 

4.4.2 Test structure to evaluate the fabricated device. 

To figure out the phase deviation, power imbalance and total excess loss for the 

designed 90° optical hybrid at 2 µm wavelengths, a test structure with the monolithic 

integration of MZI composed of a 1×2 MMI optical coupler and a delay line together 

with the hybrid component is proposed in this section.The phase deviation from the 

quadrature condition could be verified by takings the advantage of the wavelength-

dependent phase shift of a MZI when connected with the 90° optical hybrid. As shown 

in Fig. 4.20, a 1×2 MMI optical coupler is used to equally separate the input power 

while the delay line introduces a phase shift dependent on the input wavelength.  

 

 

Figure 4.20: Schematic of test structure to characterize 90° optical hybrid based on 

the 4×4 MMI multi-mode wavguide structure. 

 

When this section is connected with a 90° optical hybrid through two asymmetric 

input waveguides, the identified output port transmission function at the output 

channels of the device can be described by Eq. 4.4.1: 
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𝑇𝑐ℎ𝐼 =
1

4
(𝐴𝑐ℎ𝐼 + 𝐵𝑐ℎ𝐼cos (𝜃𝑐ℎ𝐼 −

2𝜋𝑛∆𝐿

𝜆
))                     (4.4.1) 

 

 

where, 𝑛 is the effective index of waveguide, ∆𝐿 is the length difference between 

the arms ; 𝜃 is the nature phase of the channel including the background and distortion; 

𝐴𝑐ℎ𝐼, 𝐵𝑐ℎ𝐼are referring to the power change (involving attenuation and scattering) after 

the device for the corresponding channel of 𝑐ℎ𝐼. 𝐼 is referring to the channel number 

(1,2,3,4).  

 

Figure 4.21: Simulated transmission of different output ports when a broad band light 

is launched at the input of the test structure involving the 90° optical hybrid 

monolithically connected with the MZI. 

 

Theoretically, if there is no phase error and the power imbalance is fully eliminated, 

the output spectrum can be seen as Fig. 4.2.1. For the transmission spectrum of 

Channel 1 and Channel 4, the peak position of Channel 1 spectrum is corresponding 

to the valley of the Channel 4 which indicates the 180° phase relationship between 

each other. Furthermore, by sweeping the wavelength of the broad band input light, 

the phase shift from quadrature relation as well as power imbalance of the output port 

can be estimated by fitting the data to the Eq. 4.4.1. 

During the mask design, an optimum dimension of 14 μm ×157 μm from the 

simulation results in Section 4.2.1 were used for the 1×2 MMI coupler. 32 µm wide 

4×4 MMI devices with lengths varied by ± 60 µm around 1629 µm were investigated 

to compensate against simulation or fabrication errors.  
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Figure 4.22: Extra mode filtering effect for the taper with different lengths. (a) 

Waveguide width is linearly tapered from 4 µm to 3.5. µm over 10 µm length (b) 

Waveguide width is linearly tapered from 4 µm to 3.5. µm over 400 µm length. 

 

To avoid undesired high-order modes excited during the light coupling with the 

lens-ended fiber at the facet, all the input and output waveguides were adiabatically 

tapered to a width of 3.5 µm over a 400 µm length and then tapered back to 4 μm 

closed to the chip facet. The filter efficiency depends on the taper length which is 

shown in Fig. 4.22.  

 

 

Figure 4.23: The mask design for the monolithic test structures of 90° opitcal hybrid 

and MZI. 

(b)(a)
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When the taper length is only 10 µm, power oscillation due to the excitation of 

higher-order light modes is observed as shown in Fig. 4.22 (a). While, as displayed by 

Fig 4.22 (b), this can be highly suppressed until a single mode transport when the taper 

length is 400 μm long indicating sufficient mode-filtering. All of these simulated 

results are obtained by use of the Beam Propagation Method (BPM) module of Rsoft 

software. 

In addition, taper structures are also applied in the launching and receiving ports of 

the multimode waveguide to provide more tolerance for the imaging quality. Finally, 

the interspacing of the input and output channels is enlarged to 127 μm to make it 

convenient for fitting the pitch of fiber array used in the packaging process. The view 

of the whole mask pattern can be seen from Fig. 4.23. 

Deep etched (5.85 µm) ridge waveguide structures were obtained using the 

inductively coupled plasma (Cl2/CH4/H2) etching. After cleaving the devices, a 

quarter-wave SiO2 layer was deposited as an antireflection (AR) coating. Removing 

the AR coating by HF, the  SEM image of a device is shown in Fig. 4.24. 

 

 

Figure 4.24: SEM image of 90° optical hybrid at 2 μm after removing the AR coating 

by HF etching. 

 

Light from an un-polarized Amplified Spontaneous Emission (ASE) source based 

on a TDFA was coupled into the diluted waveguides by monitoring the output power 

until the maximum. The output light at each output port was then coupled into a lens- 

ended SMF and delivered to an Optical Spectrum Analyzer (OSA) to measure the 

resulting spectrum. 
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The transmission spectra covering 90 nm from the output ports of the 4×4 MMI 

normalized to the transmission from a straight waveguide are shown in Fig. 4.25 (a) 

for a device with dimensions of 32 µm × 1644 µm.  

From this, we obtain a free spectral range (FSR) of 512 GHz (6.82 nm). Fig. 4.25 

(b) shows the data over a span of 20 nm from which the quadrature nature is evident. 

By fitting the original transmission data with the Eq. 4.4.1 as that is displayed in Fig.  

4.25 (c), the exact relative phases can be obtained and the power relation between each 

port could be estimated. The common mode rejection ratio (CMRR) which is equal to 

-20×log (|IChm-IChn|/(IChm+IChn)), where m, n=1, 4 (In-phase) or 2, 3 (Quadrature) and I 

is the photocurrent proportional to the light power from the corresponding output 

channel [6].  

 

 

Figure 4.25: Transmission spectra for different output ports of 90  optical hybrid (32 

µm×1644 µm) around 2 µm with ASE input. (a) Span-90 nm (b) Span-20 nm (c) Fitted 

curve over 20 nm span. 
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The minimum CMRR, the excess loss, and the relative phase are selected as the 

figures of merits to evaluate the devices as a function of MMI length (Fig. 4.26). The  

optimum 90° optical hybrid was found for a length of 1644 µm where a CMRR > 15.6 

dB, an excess loss of 2.2 dB including the MZI structure and a phase deviation from 

quadrature condition of around ± 10° was obtained. This is close to the requirements 

for an optical coherent communication system application i.e. CMRR ≥ 20 dB, Excess 

loss < 3 dB, Phase deviation ≤ 5°.  

The reasons for the unexpected power imbalance and phase error may be due to the 

un-polarized nature of the measurement or the high order modes distortion generated 

by over-etching the ridge [7]. 

 

 

Figure 4.26: Experimentally estimated performance for 90° optical hybrid in different 

MMI lengths. (a) Minimum CMRR. (b) Excess loss. (c) Relative phase. 
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4.5 Conclusion 

A low-loss diluted waveguide was designed, grown and fabricated, with 

transmission loss smaller than 3.6 dB/cm and coupling losses less than 0.9 dB per AR 

coated facet.  Using the same epitaxial structure, a 14 (MMI) coupler for operation at 

2 m was developed with an excess loss of 1.54 dB and power imbalance as low as 1.5 

dB. These advancements enable the development of a 90 optical hybrid based on 44 

MMI working around 2 micron wavelength range. Using the monolithic integration of 

a MZI, a test structure allows the extraction of the phase deviation as well as the CMRR 

between the output channels of multimode waveguide. With the injection of broad-

band light and wavelength scanning at each output port of the device, we obtained a 

hybrid with approximately ± 10° phase shift variation from the quadrature condition, a 

CMRR better than 15.6 dB and total excess loss as low as 2.2 dB. These values are 

close to the requirement for the coherent detection in a 2 µm QPSK communication 

system. These hybrids will be combined with integrated balanced photodiodes to 

achieve a compact coherent receiver at 2 µm in the future. 
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Chapter 5 Packaged high bandwidth 

photodetectors at 2-µm wavelengths 

5.1 Introduction 

Bare chips are not suitable to be used for long time experiments suffering from the 

unstable light coupling due to instability of the input fibre support stage and complex 

electrical interconnection between the device and measurement oscilloscope by the 

use of a high speed probe. Thus, packaging the device becomes necessary for the high-

speed 2-µm photodiodes. For different types of photodiodes, a specific packaging 

scheme needs to be optimized in the respects regarding light coupling, electrical 

connection, inside supporting structure and outside cell design. In order to improve 

the light coupling efficiency of the ridge waveguide device, lensed-ended fibre is used 

at the input facet. The whole package module could take advantage of the previously 

designed high-speed laser module benefiting from the similar light coupling design as 

well as the electrical circuit access to the test system. To facilitate the coupling process 

during the package of the surface normal detector, an angled fibre can be used in order 

to bend the light path from horizontal to vertical for illuminating the top acceptance 

window of the surface normal photodiode set flatly on the planar ceramics surface. To 

obtain better electrical connection stability, improvement related to the module cell 

has been done by introducing a protrusion on the bottom of the top cover to tightly fix 

the output connector on to the ceramics and the following submount. Both the edge-

coupling quantum well photodetector and the top-illuminated mesa type photodiode 

were packaged and then evaluated with large signal eye pattern test at 1.55 µm or 2 

µm. All packaging works were supported by the Photonics Packaging Group in 

Tyndall. Before packaging, best samples with the lowest leakage currents were 

selected by the I-V test after cleaving the single devices from the wafer. Performanace 

characterizations about the stablity and SNR were carried out after packaging one of 

the samples to provide feed back for further modification on circuit design and light 

coupling within the module.  

 



Chapter 5 Packaged high bandwidth photodetectors at 2-µm wavelengths 

115 
 

 

Here, we would like to explain the details about the design, assembly and 

improvement of the package module for both types of photodetectors. Large signal 

characterization results for those packaged module are displayed and analysed as the 

evaluation. 

 

5.2 Package module of the ridge waveguide quantum 

well photodiode  

Based on the 7-pin module cell for high-speed laser, the ridge waveguide quantum 

well detector can be packaged by applying a lensed-ended fiber to increase the input 

light coupling efficiency and an impedance-matching ceramics circuit combining a 

high speed connector to bridge the electrical connection between the device and the 

output access network. The module scheme is presented in Fig. 5.1 in 3-D coloured 

mode. 

 

 

Figure 5.1: 3D simulation for the inside view of the packaged ridge waveguide 

quantum well photodetector at 2-µm wavelength. 

 

Due to the vertical confinement of multiple quantum well stack and the horizontal 

mode confinement of the ridge waveguide, the acceptance aperture is typically small 

compared to the mode size of the input single mode fibre. Therefore, the coupling 

efficiency is low and the fibre alignment/fixing tolerance is small due to the large  
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mode mismatch between the device and the input fibre. To accommodate such spot 

size mismatch, it is possible to adjust the absorption window of the photodiode or 

modify the mode dimension of the single mode fibre. Here, we put more effort on the 

latter as it is more convenient to be optimized by the technology used in the field of 

photonic device packaging.  

A special fibre based on 2-μm single mode fibre (Type: Nufern_SM1950, Mode 

field diameter: 8.0 µm at 1.95 μm) was fabricated with a tapered head to compress the 

light mode spot coupled with the edge-coupling photodiode with the graph shown in 

the Fig. 5.2 [1].  

 

 

Figure 5.2: Design of the lensed-ended fiber at 2 μm wavelengths [1]. 

 

Within the package module, a clamp was used to fix the fiber onto the heat sink by 

laser soldering where the fibre was aligned at the optimum coupling point [2]. Manual 

adjusting is necessary considering the best coupling position shift due to the strain 

generation after laser soldering. 

To couple the electrical signal of the detector to the high-speed connector of the 

package, a transmission line circuit based on an aluminium nitride substrate was set 

within the package module to build the connection in-between. In the end closest to 

the detector, a Coplanar Waveguide (CPW) structure was used to provide a flat plane 

for the wire bonding. Two 100 Ω resistors are positioned in parallel with each other to 

work as a 50 Ω load on the ceramic to suppress the reflections from the device due to 

the electrical property of the photodiode approaching to the open circuit under reverse 

bias (See section 5.5). In the transmission section, CPW is converted into microstrip 

line for facilitating the circuit fabrication omitting the vias and metal connection to 

link the top ground-plane with the bottom one. At the output end of the microstrip line, 

it is converted back again for the planar link with the pin of K connector on the  
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package. All of the transmission line are designed as an impedance of 50 Ω with details 

seen from the Fig. 5.1 and Fig. 5.3.  

 

 

Figure 5.3: Schematic of the circuit on the AlN ceramic. 

 

Direct wire bonding was firstly applied to connect the device with the CPW 

transmission line. Due to the softness of the BCB under the device bonding pad, 

pushing the soldering ball and then pulling the gold wire during the direct bonding 

process will destroy the contact of the device even the force is set at minimum.  

 

 

Figure 5.4: Picture of the failed wire bonding process on the pad of the ridge 

waveguide photodetector monitored by the optical microscope. 

 

In Fig. 5.4, a damage to the bond pad can be observed indicating the failure of the 

direct wire bonding on the contact pad of the detector even with a thin dielectric 

protection layer. Increasing the thickness of the protective silicon dioxide layer and  
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using soldering method with silver epoxy or indium can help to solve this problem. 

For the former, as it is shown in Fig. 5.5, directly bonding between any contact pads 

works well when the thickness of the silicon dioxide was increased up to 500 nm.  

 

 

Figure 5.5: Direct bonding test on the contact pad with 500 nm thick silicon oxide on 

top of the BCB. 

 

For the latter, both of the silver epoxy curing and wire soldering by indium reflow 

are able to fix the bonding wire on the top of the pad, which is shown in Fig. 5.6. We 

choose the former method due to that no more fabrication steps would be required. In 

addition, silver epoxy curing is efficient to be used due to the simple operation step 

though some technical experience is required during the disposition of the epoxy 

mixture to avoid the potential short curcuit . 

 

 

Figure 5.6: Fix the bonding wires by silver epoxy curing and indium reflow. 
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 As the strong mechanical strength of the ceramic, direct wire bonding can be 

applied to fix the conductive wire on the CPW connection end.To electrically bridge 

the connection between the device and transmission line, a kind of hybrid bonding 

strategy is used. As it is shown in Fig. 5.7, direct bonding is used to attach one end of 

bonding wire on the CPW from the side of the transmission line. Then, the gold wire 

will be pulled up, cut off in a proper length and fixed on the contact pad of the ridge 

waveguide quantum well photodiode by the curing of silver epoxy. 

 

 

Figure 5.7: Microscope image of the connection between the ridge waveguide quantum 

well photodetector and the transmission line. 

 

For assembling all parts of the module, the submout (heat sink) was first fixed on 

the bottom of the module cell by silver epoxy curing together with K connector. The 

same method was applied to the following cases of fixing the ceramics circuits on the 

submount, connecting the ceramic transmission line with the pin of the K connector 

on the package, and gluing the ground plane of the chip (backside) withthe submount. 

Then, the chip was connected with the transmission line by the above-mentioned 

hybrid bonding method. Finally, the 2 micron lens-ended fibre was laser-welded on 

the same submount after optimizing the coupling efficiency. All of the details of the 

assembled package module are displayed in Fig. 5.8.  

 

 

 

 

 

Direct 

bonding

Silver 

epoxy 

curing



Chapter 5 Packaged high bandwidth photodetectors at 2-µm wavelengths 

120 
 

 

 

Figure 5.8: Inside view of the final package for the high-speed ridge waveguide 

quantum well photodetector [3]. 

 

5.3 Package module of the high-speed surface normal 

photodiode  

Considering the horizontal operation function of the fibre alignment machine, a 

~45° titled facet fibre was applied to bend the light path from horizontal direction to 

the vertical direction so as to illuminate it on the absorption aperture of the top-

illuminated photodetector. This is demonstrated in Fig. 5.9 as below.  

 

 

Figure 5.9: Light coupling scheme for the packaged 2 µm high-speed surface normal 

photodiode in bulk material. 
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In addition, with the consideration of using the existing photodiode RF 

characterization submount (see section 3.3.4) to save the total production time, the 

related space arrangement within the package module should be adjusted. To hold this 

fibre at a proper vertical position, a clamp was welded to fix the fibre, then both (fiber 

with clamp) were laser-soldered on top of a spacer which is used to provide another 

stage beside the RF characcterization submount to compensate the height difference 

between the absorption window and soldered fibre. Such arrangement can be seen 

from Fig. 5.10. and Fig. 5.11. 

 

 

Figure 5.10: 3D schematic of the inside structure for the high-speed surface-normal 

photodiode package module. 

 

The assembling process started from fixing the photodetector test module as well as 

the spacer on the bottom of the protection cell by the curing of silver epoxy. After 

hybrid bonding the chip on the transmission line of the ceramic, optimized fibre 

alignment was done for at the best coupling efficiency through the monitoring of the 

photocurrent under zero bias. Then, the fibre was laser-welded on the spacer and 

finalized with manual adjustment similar to the process of packaging for the high 

speed ridge waveguide laser. The whole views of the module inside is displayed in 

Fig. 5.11 after the completion of the assembling.  
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As it is mentioned before, the stability of the connection between the high-speed 

SMA connector suffers from the low mechanical strength of silver epoxy in the case 

of the twisting operation to fasten the cable with the connector. As it can be seen from 

Fig. 5.12, a modification of cell design introduced a protrusion square on the inner 

surface of the top cell cover to further tighten the connector-ceramic connection by 

adding extra pressure on the connector arm when it is closed. 

 

 

Figure 5.11: Graph of the inside for the 2 µm high-speed surface-normal photodiode 

packaged module [4] 
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Considering that a slight touching force between the closed top cell and the fibre 

clamp may shift the optimum coupling point, four screws were adjusted to tune the 

best position back to maintain the maximum coupling efficiency in the final stage of 

covering the top cell (Fig. 5.12 (c)).  

 

 

Figure 5.12: 3D view of the module cell design modification for tightening the 

connector-ceramics connection of the 2 µm high-speed surface normal photodiode in 

bulk material. (a) View of the tightening function of the top cell protrusion in the case 

of transparent cell; (b) View for the inside of the top cell; (c) View of the whole 

package module in the case of transparent cell. 
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5.4 Large signal characterization results and analysis for 

the packaged 2 µm high-speed photodiode. 

In order to prove the capability to work in an optical communication system, the 

eye diagram for the photodiode needs to be tested by use of high-speed optical signal 

loaded on the input light and visualized by the electrical setups involving electrical 

amplifier and oscilloscope after the recovering of the photodiode. Here we present the 

large signal characterization results for the ridge waveguide quantum well photodiode 

at 1.55 µm and surface normal type bulk material photodetector at 2 µm.  

 

5.4.1 Characterization of the packaged 2 µm ridge photodiode  

As it is shown in Fig. 5.13, the internal clock signal generated by the pulse pattern 

generator (PPG) is loaded by an electrical driver and converted into the optical On-

Off-Key (OOK) using an 1.55 µm LiNO3 intensity modulator at the transmission side. 

The output signal from the photodiode is amplified and then presented as an eye 

pattern on the oscilloscope. Between the photodetector and electrical amplifier, a Bias-

T is used to separate the DC bias and RF signal so the voltage could be biased on the 

device while the high-speed signal is delivered in to the amplifier with no extra 

crosstalk to the DC channel. The setup was calibrated by a 40 GHz commercial 1550 

nm photodiodes to prove the working ablity for our characterization.  

 

 

Figure 5.13: Test system for the 2-µm ridge waveguide quantum well photodiode 

module in 1550 nm 
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Manual optimization of the polarization at the input port of the modulator and fibre 

bending before the tested photodiode have been done to achieve the best signal quality 

and absorption efficiency. 

 

 

Figure 5.14: 1.55 µm eye diagram test results at the modulation speed of 10 Gbit/s 

with -1.5 dBm input power for the ridge waveguide quantum well photodetector 

module biased at -5 V. (a) Output from the photo-detector module (b) Output from the 

amplifier at the driving side of the modulator(original signal). 

 

It can be seen from Fig. 5.14 that the output signal coming from our photodiode 

(Fig. 5.14 (a)) was so much smaller than the original un-amplified one (Fig. 5.14 (b)) 

from the PPG that the electrical signal amplitude is around 100 mV (Vpp) which is too 

low to show a result with an acceptable SNR. That resulted from the low 

photoresponsivity of the photodiode, which was reduced from 0.3A/W to 0.14 A/W at 

0 V bias due to the shift of the best coupling position resulting from the cooling of the 

clamp after the laser-soldering. Low light-coupling tolerance of this type of the 

detector can be seen from the dropping of photoresponsivity after the completion of 

the whole packaging process. Correspondingly, output electrical signal amplitude 

from our packaged photodiode was much smaller than the expected. While, the heating 

of the resistor due to the direct-biased voltage put on itself will increase the thermal 

noise level contributing to the degradation of the eye pattern quality further (see 

Section 5.5).  
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5.4.2 Characterization of the packaged surface normal type 

photodiode 

 Due to the high photoresponse and large RF bandwidth, the 50-µm diameter device 

from Design-2 material with BCB was packaged in a module with a ~45° angled fiber 

welded in the packaged module to illuminate the light on the absorption window of 

the device (Fig. 5.10, 5.11, 5.12). Then, the system as Fig. 5.15 was built to 

characterize the large signal performance of this package module at 2 µm wavelengths.  

 

 

Figure 5.15: Test setup structure for the packaged 2-µm high-speed photodiode in bulk 

material (Design-2, with BCB). 

 

At the transmission side, a laser showing a peak wavelength of 1968.045 nm is used 

to provide the light source. Similar to the 1.55 µm setup, optical signal is generated by 

a 2-µm Mach–Zehnder Modulator (MZM) driven by the amplified RF signal from the 

PPG. In the receiving end, we use the TDFA to achieve the light signal amplification 

at 2-µm wavelengths following with a 2-µm filter to suppress the additional broad 

band self-emitting noise. An independent electrical amplifier was used after the 

connector to amplify the recovered signal instead of an inner TIA inside the package 

module.  
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With a reverse bias of 7 V, input power of -0.05 dBm, we are able to see from Fig. 

5.16 that a clearly-opened eye could still be obtained even at modulation speeds up to 

15.7 Gbit/s. This proves the ability for the packaged module to work in a real 2 µm 

optical communication system which typically focuses on the SNR performance. 

From Fig. 5.17 , we find the effective photoresponsivity (at 2 µm wavelength) of 

the packaged devices is reduced from 0.93 A/W (coupled by the 2 µm lens-ended 

fibre) to 0.52 A/W at -10V due to the lack of antireflection coating on the tilted facet 

which is designed for the applications in 1.55 µm wavelengths, fiber connector loss 

and alignment mismatch between the device and angled fiber during the packaging 

process.  

 

 

Figure 5.16: Eye pattern characterization results for the 2 micron high speed surface 

normal photodiode module at the modulation speed of 10 Gbit/s (a)， 12.5 Gbit/s (b) 

and 15.7 Gbit/s (c) ( Bias voltage: -7 V, Input power: -0.05 dBm). 
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This would highly affect the SNR of the output signal even in the case of higher 

input power by increasing the gain of the TDFA due to that the ASE noise would arise 

to degrade the Optical Signal to Noise Ratio (OSNR). As it is shown in Fig. 5.18, an 

open eye with an effective amplitude of 363 mV (VPP) was obtained at a bias of -7 V 

by increasing the input light power to -0.05 dBm at 10 Gbit/s (Fig. 5.18 (a)), which is 

comparable with the results from the device in the same pattern and structure coupled 

by flat facet fiber with the input power of -3.07 dBm based at -10 V at the same speed 

(Fig. 5.18 (b)). While, it could also be indicated from Fig. 5.18 that the SNR of the 

packaged photodiode is degraded though the total amplitude has reached around 400 

mV (VPP) with the additional noise when the input power is increased by ~3 dB. In 

addition, applying a larger bias voltage may increase the photoresponse of the device 

corresponding to a larger eye amplitude while increasing noise due to the thermal 

heating of the parallel resistor on the ceramics circuit is proportional to the biased 

voltage (See section 5.5). 

 

 

Figure 5.17: Photoresponsivity at 2 µm wavelength for the packaged high speed 

surface normal photodiode based on Design-2 material with BCB. 
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Due to the compromised OSNR from the excess optical loss, limited frequency 

response of the package circuit, impedance mismatch between the packaged PD and 

the RF amplifier, the eye diagram of the packaged surface normal detector is degraded, 

clearly showing varied rise and fall transitions as Fig. 5.18 (a). To improve the 

packaged device performance, optimizations would be focused on improving the 

coupling efficiency by the deposition of the aluminum film on the angled facet, 

suppressing the impedance mismatch in the connection of the chip to the transmission 

line and ceramic circuits to the following RF cable, as well as introducing a TIA to the 

packaged module [4].   

 

 

Figure 5.18: Eye pattern for the 50 µm surface normal photodiode in Design_2 

material coupled with an angled fiber (designed for 1.55 µm applications) without 

anti-reflection coating in the package module at the input power of -0.05 dBm (-7 V) 

(a) and with a flat facet fiber at the input power of -3.07 dBm (-10 V) (b). The fiber 

used here was a single mode fibre for the 1.55 µm wavelengths. 

 

5.4.3 Comparison between different packaged photodetector 

modules.  

With the same modulation rate of 10 Gbit/s, the optimum eye patterns of the 

packaged modules for the ridge waveguide quantum well photodiode and surface 

normal type detector in bulk material have been obtained as those demonstrated in Fig. 

5.19.  
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Though the data for the ridge PD was obtained at 1550 nm, it is still able to indicate 

the signal recovery quality of the photodetector such as SNR because of the ridge 

waveguide geometry is able to absorb all the light shorter than the photoresponse 

spectral edge of the intrinsic layer. Obviously, the eye amplitude of the ridge 

waveguide type (Fig. 5.19 (a)) is around 100 mV (Vpp) which is much smaller than 

the output from the surface-normal PD (Fig. 5.19 (b)) which is around 400 mV (Vpp) 

even though the former input light power is 1.45 dB larger than the latter and using 

the electrical amplifer with a gain of ~30 dB (26 dB for the surface normal type 

detector). Therefore, due to the high SNR quality benefiting from the highly efficient 

absorption aperture, the surface-illuminated type photodiode in bulk material is more 

appropriate for the applications in the real 2-µm optical communication system, which 

needs high signal quality at the receiving end. 

 

 

Figure 5.19: 10 Gbit/s eye pattern test results of the packaged module for the ridge 

waveguide quantum well photodiode based in -5 V with the input power of -1.5 dBm 

at 1550 nm wavelength (a) and surface-normal bulk material detector based in -7 V 

with the input power of -0.05 dBm at 1968.045 nm (b). 

 

5.5 Optimization on the circuit design to improve the 

SNR  

For the package modules of both devices mentioned-above, more attention should 

be paid on the problem of the thermal noise from the heating of the resistor in parallel 

with the photodiode at high reverse bias voltage on the ceramics circuits. It would 

further degrade the signal quality especially in the case of small input light power.  
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This could be solved by considering the isolation of DC bias and RF output during the 

internal circuit design within the modulator.  

 

 

Figure 5.20: Equivalent circuit for the design of parallel load resistor in front of 

external Bias-T for the current package module (a) and after internal Bias-T for an 

optimized package module (b). 

 

When it is connected with the external Bias-T in the access network of the electrical 

test system, the equivalent circuit of the high-speed package modules for both types 

of photodiodes could be simplified as it is shown in Fig. 5.20 (a). It can be deduced 

that the DC-bias voltage of the detector is also put on the impedance matching resistor 

due to the parallel connection scheme, this results in a thermal noise increasing due to 

the heating of the resistor. Though this heat could be released by using a high thermal 

conductivity metal sub-mount under the device, it is still not solved probably in 

principle. Here, we propose a simple adjustment of the circuit as which is shown in 

Fig. 5.20 (b) to isolate the DC bias on the resistor from the RF output of the device. 

Due to DC isolation character of the capacitance in the circuit, the resistor is only in 

the high-speed signal circuit in parallel with the photodetector. In the DC bias access 

port, a resistor is used to isolate the RF signal considering the detector as an 

alternatively variated current source. To achieve this circuit scheme, an internal bias 

system would be introduced into the circuit design instead of using the external Bias-

T device, which means both of the matching resistor and the capacitance should be set 

within the ceramic circuit.  
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5.6 Conclusions 

In this chapter, we introduced the package design as well as the assembly process 

for both of the ridge waveguide quantum well and surface normal bulk material 

photodiodes at 2-µm wavelengths. Characterization systems have been built to 

evaluate the large signal performance of the former in the wavelength of 1.55 µm at 

10 Gbit/s and the latter at 2 µm with different bit rates up to 15.7 Gbit/s.  Comparison 

between the 10 Gbit/s eye pattern results of the two packaged devices indicates the 

high signal recovery efficiency of the surface-illuminated type detector which is more 

appropriate for the system level applications. Analysis is undertaken on the reasons 

for the degradation of the eye diagram after packaging process. To suppress the 

thermal noise for further improving the SNR, it is suggested to apply the internal Bias-

T to build the isolation referring to the DC voltage biased on the photodiode instead 

of using the external Bias-T in between the packaged module and electrical access 

network of the electrical test system, which may require more work on the ceramic 

circuits design.  
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Chapter 6 Summary and further work 

6.1 Summary of this thesis work 

At wavelengths of 2 µm, we have achieved both ridge waveguide/surface-normal 

type high speed photodiodes. An 90° optical hybrid have also been demonstrated for 

coherent detection. Electrical, optical and subsystem-level tests have been fully carried 

out to prove their ability to work in a real optical communication system. Here, we 

would like to summarize all the above-mentioned work and propose some suggestions 

regarding the further improvement on those devices as well as schematics on the 

integration of the two devices to establish the 2-µm optical coherent receivers for 

demodulating advanced modulated formats such as QAM or QPSK. 

A ridge-waveguide photodetector is realised by use of four strained quantum wells 

on n-type InP substrate demonstrating a dark current as small as 2.55 nA at -1 V. A 

photoresponse of 0.38 A/W turns to be almost in-sensitive to the reverse bias voltage 

at the wavelength of 2 µm. Benefitting from the small area and thin active region of 

the device, a 3dB- cut-off frequency up to 12.9 GHz has been achieved. The 10 Gbit/s 

eye diagram tested on the packaged device shows an open eye as well as degraded 

SNR due to the low coupling efficiency of the waveguide geometry window as well 

as the thermal noise under high voltage directly biased on the parallel resistance in the 

package. To solve this natural problem of the waveguide type quantum well 

photodetector, a spot converter with a taper structure would be useful to address the 

mode mismatch between the small acceptable aperture of the detector and relative 

large spot size of the single mode fibre. As a result, a higher light coupling efficiency 

corresponding to larger SNR could be expected. 

A high-speed surface-normal photodiode based on strain-relaxed In0.72Ga0.28As 

sandwiched by AlInGaAs cap layer has been fabricated on n-doped InP substrate. A 

parabolic grading scheme was applied on the buffer layer to accommodate the lattice 

mismatching between the intrinsic layer and the substrate in the thickness of 0.5 

micron to reduce the total epitaxial growth time and thus the cost. An unintentional 

background doping level of 1×1015 cm-3 in the centre indicates the threading location 

defects have been mainly suppressed as deduced from the CV measurement on large  
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mesas with diameters varying from 100 to 500 µm. By optimizing the thermal control 

of passivation as ramping from room temperature (20 °C) until the normal deposition 

temperature of 300 °C, the leakage of 50-µm diameter mesa has been suppressed to 

~0.5 µA displaying a dark current density level comparable to the commercial 

products. The small signal characterization of the device shows that the RF bandwidth 

reaches up to around 10 GHz. In addition, with the photoresponse up to ~1 A/W from 

the large round-circle aperture and aluminium coating on the tilted facet of the angled 

fibre in the module, an error-free (EBR≤10-9) eye pattern characterized at the 

modulation speed of 10 Gbit/s has been achieved for the packaged photodetector even 

at the input power down to -9.9 dBm. With the technical assitance from the package 

group in Tyndall, package modules of all the photodiode devices have been 

optimically designed as well as assembled for the system test applications.  

According to the evaluated characters of the surface-normal type photodetector, a 2 

µm balanced photodiode was then fabricated based on the same epitaxial layer 

structure of the surface-normal high speed photodiode on the SI substrate by serially 

connecting two photodiodes in the way of n-p-n-p. A dry-etching scheme of etching 

through the intrinsic layer as well as the n contact region in the same process following 

the first pre-etching to form a larger size mesa on the top of n-contact layer was utilized 

to avoid the potential failure of the sidewall passivation by using the same layer of 

silicon-dioxide hard mask within the two dry-etch steps. For the single mesa of the 

paired balanced photodiode (diameter-50 µm), the leakage is ~11 µA acceptable in the 

system application mainly focusing on the SNR character while the photoresponsivity 

is 1.2 A/W due to the unexpected over-thick intrinsic absorption layer. To eliminate 

the potential leakage/extra charge generation resulting parasitic capacitance due to the 

surface roughness and additional doping during the dry-etch process, a selective wet 

etching following the depth-optimized dry etching should be introduced to make sure 

that the finial position can be just stopped at the top surface of the semi-insulating 

substrate.  

By use of the large spot size diluted waveguide, an optical hybrid at 2 µm has been 

fabricated based on the 4×4 Multimode Interference (MMI) coupler structure. 4 pairs 

of InGaAsP/InP created a waveguide with a mode size of more than 3 µm while 

maintaining the single mode character with the ridge width of 4 µm and etching depth 

of 5.5 µm. Benefitting from the large acceptance window of this kind of waveguide,  
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the coupling loss between the waveguide and the lens-ended fibre is less than 0.9 dB 

per facet. Considering the self-imaging properties of the MMI waveguide, the device  

length has been optimized around 1629 µm with the width of 32 µm to obtain an 

acceptable power imbalance for both polarization status. The waveguide width was 

adiabatically tapered from 4 µm to 3.5 µm to filter other high- order modes and tapered 

back to 4 µm at the input of the MMI waveguide to provide a larger imaging tolerance. 

To accommodate those deviations during the fabrication and simulation, samples with 

varied length within 1629-60 µm and 1629+60 µm were adopted into the masks 

design.  

With the monolithic integration of MZI combining 1×2 MMI and the delay line with 

the hybrid device, phase-related transmission spectrum from each output port was then 

characterized by delivering the broad band light from 2 µm TDFA into the test 

structure and visualizing by OSA at each of the output ports through lensed-ended 

fibre with specific design at this wavelength. By fitting the test results with the 

transmission function of 90° optical hybrid, an estimated CMRR of more than 15.6 

dB, phase error of ± 10° from the quadrature condition, and excess loss of 2.2 dB 

involving the MZI are deduced for the optimum device with the length of 1644 µm. 

In the future, increasing the effective index-refractive index difference relative to the 

substrate as well as shrinking the width of the multimode waveguide should be 

considered on the optimizations regarding the material and mask design to minimize 

the power imbalance and phase deviation errors.  
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6.2 Further work 

We can realize the coherent receiver at 2 µm wavelengths based on the two above-

mentioned devices by directly assembling the optical hybrid and the balanced 

photodiode in one package module with the consideration of light coupling between 

the passive and active devices as well as electrical connection within and outside the 

package module.  

As it is shown in Fig. 6.1, the ceramic with electrical circuits patterns would be first 

glued on the heat sink using silver epoxy then followed by the fixing of the high-speed 

SMA connectors in the same method. Two pairs of serially-connected photodiodes 

would be vertically set on the ceramics with suitable contact to the circuits. Then, the 

hybrid can be placed adjacent to the illumination window of the balanced photodiodes 

with the flat-facet fibre array at another input end (from the left out of   the region of 

Fig. 6.1). After optimizing the coupling efficiency as well as the output balance of the 

hybrid device, all of the passive components would be glued on the same submount 

by using UV-sensitive epoxy. A metal protection cell would enfold all of the 

assembled parts to maintain the device stability as well as protect against the risk of 

breakage during other operations around the devices. 

 

 

Figure 6.1: Schematic of the package module for the 2 µm optical coherent receiver. 

 

For the light coupling between the balanced photodiode and the output waveguide 

of the hybrid, vertically setting the active devices could help to obtain the optimum  

 

Optical 90º hybrid

Balanced photodiode

SMA connector

Ceramics with

electrical circuitsHeat sink
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coupling by taking advantage of the large absorption aperture (diameter: 20 µm ~30 

µm) of the surface normal photodetector as well as the large-size light spot from the 

output of the diluted waveguide (Fig. 6.2). High accurate alignment between the 

hybrid and photodiodes by use of the light coupling system in fine steps is necessary 

to get the best balancing point between the output electrical signals of all the 

photodetectors.  

A transfer step needs to be concerned to achieve the rotated connection between the 

detector and the ceramics. The balanced photodetectors would be fixed on a small sub-

mount, which has the transmission line bended to the attached surface matching with 

the contact points of the package ceramic circuits underneath. Direct wire-bonding 

would be used for the connection between the coplanar electrodes of the device and 

the transmission line of the small submount. In addition, more attention needs to be 

paid for the connection of the small submount and the following ceramics, such as the 

potential short circuit  due to the flowing of silver epoxy, flatness after the soldering, 

etc..  

 

 

Figure 6.2: Schematic for the light coupling and electrical connection inside the 2µm 

optical coherent module. 

 

For the ceramic circuits, the Direct Current (DC) and Radio Frequency (RF) signal 

paths should be isolated due to the static-voltage-biased source and high speed output 

characters of the detector in the serially paired balanced photodiode. From Fig. 6.3, a  
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bias-T is used to separate the voltage bias and high speed output. The resistance would 

protect the RF signal but let the DC bias go through while the capacitance would limit 

the transmission of the DC bias but let the high speed output pass through. This 

structure can be designed and fabricated on a ceramic base or integrated on the same 

semiconductor chip as it is shown in Fig. 6.3. In order to suppress the electrical 

reflection from the device side, the matching resistance of RL could be 100 ohm in 

parallel with each of the detector so that the final effective impedance approaches to 

the 50 ohm microwave transmission line. While, the effective bandwidth of the whole 

packaged structure is approximated to half of the single photodiode due to that the 

total effectivecapacitance would be the double of one single photodiode from the view 

of the output port [1].  

 

 

Figure 6.3: Schematic for the ceramic circuits inside the coherent receiver package 

module [1]. 
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Appendix 

1. Process flow for the high speed surface normal 

photodiode at 2 µm wavelengths 

Wafer:  

Type 2 on N-doped substrate- A quarter wafer,  

 

Mask:  

HIGHSPEEDPDMODEGAP1 

 

1. Photo-lithography (Layer 1: Ring-metal) 

□ Clean the mask   

□ Clean and bake the wafer on the hot plate at >100 °C for more than 5 mins 

□ Blow dry with N2 gas 

□ Spin on HMDS at 4000 rpm for 60 s  

□ Spin on AZ5214E at 4000 rpm for 60 s 

□ Edge bead removal EBR [wipe paper + acetone] 

□ Soft bake on hotplate at 100 °C for 50 s 

□ Exposure : Machine–MA1006, Vacuum contact, 2 s 

□ Reverse bake on hotplate at 120 °C for 1 min 45 s 

□ Flood exposure: 25 s 

□ Develop with developer MF 26A for 22 s. A few seconds more if it is not clear. 

□ Rinse with DI and dry with N2 gun 

□ Use O2 plasma Asher for 2~3 mins at 50 W or 100 W  

 

2. Flat p-metal evaporation  

□ BOE: DI (1:10) dip for 10 s before p-metal evaporation. 

□ Evaporation of Ti:Au=20:320 or Ti: Pt: Au =30: 50: 300 
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3. P-metal lift-off  

□ Leave the sample in 1165 at 90 °C for at least half an hour 

□ Lift-off 

□ DI rinse + N2 blow dry 

 

4. P-metal annealing  

□ Anneal at 420 °C for 3~5 mins at the neck of furnace (1.5 sccm - 5% H2 / 95% N2)  

□ Anneal at 420 °C for 5 mins at the middle of furnace (1.5 sccm - 5% H2 / 95% N2) 

    Thermal couple readout was 390~400 °C during annealing 

□ TLM test  

 

5. Wet etch – Removal of 100 nm- InGaAs 

□ First check the metal thickness with profiler.  

     Thickness: sample-340~400 nm, average-370 nm; silicon test piece-360 nm. 

□ H3PO4: H2O2: H2O = 1:1:8 wet etch for more than 5 s. 

     Make sure it is over-etched to 150 nm. 

□ Check the etched thickness with profiler. 

     Thickness of Medal+ etched contact: 507~522 nm, average: 515 nm 

     Thickness of etched contact: 145 nm, Time: 15 s, Etch rate: 9~10 nm/s 

□ TLM test 

 

6. SiO2 hard mask deposition  

□ Standard SiO2 PECVD with recipe HFSIO. Include 3~4 Si monitor pieces. 

□ Aimed thickness: 550 nm, Deposition time: 16 mins, Speed: 34.4 nm/min 

□ Test the thickness  

     Real thickness: 570 (Centre) to 590 (Edge) nm on the Si test piece  

     Time: 16.5 mins, Deposition rate: 35.15 nm/min  

 

7. Photo-lithography (Layer 2: Mesa definition) 

□ Clean the mask  

□ Clean and bake the wafer on the hot plate at >100 °C for more than 5 mins 

□ Blow dry with N2 gas 

□ Spin on HMDS at 4000 rpm for 60 s 
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□ Spin on S1813 at 4000 rpm for 60 s 

□ Edge bead removal (EBR) [wipe paper + acetone]  

□ Bake on hotplate at 115 ˚C for 2~3 mins 

□ Expose with MA1006: Vacuum contact, 7 s,  

□ Develop in MF319 for 20 s 

□ DI rinse  

□ Blow dry with N2 gas  

□ Oven baking at 90 ˚C for 30 mins  

□ Use O2 plasma Asher for 60 s at 50 W or 100 W 

 

8. ICP – SiO2 etch  

□ Use CHF3/CF4 plasma in STS ICP system  

□ Recipe: OXIDEETCH 

□ Aimed etch thickness: 550 nm, Time: 2 mins,  

     Etch rate: 250~280 nm/min 

□ Select several points on the wafer with no PR and Si test piece.  

     Check the etched thickness, Real etch thickness: 570 nm  

     Average time: 2 mins+30 s, Etch rate: 285 nm/min 

 

9. Remove PR 

□ O2 plasma Asher for 2~3 minute at 50 W or 100 W. 

□ Dip in solvent 1165 at 90 °C for at least half an hour. 

     (Repeat the last two steps several times until it is fully cleaned). 

□ DI rinse 

□ Check the left SiO2 thickness with the profiler. 

□ Calculate the SiO2 etch rate with the protection of PR: 

    Thickness of SiO2 left: 605 nm (sample) and 580 nm (InP test piece). 

 

10. AlInGaAs and InGaAs etch (dry and wet etch)  

□ Cl2/CH4/H2 plasma in Oxford ICP system. 

□ Recipe: Hua etch recipe. 

□ Aimed etch thickness: 2.6~3 microns. 

   Etch rate: 0.825-0.85 micron/minutes for InP 
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□ Test the etch thickness with profiler: 

    Remember to test the thickness of SiO2 and remove it every time! 

Real etched thickness+SiO2 hard mask: 

2.83 (Centre mesa) ~ 3 microns (Edge TLM).  

Time: 4 mins+38 s for sample, 2 mins+20 s for InP.  

□ Record the thickness of SiO2 after dry etch: 170 nm (sample), 282 nm (InP test piece) 

    Etch rate: 97 nm/min. 

□ Calculate the etched thickness and eth rate: 

    Real etch thickness: 

    Sample - 2.66 (centra mesa)~2.83 microns (edge TLM), InP test piece-2.62 microns 

     Etch rate: 

Sample - 591 (centra mesa)~628 nm/min(edge TLM),  

InP test piece-1.05 micron/min 

Surface roughness: Sample-50~60 nm,  

□ Dip in diluted BOE (BOE:DI=1:4) for 5 s to remove the oxidation on the sidewall. 

□ Dip in H3PO4: H2O2: H2O = 1:1:8 for 5 s to remove the polymer on the sidewall     

     and polish the surface due to dry etch. 

     Surface roughness: nearly the same as the case before wet etch 

 

11. Strip SiO2 hard mask 

□ Diluted BOE (BOE:DI=1:4) for tens of seconds.  

     Make sure the etch rate then add 10 s at each etch step.  

     Etch rate: 2 or 3 nm/s (10 nm/s at first time). If use pure BOE, the speed is 9 nm/s. 

□Test the thickness (Sample and Si test piece). 

    Real etch thickness: 

    Sample-2.77 (centre mesa) ~ 2.99 microns (Edge TLM), InP-2.61 microns 

    Time:   

    Sample-2 mins+5 s. InP-4 mins. 

    SiO2 etch rate: 3 nm/s 

    Sheet resistance orders: 10-8~10-6 

    Roughness: 40 nm  
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12. Deposit SiNx and SiO2 with PECVD 

□ Load sample at 20 °C then ramp to 300 °C with 4 piece of Si test piece.  

□ Recipe: standard MFSIN. 

□ Aimed thickness:  

    SiNx-100 nm, SiO2-100 nm 

    Deposition Time: SiNx-10 mins, SiO2-2 mins+51s  

    Speed: SiNx-10 nm/min, SiO2-35 nm/min 

□ Test the thickness (Wafer and Si test piece). 

    Temperature: SiNx-250 °C, SiO2-275 °C 

    Real deposition thickness: SiNx-99 nm, SiO2-103 nm 

    Time: SiNx-10 mins, SiO2-2 mins+51 s 

    Speed: SiNx-10 nm/min, SiO2-35 nm/min 

 

13. BCB spinning and curing  

□ BCB- CYCLOTENE 3022 - 57  

    Non-photosensitive (Thickness: 8.0 micron after spinning at 2500 rpm and curing) 

□ Dehydrate bake on hotplate at 150 °C for more than 10 mins. 

□ Spin on adhesion promoter (AP3000) at 300 rpm for 5 s then at 3000 rpm for 20 s 

□ Spin on BCB at 500 rpm for 7 s then at 2000 rpm for 40 s,  

□ EBR using T1100 (BCB solvent).  

    Ensure that the backside of the wafer is completely cleaned. 

□ Put the sample which has a silicon piece underneath on the centre of the silicon  

   carrier in the oven.  

□ Pump down the chamber to a few mili-torr.  

Isolate the chamber and vent it with N2 to 0.8 ATM. Then, start the full cure process. 

□ Ramp from 150 to 250 °C by 25 °C per step.  

□ Switch off the oven when the temperature drop to the case smaller than 150 °C.  

    If it is necessary, leave the sample in the oven for over-night cooling. 

    Use the profiler to figure out the step after planarization  

    Target-500 nm minimum. Maximum-600 nm.  

□ Record image  
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14. BCB etch-back 

□ ICP etch by using STS machine  

     Chemistry: SF6+O2, Recipe: BCB ETCH 

     Etch time: 6 mins+35 s, Etch rate: Around 800 nm/min 

□ Record image  

 

15. Photo-lithography (Layer 3: Oxide opening) 

□ Clean the mask  

□ Clean and bake the wafer on the hot plate at >100 °C for more than 5 mins 

□ Blow dry with N2 gas 

□ Spin on HMDS at 4000 rpm for 60 s 

□ Spin on S1813 at 4000 rpm for 60 s 

□ Edge bead removal (EBR) [wipe paper + acetone] 

□ Bake on hotplate at 115 ˚C for 3 mins 

□ Expose with MA1006: Vacuum contact, 6.7 ~7 s,  

□ Develop in MF319 for 16~25 s 

□ DI rinse  

□ Blow dry with N2 gas 

□ Oven baking at 90 ˚C for 30 mins 

□ Use O2 plasma Asher for 2~3 mins at 50 W or 100 W.  

 

16. BCB Etch  

□ ICP etch by using STS machine  

6+O2, Recipe: BCB ETCH 

□ Record image  

    Etch time: 1 min+30 s  

    Etch rate: Around 800 nm/min 

 

17. SiNx and SiO2 etch. 

□ CF4 plasma with Asher. 

    Not etch though conditional run was operated for 18 mins.  

    It seems work if use10 mins O2 plasma first. 

    Should use BOE to remove the SiO2 first due to that CF4 would not etch SiO2.!! 
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□ Test the thickness. (Wafer and Si test piece). 

    Time: more than 15 minutes  

    Power: 100 W 

    Etch rate: not stable but smaller than 25 nm/min. 

 

18. Quick TLM measurement 

      Only one TLM sample can be fully opened. 

      Sheet resistance orders: 10-5 

 

19. Remove PR:  

□ O2 plasma Asher for 2~3 minute at 50 W or 100 W. 

□ Solvent 1165 in 90˚C for at least half an hour. 

    Repeat the last two steps several times until it is fully cleaned. 

    If still not clean, use woollen stick to gently remove the left PR while keeping the  

    sample at solvent 1165. 

□ DI rinse and dry with N2. 

 

20. Photo-lithography (Layer 4: Bond-metal) 

□ Clean the mask  

□ Clean and bake the wafer on the hot plate at >100 °C for more than 5 mins 

□ Blow dry with N2 gas 

□ Spin on HMDS at 4000 rpm for 60 s  

□ Spin on AZ5214E at 4000 rpm for 60 s 

□ Edge bead removal (EBR) [wipe paper + acetone] 

□ Soft bake on hotplate at 100 degree  for 50s 

□ Exposure with mask aligner MA1006: Vacuum contact 2s 

□ Reverse bake on hotplate at 120 °C for 1min 45s 

□ Flood exposure for 25s 

□ Develop with develop MF 26A: 22s. A few seconds more if it is not clear. 

□ Rinse with DI and dry with N2 gun 

□ Use O2 plasma Asher for 2~3mins at 50W or 100W.  
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21. Further window open 

      Hard bake should be carried on in the oven at 90 °C for at least half an hour first. 

□ Diluted BOE (BOE:DI=1:4) dip.  

    Time: 10 s first to remove the SiO2.More than 2mins to remove the SiNx 

    Etch rate: 

    SiNx—1 nm/s, SiO2—2 to 3 nm/s 

□ Record images. 

 

Note: This step could be after CF4 plasma if some PR is still left. 

  

22. P-metal evaporation with 360° rotation 

□ BOE: DI (1:10) dip for 10 s 

    Not necessary after further window opening with diluted BOE 

□ Evaporation of Ti:Au=20:320. 

 

23. P-metal lift-off  

□ Leave in 1165 solvent at 90 °C for half an hour or leave it overnight on the hotplate  

    switched-off. 

    If it is still not clean, use woollen stick to gently remove the left PR while keep the  

    sample at the solvent of 1165. 

□ Lift-off 

□ DI rinse + N2 gas blow dry 

 

24. Backside N-metal evaporation 

□ Polish the wafer backside first if necessary. Fix the wafer top side on a glass with  

     black wax. Dip the back side in HCL for 2 or 3 mins to make the backside clean  

     and smooth. 

□ Evaporation of Ti:Au=20:320 or N metal- Au: Au: Ge: Ge: Au: Au: Ni: Ni: Au: Au. 

□ Remove the sample from the glass and make it clean with TCE. 

□ DI rinse + N2 gas blow dry 

 

25. Quick IV and CV measurement 

     Windows had been opened within most of the area of the wafer. The dark current  
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is ok though some area leakage is close to the order of mA.  

     Capacitance is 0.32 pF for the mesa with 60 µm diameter. 

 

26. Substrate thinning 

□ Polish the wafer backside  

□ Thin the substrate with bromine and clean with methanol 

□ Aimed thickness: 120 microns, 

     Time: 8mins. Etch rate: 30~40 micron/min 

     Real left thickness:120~140 nm, Time:14 mins, Speed:16 microns/min 

 

 27. Backside N-metal evaporation 

□ BOE: DI (1:10) dip for 10 seconds 

□ Evaporation of Ti:Au=20:320 or N metal- Au: Au: Ge: Ge: Au: Au: Ni: Ni: Au: Au. 

□ Remove the sample from the glass and make it clean with TCE. 

□ DI rinse + N2 blow dry 

 

 28. Cleave and test 

□ Quick IV test on the wafer for selecting the good bars  

□ Quick CV test on the wafer to estimate the maximum working speed  

□ Cleave single devices from the bars. 

□ IV test to select the best devices for packaging. 
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2. Process list for the balanced photodiode at 2 µm 

wavelengths 

Material:  

Type-2 on semi-insulating (SI) substrate 

 

Mask:  

2 micron Tyndall BPD Plate 1 and 2  

 

1. Photo-lithography (Layer:P METAL L0) 

□ Clean mask with 1165 (90 °C) and then dip in mask cleaning sink (H2SO4 and H2O2).  

□ Clean the mask with N2 gas 

□ DI rinse the wafer 

□ Machine-MA1006; Photoresist-1 layer of AZ5214E (Image reverse) 

□ Clean and bake wafer on hot plate (>100 °C, >5 mins) 

□ Clean the wafer with N2 gas 

□ Spin on HMDS at 4000 rpm for 60 s  

□ Spin on AZ5214E at 4000 rpm for 60 s 

□ EBR [wipe paper + acetone] 

□ Soft bake on hotplate at 100 °C for 50 s 

□ Exposure with mask aligner MA1006: Vacuum contact, 2s  

□ Reverse bake on hotplate at 120 °C for 1 min 45 s 

□ Flood exposure for 25 s or longer 

□ Develop with developer of MF 26A for 22 s. A few seconds more if it is not clear. 

□ Rinse with DI and dry with N2 gun 

□ Use O2 plasma Asher for 2~3 mins at 50 W or 100 W to clean  

 

2. Flat P-metal evaporation 

□ BOE: DI (1:10) dip for 10 s 

□ Flat evaporation of Ti: Pt: Au =20: 50: 500 
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3. P-metal lift-off  

□ Left in 1165 at 90 °C for at least half an hour 

□ Lift-off  

□ DI rinse + N2 blow dry 

□ Observe under the microscope and record the image 

Thickness: 619 nm, surface roughness: 81.99 nm  

 

4. P-metal annealing  

□ Anneal at 420 °C for 3 minutes at the neck of furnace (1.5 sccm - 5% H2 / 95% N2)   

□ Anneal at 420 °C for 5 minutes at the middle of furnace (1.5 sccm - 5% H2 / 95%    

N2) 

Thermal couple readout was 390 ~ 400 °C during annealing  

 

5. Wet etching – Removal of 100 nm InGaAs 

□ First check the metal thickness with profiler.  

Thickness: 585.93~590 nm, surface roughness: 173 nm 

□ Dip in H3PO4: H2O2: H2O = 1:1:8 for more than 5 s. 

Make sure it is over-etched to 150 nm. 

□ Check the etched thickness with profiler.  

Thickness of medal+ etched contact:  

Sample: 808 nm (average) 

Thickness of etched contact:  

Sample: 218-(centre ring)~200 nm (edge TLM)  

Real Time: 20 s, Etch rate: 9~10 nm/s 

□ TLM test 

Sheet resistance order: 2~3×10-4 Ω/cm2 

 

6. SiO2 hard mask deposition  

□ Standard SiO2 PECVD with recipe HFSIO.  Include 3~4 Si monitor pieces. 

□ Aimed thickness: >1200 nm, Deposition Time: > 35 mins,   

Deposition rate: 34.4 nm/min~32 nm/min 

□ Test the thickness  

Real thickness: 1263.4 nm; Real Time: 40 mins; Deposition rate: 31.59 nm/mins 
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After this, for the semi-insulating (SI) substrate sample, remember to sputter metal  

on the backside of the substrate (Total-90s)  

 

 7. Photo-lithography (Layer: N MESA L1) 

□ Clean mask with 1165 (90 °C) and then dip in mask cleaning sink.  

□ Clean the mask with N2 gas 

□ DI rinse the wafer 

□ Prebake at >100 °C for more than 5 mins. 

□ Clean the wafer with N2 gas 

□ Spin on HMDS: 4000 rpm for 60 s 

□ Spin on S1813: 4000 rpm for 60 s 

□ EBR [wipe paper + acetone] 

□ Bake on the hotplate at 115 ˚C for 2 mins.  

□ Expose with MA1006: Vacuum contact, 6 s or with MA06,10 s 

□ Develop in MF319 for 14~15 s, which should be divided by several steps 

□ DI rinse  

□ Blow dry N2.  

□ Use O2 plasma Asher for 60 seconds at 50W or 100W 

Resolution: 

If it is necessary to use O2 plasma to clean the surface, it is better to be carried on  

after hard baking. 

 

8. ICP – SiO2 etching  

□ CHF3/CF4 plasma in STS ICP system  

□ Recipe: OXIDEETCH 

□ Aimed etch thickness: >1263.4 nm, Time: >4 mins+30s  

   Etch rate: 250~280 nm/min 

□ Select several points on the wafer with no PR and Si test piece to check whether  

there is SiO2 left.  

□ Test the sample surface roughness.  

Final etch time: 5 mins  
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9. Remove PR 

□ O2 plasma Asher for 2~3 minute at 50 W or 100 W. 

□ Put in solvent of 1165 at 90 °C for at least half an hour. 

Repeat the last two steps several times until it is fully cleaned. 

□ DI rinse 

□ Check the left SiO2 thickness with profiler. 

Real etch thickness: 1270 nm (Centre ring) ~ 1302 nm (Edge TLM) 

□ Calculate the SiO2 etch rate. 

Etching rate: 270 nm/min 

 

10. AlInGaAs and InGaAs etch (dry etch) 

□ Cl2/CH4/H2 plasma in Oxford ICP system. 

□ Recipe: InP 4 micron JOC EF or Hua recipe 

□ Aimed etch thickness: 2.5~3 microns 

□ Estimated etch time: 3 mins~3 mins+30s, Start at 2 mins+30 s, Add 30 s, then add  

another 30 s. 

Estimated etch rate: 0.5~1.0 micron/min, 90 nm/s (PEVCVD SiO2) 

□ Test the etch thickness with profiler: 

Remember to test the thickness of SiO2 substrate every time!  

□ Test the surface roughness after etch: 

 

11. Photo-lithography (Layer: I MESA L2) 

□ Clean mask with 1165 (90 ˚C) and then dip in mask cleaning sink.  

□ Clean the mask with N2 gas 

□ DI rinse the wafer 

□ Prebake on >100 ˚C for more than 5 mins 

□ Clean the wafer with N2 gas 

□ Spin on HMDS: 4000 rpm for 60 s 

□ Spin on S1828: 2000 rpm for 60 s 

□ EBR [wipe paper + acetone] 

□ Bake on the hotplate at 115 ˚C for 2 mins  

□ Expose with MA1006:Vacuum contact, <=18 s 

□ Develop: MF319 for 35~47 s, which should be divided by several steps 
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□ DI rinse  

□ Blow dry by N2 gas 

□ Oven baking at 90 ˚C for 30 mins  

□ Use O2 plasma Asher for 60 s at 50 W or 100 W 

Resolution: < 2 µm 

If it is necessary to use O2 plasma to clean the surface, it is better to be carried on  

after hard baking. 

 

12. ICP-SiO2 etching 

□ CHF3/CF4 plasma in STS ICP system  

□ Recipe: OXIDEETCH 

□ Aimed etching thickness: >600 nm, Time: 2mins+45s 

Etching rate: around 250~280 nm/min 

□ Select several points on the wafer with no PR and Si test piece to check whether  

there is SiO2 left  

 

13. Remove PR 

□ O2 plasma Asher for 2~3 minute at 50W or 100W. 

□ Leave in solvent of 1165 at 90 °C for at least half an hour. 

Repeat last two steps several times until it is fully cleaned. 

□ DI rinse 

□ Check the SiO2 thickness with profiler. 

□ Calculate the SiO2 etching speed with the protection of PR: 

□ Test the sample surface roughness.  

 

14. Etch of AlInGaAs and InGaAs (dry etch and wet etch) 

□ Cl2/CH4/H2 plasma in Oxford ICP system. 

□ Recipe: InP 4 micron JOC EF  

□ Aimed etching thickness: 2.6~3 microns (N contact mesa). >2.4 microns (Intrinsic  

mesa), Estimated time: > 3 mins  

for sample, Start at 2 mins+30s, then another 30 s 

Esitmated etching rate:  

0.825-0.85 micron/minutes (Typically 0.8-0.9 micron per minutes for InP),  
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0.5~1.0 micron/min (sample on SI substrate), 

90 nm/s (PEVCVD-SiO2) 

□ Test the etch thickness with profiler 

□ Record thickness of SiO2 after semiconductor etch  

□ Quick dip in diluted BOE (BOE: DI=1:4) for 5 s to remove the oxidation on the  

sidewall and N contact surface. 

 □ Dip in H3PO4: H2O2: H2O = 1:1:8 for 15 s to remove the polymer on the sidewall  

and polish the side wall and bottom surface.  

□ Dip in HCl:H3PO4=1:4 for more than 1 min to remove part of InP to making sure  

that the substrate is fully isolated.(This step could be moved after the N metal  

deposition) 

 

15. Strip SiO2 hard mask 

□Diluted BOE (BOE:DI=1:4) for tens of seconds.  

Make sure the etch rate then add 10 s at each step. 

Etch rate: 2 or 3 nm/s (10 nm/s at first time).If use pure BOE, the speed is 9 nm/s. 

□Test the thickness.  

□Test the sample surface roughness 

 

16. Photo-lithography (Layer: N METAL N L3) 

□ Clean mask with 1165 (90 °C) and then dip in mask cleaning sink.  

□ Spin on HMDS at 1000 rpm for 1 min 

□ Spin on LOR10A at 1000 rpm for 1 min 

□ EBR [wipe paper + acetone] 

□ Soft bake at 50 °C for <5 mins 

□ Spin on HMDS at 2000 rpm for 60 s  

□ Spin on AZ5214E at 2000 rpm for 60 s 

□ Soft bake on hotplate at 90 °C for 1 min 

□ Spin on HMDS at 2000 rpm for 60 s  

□ Spin on AZ5214E at 2000 rpm for 60 s 

□ Soft bake on hotplate at 90 °C for 1 min+30 s 

□ Spin on HMDS at 2000 rpm for 60 s 

□ Spin on AZ5214E at 2000 rpm for 60 s 
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□ EBR [wipe paper + acetone] 

□ Soft bake on hotplate at 90 °C for 3 mins 

□ Exposure with mask aligner MA1006: Vacuum contact， 1.8 s 

□ Reverse bake on hotplate at 120 °C for 2 mins. 

□ Flood exposure: 70 s 

□ Develop with developer MF 26A for 25~30 s.  

□ Observe at the microscope to check 

□ Develop with MF319 for 1 min, 10 s more if that is not so clear. 

□ Use O2 plasma Asher for 2~3 mins at 50 W or 100 W.  

 

17. N metal evaporation 

□ BOE: DI (1:10) dip for 10 s before n-metal evaporation!! 

□ Flat evaporation of n metal 

 

18. N-metal lift-off  

□ Leave in 1165 at 90 °C for at least half an hour 

□ Lift-off  

□ DI rinse + N2 blow dry 

□ Observe under the microscope and record the image 

□ Dip in HCl:H3PO4=1:4 for more than 1 min to remove part of InP to make sure  

the substrate is fully isolated. 

 

19. Deposit SiNx with PECVD 

□ Load sample at 20 °C then ramp to 300 °C for deposition 

Real load temperature: 30~35 °C,  

□ Recipe: mfsin, Temperature: 300 °C 

□ Aimed thickness: ~190 nm, 

Deposition Time: 19 min, Speed: ~10 nm/min,  

□Test the film thickness  

Real deposition thickness:  

SiNx-169 nm~159 nm (Edge alignment mark) 

Time: 16 mins, Average rate: 10.25 nm/min 
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20. Photo-lithography (Layer: N WINDOW L4) 

□ Clean mask with 1165 (90 °C) and then dip in mask cleaning sink.  

□ Clean the mask with N2 gas  

□ DI rinse  

□ Prebake at >100 ˚C for a 2 or 3 minutes 

□ Clean the wafer with N2 gas 

□ Spin on HMDS at 4000 rpm for 60 s 

□ Spin on S1828 at 1000 rpm for 60 s 

□ EBR [wipe paper + acetone] 

□ Bake on hotplate at 115˚C for 5 minutes+10s 

□ Expose (MA1006): Vacuum contact, 30 s,  

□ Develop: MF319 for 23~25 s 

□ DI rinse  

□ Blow dry N2  

□ Oven baking: 90˚C for 30 minutes 

□ Use O2 plasma Asher for 2~3mins at 50 W or 100 W.  

 

21. SiNx etch 

□ Use CF4 plasma Asher. 

□Test the thickness. (Wafer and Si test piece). 

Etch rate: 20~70 nm/min. 

□ Diluted BOE (BOE:DI=1:4) or BOE dip. 

 

22. Remove PR:  

□ Use O2 plasma Asher for 2~3 mins at 50 W or 100 W. 

□ Dip in the solvent of 1165 in 90 ˚C for at least half an hour. 

Repeat the last two steps several times until it is fully cleaned. 

If it is still not clean, use woollen stick to gently remove the left PR while keep the  

sample at the solvent of 1165. 

□ DI rinse and dry with N2 gas. 

Repeat from Step 20 to Step 22. The mask layer should be (Layer: P WINDOW L5),  

Adjust the exposure time to be 20 s and then reduce the development time as well. 
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23. Photo-lithography (Layer: BOND PAD)  

□ Clean mask  

□ Spin on HMDS at 1000 rpm for 1 min 

□ Spin on LOR10A at 1000 rpm for 1 min 

□ EBR [wipe paper + acetone] 

□ Soft bake at 50 °C for 5 mins 

□ Spin on HMDS at 2000 rpm for 60 s  

□ Spin on AZ5214E at 2000 rpm for 60 s 

□ Soft bake on hotplate at 90 °C for 1 min 

□ Spin on HMDS at 2000 rpm for 60 s  

□ Spin on AZ5214E at 2000 rpm for 60 s 

□ Soft bake on the hotplate at 90 °C for 1min+30s 

□ Spin on HMDS at 2000 rpm for 60s  

□ Spin on AZ5214E at 2000 rpm for 60s 

□ EBR [wipe paper + acetone] 

□ Soft bake on hotplate 90 °C for 3mins 

□ Exposure with mask aligner MA1006: Vacuum contact, 1.8s 

□ Reverse bake on hotplate at 120 °C for 2mins. 

□Flood exposure: 70 s 

□Develop with develop MF 26A: 25-30 s. (Very clear under-cut) 

□ Observe at the microscope to check 

□ Develop with MF319 for 1 min, 10 s more if that is not so clear. 

□ Use O2 plasma Asher for 2~3 mins at 50 W or 100 W.  

 

24. Bond metal evaporation in 360° rotation 

□ Diluted BOE: DI (1:10) dip for 10 s. 

□ 360° rotation evaporation of Ti:Au=20:500. 

 

25. Bond-metal lift-off  

□ Leave the sample in 1165 solvent at 90 °C for 0.5 hour or leave it overnight with the  

hotplate switched off. 

□ DI rinse + N2 blow dry  
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26 .Quick IV  

□ Quick IV test to check the diode junction quality   
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