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Abstract  

The accruing data linking the gut microbiota to the development and function of the 

central nervous system has been proposed as a paradigm shift in neuroscience. 

Neuroimmune, neuroendocrine and neural communication pathways exist between host 

and microbe. These pathways are components of the brain-gut-microbiota axis and 

preclinical evidence suggests that the microbiota can recruit this bidirectional 

communication system to modulate brain development, function and behaviour. 

Dysfunctional neuro-immune and neuro-endocrine pathways are implicated in stress-

related psychiatric disorders. To this end, we proposed that the gut microbiota, by 

modulating these pathways, plays an influential role in the pathophysiology of 

depression.  

 

We demonstrated that depression is associated with altered gut microbiota composition 

with decreased richness and diversity. Furthermore, we have shown that transferring the 

gut microbiota from depressed patients to microbiota-depleted rats can induce 

behavioural and physiological features characteristic of depression in the recipient 

animals, including anhedonia and anxiety-like behaviours, as well as alterations in 

tryptophan metabolism. Although we provide evidence that the gut microbiota is altered 

in depression and that this alteration could have a role in prominent features of 

depression, an interventional study based on targeting the gut microbiota in healthy males 

using Lactobacillus rhamnosus (JB-1) was not superior to placebo in modifying self-

reported stress, HPA axis response to an acute stressor, inflammation, cognition or 

neurophysiological measures. 

 

Taken together, these findings have furthered our understanding of the pathophysiology 

of depression. By incorporating the gut microbiota into existing neurobiological models 

of depression a more comprehensive model has been developed. The successful 

translation of this work could lead to stratification based on gut microbiome composition 

and could deliver further diagnostic accuracy to improve patient phenotyping for 

treatment selection in future studies in psychiatric populations.  

 

Furthermore, our findings advance the possibility of targeting the gut microbiome in the 

treatment and prevention of stress related disorders and offer an important future strategy 

in psychiatry. 
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1.1 Epidemiology of Depression  

Depression is a complex, heterogeneous disorder, which accounts for almost 10% of all 

medical disability, making it the leading cause of medical disability in the United States 

and Canada, with an economic burden estimated at $210.5 billion dollars (Greenberg et 

al., 2015, WHO, 2008). In Europe, the economic cost of depression corresponds to 

approximately 1% of the total economy (Sobocki et al., 2006). Worldwide, depressive 

spectrum disorders affect 121 million people and by 2020, the WHO has predicted that 

depression will be second only to cardiovascular disease as the leading causes of total 

disease burden worldwide, measured by disability adjusted life years (Whiteford et al., 

2015, WHO, 2008).  

 

20% of women and 15% of men suffer at least one episode of depression during their 

lifetime (Hirschfeld, 2012, Kessler et al., 2007) and studies indicate that the prevalence 

of depression may be increasing, with an increased lifetime risk for younger cohorts 

(Andrade et al., 2003, Hidaka, 2012). Of those that develop a depressive episode 50% 

will have another episode (Eaton et al., 2008) and the risk of recurrence increases with 

residual symptoms (Nierenberg et al., 2010) and with longer, more frequent, (1985, 

Kessing and Andersen, 2005) and more severe episodes (Kessing, 2004). A large 

(N=7076) prospective epidemiological survey, The Netherlands Mental Health Survey 

and Incidence Study (NEMESIS), found that 50% of depressed participants recovered 

within 3 months, 63% within 6 months, 76% within 12 months, whereas 20% did not 

recover at 24 months (Spijker et al., 2002).  

 

The median age of onset of depression is approximately 30 years (Kessler et al., 2005), 

though up to 50% have had depressive symptoms prior to the identified episode (Horwath 

et al., 1992). The median duration of a depressive episode is approximately 3 months 

(Eaton et al., 2008, Spijker et al., 2002). On average those with a history of depression 

will have on average 5 to 9 episodes (Kessler and Walters, 1998, Kessler et al., 1997). 

The prevalence of depression declines in the community dwelling elderly (>65years) 

(Blazer and Hybels, 2005) and this decline does not appear to be due to increased 

confounding with physical disorders (Kessler et al., 2010). However, not all studies are 

consistent (Forlani et al., 2013).  
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Epidemiological studies have consistently demonstrated a higher lifetime prevalence of 

depression in women. Women have a higher lifetime prevalence of depression in high, 

middle and low income countries (WHO, 2008) and this higher prevalence is due to high 

risk of first onset of depression and not to persistence or recurrence (Kessler, 2003). The 

higher prevalence is not limited to depression, as women have higher rates of other stress-

related disorders (Weich et al., 2001). The higher rates of depression and anxiety in 

women have implications for future generations as maternal depression has negative 

effects on perinatal outcomes (Grigoriadis et al., 2013). Indeed, preclinical studies 

indicate that maternal stress can be transferred to the next generation by a number of 

mechanisms, including epigenetic modification (Franklin et al., 2010, Pena et al., 2013).  

 

However, it is interesting to note that women and men experience depression differently 

(Addis, 2008). Men are more likely to react with anger or self-destructive behaviour, and 

engage in substance abuse with lower levels of impulse control compared to women 

(Winkler et al., 2005). In a secondary analysis of the National Comorbidity Survey 

Replication (Kessler et al., 2003), men reported higher rates of anger, aggression, 

substance use and risk taking compared to women and when this is taken into account 

men and women met criteria for depression in equal proportions 30.6% men and 33.3% 

of women (Martin et al., 2013). 

 

1.2 Symptoms and Classification of Depression 

The DSM-5 criteria for Major Depressive Disorder (MDD) requires, at least 5 of the 

following 9 symptoms, present nearly every day for more than two weeks; depressed 

mood or irritable most of the day, nearly every day, as indicated by either subjective 

report (e.g., feels sad or empty) or observation made by others (e.g., appears tearful), 

decreased interest or pleasure (anhedonia) in most activities, most of each day, significant 

weight change (5%) or change in appetite, change in sleep: insomnia or hypersomnia, 

change in activity: psychomotor agitation or retardation, fatigue or loss of energy, 

guilt/worthlessness: feelings of worthlessness or excessive or inappropriate guilt, 

concentration: diminished ability to think or concentrate, or more indecisiveness, 

suicidality: thoughts of death or suicide, or suicide plan. Mood must represent a change 

from the person's baseline and impair social and occupational/educational function 

(American Psychiatric Association, 2013).  
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The current classification systems separate depression into several categorical subtypes 

including; melancholic, atypical, psychotic, postpartum, and seasonal affective disorder. 

The melancholic subtype is defined as lacking mood reactivity and loss of pleasure with 

at least three of the following: distinct quality of mood, mood worsening in the morning, 

early morning awakening, psychomotor retardation, significant anorexia or weight loss, 

and excessive or inappropriate guilt. The atypical subtype is defined as having mood 

reactivity and at least two of the following: hyperphagia, hypersomnia, leaden paralysis, 

and a longstanding pattern of interpersonal rejection sensitivity (American Psychiatric 

Association, 2013). 

 

1.3 Health implications of Depression  

The adverse consequences of depression are well established, and broadly encompass 

psychiatric and medical co-morbidities. Apart from the negative subjective experience 

and functional disability, chronic or recurrent depression results in an increased mortality 

rate (relative risk =1.5) (Osby et al., 2001). The lifetime completed suicide rate for men 

is 7% and 1% for women (Blair-West et al., 1999, Nordentoft et al., 2011). Depression 

is highly co-morbid with other psychiatric disorders. Nearly half of those meeting 

lifetime criteria for depression also have met criteria for a comorbid anxiety disorder 

(Kessler et al., 2008, Kessler et al., 1996, Regier et al., 1998, Shalev et al., 1998) and 

20% of those with depression have a co-morbid substance use disorder (Conway et al., 

2006, Grant et al., 2004). 

 

1.3.1 Cardiovascular disease  
Depression worsens the prognosis of medical co-morbidities such as cardiovascular 

disease (CVD), diabetes and obesity. Depression is an independent risk factor for cardiac 

morbidity and mortality (Larsen et al., 2013, Versteeg et al., 2013) and the prevalence of 

depression in cardiac disease is 15 – 20% (Celano and Huffman, 2011). The relationship 

between CVD and depression is bidirectional, as depression can increase the risk of CVD 

and CVD can increase the risk of depression (Plante, 2005). Although a direct causal link 

between depression and CVD has not been established, the aetiology is likely to be 

multifactorial, and involves the interaction of the autonomic nervous system, the 

neuroimmune, the neuroendocrine and the vascular systems.  
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Depression is associated with over activity of the Hypothalamic Pituitary Adrenal (HPA) 

axis and Sympathetic Adrenal Medullary (SAM) axes, both of which can result in 

vascular endothelial cell damage (Joynt et al., 2003). Inflammation, linked to endothelial 

dysfunction is the principal pathophysiological process in CVD and can lead to 

atherosclerosis and atherothrombosis (Halaris, 2013, Nymo et al., 2014). Chronic stress 

can result in a pro-inflammatory state, and the increase of pro-inflammatory cytokines 

can result in platelet aggregation and contribute to atherosclerosis (Elsenberg et al., 

2013). Neurovascular dysfunction and hyper permeability of the blood-brain barrier due 

to oxidative stress and neuroinflammation are evident in depression (Najjar et al., 2013a). 

Thus, stress acting via inflammatory pathways could be a common underlying 

mechanism that contributes to CVD and depression (see section 1.4.8).  

 

1.3.2 Diabetes  
20% of people with diabetes have a co-morbid diagnosis of depression (Ali et al., 2006). 

Type 2 diabetes mellitus is a risk factor for the development of depression, with a 15–

24% increased risk compared to people without diabetes (Mezuk et al., 2008, Nouwen et 

al., 2011). A meta-analysis investigating the link between prevalence of depression, 

impaired glucose metabolism, undiagnosed diabetes, previously diagnosed type 2 

diabetes and normal glucose metabolism found individuals with previously diagnosed 

diabetes have an increased risk of depression relative to those with impaired glucose 

metabolism or undiagnosed diabetes (Nouwen et al., 2011). A co-morbid diagnosis of 

depression and diabetes is associated with an increased risk of all-cause mortality (hazard 

ratio = 1.5) (van Dooren et al., 2013) and a number of adverse consequences including; 

lower levels of physical activity (Koopmans et al., 2009), less healthy eating behaviours 

(Egede, 2005) and suboptimal glycemic control (Lustman and Clouse, 2005), lower 

quality of life (Schram et al., 2009) and decreased medication adherence (Makine et al., 

2009). 

 

The role of inflammation in the pathogenesis of type 2 diabetes is now well established 

(Donath, 2014). In a prospective study of community dwelling older adults both high C-

reactive protein (CRP) levels and elevated depressive symptoms were associated with 

risk of diabetes (Au et al., 2014). In a cohort of 1,790 adult participants with newly 

diagnosed type 2 diabetes, CRP, interleukin (IL) 1β, IL-1 receptor antagonist, and 
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monocyte chemotactic protein-1 were significantly associated with depressive symptoms 

in type 2 diabetes (Laake et al., 2014).  

 

1.3.3 Obesity/Metabolic syndrome  
A meta-analysis of 15 studies, indicated that obesity was associated with an increased 

risk of depression and depression was associated with an increased the risk of developing 

obesity (Luppino et al., 2010). A prospective cohort study involving 3054 participants 

found that the atypical subtype of depressive disorder at baseline resulted in an increase 

in adiposity during the 5.5 years of follow-up (Lasserre et al., 2014). Consideration of 

metabolic parameters is important. A meta-analysis of 30,337 men and women aged 15–

105 years, found that the metabolically healthy obese subjects had a slightly increased 

risk of depressive symptoms compared with non-obese, but the risk of depressive 

symptoms was greater in the metabolically unhealthy obese individuals (Jokela et al., 

2013). A prospective study of community dwelling older adults, found that metabolically 

unhealthy obese subjects had an increased risk of depressive symptoms at follow-up 

whereas the metabolically healthy obese did not (Hamer et al., 2012).  

 

Chronic low-grade inflammation has been suggested as a potential mediator linking 

depression, obesity and metabolic syndrome (Kraja et al., 2007, Wellen et al.). The 

English longitudinal study of ageing found that obesity at baseline was associated with 

elevated levels of depressive symptoms at 4 year follow-up and that CRP explained 

approximately 20% of the obesity-related longitudinal change in depression scores (Daly, 

2013). Despite the relationship between depression, obesity and metabolic syndrome, 

studies investigating weight reduction and dietary intervention on depressive symptoms 

are inconsistent. Although it has been suggested that a Mediterranean diet can reduce the 

incidence of depression (Sanchez-Villegas et al., 2009), a large meta-analysis and meta-

regression found no relationship between changes in weight and changes in symptoms of 

depression in lifestyle modification interventions (Fabricatore et al., 2011). Conversely, 

a study using a subgroup of the Reduction of the Metabolic Syndrome in Navarra-Spain 

cohort (RESMENA-S) showed that a six month hypocaloric diet reduced depressive 

symptoms, as measured by the Beck Depression Inventory and reduced body fat and CRP 

levels (Perez-Cornago et al., 2014).  
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1.3.4 Immune Disorders 
As discussed above chronic medical disorders and depression co-occur at high levels 

(Farmer et al., 2008). Similar to all medical disorders, the relationship between disorders 

of the immune system and depression is bidirectional and involves the interaction of 

biological, psychological and sociological factors. Multiple sclerosis, a demyelinating 

disease with CNS inflammation is associated with a range of neuropsychiatric 

manifestations (Feinstein et al., 2013). Lifetime prevalence of major depression in 

multiple sclerosis can be as high as 50% (Feinstein, 2004, Minden and Schiffer, 1990). 

Accumulating evidence from preclinical studies suggests that some aspects of depression 

and fatigue in MS may be linked to inflammatory markers (Gold and Irwin, 2009). 

Similarly, disorders of the immune system that primarily involve systems outside the 

CNS, such as rheumatoid arthritis, sarcoidosis and psoriasis are associated with higher 

levels of depression (Chang et al., 2001, Kurd et al., 2010, Margaretten et al., 2011, 

Soderlin et al., 2000, Zyrianova et al., 2006). Interestingly, patients with psoriasis treated 

with the monoclonal antibody, ustekinumab, reported significant improvements in 

symptoms of depression and anxiety compared to placebo (Langley et al., 2010). For 

further discussion of the relationship between depression and immune dysregulation (see 

section 1.4.2).  

 

1.4 Neurobiology of Depression  

For nearly four decades the prevailing biological theory stated that depression was a 

neurochemical disorder arising from dysfunction of brain monoamine systems including 

the serotonergic, noradrenergic, and/or dopaminergic pathways (Hirschfeld, 2000, 

Schildkraut, 1965). This hypothesis arose from observations that the administration of 

classical antidepressants increased monoaminergic function, whereas monoamine 

depleters such as reserpine altered mood (Davies and Shepherd, 1955, Freis, 1954, Shore 

et al., 1955). Indeed, most currently available antidepressants enhance some aspect of 

monoaminergic function.  

 

The noradrenergic system projects from the brainstem extensively throughout cortical 

and subcortical structures (Rinaman, 2011). Cell bodies containing noradrenaline are 

found within the relatively discrete locus coeruleus and within the lateral tegmental 

nuclei that are more loosely scattered throughout the ventral pons and medulla. 

Noradrenergic neurotransmission in the brain plays a key role in general cognitive 
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processes (Sara, 2009). The actions of noradrenaline are mediated by the family of G 

protein-coupled receptors known as the adrenergic receptors, and levels of extracellular 

noradrenaline are regulated by synaptic clearance via the noradrenaline transporter and 

modulation of  noradrenaline metabolism (Cotecchia, 2010).  

 

The serotonergic system develops early in the course of embryogenesis and has 

widespread projections from the dorsal raphe nuclei in the brainstem to the forebrain 

(Kinast et al., 2013). Serotonin is synthesized from the essential amino acid L-tryptophan 

and the rate limiting step in the pathway is controlled by tryptophan hydroxylase (TPH) 

which converts tryptophan to 5-hydroxytryptophan. Tryptophan is required for protein 

synthesis and is the precursor to a number of other bioactives such as melatonin, 

tryptamine and kynurenines (Ruddick et al., 2006). Preclinical studies have shown 

serotonin is involved in the modulation of anxiety, conditioned fear, stress responses, and 

reward (Asan et al., 2013).  

 

There are 15 subtypes of serotonin (5-HT) receptors, which are also found outside of the 

CNS. Serotonin is produced in the platelets (Berger et al., 2009), with approximately 

95% of the body’s serotonin located within the gastrointestinal tract, primarily 

synthesised by enterochromaffin cells (Gershon and Tack, 2007). The presynaptic 5-

HT1A autoreceptors detect serotonin in the extracellular space and modulate the activity 

of the serotonin neuron (Celada et al., 2004). Meta-analyses of positron emission 

tomography studies reveal widespread reductions of approximately 10% in serotonin 

reuptake sites in major depression, mainly in the midbrain and amygdala (Gryglewski et 

al., 2014) and decreased 5-HT1A binding potential in the raphe, medial temporal lobe, 

and medial prefrontal cortex (Savitz et al., 2009).  Indeed, certain patients with low CSF 

5-hydroxyindoleacetic acid (5-HIAA) are prone to commit suicide (Mann et al., 1996), 

though the lower concentrations of 5-HIAA are not specific to depression, and have also 

been linked to aggressive behaviour (Moore et al., 2002).  

 

Although the monoamine theory has enjoyed considerable support, it is overly simplistic. 

This complex brain disorder requires a systems level approach, encompassing an 

understanding of the interaction of the environment on genes, molecules, cells, circuits 

and physiology. Indeed, depression involves a combination of abnormalities in genetic 

(Hyde et al., 2016, Karg et al., 2011), reward circuitry (Russo and Nestler, 2013), 
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neuroendocrine (Stetler and Miller, 2011), neuroimmune (Dinan, 2009b, Dowlati et al., 

2010), and metabolic systems (Jokela et al., 2014, Perez-Cornago et al., 2014). At the 

cellular level deficits in synaptic plasticity (Duman and Aghajanian, 2012) and impaired 

neurogenesis (Eisch and Petrik, 2012) have been demonstrated. We propose here that the 

microbiome is an additional system that needs to be considered when understanding the 

neurobiology of depression.   

 

1.4.1 Hypothalamic-pituitary-adrenal (HPA) axis in Depression  
Stress can be physical or psychological and has been defined as a state where homeostasis 

is threatened or perceived to be threatened (Bradley and Dinan, 2010). The HPA axis is 

the core endocrine stress system, and when the brain perceives a threat, the HPA, in 

conjunction with the Sympathetic Adrenal Medullary (SAM) axis, is activated. The 

paraventricular nucleus (PVN) in the hypothalamus regulates the neuroendocrine 

response whereas the amygdala regulates the majority of the autonomic and behavioural 

stress reactions in the brain (Kovacs, 2013). At the behavioural level, the HPA functions 

to mobilize adaptive behaviours and peripheral functions while inhibiting biologically 

costly behaviours (e.g. feeding, reproduction, growth) thus priming the body to adapt 

successfully to the environmental perturbation.  

 

At the molecular level corticotropin releasing hormone (CRH) and arginine vasopressin 

(AVP) regulate HPA activity, both of which are synthesized in the PVN. These hormones 

act on the anterior pituitary gland and cause the release of adrenocorticotropic hormone 

(ACTH). ACTH stimulates the release of glucocorticoids (cortisol) from the adrenal 

cortex which bind with specific intracellular receptors called the mineralocorticoid (Type 

I) and glucocorticoid receptors (Type II) which are located in multiple tissues throughout 

the body. The system works as a negative feedback loop, whereby glucocorticoids 

modulate their own secretion by acting at various levels of the HPA axis, such as the 

hippocampus, hypothalamus and pituitary. Cortisol is the main glucocorticoid (GR) in 

humans and high doses of exogenous steroids and high concentrations of endogenous 

glucocorticoids, as occurs in Cushing’s syndrome, can evoke depressive symptoms in 

some individuals (Marques et al., 2009, Pereira et al., 2010). 

 

Stressful life events are strongly associated with depression and the vast majority of first 

episodes are preceded by such triggers (Kendler and Gardner, 2010). A meta-analysis of 
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361 studies, including 18,454 individuals demonstrated that depressed individuals had 

increased cortisol and adrenocorticotropic hormone levels but not corticotropin-releasing 

hormone (Stetler and Miller, 2011). Different subtypes of depression may have different 

HPA axis profiles and this meta-analysis showed that there were cortisol differences 

between sub-groups of depression, with more pronounced differences in older inpatients 

who display melancholic or psychotic forms of depression. However, linking HPA 

profiles to depression sub-groups has been inconsistent. A study from the Netherlands 

Study of Depression and Anxiety cohort (Vreeburg et al., 2009) comprising 308 control 

subjects without psychiatric disorders, 579 persons with remitted major depressive 

disorder (MDD), and 701 persons with a current MDD diagnosis showed a significantly 

higher cortisol awakening response (CAR) in both the remitted and current MDD groups. 

Sub-group analysis revealed no association between CAR and atypical depression, 

though found higher CAR in those with co-morbid anxiety disorders.  

 

Chronic stress exposure may contribute to HPA hyperactivity by disrupting the 

glucocorticoid negative feedback system. Rodent models of chronic stress indicate that 

GRs are down regulated in several stress-sensitive brain regions such as the prefrontal 

cortex (PFC) and hippocampus (Mizoguchi et al., 2003). Early traumatic events, are of 

particular importance as they shape the development of neuroendocrine and neuro-

inflammatory response systems (DeSantis et al., 2011, Franklin et al., 2010, Pena et al., 

2013) and increase the risk of depression later in  life (Banyard et al., 2001, Dube et al., 

2001, Faravelli et al., 2012, Weber et al., 2013). These traumatic events in adulthood do 

not have the same impact on the HPA axis, suggesting that traumatic events during the 

period of brain development may result in persistent changes in the reactivity of the HPA 

axis (Klaassens, 2010, Klaassens et al., 2009). 

 

1.4.2 Cytokine Hypothesis of Depression  
Stress activates the innate immune system (Glaser and Kiecolt-Glaser, 2005). For 

example, stress induces an enhanced expression of proinflammatory factors cytokines 

(IL-1, IL-6, Interferon (IFN)-α, IFN-µ), macrophage migration inhibitory factor (MIF) 

(Bacher et al., 1998) and cyclooxygenase-2 (Madrigal et al., 2003). In clinical studies 

depression is associated with low grade inflammation with most consistent findings for 

elevations in IL-6, Tumour Necrosis Factor-α (TNF-α), and CRP (Dowlati et al., 2010, 

Howren et al., 2009), whereas negative acute-phase proteins (e.g. albumin, retinol 
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binding protein) are decreased (Maes, 1993). Increased levels of peripheral blood 

chemokines and cellular adhesion molecules, stress induced nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) and T cells bearing T cell activation 

markers, such as CD2+CD25+, CD3+CD25+, and HLA-DR+ have also been described 

in depression (Maes, 2011). Notwithstanding the fact that meta-analyses consistently 

demonstrate increased peripheral inflammatory biomarkers at the group level in 

depression, it is likely that these biomarkers relate to sub groups of depressed patients, 

making up approximately one third of the total depressed group (Dinan, 2009a, Raison 

and Miller, 2013).  

 

Some studies demonstrate that increased inflammation is a state dependent phenomena, 

with a return of inflammatory biomarkers to control levels post antidepressant treatment 

(Dahl et al., 2014, Hannestad et al., 2011, Miller et al., 2009a, O'Brien et al., 2006). 

Indeed, failure to respond to antidepressant treatment is associated with persistent 

elevations in inflammatory biomarkers (Fitzgerald et al., 2006, Harley et al., 2010, 

O'Brien et al., 2007). In longitudinal studies, raised CRP and IL-6 are associated with the 

development of depressive symptoms (Valkanova et al., 2013). In a prospective study, 

participants in the top third of IL-6 values compared with the bottom third at age 9 years 

were more likely to be depressed at age 18 years (Khandaker et al., 2014).  

 

Several studies demonstrate that depressed patients with suicidal ideation may differ 

from those who are not depressed (Janelidze et al., 2011). A study of 76 depressed 

patients and 48 healthy controls using an inflammatory index composed of IL-6, TNF-α, 

IL-10, and CRP showed a significantly higher inflammatory index score in depressed 

patients with high suicidal ideation compared to depressed patients with lower suicidal 

ideation and controls (O'Donovan et al., 2013). In a post mortem study using quantitative 

reverse transcriptase (RT)-PCR to measure mRNA expression in 34 completed suicide 

victims and 17 comparison subjects, there were higher levels of mRNA expression in the 

orbitofrontal cortex for IL-4 in females and IL-13 in male suicide victims compared to 

those who died by other causes (Tonelli et al., 2008). Although this study should be 

interpreted with caution as protein levels were not measured, other post-mortem studies 

point to evidence of microglial activation in individuals who were depressed and died by 

suicide (Steiner et al., 2008). Cytokines can induce depressive symptoms in non-

depressed individuals (Raison et al., 2005). A meta-analysis of 26 studies investigating 
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the administration of IFN-α in Hepatitis C patients demonstrated a 25% incidence of 

depression (Udina et al., 2012) and this IFN-α induced depressive effect can be prevented 

and treated by antidepressants (Hauser et al., 2002, Kraus et al., 2008).  

 

1.4.3 Sickness behaviour 
Peripheral infection results in the activation of immune, endocrine, autonomic and 

behavioural changes in the host (Dantzer et al., 2008). The adaptive sickness behaviour 

that ensues to conserve energy to combat acute inflammation comprises decreased motor 

activity, social withdrawal, reduced food and water intake, increased slow-wave sleep 

and altered cognition (Dantzer, 2001). Many of these factors are evident in depression 

(including behavioral inhibition, anorexia and weight loss, anhedonia, fatigue, 

hyperalgesia, malaise, anxiety and neurocognitive symptoms), however, whereas 

sickness behaviour is adaptive, the chronic inflammatory processes in depression, result 

in neural tissue damage and consequent functional and cognitive sequelae (Maes et al., 

2012a). 

 

In both human and animal studies cytokines play a vital role in this process (for reviews 

see; (Dantzer and Kelley, 2007, McCusker and Kelley, 2013b). Peripheral or central 

administration of IL-1β or TNF-α to rodents induces the full spectrum of behavioural 

signs of sickness (Yirmiya, 1996) which occurs in a time and dose dependent manner. In 

contrast to IL-1β and TNF-α, IL-6 administered peripherally or centrally has no 

behavioural effect despite its ability to induce a fever response (Dantzer, 2001). Central 

administration of anti-inflammatory cytokines IL-10 or insulin-like growth factor I (IGF-

I), a growth factor that behaves like an anti-inflammatory cytokine in the brain, attenuates 

behavioural signs of sickness induced by centrally injected lipopolysaccharide (LPS) 

(Bluthe et al., 1991). Gram-negative bacteria have an asymmetric outer membrane, in 

which the inner leaflet consists of phospholipid and the outer leaflet is comprised of 

lipopolysaccharide (LPS) (Raetz and Whitfield, 2002). Peripheral administration of LPS 

induces the expression of IL-1β (van Dam et al., 1992) and other pro-inflammatory 

cytokine mRNAs and proteins centrally (Quan et al., 1999). Importantly, this expression 

occurs at doses of LPS that do not cause sepsis. The subclinical low-dose LPS skews 

macrophages into a mild proinflammatory state through cell surface TLR4, IL-1R-

associated kinase-1, and the Toll-interacting protein, and induces activating transcription 

factor 2 through Toll-interacting protein-mediated generation of mitochondrial reactive 



22 
 

oxygen species, allowing mild induction of proinflammatory mediators (Maitra et al., 

2012). Indeed, both acute and chronic peripheral administration of LPS acting via TLRs 

increased the transcription of central IFN stimulated genes (Thomson et al., 2014). 

 

Furthermore, peripherally administered LPS stimulates brain 5-HT transporter (SERT) 

activity, and is associated with increased depressive like behaviours and this was 

dependent on IL-1R and p38 MAPK pathways (Zhu et al., 2010). Antidepressants can 

attenuate the effects of LPS (Yirmiya et al., 2001) and inhibit microglial TNF-α, nitric 

oxide production (Tynan et al., 2012) and IL-6 production (Hashioka et al., 2007). In 

humans it has been shown that low-dose endotoxemia can modulate emotional and 

cognitive functioning. In a double-blind, crossover study, 20 healthy male volunteers 

underwent an intravenous injection of Salmonella abortus equi endotoxin or saline in two 

experimental sessions and completed psychological and neuropsychological tests at 1, 3, 

and 9 hours post injection. The Endotoxin increased the circulating levels of TNF-α, 

soluble TNF receptors, IL-6, IL-1 receptor antagonist, and cortisol. After endotoxin 

administration, the subjects showed a transient significant increase in the levels of 

anxiety and depressed mood, verbal and nonverbal memory functions were significantly 

decreased. There were significant positive correlations between cytokine secretion and 

endotoxin-induced anxiety, depressed mood and decreases in memory performance 

(Reichenberg et al., 2001). The endotoxin had no effects on physical sickness symptoms. 

Endotoxin induced increases in IL-6 and TNF-α levels have been shown to be associated 

with feelings of social disconnection, depressed mood (Eisenberger et al., 2010a) and 

memory disturbance (Carroll et al., 2011b, Cohen et al., 2003, Krabbe et al., 2005). 

 

1.4.4 Mechanisms of cytokine effects on the brain  
There are a number of possible mechanisms by which increased levels of cytokines in 

the periphery can reach and affect the brain. These have been summarized by Haroon et 

al and include passage through leaky regions in the BBB such as circumventricular 

organs, active transport through transport molecules, activation of cells lining the 

cerebral vasculature (endothelial cells and perivascular macrophages) binding to 

cytokine receptors associated with the vagus nerve, stimulating the HPA axis at the 

anterior pituitary or hypothalamus and recruitment of activated cells such as 

monocytes/macrophages from the periphery to the brain (Haroon et al., 2012). More 

recently functional lymphatic vessels lining the dural sinuses have been discovered, 
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which serve as an additional route by which immune cells can communicate with the 

CNS (Louveau et al., 2015).  

 

Through activation of the intracellular signalling pathway mitogen-activated protein 

kinase, cytokines can increase the number and function of the reuptake pumps for 

serotonin, noradrenaline, and dopamine, which in turn can reduce the availability of these 

neurotransmitters within the synaptic cleft (Miller et al., 2013). Preclinical studies have 

demonstrated that increased inflammatory cytokines reduce central levels of brain 

derived neurotrophic factor (BDNF) and neurogenesis, leading to depressive-like 

behaviour (Koo and Duman, 2008). However, the relationship between peripheral and 

central inflammatory markers and antidepressants is complex (Warner-Schmidt et al., 

2011) and it remains unclear which pathways are most relevant for cytokine signal 

transmission in stress related disorders such as depression.  

 

There is some evidence, albeit from small studies of short duration, suggesting that anti-

inflammatory agents such as non-steroidal anti-inflammatory drugs (NSAIDS) and 

cytokine inhibitors reduce depressive symptoms (Kohler et al., 2014). For those 

depressed patients with raised inflammatory markers, this raises the prospect of whether 

reducing the low grade inflammation could reduce depressive symptoms. Although, a 

randomized controlled trial of the monoclonal antibody infliximab, a TNF-α antagonist, 

was not superior to placebo in reducing depressive symptoms overall, in those patients 

with high baseline CRP levels there were greater reductions in depressive symptoms than 

those with low CRP levels (Raison et al., 2013). Another study showed that CRP level 

at baseline differentially predicted treatment outcome with escitalopram or nortriptyline 

(Uher et al., 2014). These studies provide the impetus for stratification of depressed 

patients based on inflammatory profiles to advance personalized medicine. Though 

development of more nuanced profiles of inflammatory proteins and gene expression, as 

well as cellular immune parameters, likely represent the future for predictors and targets 

of response to anti-inflammatory therapies (Miller and Raison, 2015, Miller and Raison, 

2016).  

 

The brain regions most reliably identified as being most affected by administration of 

inflammatory stimuli include the basal ganglia and the dorsal anterior cingulate cortex 

(dACC). The dACC part of the brain’s limbic system is involved in cognitive and 
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emotional processing. Cytokines can induce increases in neural activity most strongly in 

either the subgenual or the dorsal area of the dACC and have been associated with the 

development of mood and anxiety symptoms (Harrison et al., 2009, Miller et al., 2013, 

Slavich et al., 2010). Cytokines can impair basal ganglia functioning by known inhibitory 

effects of cytokines on dopamine signalling in the CNS (Felger and Miller, 2012).  

Reductions in basal ganglia activity have been noted in more posterior regions, where 

they associate with fatigue, and in more ventral regions (such as the nucleus accumbens), 

where they have been associated with the development of anhedonia (Capuron et al., 

2012, Felger et al., 2013).  

 

1.4.5 Microglia 
Microglia are central to the inflammatory process and a source of cytokines (Facci et al., 

2014). These phagocytic innate immune cells account for approximately 10% of cells in 

the brain (Prinz et al., 2014) and contribute to the plasticity of neural circuits by 

modulating synaptic architecture and function (Graeber and Streit, 2010). Microglial 

process motility can be modulated by glutamatergic and GABAergic neurotransmission 

(Fontainhas et al., 2011). Preclinical studies have shown that acute stress results in 

microglia activation and increased levels of proinflammatory cytokines in areas such as 

the hippocampus (Frank et al., 2007) and hypothalamus (Blandino et al., 2009, Sugama 

et al., 2011). 

 

Most studies show increases in activated microglia in response to chronic stress 

(Bollinger et al., 2016, Hinwood et al., 2011, Hinwood et al., 2012, Tynan et al., 2010). 

Preliminary changes in the microenvironment of the microglial may result in a 

susceptibility to a secondary inflammatory stimulus (Perry and Holmes, 2014). This 

concept of microglia priming may be of relevance to depression, which often requires 

multiple environmental “hits” (Fenn et al., 2014). In an environmental two-hit rodent 

model in which the first experimental manipulation targeted pregnant dams, and the 

second manipulation was given to the resulting offspring, exposure to prenatal immune 

challenge and peripubertal stress synergistically induced pathological effects on adult 

behavioural functions and neurochemistry (Giovanoli et al., 2013, Giovanoli et al., 

2015). Thus, early-life stress primes microglia, leading to a potentiated response to 

subsequent stress (Calcia et al., 2016). Interestingly, the microbiota regulates microglia 

maturation and function (Erny et al., 2015). Clinically, microglial activation in the PFC, 
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anterior cingulate cortex (ACC), and insula in medication free depressed patients has 

been demonstrated using translocator protein density measured by distribution volume in 

a positron emission tomography study (Setiawan et al., 2015).  

 

1.4.6 Tryptophan/kynurenine pathway  
Tryptophan/kynurenine metabolism is one of the indirect mechanisms by which either 

cytokines or elevated cortisol can lead to depression. The enzyme indoleamine 2,3-

dioxygenase (IDO) found in macrophages and microglia cells is the first and rate limiting 

step in the kynurenine pathway of tryptophan catabolism. The expression of tryptophan-

2,3-dioxygenase (TDO) can be induced by circulating glucocorticoids (O'Connor et al., 

2009) and has been reported to be regulated by the gut microbiota during colonization 

(El Aidy et al., 2014). Under normal physiological conditions, approximately 99% of 

tryptophan is metabolized to kynurenine in the liver by TDO. However proinflammatory 

cytokines such as IFN-γ, CRP, IL-1, IL-6 and TNF-α can induce IDO resulting in the 

metabolism of tryptophan to kynurenine. Kynurenine pathway metabolites such as 

hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA) and quinolinic acid are 

neurotoxic while kynurenic acid is neuroprotective (Stone, 2000). Additionally, this 

process diverts tryptophan from the synthesis of serotonin, and could potentially result 

in decreased availability of serotonin (Halaris, 2013).  

 

1.4.7 Compartmentalization of Central Kynurenine pathways  
In the brain, kynurenine metabolism occurs in all cells, though the two kynurenine 

pathway branches are physically segregated into distinct cell types. Astrocytes contain 

kynurenine aminotransferases (KATs), not kynurenine 3-monooxygenase (KMO) and 

therefore cannot produce 3-hydroxykynurenine (3-HK) from KYN (Guidetti et al., 

2007). The end result of the metabolic pathway in astrocytes is Kynurenic acid (KYNA) 

(Gramsbergen et al., 1997), whereas, in microglia due to the enzymatic machinery, it is 

quinolinic acid (Alberati-Giani et al., 1996). Tryptophan and 3-HK can also cross the 

BBB and tryptophan’s conversion to kynurenine and 3-HK in the peripheral circulation 

can therefore contribute significantly to CNS levels, due to the low levels of brain IDO 

and TDO (Schwarcz 2012).  

 

The kynurenine pathway has important implications for depression, as kynurenine can 

cross the BBB to increase central levels. Indeed, most of the CNS kynurenine is drawn 
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from the periphery and when metabolized further, as outlined above could result in excess 

production of  neurotoxic metabolites (Myint and Kim, 2013). Metabolites, such as 3-

hydroxykynurenine and quinolinic acid can directly or indirectly modulate several 

neurotransmitter systems, such as glutamatergic, GABAergic, dopaminergic and 

noradrenergic neurotransmissions, which in turn induce changes in neuronal-glial 

network (Myint and Kim, 2014). It has been postulated that depression may be related to 

an imbalance between quinolinic acid and kynurenic acid in the brain, with a relative 

abundance of quinolinic acid resulting in enhanced glutamatergic activity and symptoms 

of depression (Schwarcz and Stone, 2016). 

 

There is an association between cerebrospinal fluid levels of kynurenine and quinolinic 

acid, and the development of depression during treatment with IFN-α (Raison et al., 

2010b). Moreover, increased quinolinic acid has been found in activated microglia in the 

ACC of suicide victims who were depressed. However, a recent study with 1042 subjects 

with current major depressive disorder from the Netherlands Study of Depression and 

Anxiety (NESDA) cohort, found that tryptophan/kynurenine did not mediate the 

relationship between CRP, IL-6 and depressive symptoms (Quak et al., 2014).  

 

1.4.8 Stress, HPA axis and Inflammation  
Inflammatory pathways interact with the HPA axis (Leonard, 2000). In pre-clinical 

studies, administration of cytokines induces the production of CRH, ACTH and cortisol 

(Miller et al., 2009a). In a clinical study of malignant melanoma patients, the first IFN-α 

dose induced the acute ACTH and cortisol response and correlated with the development 

of depressive symptoms (Capuron et al., 2003). In addition, in the same study, all subjects 

exhibited significant increases in kynurenine, and the kynurenine/tryptophan ratio during 

IFN-α therapy. In the antidepressant free patients, decreases in tryptophan correlated with 

depressive, anxious, and cognitive symptoms suggesting that reduced tryptophan 

availability plays a role in IFN-α induced depressive symptoms. Chronic IFN-α 

administration is associated with flattening of the diurnal curve and increased evening 

cortisol concentration, which correlate with the development of depression and fatigue 

(Raison et al., 2010a, Raison et al., 2010b). 

 

Stress, both acute and chronic, activates peripheral inflammatory pathways such as NF-

κfB in humans. The Trier Social Stress Test (TSST) has been an important test in 
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determining the relationship between acute stress and inflammation. The TSST is a 

fifteen minute psychosocial stress protocol involving five minutes of anticipatory stress, 

five minutes of public speaking and five minutes of mental arithmetic performed in front 

of a panel of evaluators. The TSST is associated with a significant increase in the DNA 

binding of the inflammatory transcription factor NF-κB in peripheral blood mononuclear 

cells (PBMCs) compared with subjects who were spectators of the task (Bierhaus et al., 

2003). Early life traumatic events are associated with an exaggerated inflammatory 

response to the TSST. In adult subjects who were not depressed though had a history of 

early life traumatic events, there was an increased IL-6 response to acute stress 

(Carpenter et al., 2010). There was also an increase in NF-κβ B DNA binding in PBMCs 

and IL-6 levels in depressed male patients with a history of early life stress compared to 

healthy controls (Pace et al., 2006). The socially evaluated cold pressor test (SECPT) is 

a combined psychological (social-evaluative threat) and physiological (cold pressor) 

acute stressor procedure (Schwabe et al., 2008) which also activates the sympathetic 

nervous system (SNS) and the HPA axis, and has been useful in elucidating the stress 

response in humans (Minkley et al., 2014). 

 

It is important to note, that in the context of chronic stress or depression, the immune 

system can become glucocorticoid (GR) resistant (Camilleri et al., 2008, Cohen et al., 

2012). This GR resistance may account for the discrepancy between HPA activation and 

elevated inflammatory markers found in depression. Indeed, using a social defeat rodent 

model, GR resistance has been hypothesized as an adaptive mechanism that allows the 

inflammatory component of wound healing to occur in the presence of high levels of 

corticosterone (Avitsur et al., 2001).  

 

A study using data from 776 subjects from the Netherlands Study of Depression and 

Anxiety, including 111 chronic depressed subjects with melancholic depression, 122 

with atypical depression and 543 controls found higher saliva cortisol awakening curves 

(area under the curve with respect to the ground (AUCg) and higher diurnal slope) in 

melancholic depression compared with atypical depression and controls. In the same 

study subjects with atypical depression had significantly higher levels of CRP, IL-6, 

TNF-α, body mass index (BMI), waist circumference and triglycerides, and lower high-

density lipid cholesterol than persons with melancholic depression and controls (Lamers 

et al., 2013). However, it is unclear why increased levels of cytokines in the melancholic 
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group are associated with higher saliva cortisol awakening curves, as cytokines are potent 

activators of the HPA axis (Dunn, 2000, Miller et al., 2009b). 

 

1.5 Current treatment options and limitations in Depression  
As discussed above, the pharmacologic therapy for treatment of depression has focused 

on modulating concentrations of brain monoamines, namely noradrenaline, serotonin, 

and dopamine. As is common in drug discovery in psychiatry (Ban, 2006), the 

monoamine oxidase inhibitors (MAOIs) and the Tricyclic antidepressants (TCAs) were 

discovered by serendipity. Iproniazid, a non-selective, irreversible monoamine oxidase 

inhibitor (MAOI) of the hydrazine class was reported to produce euphoria and 

hyperactive behaviour in some patients treated for tuberculosis. MAOIs inhibit the 

breakdown of serotonin into 5-hydroxyindoleacetic acid (5-HIAA). However, the 

irreversible MAOIs had serious side effects, and their use was problematic because of 

the strict diet people needed to follow in order to prevent hypertensive reactions induced 

by food rich in tyramine, the so called “cheese reaction” (Youdim et al., 2006).  

 

The discovery of the TCAs is also interesting. Chlorpromazine was first synthesized in 

1951 by Paul Charpentier, in the laboratories of Rhône-Poulenc, as an antihistamine and 

possible potentiator of general anaesthesia (Charpentier P et al., 1952). The French 

surgeon Henri Laborit, used the new drug to lower body temperature before general 

anaesthesia and noted it sedative properties (Laborit et al., 1952). Jean Delay and Pierre 

Deniker, tested it on agitated psychotic patients and it was noted to decrease psychotic 

symptoms (Delay et al., 1952). Imipramine, the first Tricyclic antidepressant (TCA) was 

derived from chlorpromazine, but instead of reducing psychotic symptoms, it was noted 

to cause hypomanic symptoms in some of the schizophrenia patients (Kuhn, 1957). 

 

TCAs block the serotonin transporter (SERT) and the noradrenaline transporter (NET) 

(Gillman, 2007). The selective serotonin reuptake inhibitors (SSRIs) were first 

discovered in 1972 (Carlsson et al., 1972) and fluoxetine was introduced clinically in 

1987. As mentioned the serotonin transporter (SERT) reuptakes 5-HT from the synaptic 

cleft into the presynaptic neuron, and SSRI antidepressants act by inhibiting the SERT, 

resulting in an increase in 5-HT in the extracellular space. A recent X-ray 

crystallographic study has further defined the structure of the human SERT (Coleman et 

al., 2016).  
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Acutely depleting tryptophan the precursor of serotonin, induces depressive symptoms 

in 50-60% of selective SSRI treated, and recovered depressed patients (Booij et al., 

2002). An extensive meta-analysis of 5HT depletion carried out in 2007, demonstrated 

that acute tryptophan depletion (ATD) resulted in a moderate decrease in mood in drug-

free patients with MDD in remission and induced relapse in patients with MDD in 

remission who used serotonergic antidepressants (Ruhe et al., 2007). Mood in healthy 

controls was unaffected, apart from those with a family history of MDD. Although, a 

meta-analysis of 24 studies involving 744 patients and 793 controls demonstrated a 

significant decrease in tryptophan in MDD patients, with unmedicated patients showing 

a greater decrease compared to medicated patients (Ogawa et al., 2014) , though there is 

insufficient evidence for tryptophan as an augmenting strategy in the treatment of 

depression (Sarris et al., 2016).  

 

The serotonin-noradrenaline reuptake inhibitors (SNRIs), such as venlafaxine and 

duloxetine, enhance monoaminergic function by inhibiting neuronal reuptake of 

serotonin and noradrenaline to prolong its concentration and time in the synaptic cleft. 

Whereas bupropion inhibits neuronal reuptake of noradrenaline and dopamine. Other 

antidepressants enhance noradrenaline and serotonin release by blocking presynaptic α2 

receptors (eg, mirtazapine) or blocking serotonin-2 receptors (eg, trazodone). 

Agomelatine has agonist properties at M1 and M2 receptors and antagonist properties at 

5HT2C receptors (Pringle et al., 2015) and has been shown to be superior to placebo in 

the treatment of depression (Taylor et al., 2014). See Table 1.1 for mode of action of 

Antidepressants.  

 

Antidepressants are effective for certain groups, and can reduce risk of relapse (Geddes 

et al., 2003). However, a significant percentage of depressed patients either do not 

respond or partially respond to treatment (Fava, 2003). The landmark STAR*D 

pragmatic effectiveness trial found that 30% of patients met criteria for remission during 

first line treatment with a selective serotonin reuptake inhibitor (citalopram) and 30% of 

patients did not respond after four treatment levels (Huynh and McIntyre, 2008, Trivedi 

et al., 2006). However, as this trial did not contain a placebo group, remission rates that 

would have occurred without treatment cannot be accounted for and considering placebo 
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rates in depression studies are approximately 30% (Walsh et al., 2002) suggests that 

response rates could be even lower.  

Apart from suboptimal efficacy, currently available antidepressants are also limited by 

slow onset of therapeutic effect (Machado-Vieira et al., 2008) and side effects (Anderson 

and Tomenson, 1995, Andrews et al., 2015). The glutamatergic system has received 

recent focus (Caddy et al., 2014, Duman, 2014, Swanson et al., 2005). Several studies 

have demonstrated rapid antidepressant effects with the N-methyl-D-aspartate glutamate 

receptor (NMDAR) antagonist ketamine (Allen et al., 2015, Murrough et al., 2013, Price 

et al., 2014). However, use of ketamine is restricted by dissociative and psychotomimetic 

adverse effects. A study using the low-trapping NMDA channel blocker lanicemine 

demonstrated rapid antidepressant effects with less dissociative and psychotomimetic 

adverse effects though with reduced efficacy compared to ketamine (Sanacora et al., 

2013). Recent evidence suggest that the antidepressant properties of ketamine may be 

mediated via metabolites acting through AMPARs (α-amino-3-hydroxy-5-methyl-4-

isoxazole propionic acid receptors) rather than inhibition of NMDAR  (Zanos et al., 

2016). Moreover, hallucinogens, such as psilocybin have recently been shown to be 

efficacious in treatment resistant depression (Carhart-Harris et al., Carhart-Harris et al., 

2016). Additionally, antidepressant exploration has extended to cholinergic and opioid 

systems (Papakostas and Ionescu, 2015).  

 

There is an imperative need for the development of conceptually novel therapeutic 

strategies for treating depression, with safe side effect profiles and limited abuse 

potential. This advance in therapeutics will be contingent on further elucidating the 

pathophysiological mechanisms underlying depression. Concurrently, identification of 

clinically useful biomarkers to facilitate selection of the most appropriate treatment 

option and to monitor the impact of treatment will undoubtedly improve patient outcomes 

(Gururajan et al., 2016a). 
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Table 1.1 Antidepressants  
Antidepressant 
Class 

Drugs Mode of Action 

SSRIs Citalopram, Escitalopram, 
Fluoxetine, Paroxetine, 
Sertraline 

Enhance monoaminergic transmission by selectively 
preventing the reuptake of serotonin  

SNRIs Duloxetine, Venlafaxine Enhance monoaminergic transmission by selectively 
preventing the reuptake of serotonin & noradrenaline 

NaSSA Mirtazepine Increases noradrenergic & serotonergic neurotransmission 
by inhibition of presynaptic α2 and 5-HT2C receptors 

NDRI Bupropion Inhibits reuptake of noradrenaline & dopamine 
SARI Trazodone Inhibits the serotonin transporter & 5-HT2A and 5-HT2C 

receptor antagonism 
TCAs Amitriptyline, 

Clomipramine, Imipramine, 
Lofepramine, Nortriptyline, 
Trimipramine 

Enhance monoaminergic transmission by non-selectively 
inhibiting the reuptake of serotonin & noradrenaline 

MAOIs Irreversible: phenelzine, 
tranylcypromine 
Reversible: moclobemide  

Enhance monoaminergic transmission by selectively 
preventing the breakdown of monoamines by inhibiting 
the monoamine oxidase enzyme 

Melatonergic 
agonist 

Agomelatine Agonist at M1 & M2 receptors and 5HT2C antagonist  

 
SSRI: selective serotonin reuptake inhibitor, SNRI: serotonin-noradrenaline reuptake inhibitor, NaSSA: 
noradrenergic and specific serotonergic antidepressant, NDRI: noradrenergic–dopamine reuptake 
inhibitor, SARI: serotonin antagonist and reuptake inhibitor, TCA: tricyclic antidepressant, MAOI: 
monoamine oxidase inhibitors 
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1.6 Structure of the Gut Microbiota  
Emerging evidence, mainly from animal studies, indicates that some of the same 

pathways, discussed above, that are dysregulated in depression are modulated by the 

microbes that inhabit the gut – the gut microbiota. Indeed, many of the proposed targets 

of current and novel antidepressants and anxiolytics can potentially be manipulated via 

the gut microbiota. It is increasingly recognized that the gut microbiota might influence 

the core symptoms of stress-related psychiatric disorders and that it might be a tractable 

target for symptom alleviation. 

 

The mutualistic co-evolution of microbes and the human body, composed of more than 

90% microbial cells and 10 million microbial genes has led to the collective being 

described as a “superorganism” (Nicholson et al., 2005). The most heavily colonized area 

of the human body is the gut, with bacterial concentrations ranging from 101 - 103 cells 

per gram in the upper intestines to 1011 - 1012 bacteria per gram in the colon (Derrien and 

van Hylckama Vlieg, 2015, O'Hara and Shanahan, 2006). Although the functional 

significance of the microbiome has yet to be fully determined (Franzosa et al., 2014), it 

is clear that an interlinked symbiotic relationship exists between host and microbe (Ley 

et al., 2008b). In terms of bacterial phyla found in the gut, Firmicutes (species such as 

Lactobacillus, Clostridium, Enterococcus) and Bacteroidetes  (species such as 

Bacteroides) account for the majority (Dethlefsen et al., 2007), though the other phyla 

such as Actinobacteria (Bifidobacteria), Proteobacteria (Escherichia coli), 

Fusobacteria, Verrucomicrobia and Cyanobacteria are also present (Eckburg et al., 

2005, Qin et al., 2010).  

 

Differences exist between the microbiota composition between the gut lumen and the 

microbiota composition which lies in close proximity to the mucus layer. For instance, 

gram negative Proteobacteria and Akkermansia muciniphila (Verrucomicrobia), which 

use mucus as a carbon and nitrogen source, adhere and reside within the mucus layer 

(van Passel et al., 2011). This gradient can be differentially regulated by factors such as 

stress (Johansson et al., 2014, Johansson et al., 2011, Rozee et al., 1982, Swidsinski et 

al., 2005).  

 

Studies using different, but complementary, gut-microbiota directed interventions (Germ 

Free (GF) rodents, antibiotics, probiotics, gastrointestinal infection studies, and fecal 
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microbiota transplantation studies) have all suggested a number of possible brain-gut 

signalling pathways under the influence of the gut microbiota and capable of modulating 

brain and behaviour (Collins and Bercik, 2013, Cryan and Dinan, 2012b, Cryan and 

Dinan, 2015a, Dinan and Cryan, 2013, Grenham et al., 2011, Mayer et al., 2014, McVey 

Neufeld et al., 2013, Rhee et al., 2009).  

 

1.7 Development of the Gut Microbiota across the lifespan  
The developmental trajectory of the gut microbiota is compatible with concepts in 

psychiatry of the early-life period as a vulnerable phase for the subsequent emergence of 

psychopathology in adulthood (O'Mahony et al., 2015b). In the initial days of life, the 

gut microbiota is unstable and of low diversity, shifting in composition over the first few 

years to resemble an adult like profile by age three (Voreades et al., 2014). The effect of 

mode of delivery and the implications for CNS host development has attracted recent 

attention (Adlerberth and Wold, 2009, Clarke et al., 2014a, Dominguez-Bello et al., 

2010). Vaginally delivered infants are colonized by the fecal and vaginal bacteria of the 

mother, most notably Lactobacilli, whereas infants delivered by Caesarean section (C-

section) are colonized by other bacteria from the skin of the mother and from 

environmental sources including health-care workers, air, medical equipment and other 

newborns (Borre et al., 2014). Other factors such as gestational age (Barrett et al., 2013), 

feeding mode (Khanna et al., 2014, Koenig et al., 2011), antibiotic use, (Persaud et al., 

2014) and exposure to family members and pets (Dominguez-Bello et al., 2010, Fujimura 

et al., 2010, Marques et al., 2010, Penders et al., 2006) also influence the trajectory of 

microbiota acquisition. The relative importance of these factors in determining the 

eventual stable microbiota profile has not been fully elucidated.  

 

A critical function of the microbiota is to prime the development of the neuroimmune 

system (Chistiakov et al., 2014, Francino, 2014, Olszak et al., 2012, Round and 

Mazmanian, 2009). The luminal surface of the gut is a key interface in this process 

(O'Hara and Shanahan, 2006). Alterations in the gut microbiota signature early in life can 

predispose to immune disorders (Penders et al., 2007). Interestingly, emerging evidence 

suggests that infants integrate an initial microbiome profile prior to birth, and that both 

prenatal and postnatal maternal transmission is pivotal in shaping the structure of the 

microbiome (Funkhouser and Bordenstein, 2013, Gilbert, 2014, Jimenez et al., 2008, 

Mueller et al., 2015, Prince et al., 2014, Rautava et al., 2012). This challenge to the 
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prevailing sterile womb paradigm brings into focus the possible role of maternal 

microbiome transmission in the modulation of immune activation associated with 

maternal stress and the implications of this on fetal programming (Howerton and Bale, 

2012).  

 

Thus, it is plausible that subtle alterations in microbiota acquisition and maintenance, 

perhaps as early as the prenatal phase by influencing neuroimmune signalling pathways, 

may act as additional vulnerability factors that predispose to stress related disorders in 

adulthood. However, the precise microbiota signatures have yet to be determined. This 

concept is an extension of the hygiene hypothesis first proposed in the late 1980’s 

(Strachan, 1989) and more recently reconceptualised as  the “old friends hypothesis” 

(Rook et al., 2003, Williamson et al., 2015). This proposes that encountering less 

microbial biodiversity may contribute to the increase in chronic inflammatory disorders 

including subtypes of depression (Guarner et al., 2006, Hidaka, 2012, Klerman and 

Weissman, 1989, Rook and Lowry, 2008, Rook et al., 2013, Rook et al., 2014, Stein et 

al., 2016, 1992).  

 

The gut microbiota patterns change as we age. There is a decrease in microbial diversity 

during this period and, in conjunction with diet, is associated with a poorer health status 

in this group (Claesson et al., 2011, Claesson et al., 2012). Furthermore, aging is 

characterized by chronic low-grade inflammation (termed "inflammaging") as evidenced 

by increased circulating levels of TNF-α, IL-6 and CRP; known to affect mood and 

cognition (Frasca and Blomberg, 2015). The fact that the gut microbiota are key 

regulators of immune function and inflammatory responses, it is likely that a change in 

the composition of the gut microbiota during ageing plays a role in the gradual activation 

of the immune system and consequently inflammaging (Prenderville et al., 2015). The 

ELDERMET consortium demonstrated that the elderly have a distinct microbiota profile, 

characterised by greater inter-individual variation compared to younger adults (Claesson 

et al., 2011). Of note, differences in microbiota composition were more pronounced 

between frail elderly subjects and healthy elderly subjects. Moreover, certain gut 

microbiota signatures were linked to measures of frailty, co-morbidity, nutritional status, 

and markers of inflammation (Claesson et al., 2012).  
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1.8 Factors which influence composition and stability: diet, exercise, antibiotics 
As mentioned above, a multitude of factors influence the composition of the microbiota, 

including genetics (Hufeldt et al., 2010), diet (David et al., 2014, De Filippo et al., 2010, 

Turnbaugh et al., 2009b), medication (Davey et al., 2012), geography (Yatsunenko et al., 

2012), antibiotic use (Blaser, 2011) and stool consistency (Falony et al., 2016). Although 

the composition of the gut microbiota, in the absence of insults remains relatively stable 

during adulthood, there are significant interpersonal differences (Hamady and Knight, 

2009, Lozupone et al., 2012a). Two recent population-based cohort studies investigating 

the gut microbiota have confirmed this remarkably high degree of inter-individual 

variation (Falony et al., 2016). Consequently, there are multiple possible configurations 

for a healthy microbiome and it is also likely that some stable configurations are 

associated with disease (Relman, 2015). This concept of an entire ecosystem as a 

potential pathogen is a somewhat unfamiliar concept in clinical psychiatry. It is important 

also to appreciate that the functional output of multiple microbiome configurations may 

in fact be equivalent, given that concepts of redundancy and pleiotropy can also be 

applied to specific microbial members of the overall consortium.  

 

It is important to state that the relevant features of dysbiosis that might be implicated in 

stress-related disorders have yet to be fully determined. However, like any ecosystem, 

diversity and stability brings resilience and these are some of the key indices for the 

overall health of a particular gut microbiome. For example, a deficiency in 

Christensenellaceae has been associated with obesity and a C. minuta amendment was 

sufficient to reduced weight gain in an animal study (Goodrich et al., 2014). Thus, obesity 

for example, has been associated with a reduced diversity (Turnbaugh et al., 2009a). 

Recently, a Mediterranean diet, suggested as protective for depression, has been 

associated with beneficial microbiome-related metabolomic profiles (De Filippis et al., 

2015) and there is increasing awareness of the role of a healthy diet in reducing the risk 

of depression (Opie et al., 2015).  

 

Indeed, diet is one of the most important modifiable determinants of human health which 

can profoundly alter the composition of the gut microbiota (Ley et al., 2008a). Human 

gut microbiomes are less diverse that those of wild apes and have become more 

specialized for animal-based diets (Moeller et al., 2014). The composition of the gut 

microbiome can change rapidly and converting from a low-fat, plant polysaccharide-rich 
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diet to a high-fat, high-sugar "Western" diet shifted the structure of the microbiota within 

a single day (Turnbaugh et al., 2009b). Even during the course of a day, the gut 

microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by 

feeding rhythms, leading to time-specific compositional and functional profiles. Ablation 

of host molecular clock components or induction of jet lag leads to aberrant microbiota 

diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity (Thaiss et al.).  

Exercise is another factor in the relationship between the gut microbiota, host immunity 

and host metabolism. GF mice show reduced levels of exercise and have lower liver, 

muscle, brown adipose and epididymal fat pad weight. In addition this study showed that 

the antioxidant enzyme system was altered in the GF group (Cerdá et al., 2016, Hsu et 

al., 2015). A human study investigating the gut microbiota in athletes from the Irish 

international rugby squad found a higher level of microbiota diversity, representing 22 

distinct phyla, compared to 11 in the low BMI control group and to 9 in the high BMI 

control group (Clarke et al., 2014b). This diversity was positively correlated with a diet 

rich in protein and creatine kinase. In addition athletes had lower levels of inflammatory 

markers and better metabolic profiles compared to the controls. Akkermansia muciniphila 

a mucin-degrading bacteria that resides in the mucus layer, shown in previous studies to 

be inversely correlated with obesity (Everard et al., 2013, Karlsson et al., 2012) was 

significantly higher in the athletes in the low body mass index (BMI) group compared 

with the high BMI group. This study highlights the complex interconnected relationship 

between diet, gut microbiota, exercise and the metabolic and immune system.  

 

Antibiotics alter the composition of the gut microbiota (Dethlefsen and Relman, 2011) 

and repeated antibiotic exposure in the second or third trimester or in the first 2 years of 

life is associated with early childhood obesity (Bailey et al., 2014, Mueller et al., 2014). 

Furthermore, recurrent antibiotic exposure is associated with increased risk for 

depression (Lurie et al., 2015).  

 

1.9 From Brain-Gut axis to Brain-Gut-Microbiota axis  
A recurring question surrounding the impact of the gut microbiome on the CNS and a 

possible impediment to integration of this research in psychiatry pertains to the 

uncertainty surrounding the mechanisms through which this influence can be exerted. 

The prevailing view currently is that the microbiome recruits the scaffolding provided by 

the brain-gut axis, a bidirectional communication pathway between the gut and brain 
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(Cryan and Dinan, 2012b). Studies using different but complementary approaches, such 

as, germ-free (GF) rodents, antibiotics, probiotics, gastrointestinal infection studies, and 

fecal microbiota transplantation studies have shown that the gut microbiota acting via the 

brain-gut axis contributes to the regulation of brain and behaviour (Cryan and Dinan, 

2015b, Dinan and Cryan, 2013, Mayer et al., 2014). There are several putative 

mechanisms by which the gut microbiota can achieve this; via modulation of the immune 

system (Erny et al., 2015), the HPA axis (Sudo et al., 2004), tryptophan metabolism 

(O'Mahony et al., 2015a), the production of bacterial metabolites (Tan et al., 2014) and 

via the vagus nerve (Bravo et al., 2011) (see Figure 1.1). Interestingly, the epigenetic 

factors that play a role in shaping stress-related behaviours could arise as a consequence 

of host-microbe interactions (Dalton et al., 2014, Stilling et al., 2014a, Stilling et al., 

2014b).  

 

1.10 Signalling pathways of the Brain-Gut-Microbiota axis 
1.10.1 HPA axis  
GF mice exhibit reduced levels of anxiety but increased levels of neuroendocrine 

responses to stress (Sudo et al., 2004). It is evident that the microbiota are required for 

the normal development of the HPA axis and that there is a certain period in early life 

where colonisation must occur to ensure normal development of the HPA axis (Cryan 

and Dinan, 2012a). In a resistant stress animal model, GF mice had higher ACTH and 

corticosterone responses than specific pathogen free (SPF) mice. This exaggerated HPA 

stress response was partly corrected by reconstitution with SPF feces at an early stage 

but not at a later stage of development and completely corrected by reconstitution with 

Bifidobacterium infantis (Sudo et al., 2004).  

 

1.10.2 Toll-like receptors (TLRs)  
TLRs are evolutionarily conserved type I transmembrane proteins that function as pattern 

recognition receptors (PRRs) that recognize microbial components (McCusker and 

Kelley, 2013a, Mogensen, 2009, Palsson-McDermott and O'Neill, 2007) and play an 

important role in the host defence system (Jeong and Lee, 2011). TLRs recognize 

microbe-associated molecular patterns (MAMPs) which are shared by many 

microorganisms. TLRs are expressed by a number of immune cells, including dendritic 

cells (DCs), macrophages, neutrophils, T cells, and B cells but are also found on non-

immune cells, such as epithelial and endothelial cells (Hopkins and Sriskandan, 2005). 
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Without the microbiota certain TLR’s are not expressed fully in the gut, affecting the 

proper functioning of the immune and neuroendocrine systems (O'Hara and Shanahan, 

2006). 

 

TLR2 recognizes lipoproteins and peptidoglycans from Gram positive bacteria whereas 

TLR4 mediates responses to lipopolysaccharide (LPS) primarily from Gram negative 

bacteria (Marteau and Shanahan, 2003b). It is well established that administration of LPS 

can result in behavioural changes including depressed mood, fatigue, cognitive 

dysfunction and feelings of social isolation (Eisenberger et al., 2010b, O'Connor et al., 

2008, Reichenberg et al., 2001). TLR signalling consists of at least two distinct pathways: 

a Myeloid differentiation primary response gene 88 (MYD88) dependent pathway that 

leads to the production of inflammatory cytokines, and a MyD88-independent pathway 

associated with the stimulation of IFN-β and the maturation of dendritic cells (Takeda 

and Akira, 2005). The TLR4 pathway consists of both pathways whereas the TLR2 

pathway consists of only the MyD88-dependent pathway (Leclercq et al., 2014a).  

 

Activation of TLRs initiates signal transduction pathways and triggers the expression of 

genes that control innate immune responses and further guide development of antigen-

specific acquired immunity (Akira and Takeda, 2004). Thus, TLRs might serve as a 

molecular channel between microbiota alterations and immune homeostasis (Rogier et 

al., 2015). As well as playing a role in maintaining intestinal barrier function (Cario et 

al., 2004, Rakoff-Nahoum et al., 2004), TLRs also promote epithelial cell proliferation, 

secretion of IgA into the gut lumen and expression of antimicrobial peptides (Abreu, 

2010). Dysregulation of this process, or excessive TLR activation, can result in chronic 

inflammatory and over-exuberant repair responses. Recent evidence suggests that the 

TLR3 synthetic agonist, Poly(I:C) not only decreases epithelial resistance in the small 

intestine but also promoted thinning of the mucosal layer (Moyano-Porcile et al., 2015). 

 

A study investigating the role of inflammatory pathways and gut-derived bacterial 

products in alcohol dependence syndrome, a disorder commonly co-morbid with 

depression (Regier et al., 1990), demonstrated that LPS and peptidoglycans (PGN) cross 

the gut barrier and activate TLR4 and TLR2 in PBMCs (Leclercq et al., 2014a). Chronic 

alcohol consumption inhibited the NF-kB pathway, but activated protein kinase/activator 

protein 1 pathway. IL-8 and IL-1ß were positively correlated with alcohol consumption, 
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whilst short term alcohol withdrawal was associated with the recovery of LPS but not 

PGN dependent receptors. The same group also demonstrated that increased intestinal 

permeability occurred in a sub group of alcohol-dependent subjects which was associated 

with higher depression and anxiety scores as well as an altered gut microbiota profile 

(Leclercq et al., 2014b). A study showed that depressed patients had significantly 

elevated expression of TLR4 RNA and protein, NF-κB RNA and 16S rDNA compared 

to healthy controls, which the authors suggested may be related to bacterial translocation 

or to the presence of various damage-associated molecular patterns (Keri et al., 2014).  

 

1.10.3 Short Chain Fatty Acids (SCFAs)  
The microbiota produce several bioactive metabolic products, including polysaccharides, 

lycosylceramides, nucleic acids, structural proteins, and SCFAs (Olle, 2013, Russell et 

al., 2013). SCFAs (butyrate, acetate and propionate) are neurohormonal signalling 

molecules produced by certain classes of bacteria such as Bacteroides, Bifidobacterium, 

Propionibacterium, Eubacterium, Lactobacillus, Clostridium, Roseburia, and Prevotella 

(Macfarlane and Macfarlane, 2012). SCFAs are transported by monocarboxylate 

transporters, which notably are expressed at the BBB (Steele, 1986, Vijay and Morris, 

2014). Indeed, a preclinical imaging study demonstrated that microbiota-derived acetate 

can cross the BBB where it can subsequently alter hypothalamic gene expression (Frost 

et al., 2014). Furthermore, butyrate, has been shown to reduce depression and anxiety-

related behaviours (Schroeder et al., 2007, Wei et al., 2015). 

 

 

SCFAs are also pivotal in the maintenance of the intestinal barrier (Peng et al., 2007, 

Ploger et al., 2012, Suzuki et al., 2008). Butyrate has also been shown to facilitate the 

association between transcription factors and the claudin-1 promoter (Wang et al., 

2012a), increase AMP-activated protein kinase (AMPK) activity (Peng et al., 2009) and 

to reduce bacterial translocation (Lewis et al., 2010). Interestingly, given the importance 

of butyrate in the maintenance of the intestinal barrier, IBS has been associated with a 

reduction in butyrate producing gut micro-organisms. It has, however, proven difficult 

thus far to demarcate the CNS consequences of SCFA-mediated effects on intestinal 

barrier function from a direct action in the brain. It is also notable that there is still 

considerable debate surrounding the ability of physiological levels of SCFAs to impact 
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substantially on relevant behaviours via central mechanisms, albeit that higher doses do 

have clear behavioural consequences (Macfabe, 2012, MacFabe et al., 2007).  

 

Other mechanisms by which the microbiota may signal to the underlying mucosa, or 

mucosal immune system, include delivery to an underlying subset of dendritic cells via 

small intestine goblet cells (Artis, 2008, McDole et al., 2012). It has also been postulated 

that bacterial components can cross the intestinal barrier in small lipoprotein vesicles 

called exosomes which contain protein, nucleic acids, sugars and lipids. These exosomes 

can then transfer from dendritic cells to T cells in the draining lymph nodes and enter the 

circulation (Smythies and Smythies, 2014b). Consequently, T cells may receive 

epigenetic material from gut bacteria, either by direct endocytosis, or via afferent 

exosomes (Smythies and Smythies, 2014a). More recently, identification of “neuropods” 

as a pathway by which bacteria can communicate via intestinal enterochromaffin cells to 

the nervous system provides further insight into pathways responsible for gut to brain 

communication (Bohorquez et al., 2015). 

 

1.10.4 Neuroactives  
Certain bacteria can produce neuroactive metabolites, including neurotransmitters and 

neuromodulators (Lyte, 2011, 2013, Wikoff et al., 2009). The gut microbiome also 

appears to have a role in developmental programming of the brain, specifically, synapse 

maturation and synaptogenesis (Diaz Heijtz et al., 2011). Synaptophysin, a marker of 

synaptogenesis, and PSD 95, a marker of excitatory synapse maturation, were decreased 

in the striatum in GF animals compared to SPF animals. This suggests that the microbiota 

may programme certain brain circuits when colonized by maternal microbiota, though 

the authors point out that exposure to gut microbiota metabolites during embryogenesis 

may also be a possible mechanism. 

 

1.10.4.1 GABA  
γ-Aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the CNS and 

implicated in the pathophysiology of depression and anxiety disorders. (Kumar et al., 

2013, Olivier et al., 2013). Certain strains of Lactobacillus and Bifidobacteria can  

produce GABA by metabolizing dietary glutamate (Barrett et al., 2012) although this is 

not viewed as a source of central GABA. Indeed, Lactobacillus rhamnosus was shown 

to reduce anxiety and depression related behaviour in mice and increase GABA levels in 
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the hippocampus (Bravo et al., 2011). Interestingly, in vagotomised mice, these effects 

were not found, further supporting the concept that the vagus nerve is an important neural 

signalling pathway between the microbiota and brain. A recent preclinical magnetic 

resonance spectroscopy study adds further evidence to support the concept that oral 

Lactobacillus rhamnosus can increase central GABA levels (Janik et al., 2015). 

 

1.10.4.2 BDNF 
A key regulator of synaptic plasticity and neurogenesis in the brain is the neurotrophin, 

BDNF (Monteggia et al., 2004). Several studies have demonstrated that clinical 

depression is associated with reduced peripheral levels of BDNF (Allen et al., 2015, 

Bocchio-Chiavetto et al., 2010, Bus et al., 2015, Molendijk et al., 2014). In GF rodents 

levels of BDNF were reduced in the cortex and hippocampus in GF mice (Sudo et al., 

2004). In a study by Clarke and colleagues (2013) this finding was replicated, but in male 

mice only (Clarke et al., 2013). However, not all studies are consistent. (Neufeld et al., 

2011) confirmed a decrease level of anxiety like behaviour in GF animals, but found an 

increase in BDNF mRNA in female mice. In addition there was a decrease in the 

NMDAR subunit NR2B mRNA expression in the amygdala and decreased serotonin 

receptor 1A in the hippocampus (Neufeld et al., 2011).  

 

1.10.5 Tryptophan metabolites with a focus on serotonin, kynurenine pathway 
metabolites and indoles 
Serotonin is a critical signalling molecule in the brain-gut-microbiota axis (O'Mahony et 

al., 2015a) and is involved in a wide range of physiological functions. In the 

gastrointestinal tract it plays an important role in secretion, sensing and signalling (Mawe 

and Hoffman, 2013). The largest reserve of 5-HT is located in enterochromaffin cells 

(Berger et al., 2009). Emerging evidence also suggests that the serotonergic system may 

be under the influence of gut microbiota, especially, but not limited to, periods prior to 

the emergence of a stable adult-like gut microbiota (Clarke et al., 2013, Desbonnet et al., 

2008, El Aidy et al., 2012). A metabolomics study demonstrated that the gut microbiota 

has a significant impact on blood metabolites and showed a 2.8 fold increase in plasma 

serotonin levels when GF mice are colonized by gut microbiota (Wikoff et al., 2009). 

 

Mucosal 5-HT has been demonstrated to play a direct role in the regulation of intestinal 

permeability. 5-hydroxytryptophan (5-HTP), a precursor of 5HT, significantly decreased 
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intestinal permeability in healthy control subjects and this was associated with a 

redistribution of ZO-1. Whilst in IBS patients 5-HTP resulted in a further decrease in 

occludin expression (Keszthelyi et al., 2014). The gut microbiota itself is also an 

important, but frequently overlooked, regulator of 5-HT synthesis and secretion. For 

example, colonic tryptophan hydroxylase 1 (Tph1) mRNA and protein were increased in 

humanized germ-free and conventionally raised mice. Bacterial metabolites have also 

been demonstrated to influence Tph1 transcription in a human enterochromaffin cell 

model (Reigstad et al., 2015). Others have demonstrated that distinct microbial 

metabolites produced by spore forming bacteria increase colonic and blood 5-HT in 

chromaffin cell cultures (Yano et al., 2015). 

 
Figure 1.1 The brain-gut-microbiota axis. Postulated signalling pathways between the 

gut microbiota, the intestinal barrier and the brain.  
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Figure 1.2: Potential neuropsychiatric consequences of a dysregulated intestinal barrier. 

Activation of brain-gut-microbiota Axis signalling pathways via a compromised 

intestinal barrier with potential effects on mood, anxiety, cognition and social interaction. 

 

1.11 Stress and the Gut Microbiota 
Stressful life events, particularly early life events are associated with the development of 

depression later in life (Bremner et al., 2003, Heim et al., 2000). The HPA is the core 

endocrine stress system and the interaction between stress, the HPA and the immune 

system is well established (Baes et al., 2014, Hueston and Deak, 2014). Evidence 

suggests the gut microbiota mediates this interaction. Stress can reshape gut microbiota 

composition (Galley et al., 2014a, Galley et al., 2014b, O'Mahony et al., 2009, Wang 

and Wu, 2005). For example, early life maternal separation resulted in a significant 

decrease in fecal Lactobacillus numbers on day 3 post separation which was correlated 

with stress related behaviours in rhesus monkeys (Bailey and Coe, 1999). In a mouse 

model of social disruption, stress altered the gut microbial profile and increased the levels 

of the pro-inflammatory cytokine IL-6 (Bailey et al., 2011).  

 

As previously mentioned, the most influential effect of the gut microbiota may occur 

early in life during critical neurodevelopmental stages (Borre et al., 2014). Preclinical 

evidence suggests that the gut microbiota signature acquired and maintained during these 

pivotal stages may affect stress reactivity. GF rodents demonstrate abnormal behavioural 

and neuroendocrine responses to stress (Crumeyrolle-Arias et al., 2014, Moloney et al., 

2014, Nishino et al., 2013, Sudo et al., 2004) and the normal development of the HPA 
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axis is contingent on microbiota colonisation at specific neurodevelopmental time points 

(Sudo et al., 2004). The expression of anxiety-like behaviour in a mouse model of early 

life stress is partially dependent on the gut microbiota (De Palma et al., 2015). 

Furthermore, using an olfactory bulbectomy model of chronic depression, elevated 

central CRH expression occurred concomitantly with changes in the gut microbiota (Park 

et al., 2013). Collectively, these preclinical studies, establish a relationship between the 

gut microbiota, stress, and depressive and anxiety-related behaviours. 

 

Recent evidence suggests that prenatal stress also impacts the gut microbiota with 

implications for physiological outcomes in the offspring (Golubeva et al., 2015). In a 

mouse model of prenatal stress, maternal stress decreased the abundance of vaginal 

Lactobacillus, resulting in decreased transmission of this bacterium to offspring, which 

corresponded with changes in metabolite profiles involved in energy balance, and with 

disruptions of amino acid profiles in the developing brain (Jasarevic et al., 2015a, 

Jasarevic et al., 2015b). Clinical studies examining the relationship between prenatal 

stress and the gut microbiota are starting to emerge but are far from definitive. In one 

such study, infants of mother’s with high self-reported stress and high salivary cortisol 

concentrations during pregnancy had significantly higher relative abundances of 

Proteobacterial groups known to contain pathogens and lower relative abundances of 

lactic acid bacteria (Lactobacillus) and Bifidobacteria (Zijlmans et al., 2015). It is 

currently unclear whether this effect was mediated via maternal microbial transmission 

or through cortisol-specific effects on the developing gastrointestinal tract. Whatever the 

mechanism, those infants with altered microbiota composition, exhibited a higher level 

of maternally reported infant gastrointestinal symptoms and allergic reactions, 

highlighting the functional consequences of aberrant colonisation patterns.  

 

1.12 Fecal Microbiota Transplantation (FMT)  
A number of studies have shown that it is possible to transfer characteristics from donor 

to recipient via fecal microbiota transplantation. For example, the transfer of microbiota 

from obese mice to lean mice can result in weight gain and obesity associated metabolic 

profiles (Ridaura et al., 2013). Furthermore, transfer of the human maternal gut 

microbiota in pregnancy to GF rodents, induces metabolic changes such as greater 

adiposity and insulin insensitivity, resembling the metabolic changes that occur in 



45 
 

pregnancy (Koren et al., 2012). This has been extended beyond metabolic system, as 

phenotype transfer via microbiota has also been demonstrated for behaviour.  

 

When the microbiota from BALB/c mice was transferred into adult GF NIH Swiss mice, 

the result was a decrease in exploratory behaviour and when the NIH Swiss microbiota 

was transferred into the BALB/c GF mice there was an increase in exploratory behaviour, 

associated with an increase in hippocampal BDNF levels (Bercik et al., 2011b). Thus, 

the anxiety-like behavioural phenotype could be transferred via the microbiota, 

independent of the autonomic nervous system, gastrointestinal specific neurotransmitters 

or inflammation. The reverse situation has also been demonstrated, as restoration of 

normal gut microbiota normalised anxiety like behaviour in GF mice (Clarke et al., 

2013). More recently, it has been shown that mice that received an obesity associated 

microbiota exhibit more anxiety-like behaviours associated with increased evidence of 

neuroinflammation compared to controls (Bruce-Keller et al., 2015).  

 

1.13 Stress and Intestinal Permeability  
Stress can impact on the developmental trajectory of the intestinal barrier (Lennon et al., 

2013, Smith et al., 2010) and has been associated with an increase in gut permeability 

(Soderholm et al., 2002). The effects of stress on intestinal permeability are complex and 

likely involve both the gut and the brain. Corticotrophin releasing hormone (CRH) and 

its receptors, CRF R1 and CRF R2, play a key role in stress-induced gut permeability 

dysfunction (Overman et al., 2012, Rodino-Janeiro et al., 2015, Taché and Million, 

2015). In response to an acute stressor, colonic paracellular permeability increases and 

has been associated with the development of visceral hypersensitivity (Ait-Belgnaoui et 

al., 2005). Early life stress has also been demonstrated to enhance plasma corticosterone 

in rat pups and is associated with an increase in intestinal permeability and bacterial 

translocation to liver and spleen. This effect appeared to predominate in the colon 

(Moussaoui et al., 2014). Human studies further confirm that acute-stress paradigms can 

affect intestinal permeability. In a public speaking based stressor, small intestinal 

permeability was significantly increased, however, this was only observed in those 

subjects who also responded with a significant elevation of cortisol. In a different acute 

stress model using a cold pain stressor, albumin permeability increased, though in 

females only (Alonso et al., 2012).  
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Of note, stress-induced changes in the HPA axis and autonomic nervous system display 

sensitivity to probiotic intervention (L. helveticus R0052 and Bifidobacterium longum 

R0175); (Ait-Belgnaoui et al., 2014). Moreover, L. helveticus R0052 and B. longum 

R0175 also restored colonic TJ integrity in stressed mice (Ait-Belgnaoui et al., 2014). 

Probiotics have also been demonstrated to influence bacterial adhesion and translocation 

to mesenteric lymph nodes in response to stress (Zareie et al., 2006). L. farciminis in 

particular not only suppresses stress-induced changes in permeability, HPA axis activity, 

endotoxaemia and neuroinflammation (Ait-Belgnaoui et al., 2012), but also beneficially 

influences the mucus barrier (Da Silva et al., 2014).  

 

1.14 Leaky gut hypothesis  

A dysfunctional intestinal barrier could permit a microbiota-driven proinflammatory 

state with implications for the brain (see Figure 1.2). The sequence of this process is not 

yet clear. An increase in gut permeability could precede mucosal inflammation to induce 

the inflammatory response and thus culminate in a feed forward cycle between 

inflammatory responses and barrier dysfunction. This could subsequently maintain and 

exacerbate the low grade inflammatory response. Alternatively, systemic inflammation 

could increase intestinal barrier permeability and thus allow translocation of commensal 

bacteria with further implications for systemic inflammation. Irrespective of the 

sequence, both processes could engage the gut microbiota.  

 

The source of the low grade inflammation which has been consistently demonstrated in 

sub groups of depressed patients has not been isolated to a particular source (Berk et al., 

2013, Dinan, 2009b, Jokela et al., 2015, Raison and Miller, 2013). The concept that a 

dysfunctional intestinal barrier, or “leaky gut” could permit a microbiota-driven 

proinflammatory state has gained traction (Julio-Pieper et al., 2014, Kelly et al., 2015, 

Maes, 2008, Maes et al., 2008). Under normal conditions, immune cells are separated 

from gram negative bacteria in the gut. However, a permeable intestinal barrier could 

allow certain gram negative bacteria such as Enterobacteriaceae to translocate and 

activate inflammatory pathways (Berg and Garlington, 1979, Lucas and Maes, 2013, 

Wiest and Garcia-Tsao, 2005).  
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Higher IgA and IgM-mediated immune responses directed against LPS of certain 

commensal gram negative gut bacteria have been shown in depressed patients (Maes et 

al., 2008, Maes et al., 2012c, Maes et al., 2013). The implication being that the presence 

of such responses may have occurred subsequent to disruption of the intestinal barrier. 

Moreover, bacterial DNA has been detected in whole serum from depressed patients who 

also displayed increased TLR4 expression on peripheral mononuclear blood cells 

compared to healthy controls, which may be related to bacterial translocation (Keri et al., 

2014). 

 

1.15 Microbiota and the Blood Brain Barrier  
Structural similarities exist between the intestinal, the placental and the BBB (Doran et 

al., 2013). The BBB is a complex neurovascular unit (Bauer et al., 2014) consisting of 

CNS endothelial cells which separate the lumen of blood vessels from the CNS 

parenchyma. Tight Junctions, astrocytes and pericytes seal the capillary endothelial cells 

of the BBB (Daneman and Rescigno, 2009). The TJ transmembrane proteins claudins, 

tricellulin and occludin restrict paracellular diffusion of water-soluble substances from 

blood to the brain (Hawkins and Davis, 2005). Preclinical evidence from GF mice 

suggests that the microbiota can modulate the BBB. Exposure of GF adult mice to the 

fecal microbiota from pathogen-free donors decreased BBB permeability and increased 

the expression of TJ proteins (Braniste et al., 2014). Moreover, monocolonization of the 

intestine of GF adult mice with SCFA producing bacterial strains normalised BBB 

permeability whilst sodium butyrate was associated with increased expression of 

occludin in the frontal cortex and hippocampus (Braniste et al., 2014). This study 

strengthens the hypothesis that the BBB may also be vulnerable to changes in the gut 

microbiota (Frohlich et al., 2016).  

 

1.16 Gut Microbiota in Irritable Bowel Syndrome and Inflammatory Bowel Disease  
Irritable bowel syndrome (IBS) is a stress related functional brain-gut-microbiota axis  

disorder associated with an altered gut microbiota profile (Carroll et al., 2011a, Collins, 

2014, De Palma et al., 2014, Jeffery et al., 2012b, Rajilic-Stojanovic et al., 2015, Simrén, 

2014) and increased intestinal permeability (Camilleri et al., 2012, Dunlop et al., 2006, 

Rao et al., 2011). Moreover, a significant proportion of IBS patients also suffer from 

depressive and anxiety symptoms (Lucas et al., 2014, Singh et al., 2012) and this 

increases with the frequency and severity of gastrointestinal symptoms (Pinto-Sanchez 
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et al., 2015). In addition, alterations in brain circuits involved in attention, emotion, pain 

(Blankstein et al., 2010, Labus et al., 2009, Tillisch et al., 2013a) together with deficits 

in hippocampal-mediated visuospatial memory (Kennedy et al., 2014a, Kennedy et al., 

2012) have been noted the disorder. In particular, an altered Firmicutes: Bacteroidetes 

ratio has been linked to IBS and an association between Firmicutes, Proteobacteria and 

IBS symptom scores has been demonstrated (Rajilic-Stojanovic et al., 2011).  

 

Traditionally, there have been a number of different diagnosis methods which are now 

unified within the Rome framework, at least for research purposes (Soares, 2014). A 

recent meta-analysis of clinical studies to identify and assess the various diagnostic tests 

indicated that a combination of intestinal permeability, Rome I criteria and fecal 

calprotectin (see Table 1.2 for brief description of Intestinal Permeability markers) 

provided the highest positive likelihood ratio for predicting IBS (Sood et al., 2015). 

Although not captured in this meta-analysis, and not part of routine clinical practice, the 

addition of gut microbiota profiling may deliver further diagnostic accuracy (Casen et 

al., 2015). For example, IBS subtypes have been stratified according to their microbiota 

profiles, specifically those with an increased Firmicutes: Bacteroidetes ratio (Jeffery et 

al., 2012a). Furthermore, depression was the most robust clinical discriminator between 

a high Firmicutes: Bacteroidetes ratio in IBS patients relative to IBS patients with a 

healthy-like microbiota signature (Jeffery et al., 2012a). In addition, the order 

Actinomycetales and the family Actinomycetaceae were inversely associated with 

clinically significant depression (Jeffery et al., 2012a).   

 

Although the microbiota varies along the length of the gastrointestinal tract, the majority 

of studies use fecal microbiota sampling as a representative of global changes, however 

site specific changes may influence the ensuing immune consequences. For example 

mucosal jejunal tissue from diarrhoea-predominant IBS patients is also associated with 

increased activation of mucosal B lymphocytes, plasma cells and mucosal IgG 

production. (Vicario et al., 2014). Of note in this study, humoral activity markers 

positively correlated with depressive symptoms (Vicario et al., 2014). Further studies 

need to be conducted to disentangle the contributing role of an exaggerated or aberrant 

immune response, changes in intestinal permeability and psychiatric co-morbidities in 

IBS. However, individuals with a pre-existing psychological disorders are known to be 
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at an increased risk of developing post-infectious IBS (PI-IBS) in particular (Thabane 

and Marshall, 2009).  

 

Variations in several genes associated with bacterial recognition, the inflammatory 

response and epithelial integrity including TLR9, IL-6 and cadherin 1 genes have been 

identified as risk factors for the development of PI-IBS. A longitudinal study which 

examined the rate of IBS development following an accidental outbreak of E. coli 

0157:H7 into a town’s (Walkerton) water supply identified an increased rate of IBS two 

years after the outbreak (Marshall, 2009). A subsequent study further identified a modest 

increase in intestinal permeability amongst this IBS cohort (Marshall et al., 2004). An 

association between this outbreak and depression was also identified (Garg et al., 2006). 

Similarly, an outbreak of shiga toxin-producing E. coli O104 in Germany increased self-

reported depressive and anxiety symptoms measured six months after the infection 

(Lowe et al., 2014).  

 

Inflammatory bowel disease (IBD), a gastrointestinal disorder with overt inflammation 

is also associated with intestinal barrier dysfunction (Antoni et al., 2014, Laukoetter et 

al., 2008, Marchiando et al., 2010) increased intestinal permeability (Gerova et al., 2011) 

immune dysregulation and an altered gut microbiota (Sartor and Mazmanian, 2012). IBD 

is also associated with a higher prevalence of anxiety and depressive disorders (Walker 

et al., 2008). Moreover, stress can adversely affect the course of IBD (Mawdsley and 

Rampton, 2005, Mittermaier et al., 2004). Both Crohn’s disease and Ulcerative colitis 

exhibit alterations in the expression of the TJ proteins, claudin and occludin (Heller et 

al., 2005, Zeissig et al., 2007). Interestingly, recent preclinical evidence suggests that 

chronic intestinal inflammation alters hippocampal neurogenesis (Zonis et al., 2015) 

which itself has recently been reported to be under the influence of the gut microbiota 

(Ogbonnaya et al., 2015)  
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Table 1.2: Markers of Intestinal Permeability 
Permeability Test Sample  Measures Clinical/Preclinical Representative citation 

Challenge Tests     

Lactulose/mannitol urine small intestine permeability  clinical & preclinical (Vanuytsel et al., 2014) 

Lactulose/L-rhamnose urine small intestine permeability  clinical & preclinical (Keszthelyi et al., 2014) 

Sucrose urine gastric permeability  clinical & preclinical (Mujagic et al., 2014) 

Sucralose  urine colonic permeability   clinical & preclinical (Anderson et al., 2004) 

Polyethylene glycols urine entire intestine permeability   clinical & preclinical (Rao et al., 2011) 
 51Cr-EDTA urine entire intestine permeability   clinical & preclinical (Leclercq et al., 2014b) 

     

Circulating Markers     

Zonulin plasma small intestine epithelial cell damage clinical & preclinical (Fasano, 2011) 

Intestinal Fatty acid binding protein (I-

FABP) 

plasma small intestine permeability clinical & preclinical (Derikx et al., 2009) 

Citrulline plasma small intestine epithelial cell damage clinical & preclinical (Crenn et al., 2000) 

αGlutathione S-transferase (αGST) plasma epithelial cell damage clinical & preclinical (McMonagle et al., 2006) 

Claudin-3 urine epithelial cell damage clinical & preclinical (Patel et al., 2012a) 

Lipopolysacharide (LPS) Binding Protein 

(LBP) 

plasma indirect evidence of permeability deficit clinical & preclinical (Pasternak et al., 2010) 

Endotoxin core antibodies (EndoCAb) plasma entire intestine permeability clinical & preclinical (Ammori et al., 2003) 

D-Lactate  plasma entire intestine permeability clinical & preclinical (Poeze et al., 1998) 

Fluorescein isothiocyanate–dextran (FITC-

Dextran 4) 

plasma entire intestine permeability   preclinical (Moussaoui et al., 2014) 
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Fecal Markers     

Calprotectin faeces nonspecific marker of gut inflammation clinical & preclinical (de Magistris et al., 2010) 

Zonulin faeces marker of intestinal permeability clinical (Lamprecht et al., 2012) 

     

Ex-Vivo     

Ussing chamber  ex vivo 

biopsies 

epithelial ion transport clinical & preclinical (Piche et al., 2009) 
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1.17 Gut Microbiota in Depression: State of Knowledge  

To date three clinical studies have investigated the microbiota composition in depressed 

patients. In the first study, a significant increase in the order Bacteroidales and a 

decrease in Lachnospiraceae family was demonstrated in the depressed group 

(Naseribafrouei et al., 2014). At the genus level there was an increase in Oscillibacter 

and Alistipes species. There were no differences in species richness or diversity between 

the groups. In the second study the depressed group had increased levels of 

Enterobacteriaceae and Alistipes and reduced levels of Fecalibacterium which 

negatively correlated with severity of depressive symptoms. They also found no 

significant differences in richness (Jiang et al., 2015). The most recent study, sequenced 

the fecal sample from 58 depressed (39 drug free) and 63 healthy controls. At the 

phylum level they found an increase in Actinobacteria and a decrease in Bacteroidetes 

in the depressed group. Using random forests classifier, 29 operational taxonomic units 

(OTUs) were overrepresented in the depressed subjects and 25 OTUs were 

overrepresented in healthy control subjects. There were no significant differences in 

alpha diversity (shannon, simpson, phylogenetic diversity, observed species) while beta 

diversity, measured by unweighted unifrac, separated the groups to account for 19% of 

the difference.  

 

In the preclincal arm of the study they compared GF to SPF mice and found that the GF 

mice exhibited reduced anxiety-like behaviour in the open field test (OFT) and 

decreased depressive like behaviour in the forced swim test (FST). Preparing an FMT 

from a pooled sample of 5 antidepressant free male donors and 5 matched controls they 

found no differences in the OFT, FST or tail suspension test (TST), whereas at two 

weeks post FMT the mice that received the depressed FMT displayed an increase in 

depressive and anxiety-like behaviour. Then using multiplex shotgun metagenomic 

analysis on caecal samples they identified several carbohydrate metabolites that were 

increased in the mice that received the depressed FMT (α-glucose, β-glucose, fructose 

and succinate) relative to control mice and this was verified in fecal, serum and 

hippocampal samples. Dysregulation of amino acid metabolism was also evident in the 

mice that received the depressed FMT. However, this finding, unlike the carbohydrate 

metabolites, was not consistent across different samples (Zheng et al., 2016a).  
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1.18 Psychobiotics  
Although diet may be a key factor shaping the gut microbiota, it may prove difficult as 

a first-line option in a population which may not be sufficiently motivated to radically 

alter eating habits. Consequently, alternative options need to be considered. A probiotic 

is defined as a live bacteria which when administered in adequate amounts confers a 

health benefit on the host (Petschow et al., 2013, WHO, 2001). Previous probiotic health 

claims have been exaggerated (Hoffmann et al., 2013, Sanders, 2003, Shanahan, 2002) 

and only certain probiotics are viable in the gastro-intestinal tract (Fredua-Agyeman and 

Gaisford, 2015). Other strains demonstrate beneficial effects on the intestinal barrier 

across the lifespan via a number of mechanisms and mediators (Eutamene and Bueno, 

2007, Mennigen and Bruewer, 2009) (see Table 1.3).  

 

Some of the strongest evidence for the clinical role of probiotics comes from studies in 

patients with the brain-gut disorder, IBS (Orel and Kamhi Trop, 2014, Whelan and 

Quigley, 2013). A number of probiotics and commensal organisms, primarily lactic acid 

bacteria, have been shown to ameliorate certain IBS symptoms (Clarke et al., 2012, 

Didari et al., 2015, Hoveyda et al., 2009, Ortiz-Lucas et al., 2013, Yoon et al., 2013). 

Some of these beneficial effects may, at least, relate to the anti-inflammatory effects of 

particular organisms (O'Mahony et al., 2005). Moreover, probiotics in accordance with 

preclinical evidence can improve intestinal barrier function under pathological 

conditions in human populations. In a randomized single blind placebo controlled study 

a fermented milk drink containing Streptococcus thermophilus, L. bulgaricus, 

L.acidophilus and B.longum decreased small intestinal permeability, though colonic 

permeability was unaltered (Zeng et al., 2008).  

 

The term “psychobiotics” has been recently conceived to encompass the sub-types of 

probiotics predominately lactobacillus and bifidobacteria species, that may be capable 

of modulating the brain-gut-microbiota axis to have a beneficial effect on mood, anxiety 

and cognition (Dinan et al., 2013). A growing number of studies (see Table 1.4) with 

healthy individuals suggest that prolonged pre and probiotic consumption can positively 

affect aspects of mood and anxiety in healthy controls (Messaoudi et al., 2011, 

Mohammadi et al., 2015a, Steenbergen et al., 2015b), modulate HPA axis function 

(Messaoudi et al., 2011, Schmidt et al., 2015) and alter functional brain activity (Tillisch 

et al., 2013a). However, a recent systematic review indicated that the impact of 
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probiotic supplementation on gut microbiota structure in healthy controls was minimal 

(Kristensen et al., 2016).  

 

Logan and Katzman initially proposed an augmenting role for probiotics in the 

treatment of depression (Logan, 2015, Logan and Katzman, 2005). Ten years later, the 

first clinical trial was conducted. This randomized placebo controlled trial (n = 40) of a 

multispecies probiotic, showed that 8 weeks of L. acidophilus, L. casei and B. bifidum 

reduced Beck depression scores compared to placebo (Akkasheh et al., 2016). 

Although, diet was recorded in this study, microbiota analysis was not reported.  
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Table 1.3: Preclinical studies of Probiotics & Intestinal barrier 
Probiotic Effects Reference 
VSL#3  normalization of colonic physiologic function and barrier integrity reduction in mucosal secretion of TNFα 

and IFNγ & an improvement in histologic disease.  
Decreased ileal paracellular permeability, decrease claudin-2 and increase occludin in a mouse model of 

ileitis 

(Corridoni et al., 2012) 

VSL#3 (protein soluble 
factor) 

enhanced barrier function and resistance to Salmonella invasion (Madsen et al., 2001) 

VSL#3   Prevented the increase in epithelial permeability in DSS induced acute colitis & prevented the decreased 
expression & redistribution of the occludin, zonula occludens-1, and claudin-1, -3, -4, and -5 

(Mennigen et al., 2009) 

VSL#3  VSL#3 can attenuate intestinal barrier damage and reduced bacterial translocation in a LPS induced mouse 
model of sepsis 

(Ewaschuk et al., 2007) 

Lactobacillus rhamnosus 
& L. acidophilus  

attenuated the damage caused by Shigella dysenteriae (Moorthy et al., 2009) 

Lactobacillus plantarum   prevented the rearrangement of claudin-1, occludin, JAM-1 and ZO-1 proteins induced by Escherichia coli (Qin et al., 2009) 

Lactobacillus reuteri reduced levels of colonic mucosal adherent and translocated bacteria and attenuated the development of the 
colitis in interleukin IL-10 gene deficient mice 

(Madsen et al., 1999) 

Lactobacillus rhamnosus 
GG culture supernatant 
(LGG-s)  

pretreatment significantly inhibited alcohol-induced intestinal permeability, endotoxemia and subsequently 
liver injury  

(Wang et al., 2012b) 

Lactobacillus rhamnosus 
OLL2838 (live & heat-
killed) 

Administration to DSS-treated animals protected against the increase in mucosal permeability associated 
with DSS-induced colitis.  

Increased expression of ZO-1 and myosin light-chain kinase in intestinal epithelial cells isolated from mice 
of the heat-killed OLL2838 group 

(Miyauchi et al., 2009) 
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Lactobacillus casei DN-
114 001 (lysate - Lc) 

increased the numbers of CD4(+)FoxP3(+) Tregs in mesenteric lymph nodes,  
decreased the production of TNFα and IFNγ, and anti-inflammatory IL-10 in peyer's patches and large 

intestine  
changed the gut microbiota composition in an DSS colitis BALB/c model  

Lc also resulted in a significant protection against increased intestinal permeability and barrier dysfunction 
shown by preserved ZO-1 expression  

Lc treatment prevented LPS induced TNFα expression in RAW 264.7 cell line by down-regulating the NF-
κβ B signalling pathway 

(Zakostelska et al., 2011) 

Lactobacillus brevis 
SBC8803 polyphosphate 
(poly P) 
 
 

suppressed the oxidant-induced intestinal permeability in the mouse small intestine and its protective effect 
was prevented by pharmacological inhibitors of p38 MAPK and integrins  

 
daily intrarectal administration of poly P improved the inflammatory profile and survival rate when 

administered to DSS mice. 

(Segawa et al., 2011) 

Lactobacillus rhamnosus 
GG, soluble secretory 
proteins p40 and p75 

prevented hydrogen peroxide induced redistribution of occludin, ZO-1, E-cadherin, and beta-catenin from 
the intercellular junctions 

(Seth et al., 2008) 
 

Lactobacillus plantarum 
DSM 2648  
 
 
Lactobacillus plantarum 
MB452 
 
 
 

attenuated the negative effect of enteropathic Escherichia coli (EPEC) O127:H6 (E2348/69) on 
transepithelial electrical resistance and adherence to intestinal cells. 

  
 

19 TJ related genes had altered expression levels including those encoding occludin and its associated 
plaque proteins that anchor it to the cytoskeleton.  

 
L. plantarum MB452 altered tubulin and proteasome gene expression levels 

(Anderson et al., 2010a) 
 
 

(Anderson et al., 2010b) 

Lactobacillus 
acidophilus protects TJ 
from aspirin damage in 
HT-29 cells  

 protects TJ from aspirin damage in HT-29 cells (Montalto et al., 2004) 

Lactobacillus rhamnosus 
GG (LGG) - modified 
lipoteichoic acid (LTA)  

correlated with a significant down-regulation of TRL2 expression and downstream proinflammatory 
cytokine expression in DSS mouse model 

(Claes et al., 2010) 
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Lactobacillus plantarum 
299v 

1 week of pretreatment the drinking water abolished E. coli-induced increase in permeability (Mangell et al., 2002) 

Lactobacillus helveticus 
and Lactobacillus 
rhamnosus  

Administration one week prior to and concurrently with Citrobacter rodentium attenuated C. rodentium 
induced barrier dysfunction, epithelial hyperplasia, and binding of the pathogen to host colonocytes 

(Rodrigues et al., 2012) 

Lactobacillus rhamnosus 
LOCK0900, L. 
rhamnosus LOCK0908 
and L. casei LOCK0919 

Colonization of GF mice enhanced the integrity of gut mucosa and ameliorated allergic sensitization (Kozakova et al., 2015) 

Lactobacillus fermentum 
AGR1487 - cell surface 
structures & supernatant  

live and deadAGR1487 decreased TEER across Caco-2 cells.  
only live AGR1487 increased the rate of passage of mannitol 

(Sengupta et al., 2015) 

Lactobacillus rhamnosus 
GG (live or heat-killed) 
 

Enteral administration accelerated intestinal barrier maturation and induced claudin 3 (Patel et al., 2012a) 

Lactobacillus helveticus 
R0052 & 
Bifidobacterium longum 
R0175  

reversed the increased intestinal permeability and depressive like behaviours post MI. (Arseneault-Breard et al., 2012) 

Bifidobacterium lactis 
CNCM I-2494  

prevented the increase in intestinal permeability induced by PRS and restored occludin and JAM-A 
expressions to control levels 

(Agostini et al., 2012) 

Bifidobacteria infantis  In T84 cells increased TEER, decreased claudin-2, and increased ZO-1 and occludin expression, associated 
with enhanced levels of phospho-ERK and decreased levels of phospho-p38.  

 
prevented TNFα & IFNγ induced decrease in TEER & rearrangement of TJ proteins.  

 
Oral administration acutely reduced colonic permeability in mice whereas long-term BiCM treatment in IL-

10-deficient mice attenuated inflammation, normalized colonic permeability & decreased colonic and 
splenic IFN-gamma secretion 

(Ewaschuk et al., 2008) 

Bacteroides 
thetaiotaomicron  

modulated the expression of genes involved in several important intestinal functions, including nutrient 
absorption, mucosal barrier fortification, xenobiotic metabolism, angiogenesis, and postnatal intestinal 

maturation 

(Hooper et al., 2001) 

Escherichia coli Nissle 
1917  

altered the expression, and distribution of ZO-2 protein (Zyrek et al., 2007) 
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Escherichia coli Nissle 
1917  

Colonization of GF mice resulted in an up-regulation of ZO-1 in intestinal epithelial cells at both mRNA 
and protein levels 

(Ukena et al., 2007) 

  



59 
 

Table 1.4: Probiotics & Clinical Stress Studies 
Probiotic Duration N Subjects Design Clinical Measures Biological 

Measures 
Results Reference 

Lactobacillus 
casei Shirota 
(milk drink) 

21 days 124 
 

Healthy 
 

(average 
age was 

61.8 yrs) 
 

randomized 
double blind 

placebo 
controlled 

Mood: Profile of Mood 
States (POMS), at 

baseline, 10 days & 20 
days 

 
Cognition: 

Episodic memory 
Semantic memory 

Verbal fluency 

N/a no general effect on mood of taking the 
probiotic 

 
small improvement in mood when post hoc 

analysis of the lowest tertile mood scores were 
considered 

 
decreased performance on semantic memory  

(Benton et 
al., 2007) 

L. helveticus 
R0052 & B. 
Longum 
R0175 

30 days 30 Healthy double blind 
placebo 

controlled 

Hopkins Symptoms 
Checklist (HSCL-90) 

 
Hospital Anxiety & 

Depression Scale 
(HADS) 

 
Perceived Stress Scale 

(PSS) 
 

Coping Checklist 
(CCL) 

24 hour 
urinary 

free 
cortisol 
(UFC) 

HSCL-90 scale (global severity index, 
somatisation, depression, and anger–hostility), 

the HADS (HADS global score, and HADS 
anxiety) & by the CCL (problem solving) 

 
Decrease in UFC 

 
 
 
 

(Messaoud
i et al., 
2011) 

Lactobacillus 
casei Shirota  

60 days 35 
 

Chronic 
Fatigue 

Syndrom
e 

Randomized 
double blind 

placebo 
controlled 

Beck Anxiety & 
Depression Inventories 

 
 

Fecal  Decrease in Anxiety symptoms 
 

Increase in Lactobacillus and Bifidobacteria in 
Fecal samples 

(Rao et al., 
2009) 

Clostridium 
Butyricum 

14 days 
(twice 
daily) 

30 
CFS 

 
20 

Healt
hy 

contr
ols 

pre-op 
laryngect

omy 

Randomized, 
placebo 

controlled 

Hamilton Anxiety 
Scale 

Serum 
CRF 

 
Heart rate 

(HR) 

reduced anxiety levels from 19.8 to 10.2  
 

attenuated the increase in CRF & HR pre op 

(Yang et 
al., 2014) 
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Bifidobacteri
um animalis, 
Streptococcus 
thermophiles, 
Lactobacillus 
bulgaricus, & 
Lactobacillusl
actis 
(fermented 
milk) 

28 days 12 Healthy 
Females 

Randomized 
placebo 

controlled 
parallel-arm 

design 

 fMRI: 
emotional 

faces 
attention 

task 

reduced task related response of a distributed 
functional network containing affective, 

viscerosensory and somatosensory cortices 
 

independent of self reposted GI symptoms 

(Tillisch et 
al., 2013a) 
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1.19 Prebiotics  
A prebiotic effect is defined as the selective stimulation of growth and/or activity(ies) of 

one or a limited number of microbial genus(era)/species in the gut microbiota that 

confer(s) health benefits to the host (Gibson, 2004, Roberfroid et al., 2010). Preclinical 

and clinical studies demonstrate that certain prebiotics alter the gut microbiota, can 

reduce low grade inflammation and improve metabolic function (Bindels et al., 2015, da 

Silva et al., 2013, Dewulf et al., 2013, Everard et al., 2011, Greiner and Backhed, 2011). 

Evidence also suggests that prebiotic galacto-oligosaccharides (GOS) can improve 

intestinal barrier function in a rats (Zhong et al., 2009). Moreover, mice treated with 

prebiotics exhibit improvements in intestinal permeability, TJ integrity, decreased 

plasma LPS and cytokine levels in addition to decreased hepatic expression of 

inflammatory and oxidative stress markers (Cani et al., 2009).  

 

Prebiotics have also been shown to influence brain neurochemistry and behaviour. GOS, 

for example, increased hippocampal neurotrophin levels and the expression N-methyl-d-

aspartate receptor subunits in the rat frontal cortex (Savignac et al., 2013). Behaviourally, 

a combination of GOS and polydextrose attenuated anxiety like behaviour rats and 

induced alterations in the gut microbiota composition (Mika et al., 2014). In the context 

of IBS, GOS also appeared to influence the gut microbiota and improved anxiety scores 

(Silk et al., 2009). Furthermore, in healthy adults, administration of GOS significantly 

decreased the cortisol awakening response and decreased attentional vigilance to 

negative versus positive information in a dot-probe task compared to placebo (Schmidt 

et al., 2015).  

 

1.20 Minocycline  
As discussed above antibiotics have a profound impact on the gut microbiota (Dethlefsen 

and Relman, 2011). One potential effect of microbiota disruption, is the alteration of its 

metabolizing capabilities. Alteration of the microbiota, could potentially modulate the 

efficacy or toxicity of certain drugs, though little is known about these interactions. 

Although there is a shift towards more targeted narrow spectrum antibiotics, which 

minimize the disruption to the gut microbiota, (“microbiome sparing”), the broad 

spectrum antibiotic minocycline has received much attention recently due to its 

neuroprotective effects (Borre et al., 2012, Plane et al., 2010, Stirling et al., 2005, Stock 

et al., 2013). This second generation tetracycline antibiotic targets aerobic and anaerobic 
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gram positive and gram negative bacteria, and as it is highly lipophilic with a 

bioavailability of 95%, has good penetration into the central nervous system. 

Minocycline is commonly used in the treatment of acne vulgaris (Garner et al., 2012) 

and occasionally used in the treatment of sexually transmitted diseases (Rosen et al., 

2009). 

 

There are several mechanisms proposed to account for minocycline’s neuroprotective 

effects. Minocycline can suppress microglial activation, reduce the expression of pro-

inflammatory cytokines (IL 1ß, IL 6, IL 2, TNFα, IFN-γ), matrix metalloproteinases, and 

up-regulate the anti-inflammatory cytokine IL-10 (Hinwood et al., 2013, Soczynska et 

al., 2012, Tikka et al., 2001). It can inhibit free radical generation (Lin et al., 2003) and 

may indirectly modulate glutamatergic transmission (Chaves et al., 2009, Jin et al., 

2012). Minocycline has also been investigated in animal models of depression. 

Minocycline reduced immobility and increased climbing in the forced swim test (FST) 

(Molina-Hernandez et al., 2008). It resulted in less escape failures and shorter latency to 

escape in a learned helplessness model (Arakawa et al., 2012). In LPS experiments, 

minocycline attenuated the LPS induced expression of pro-inflammatory cytokines 

(Henry et al., 2008) and attenuated LPS associated increases in the duration of 

immobility in the FST and TST (O'Connor et al., 2009). Another tetracycline antibiotic, 

doxycycline, similar to imipramine prevented and reduced LPS alteration in the FST, and 

also prevented and reversed LPS induced increase in IL 1ß and reversed LPS induced 

alterations in nitrite content and oxidative stress parameters in the striatum, hippocampus 

and PFC (Ferreira Mello et al., 2013).  

 

The majority of clinical studies investigating minocycline in psychiatry have involved its 

evaluation as an augmenting agent in the treatment of the negative symptoms in 

schizophrenia (Chaudhry et al., 2012, Levkovitz et al., 2010, Liu et al., 2014), though 

several studies have been conducted in depressed patients. A case report showed mild 

nonspecific inflammation without lymphocytic infiltration and lipofuscin granule 

accumulation within the neurovascular endothelium in a brain biopsy of a depressed 

patient with recurrent treatment resistant depression. After a nine month course of 

intravenous immunoglobulin and a concurrent six month course of intravenous 

minocycline, a repeat Single-photon emission computed tomography (SPECT) scan 

showed normalization of frontal lobe hypoperfusion with a reduction in depression and 
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anxiety symptoms as measured by the Montgomery-Asberg depression rating scale and 

the Beck depression and anxiety inventory (Najjar et al., 2013b).   

 

In an open label study involving 25 patients diagnosed with unipolar psychotic 

depression, minocycline in combination with SSRIs for six weeks resulted in significant 

reductions in depression scores in the Hamilton Rating Scale for Depression and the Brief 

Psychiatric Rating Scale (BPRS) (Miyaoka et al., 2012). A number of ongoing trials are 

investigating minocycline’s effect in unipolar (NCT01574742), bipolar (NCT01403663, 

NCT01514422) and old age depression (NCT 01659320). One such trial is a trial of 

minocycline and aspirin in the depressed phase of bipolar (Savitz et al., 2012). Another 

ongoing trial is investing the effect of minocycline in patients that have relapsed into 

depression after successful treatment with intravenous ketamine (NCT01809340).  

 

An intriguing additional possible mechanism whereby minocycline could exert beneficial 

effects in neuropsychiatric disorders could be via modulation of the gut microbiota. In a 

preclinical study, stressed mice treated with minocycline, exhibited increases in the 

relative abundances of Akkermansia and Blautia species compatible with beneficial 

effects of attenuated inflammation and an increase in Lachnospiracea consistent with 

changes of caspase-1 deficiency (Wong et al., 2016).   

 

1.21 Primary hypothesis and aims of thesis  
 

We hypothesise that the gut microbiota may have a causal role in symptom generation in 

depression and that targeting the gut microbiota with psychobiotics might represent a 

viable strategy for altering mood and cognitive processes. This hypothesis will be tested 

via the following objectives: 

1. To determine the composition, richness and diversity of the gut microbiota in 

depressed patients compared to healthy controls and its relationship to: immune 

activity (plasma cytokines), HPA-axis function, tryptophan metabolism, 

intestinal permeability and SCFAs.  

2. To determine a potential causal role for the gut microbiota, the behavioral & 

physiological effects of a Fecal Microbiota Transplantation from depressed 

patients and health controls to a microbiota depleted antibiotic rat model will be 

assessed. 
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3. To determine the effect of a putative psychobiotic, Lactobacillus Rhamnosus, on 

mood, stress response, cognition and relevant brain activity patterns in healthy 

males. 
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Chapter 2: Gut Microbiota & Physiological 
profiles in Depression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

2.1 Abstract  
Background: Major Depressive Disorder (MDD) is a common, often recurrent, 

heterogeneous disorder responsible for significant disability and economic burden 

worldwide. The biological mechanisms underlying the pathophysiology of MDD involve 

immune, endocrine and neurotransmitter dysregulation. Pre-clinical findings suggest that 

the complex and dynamic gut microbiota can modulate brain development, function and 

behaviour by recruiting the same neuroimmune, neuroendocrine and neural pathways of 

the brain-gut-axis which are dysfunctional in MDD. We tested the hypothesis that an 

altered gut microbiota, contributing to a dysregulated brain-gut-microbiota axis, could 

contribute to the pathophysiology of MDD. 

Methods: Thirty four patients with major depression and 33 matched healthy controls 

were recruited. Cytokines, CRP, Salivary Cortisol and plasma Lipopolysaccharide 

binding protein (LBP) were determined by ELISA. Plasma tryptophan and kynurenine 

were determined by High Performance Liquid Chromatography (HPLC). Fecal samples 

were collected for 16s rRNA sequencing. Fecal Short chain fatty acids (SCFAs) were 

determined by Gas Chromatography. Fecal metabolites were analysed using Gas 

Chromatography Mass Spectometry (GC-MS). 

Results: Depression is associated with altered gut microbiota composition and decreased 

gut microbiota richness and diversity. In parallel, patients with depression showed 

significantly higher levels of IL-6 (p = 0.01), IL-8 (p = 0.02), TNF-α (p = 0.02), CRP (p 

= 0.001) and a Kynurenine/tryptophan ratio (p = 0.05) compared to healthy controls. 

There was a greater cortisol output as measured by the Area under the Curve with respect 

to ground (AUCg) (p = 0.05) in the depressed group. There were no significant 

differences in LBP levels or fecal SCFAs. A Principal Component Analysis (PCA) model 

of fecal metabolites did not reveal distinct clusters.  

Conclusions: We confirm that depression is associated with HPA axis, immune system 

and tryptophan dysregulation. Moreover, we show that depression is characterised by 

alterations in the gut microbiota at the family and genus level. Given that the metabolic 

output of this altered composition was not compromised and gut barrier function 

remained intact, further exploration of alternative mechanisms explaining the 

contribution of an altered gut microbiota profile to the pathophysiology of depression is 

warranted.  
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2.2 Introduction  
Depression is a common, often recurrent (Eaton et al., 2008) heterogeneous disorder 

responsible for significant disability worldwide (WHO, 2008). The complex aetiology 

involves dysregulated neuroendocrine (Stetler and Miller, 2011) neuroimmune (Dowlati 

et al., 2010), metabolic (Jokela et al., 2014) and neurotransmitter systems (Berton and 

Nestler, 2006). Current pharmacological interventions are suboptimal (Fava, 2003) and 

there has been little progress in the identification of biomarkers.  

 

Accumulating evidence from preclinical studies suggests that the gut microbiota can 

modulate brain activity and behaviour via neuroendocrine, neuroimmune, neural and 

humoral pathways (Cryan and Dinan, 2012a, Dinan and Cryan, 2013). This emerging 

link between the gut microbiota and the central nervous system suggests that gut 

microbiota modification may have translational applications in the treatment of 

neuropsychiatric disorders (Cryan and Dinan, 2015b, Desbonnet et al., 2014, Hsiao et 

al., 2013). 

 

Data from animal studies provides evidence that the gut microbiota may impact on the 

neurobiological features of depression (Park et al., 2013), such as low-grade immune 

activation (Bailey et al., 2011), hypothalamic-pituitary-adrenal axis (HPA) activity 

(Sudo et al., 2004), altered tryptophan metabolism (Clarke et al., 2013, El Aidy et al., 

2012, O'Mahony et al., 2015a, Yano et al., 2015), neurotrophic factors (Bercik et al., 

2011b), and neurogenesis (Mohle et al., 2016, Ogbonnaya et al., 2015). 

 

Different lactobacillus and bifidobacteria species have been shown to modulate 

depression and stress-related behaviours in animal models (Bravo et al., 2011, Desbonnet 

et al., 2010, Savignac et al., 2015b). Furthermore, a growing number of small studies 

suggest pre- and probiotic consumption can positively affect aspects of mood and anxiety 

(Akkasheh et al., 2016, Messaoudi et al., 2011, Steenbergen et al., 2015b), modulate 

HPA function (Messaoudi et al., 2011, Schmidt et al., 2015) and alter brain activity 

(Tillisch et al., 2013a). However, there are a paucity of clinical studies in well 

phenotyped pathological populations (Jiang et al., 2015, Naseribafrouei et al., 2014, 

Zheng et al., 2016a). 
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We investigated alterations in the gut microbiota composition in patients with depression 

compared to healthy controls with respect to signature physiological alterations in HPA 

axis function, immune activation and tryptophan metabolism. We aimed to identify the 

functional consequences of the gut microbiota alterations in depression by determining 

levels of fecal short chain fatty acids. We then assessed gut permeability as a potential 

mechanism by which gut bacteria may influence brain function (Julio-Pieper et al., 2014, 

Kelly et al., 2015).  

 

2.3 Methods 
Subjects 

Approval of the study protocol was granted by the Cork University Hospital ethics 

committee (Protocol Number: APC045) and written informed consent was obtained from 

all subjects. Thirty four depressed patients were recruited from outpatient and inpatient 

psychiatric clinics by a psychiatrist (JK). The Diagnostic and Statistical Manual of 

Mental Disorders (DSM IV) was used to confirm major depressive disorder diagnosis. 

Thirty three healthy subjects, screened using the Mini International Neuropsychiatric 

Interview (MINI), and matched for gender, age and ethnicity were recruited from 

advertisements directed at staff at Cork University Hospital and University College Cork. 

Inclusion criteria were as follows: age between 18 and 65 years, Hamilton depression 

score greater than 17. All patients had been prescribed antidepressant medication before 

referral to the secondary care service. Exclusion criteria were as follows: the use of 

probiotics, antibiotics use in the previous 4 weeks, active infections, glucocorticoids, 

nonsteroidal anti-inflammatory drugs, diabetes, inflammatory bowel disease, irritable 

bowel syndrome, recent gastrointestinal surgery, arthritis, pregnancy, and active alcohol 

or substance abuse or dependency. Inpatients were excluded if admission was greater 

than one week. 
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Clinical Measures 
Anxiety Beck Anxiety Inventory (Beck et al., 1988) 

 Perceived Stress Scale (Levenstein et al., 1993) 

Mood Hamilton rating scale for Depression (HAMD 17) (Hamilton, 1960) 

 Beck Depression Inventory (Beck et al., 1961) 

Traumatic 

Events 

Early Life events scale 

Recent Life events scale 

 

Sleep Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989) 

Exercise International Physical Activity Questionnaire 

(IPAQ) short version 

(Craig et al., 2003)  

 

Diet The Food Frequency Questionnaire (FFQ) (Harrington et al., 2010) 
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Microbiota analysis 

Fecal samples were collected in a plastic containers containing an anaerobic generator 

AnaeroGen Compact Oxoid sachet. The fecal sample was transported to the laboratory 

and opened in an anaerobic hood. For the preparation of the fecal sample for inoculation, 

1g of fecal sample was place into a stool collection tube and 10 mls of reduced PBS 

containing 15% (v/v) glycerol was added. Fecal slurry was prepared by vortexing each 

tube until the mixture was homogenous. The sample was frozen at -80oC in cryovials in 

1ml aliquots until further use. DNA was either extracted from fresh samples within 24 

hours or from frozen samples using QIAamp DNA Stool Mini Kit (Qiagen, Hilden, 

Germany). DNA was extracted from 21 frozen fecal samples and 43 from fresh samples. 

This has been shown to have little impact on the integrity of the microbiota (Fouhy et al., 

2015) and the Chao1, Simpson, Shannon, phylogenetic diversity and observed species 

between samples extracted from fresh and frozen were compared, and no significant 

differences were observed. Extracted DNA was prepared for sequencing on the Illumina 

Miseq platform using the Illumina recommended protocol: DNA was amplified using 

16S Amplicon primers selected from (Klindworth et al., 2012). Forward Primer = 5' 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 

Reverse Primer = 5' 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTA

ATCC. The PCR product was purified of free primers and primer-dimer species using 

AMPure XP beads. Amplicons were tagged using the Illumina Nextera XT Index kit, and 

purified again using AMPure XP beads. The amplicons were quantified using Qubit 

fluorometric analysis and then normalised before pooling and sequencing. 300bp paired-

end reads were combined using FLASH. Quality filtering removed reads with a quality 

score of <20 using QIIME. Filtered sample read numbers ranged from 28,057-895,372, 

with a mean read number of 157,030. Removal of chimeras and clustering of reads into 

operational taxonomic units (OTUs) was performed with USEARCH v7 (64-bit) with a 

lower threshold of 97% identity. OTUs were then aligned with PyNAST, and taxonomy 

was assigned using BLAST against the SILVA SSURef database release 111. The 

observation data were rarefied using QIIME to remove skew caused by samples 

containing very low or very high numbers of reads; a subsampling depth of 60,000 was 

chosen as optimal to maintain the maximum of both observed diversity and sample 

numbers. This left 23 test and 25 control samples. The Benjamini-Hochberg procedure 

was used to correct for multiple comparisons where appropriate with a FDR-adjusted p-
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value ≤ 0.1 considered significant (Thissen et al., 2002). Statistical tests were performed 

using R using the Mann-Whitney U test with continuity correction. Using QIIME, Alpha 

diversity was calculated for Chao1, Simpson, Shannon, observed species and Faith’s 

phylogenetic diversity. Beta diversity was calculated for Bray Curtis (R2 = 0.03444, p = 

0.014), weighted (R2 = 0.05515, p = 0.018) and unweighted unifrac (R2 = 0.05515, p = 

0.018) using the multivariate ANOVA method "adonis" adapted in QIIME from the R 

"Vegan" package.  

 

SCFA analysis 

A modified version of the method used by (Zhao et al., 2006) was used to analyse SCFA 

from human fecal samples: 1g of sample was mixed with 5mls of sterile distilled water 

and vortex for 3 minutes. The pH of the suspension was adjusted to 2-3 with 5M HCL 

and allowed to sit at room temperature for 10 minutes with occasional shaking. The 

samples were centrifuged at 4600rpm for 30 minutes. The supernatant was filtered 

through a 0.2um filter and 900ul of the sample was removed in duplicate into sterile 

eppendorfs. 100ul of 3.0mM-2-ethylbutyric acid (Sigma) was added as an internal 

standard to each sample. This was centrifuged for 3 minutes at full speed and transferred 

to a clear glass vial. Standard solutions containing 10.0, 8.0, 6.0, 4.0, 2.0, 1.0 and 0.5 

mmol/l of acetic acid, propionic acid, isobutyric acid and butyric acid (Sigma), 

respectively, were used for calibration. The concentration of SCFA was measured using 

a Varian 3800 GC flame ionisation system, fitted with a ZB-FFAP column (30m x 

0.32mmx 0.25 mm; Sigma). Helium was used as a carrier gas at a flow rate of 1.3 ml/min. 

The initial oven temperature was 50oC and held for 0.5 min, raised to 140oC at a rate of 

10C/min and held for 0.5 min for a total of 10 minutes and finally held at 240oC at a rate 

of 20oC /min and held for 5 minutes to give a total run time of 20 minutes. The 

temperature of the detector and injector were set at 250oC and 240oC, respectively Peaks 

were integrated by using the Varian Star Chromatography Workstation version 6.0 

software. Standards were included in each run to maintain calibration. 

 

Metabolomic analysis   

Fecal water was prepared from the fecal matter of 20 depression samples and 18 healthy 

controls. 200-400 mg of fecal material was placed into sterile 2 ml microcentrifuge tubes. 

Sterile PBS was added. 400 mg required 800 µl PBS. A slurry was produced by vigorous 

manual shaking and then centrifuged at 16000g for 30 mins. The supernatant was 
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centrifuged in 2ml microcentrifuge tubes at 16000 g for 30 mins. The supernatant was 

filtered through a VectaSpin Micro centrifuge filters 0.2 µm at recommended top speed 

10,000 g until clear. The fecal water was stored at –20°C. All samples have been 

derivatized with methyl chloroformate (MCF). MCF converts amino and nonamino 

organic acids into volatile carbamates and esters. Although limited to compounds 

presenting amino and/or carboxyl groups, these include most metabolites of the central 

carbon metabolism, which are key intermediate of the cell metabolism. The samples were 

randomised and analysed by Gas Chromatography Mass Spectometry (GC-MS). A 

mixed pooled sample (QC sample) was created by taking a small aliquot from each 

sample. Every four-to-five samples, this QC sample was analysed. Testing of matrix 

effects was performed by spiking/dilution of QC samples. The raw GC-MS data was 

processed by software developed by MS-Omics and collaborators.  

 

Salivary Cortisol analysis 

Participants were instructed to collect three saliva samples using Salivettes (Sarstedt AG 

and Co, Numbrecht, Germany) at the following time points: (t 0) upon wakening, 30 

minutes post wakening (t +30hr), and 150 minutes post wakening (t + 150). As it is not 

yet established if variable waking times affect the cortisol awakening response, we took 

the approach which is common in the literature (Hinkelmann et al., 2013) and did not 

require that participants wake at a specific time, but followed their normal routine as 

closely as possible. Waking times were recorded for analysis to determine any group 

differences. Salivettes were centrifuged at 1000 g for 5 min and aliquoted and stored 

initially at -35oC then transferred to - 80oC until analysis. Cortisol concentrations were 

determined using the Cortisol Enzyme Immunoassay Kit as per manufacturers’ 

instruction (Enzo®, Life Sciences). Assay detection limit was 0.16 nmol/L. Inter and 

intra-assay % C.Vs were 11.24% and 8.2% respectively. 

 

Kynurenine/Tryptophan analysis 

Plasma samples were spiked with internal standard (3-Nitro l-tyrosine) prior to being 

deproteinised by the addition of 20 μl of 4M perchloric acid to 200 μl of sample. Samples 

were centrifuged at 21000g on a Hettich Mikro 22R centrifuge (AGB, Dublin, Ireland) 

for 20 minutes at 4°C and 100 μl of supernatant transferred to a HPLC vial for analysis 

on the HPLC system (UV and FLD detection). All samples were injected onto a reversed 

phase Luna 3 μm C18 (2) 150 × 2 mm column (Phenomenex), which was protected by 
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Krudkatcher disposable pre-column filters (Phenomenex) and SecurityGuard cartridges 

(Phenomenex). The mobile phase consisted of 50 mM acetic acid, 100 mM zinc acetate 

with 3% (v/v) acetonitrile and was filtered through Millipore 0.45 μm HV Durapore 

membrane filters (AGB) and vacuum degassed prior to use. Compounds were eluted 

isocratically over a 30-minute runtime at a flow rate of 0.3 mls/min after a 20 μl injection. 

The column was maintained at a temperature of 30°C and samples/standards were kept 

at 8°C in the cooled autoinjector prior to injection. The fluorescent detector was set at an 

excitation wavelength of 254 nm and an emission wavelength of 404 nm. The UV 

detector was set to 330 nm. L-tryptophan and kynurenine were identified by their 

characteristic retention times as determined by standard injections which were run at 

regular intervals during the sample analysis. Analyte: Internal standard peak height 

rations were measured and compared with standard injections and results were expressed 

as ng/ml of plasma. 

 

Cytokine sampling & analysis 

10ml of whole blood was collected in heparinized tubes. Samples were centrifuged 

immediately at 1,000 x g for 15 minutes and then aliquoted. Samples were frozen initially 

at -35oC and then transferred to -80oC until analysis. Plasma levels of IL-6, IL-8, TNF-

α, and CRP were assayed in duplicate using high sensitivity commercially available 

electrochemiluminescence MULTI-SPOT® Meso Scale Discovery kits (MSD, 

Rockville, MD, 75USA) as per manufacturer’s instructions. The median lower limits of 

detection for each cytokine are; IL-6; 0.06 pg/ml, IL-8; 0.04 pg/ml, TNF-α 0.04 pg/ml 

and CRP; 0.1 ng/ml. 

 

Lipopolysaccharide Binding Protein (LBP) 

10ml of whole blood was collected in heparinized tubes. Samples were centrifuged 

immediately at 1,000 x g for 15 minutes and then aliquoted. Samples were frozen initially 

at -35oC and then transferred to -80oC until analysis. LBP concentrations were 

determined using the Enzyme Immunoassay Kit for free human LBP as per 

manufacturers’ instruction (Enzo®, Life Sciences). Sensitivity: Range 5-50ng/ml.  

 

Statistical Analysis. Data that were normally distributed according to Shapiro-Wilk test 

were analyzed using unpaired t tests. Outliers were removed by Grubbs' test. Data that 

were not normally distributed were transformed by square root transformation. 
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Microbiota data were analyzed using non parametric tests. Benjamini-Hochberg 

procedure was used to correct for multiple comparisons with a FDR-adjusted p-value ≤ 

0.1 considered significant. Statistical procedures were carried out using IBM SPSS 20.0. 

Graphs were generated using GraphPad Prism 5. Macronutrient data was generated using 

Diet Plan 6.  
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2.4 Results 
Demographic data and health indicators 

Other than education level, employment status, smoking and alcohol consumption, there 

were no differences between the groups (Table 2.1). Clinical characteristics of the 

depressed patients are presented in (Table 2.2). 
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Table 2.1: Comparison of group demographics and health indicators 
  Controls (n=33) Depression 

(n=34) 

p-value 

      

Age mean (s.d.) 45.8 (11.9) 45.8 (11.5) 0.98 

Sex:   Male (%)  19 (57.6) 21 (61.8) 0.73 

           Female (%) 14 (42.4) 13 (32.8)   

        

Education, degree level (%) 26 (78.8) 8 (23.5) <0.001*** 

Relationship status (% yes) 23 (69.7) 20 (58.8) 0.35 

Employed (% yes) 31 (93.9) 16 (47.1) <0.001*** 

        

Alcohol units/week mean, (s.d) 9.24 (8.3) 5.29 (5.9) 0.03* 

1st degree relative with alcohol use disorder 4 (12.1) 12 (35.3) 0.03* 

Smoking (%)       

Current  3 (9.1) 13 (38.2)   

Ex 19 (57.6) 3 (8.8)   

Never 11 (33.3) 18 (52.9) <0.001*** 

        

BMI mean (s.d.) 24.58 (2.7) 26.2 (4.5) 0.07 

        

Dyslipidaemia (%) 4 (12.1) 7 (20.6) 0.51 

HTN (%) 3 (9.1) 3 (8.8) 0.97 

        

Physical Activity (IPAQ)        

Low (%) 7 (21.2) 13 (38.2)   

Moderate (%) 16 (48.5) 14 (41.2)   

High (%) 10 (30.3) 6 (17.6) 0.23 

Metabolic Equivalent Task Units (MET) 

median, range 

1386 (7287) 693 (7722) 0.1 

Hours sitting per day mean, (s.d) 6.03 (2.730) 5.97 (2.456) 0.92 

Data are presented as mean and S.D, or median and range. BMI, body mass index; HTN, 

Hypertension; IPAQ, International Physical Activity Questionnaire. *p<0.05 vs control. 

**p<0.01 vs control; ***p<0.001 vs control. 
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Table 2.2: Comparison of group clinical characteristics 
  Controls (n=33) Depression 

(n=34) 

p- value 

Diagnosis       

Depression (%) NA 29 (85.3)   

BPAD II (%) NA 5 (14.7)   

        

Co-morbid Anxiety Disorder (%) NA 4 (11.7)   

Ex-Alcohol abuse (%) NA 8 (23.5)   

Ex-Substance abuse (%) NA 3 (8.8)   

Ex-Alcohol & Substance abuse (%) NA 2 (5.8)   

        

        

HAMD 17 median (range)  NA 19.5 (14)   

Beck Depression mean, (s.d)  NA 32.4 (9.92)   

Duration of Depressive sx (months) median, 

(range) 

NA 3.0 (72)   

Number of Depressive episodes median 

(range) 

NA 1.0 (8)   

Positive Family History of Depression (%) 2 (6.1) 21 (61.8) <0.001*** 

        

Beck Anxiety median, (range) NA 25.5 (45)   

Perceived Stress Scale (PSS) mean, (s.d) 7.5 (4.9) 27.7 (6.0) <0.001*** 

Pittsburgh Sleep Quality Index (PSQI) 

mean, (s.d) 

2.8 (1.8) 11.7 (4.3) <0 .001*** 

Data are presented as mean and S.D, or median and range. *p<0.05 vs control. **p<0.01 

vs control; ***p<0.001 vs control. 
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Figure 2.1: Life Events and Medication.  

(A) The depressed group (n = 34) experienced significantly more parental upheaval (χ2 

(1) = 5.35, p = 0.02), traumatic sexual experiences (χ2 (1) = 4.24, p = 0.04) and violence 

(χ2 (1) = 4.70, p = 0.03) prior to the age of 17 years and (B) more relationship upheaval 

(χ2 (1) = 7.76, p = 0.01) and illness/injury (χ2 (1) = 4.24, p = 0.04) in the last 3 years 

compared to the control group (n = 33). (C) Percentage of depressed subjects prescribed 

psychotropic medication. 

 

Daily Macronutrient Consumption similar in depressed patients and controls 

We assessed Daily Macronutrient Consumption using a food frequency questionnaire 

(Table 2.3). Apart from Trans fats (t (61) = 2.06, p = 0.05) there were no significant 

differences in diet between the groups. Total fats were not significantly different between 

the groups (t (61) = 1.19, p = 0.24).  

 



79 
 

 

Table 2.3. Daily Macronutrient Consumption.  

Macronutrient Controls (s.d.), N=33 Depression (s.d.), N=30 p 

Quantity (g) 2330.53 (1130.1) 2304.9 (1210.67) 0.93 

Total Nitrogen (g) 13.36 (4.46) 14.07 (6.59) 0.62 

Protein (g) 82.5 (27.61) 87.47 (41.18) 0.57 

Fat (g) 75.49 (31.54) 87.70 (50.66) 0.25 

CHOm (available carbs) (g) 296.33 (166.6) 288.62 (135.65) 0.84 

Energy kcal 2202.09 (827.96) 2234.51 (1064.75)  0.89 

        

Starch (g) 107.55 (44.03) 114.96 (38.75)  0.49 

Total Sugar (g) 157.35 (80.71) 151.48 (107.07) 0.81 

Non Milk Extrinsic Sugars 

(g) 

23.85 (median), 22.88 (IQR) 29.1 (median), 28.9 (IQR) 0.43  

Glucose (g) 28.45 (17.31) 27.78 (21.24) 0.89 

Fructose (g) 51.31 (39.36) 48.11 (40.65) 0.75 

Sucrose (g) 60.27 (39.62) 59.58 (38.20) 0.94 

Maltose (g) 2.07 (1.39) 2.41 (1.53) 0.36 

Lactose (g) 11.65 (median), 9.75 (IQR) 8.45 (median), 20.7 (IQR) 0.55  

Non-starch polysaccharides 

(g) 

26.96 (12.53) 24.91 (12.43) 0.52 

Fibre (AOAC method) (g) 34.2 (16.21) 31.53 (16.32) 0.52 

        

Sat.fats (g) 28.96 (14.89) 35.63 (22.19) 0.17 

MonoUfats (g) 25.08 (10.24) 29.37 (16.62) 0.22 

PolyUfats (g) 14.17 (6.13) 14.57 (8.96) 0.48 

Transfats (g) 1.66 (0.87) 2.31 (1.53) 0.05 

Cholesterol (mg) 259.85 (122.43) 294.92 (132.50) 0.28 

        

Calories from Protein 329.93 (110.36) 350.58 (164.89) 0.56 

Calories from Carbs 1021.16 (367.96) 1082.58 (508.87) 0.59 

Calories from Fat 679.43 (283.91) 789.19 (455.72) 0.25 

Calories from Fiber 68.41 (32.47) 63.19 (32.65) 0.53 

        

Percentage Protein 14.99 (3.23) 15.6 (3.12) 0.46 

Percentage Carbs 47.53 (9.16) 47.55 (7.90) 1.00 

Percentage Fat 30.43 (7.81) 33.52 (7.75) 0.12 
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Percentage Fiber 3.32 (1.41) 2.83 (1.12) 0.14 

 

Macronutrient Controls (s.d.), N=33  Depression (s.d.), N=30   p 

Sodium (mg) 2385.9 (942.86) 2552.3 (1180.20) 0.55 

Potassium (mg) 4355.22 (1610.90) 4253.87 (2077.0) 0.83 

Calcium (mg) 1002.78 (482.24) 1043.96 (753.06) 0.78 

Magnesium (mg) 398.21 (181.9) 352 (180.99) 0.32 

Phosphorus (mg) 1615.75 (626.24) 1603.32 (862.58) 0.95 

Iron (mg) 13.28 (5.12) 12.45 (5.59) 0.54 

Copper (mg) 1.99 (0.93) 1.87 (1.00) 0.64 

Zinc (mg) 10.44 (3.68) 11.24 (4.75) 0.45 

Chloride (mg) 4021.12 (2483.31) 4231.58 (2423.71) 0.74 

Manganese (mg) 4.23 (1.82) 3.95 (1.98) 0.58 

Selenium (ug) 49.91 (21.40) 47.53 (26.33) 0.70 

Seleno Protein P  (mg/ml 

serum) 

3.61 (1.50) 2.85 (1.55) 0.05 

Iodine (ug) 187.77 (100) 174.41 (117.77) 0.63 

Retinol (ug) 337.87 (193.81) 340.48 (204.72) 0.96 

Carotene (ug) 3566.22 (2037.85) 3488.56 (2136.80) 0.89 

Vitamin D (ug) 2.87 (1.57) 2.38 (1.57) 0.24 

Vitamin E (mg) 12.95 (6.14) 11.64 (7.32) 0.45 

Thiamin (mg) 1.62 (0.72) 1.5 (0.59) 0.48 

Riboflavin (mg) 1.85 (0.89) 1.79 (1.01) 0.80 

Niacin (mg) 21.05 (6.18) 20.66 (9.43) 0.85 

        

Tryptophan divided by 60 

(mg) 

16.59 (5.76) 17.06 (7.76) 0.78 

Vit.B6 (mg) 2.26 (0.8) 2.22 (0.9) 0.83 

Vit.B12 (ug) 4.96 (2.78) 6.1 (4.59) 0.24 

Folate (ug) 286.12 (142.64) 241.96 (108.96) 0.21 

Pantothen (mg) 5.97 (2.8) 5.92 (3.1) 0.95 

Biotin (ug) 43.98 (21.1) 40.1 (25.40 0.51 

Vitamin C (mg) 154.51 (131.48) 142.19 (111.64) 0.69 
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Proinflammatory profile in depression 

The depressed group had increased levels of IL-6 (t (62) = 2.69, p = 0.009), IL-8 (t (61) 

= 2.37, p = 0.021), TNF-α, (t (49) = 2.36, p = 0.022) and CRP (t (45) = 3.6, p = 0.001) 

compared to the healthy controls (Figure 2.2A-D).  

 

Activated Kynurenine pathway in depression 

The kynurenine/tryptophan ratio was significantly higher in the depressed group 

compared to the controls (t (61) = 2.01, p =0.049) (Figure 2.2E). There were no 

significant differences in tryptophan (t (58) = 0.92, p=0.362), kynurenine (t (63) = 1.00, 

p=0.320), kynurenic acid (t (45) = 0.38, p=0.70), or the kynurenic acid/kynurenine ratio 

(t (44) = 0.40, p=0.685). 

 

Altered HPA axis in depression 

AUCg analysis showed that patients with depression exhibited a greater total cortisol 

output (t (50) = 2.06, p = 0.045) (Figure 2.2F) but no difference in the delta cortisol 

response (t (50) = - 0.40, p = 0.69) or AUCi (t (50) = -0.67, p = 0.51). There were no 

significant differences between baseline cortisol levels upon wakening (t (50) = 1.88, p 

= 0.06), 30 minutes post wakening (t (50) = 1.28, p = 0.206), or 150 minutes post 

wakening (t (50) = 1.73, p = 0.09) (Figure 2.2G). Although there was no significant 

baseline difference between groups, when controlling for baseline cortisol values there 

was not a significantly elevated AUCg between groups. 

 

No alterations in intestinal permeability in depression  

There were no significant differences in plasma LBP levels (Depression versus Healthy 

controls, 39 ± 2.7, vs. 36 ± 2.1; t (63) = 1.05, p = 0.30) between the groups (data not 

shown).  
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Figure 2.2: Altered Inflammatory, Tryptophan, and HPA profile in depressed 

patients. The depressed patients (n = 34) had significantly increased levels of (A) IL-6 

(t (62) = 2.69, p = 0.009) (B) IL-8 (t (61) = 2.37, p = 0.021) (C) TNF-α (t (49) = 2.36, p 

= 0.022) and (D) CRP (t (45) = 3.6, p = 0.001) compared to the healthy controls (n = 33). 

The depressed group had a significantly increased (E) Kynurenine/tryptophan ratio (t 

(61) = 2.01, p =0.049) and a greater cortisol output as measured by the (F) Area under 

the Curve with respect to ground (AUCg) (t (50) = 2.06, p = 0.045), though no significant 

difference in the (G) Cortisol Awakening Response (CAR) (p = 0.21).  

 

 

Altered Gut Microbiota Composition, Alpha Diversity & Richness in depressed 

patients  

Chao1 richness (U = 424, p = 0.005), total observed species (U = 441, p = 0.002) and 

phylogenetic diversity (U = 447.5, p = 0.001) were decreased in the depressed group (n 

= 23). There was no difference in Shannon diversity (U = 350, p = 0.197) (Figure 2.3A-

D). The difference of the global microbiota composition from the 16S rRNA data of the 

depressed and control groups (n = 25) was assessed by ordination. Statistics based on 

random permutations of the redundancy analysis (RDA) showed that the depressed group 

is significantly separated at genus level (p = 0.03) from the control group (Figure 2.3E). 
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At the phylum level, there were no statistically significant differences in the relative 

abundances between the depressed group and the healthy controls (data not shown). At 

the family level, the relative proportions of Prevotellaceae (U = 355, p = 0.007) were 

decreased, whereas Thermoanaerobacteriaceae were increased in the depressed group 

(U = 52.5, p = 0.021) (Figure 2.3F). At the genus level, the relative proportions of 

Eggerthella (U = 21.0, p = 0.009), Holdemania (U = 146.5, p=0.023), Gelria (U = 52.5, 

p = 0.021), Turicibacter (U = 89, p = 0.034), Paraprevotella (U = 119, p = 0.041), and 

Anaerofilum (U = 50.5, p = 0.021) were increased in the depressed group, whereas 

Prevotella (U = 324.5, p = 0.022) and Dialister (U = 153.5, p = 0.032) were decreased 

(Figure 2.3G). 
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Figure 2.3: Altered Gut Microbiota Composition, Alpha Diversity & Richness in 

depressed patients. There was a significant reduction in richness as measured by (A) 

Chao1, (U = 424, p = 0.005) and (B) Total observed species, (U = 441, p = 0.002). The 

depressed group (n = 23) showed reduced (C) phylogenetic Diversity, (U = 447.5, 

p = 0.001), but no significant differences in (D) Shannon diversity, (U = 350, p = 0.197). 

(E) The significant differences at genus level between the depressed group and the 

controls (n = 25) which cluster by group in a Redundancy analysis (RDA) plot (p = 0.03). 

(F) Significant Family level differences and (G) significant genus level differences 

between depressed patients and healthy controls in % relative abundances.  

 

Altered Beta Diversity in depressed patients  

There were significant differences in beta diversity between the healthy (n = 25) and 

depressed groups (n = 23) (Bray-Curtis (p = 0.014), unweighted unifrac (p = 0.002) and 

weighted unifrac (p = 0.018). However, PCoA analysis was unable to separate the groups 

(Figure 2.4A-C).  
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Figure 2.4: Beta Diversity in depressed patients (n = 23) PCoA plots representing (A) 

Bray-Curtis (R2 = 0.03444, p = 0.014), (B) unweighted (R2 = 0.05515, p = 0.018) and 

(C) weighted unifrac beta diversity (R2 = 0.05515, p = 0.018). Red represents healthy 

controls (n = 25) and black represents depressed patients. 

 

 

 

A. 

B. 

C.  
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Short chain Fatty Acids 

There were no significant differences between groups in the fecal SCFAs, acetate (t (49) 

= 0.457, p = 0.65), propionate (t (49) = 0.103, p = 0.918), iso-Butyrate (t (43) = 0.678, p 

= 0.501) or butyrate (t (49) = - 0.168, p = 0.867) (Figure 3A). 

 

 
Figure 2.5. Short chain Fatty Acids & Fibre. (A) There were no significant 

differences in fecal SCFAs. (B) There were no significant differences in the daily % 

fibre consumed between the groups (t (61) = 1.5, p = 0.134) (C) though within the 

depressed group (n = 34) the daily % fibre negatively correlated with the Beck 

Depression Scale (r = - 0.43, n = 31, p = 0.015). 

 

No alterations in Fecal Metabolites.  

A Principal Component Analysis (PCA) model did not reveal distinct grouping of the 

depression (n = 20) samples compared to the healthy control (n = 18) samples (Figure 

2.6). (A) Loading plot from PCA model calculated on the relative concentrations of the 

metabolites. (B) Score plot from PCA model calculated on the relative concentrations of 

the fecal metabolites. Red represents depressed patients and green represents healthy 

controls, blue triangles represents a mixed pooled sample (quality control sample). Data 

has been autoscaled. (C) Heat map demonstrating the change in concentration of fecal 

metabolites (log2) between depressed patients and healthy controls. 

 



87 
 

 

 
 

 

(A) 

(B) 
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Figure 2.6. Fecal Metabolites. (A) Loading plot from PCA model calculated on the 

relative concentrations of the metabolites. (B) Score plot from PCA model calculated 

on the relative concentrations of fecal metabolites. Red represents depressed patients, 

green represents healthy controls and blue represents quality control samples. Data has 

(C) 
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been autoscaled. (C) Heat map demonstrating the change in concentration of fecal 

metabolites (log2) between depressed patients (n = 20) and healthy controls (n = 18).   

 

 

2.5 Discussion   
Our results confirm our main hypothesis and we have demonstrated that depression is 

associated with an altered gut microbiota composition, richness and diversity. It was 

possible to differentiate the depressed group from the healthy control group based on 

differences at the genus level using redundancy plot analysis (Figure 2.3E). The most 

pronounced difference was observed in the reduction of Prevotellaceae family and 

subsequently in the Prevotella genus, previously found to be decreased in Parkinson’s 

disease patients (Gustafsson et al., 2015, Scheperjans et al., 2015). A significant 

association has been noted between the Mediterranean diet, regarded as a preventive 

strategy in depression, and Prevotella (De Filippis et al., 2015, Opie et al., 2015). 

However, the differences in the gut microbiota profiles did not impact functional readouts 

as measured by SCFAs or in the fecal metabolomic profile between depressed patients 

and healthy controls.  

 

A significant increase in the order Bacteroidales and a decrease in Lachnospiraceae 

family compared to controls was previously shown in depressed patients (Naseribafrouei 

et al., 2014). The second study to investigate the gut microbiota in depression separated 

the depressed group into an actively depressed group and those that had responded to 

treatment (Jiang et al., 2015). Similar to our study, they demonstrated a decrease in 

Prevotellaceae and Prevotella in depressed patients. However, they found a significant 

increase in Shannon diversity in the actively depressed group compared to controls and 

no significant differences in richness. They reported no differences in circulating pro-

inflammatory cytokines in contrast to low grade inflammation described in depressed 

patients (Dinan, 2009b). The most recent study, found an increase in Actinobacteria and 

a decrease in Bacteroidetes in the depressed group at the phylum level and 54 differences 

in the operational taxonomic units (OTUs) between the groups. There were no significant 

differences in alpha diversity (Shannon, Simpson, phylogenetic diversity, observed 

species). Dietary factors, geography or methodological differences during sampling, 

processing or analysis may also account for discrepancies (Kelly et al., 2016c).  
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We show that depression is associated with dysregulated tryptophan metabolism as 

indicated by an increased plasma kynurenine: tryptophan ratio. Together with the 

potential impact on serotonin, increased microbiota-mediated degradation of tryptophan 

along this pathway has a broad range of implications for multiple neurotransmitter 

systems (Schwarcz et al., 2012). The rate of tryptophan metabolism along the kynurenine 

pathway is dependent on the activity of indoleamine-2, 3-dioxygenase (IDO), an enzyme 

induced by cytokines, and tryptophan-2,3-dioxygenase (TDO), the expression of which 

can be induced by circulating glucocorticoids (O'Connor et al., 2009) and has been 

reported to be regulated by the gut microbiota during colonization (El Aidy et al., 2014).  

 

The impact of stress on the gut microbiome might also be a factor and we have previously 

shown that early life stress can remodel the gut microbiota (O'Mahony et al., 2009). It is 

plausible that subtle alterations in microbiota acquisition or maintenance during this 

vulnerable early life period may act as to impact on (neuro)endocrine and (neuro)immune 

signalling pathways of the brain-gut-microbiota axis, disruption of which may 

subsequently predispose to stress-related disorders in adulthood (Sudo et al., 2004). The 

depressed group in our study did experience more stressful life events prior to the age of 

17 years and in the last 3 years compared to the healthy group (Figure 2.1A-B).  

 

Studies have demonstrated higher IgA- and IgM-mediated immune responses directed 

against LPS of certain commensal gram negative gut bacteria in depression (Maes, 2008, 

Maes et al., 2012b, Maes et al., 2013). Bacterial DNA has been detected in whole serum 

from depressed patients who also displayed increased TLR4 expression on peripheral 

mononuclear blood cells compared to healthy controls (Keri et al., 2014). Although we 

demonstrated dysregulated inflammatory (Figure 2.2A-D) and HPA axis function 

(Figure 2.2G) in the depressed group, we cannot rule out the possibility of glucocorticoid 

receptor resistance playing a role (Calfa et al., 2003, Pariante and Miller, 2001).  

 

We hypothesized that gut permeability could act as a conduit by which the gut microbiota 

may impact brain and behaviour. Using LBP as a marker of intestinal permeability 

(Forsyth et al., 2011) we found no statistically significant differences in intestinal 

permeability in the depressed patients. It is possible that gut permeability challenge 

studies or alternative markers to localise the barrier deficit may be required to resolve 

this uncertainty. 
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Our study was the first to record diet. Apart from trans-unsaturated fatty acids there were 

no significant differences in diet between the groups. Although the percentage of daily 

fibre consumed was the same between our depressed and healthy groups, we found a 

negative correlation with depressive symptoms in our depressed group suggesting an 

important role for fibre, and fermentation products of fibre in depression (Figure 2.5).  

 

Limitations 

Ideally, medication free patients would have been recruited. However, in this study, the 

majority of depressed patients in this study were prescribed antidepressant medication 

(Figure 2.1C) and there were significant differences in alcohol and cigarette 

consumption (Table 2.1). We acknowledge the possibility of an antidepressant-related 

and serotonin-driven contribution to the alteration in the gut microbiota. In addition, as 

this study was cross-sectional, only one time point was assessed.  

 

In conclusion, we confirm that depression is associated with neuroimmune and 

neuroendocrine dysfunction. Moreover, we show that depression is associated with an 

altered gut microbiota profile albeit in the absence of a compromised metabolic output 

or impacting on gut barrier integrity. Further studies exploring the mechanisms by which 

an altered gut microbiota profile may contribute to the pathophysiology of depression are 

required.  
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Chapter 3: Fecal Microbiota 
Transplantation induces behavioural & 

physiological changes in Antibiotic treated 
Rats 
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3.1 Abstract  
Background: Depression is associated with an altered gut microbiota composition, 

richness and diversity. However, it is not clear whether the gut microbiota plays a causal 

role in the pathophysiology of depression. A number of preclinical studies have shown 

that it is possible to transfer characteristics from donor to recipient via fecal microbiota 

transplantation (FMT). We aimed to further elucidate the mechanistic underpinnings 

explaining the interaction between depression and the microbiota using a FMT to 

microbiota-depleted rats. We tested the hypothesis that behavioural and physiological 

features of depression could be transferred via the gut microbiota. 

Methods: FMT was prepared from a sub group of depressed patients and matched 

healthy controls. The FMT was transferred by oral gavage to a microbiota-depleted rat 

model. A battery of behavioral tests and physiological measures were carried out post 

FMT. Plasma cytokines, CRP, cortisol and Lipopolysaccharide binding protein (LBP) 

were determined by ELISA. Plasma tryptophan and kynurenine were determined by 

HPLC. Hippocampal BDNF gene expression levels were determined by qRT-PCR. Fecal 

samples were collected for 16s rRNA sequencing. Fecal Short chain fatty acids (SCFAs) 

were determined by Gas Chromatography. 

Results: Rats that received the FMT from depressed patients demonstrated decreased 

sucrose intake (t (12) = 2.628, p = 0.022), decreased visits to the open arms (t (12) = 

2.471, p = 0.029) in the elevated plus maze, and a reduction in time spent in the centre in 

the open field (t (24) = 2.662, p = 0.013). There were no significant differences in the 

Forced swim test. In addition, they had increased plasma kynurenine levels (t (25) = 2.3, 

p = 0.029) and an increased plasma kynurenine/tryptophan ratio (t (25) = 2.9 p = 0.008) 

and a trend toward increased levels of plasma CRP (t (25) = 1.803, p = 0.083), though no 

differences in the levels of plasma IL-6, (t (23) = -0.173, p = 0.864), TNF-α, (t (24) = 

0.569, p = 0.574) or IL1b (t (24) = 1.716, p = 0.09). There were no significant differences 

in plasma LBP levels (t (22) = 0.15, p = 0.878) or plasma corticosterone levels (t (26) = 

0.063, p = 0.949) There were differences in the gut microbiota composition at the 

phylum, family and genus level and reduced richness as measured by Chao1 (p = 0.004), 

observed species (p = 0.006) and reduced diversity measured by phylogenetic diversity 

(p = 0.006) and Shannon index (p = 0.002). Fecal acetate and total SCFAs were increased 

(p= 0.011). There were no significant differences in hippocampal BDNF expression (t 

(26) = 0.312, p = 0.757).  
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Conclusions: FMT from depressed patients to microbiota-depleted rats induced 

behavioural and physiological features characteristic of depression in the recipient 

animals, including anhedonia and anxiety-like behaviours, as well as alterations in 

tryptophan metabolism. This data suggests that the gut microbiota may play a causal role 

in the development of features of depression and may provide a tractable target in the 

treatment and prevention of this disorder. 

 

3.2 Introduction  
The emerging links between our gut microbiome and the central nervous system are 

regarded as a paradigm shift in neuroscience with possible implications for not only our 

understanding of the pathophysiology of stress-related psychiatric disorders, but also 

their treatment. This narrative positions the gut microbiome and its influence on host 

barrier function as a critical node of the brain-gut axis. Mounting pre-clinical evidence 

broadly suggests that the gut microbiota can modulate brain development, function and 

behaviour by immune, endocrine and neural pathways of the brain-gut-axis. Moreover, 

we and other groups have shown that depression is associated with an altered gut 

microbiota profile, though the mechanisms underlying the interaction remain 

underdeveloped.  

 

A number of studies have shown that it is possible to transfer characteristics from donor 

to recipient via fecal microbiota transplantation (FMT). For example, the transfer of 

microbiota from obese mice to lean mice can result in weight gain and obesity associated 

metabolic profiles (Ridaura et al., 2013). Furthermore, transfer of the human maternal 

gut microbiota in pregnancy to GF rodents, induces metabolic changes such as greater 

adiposity and insulin insensitivity, resembling the metabolic changes that occur in 

pregnancy (Koren et al., 2012). This has been extended beyond metabolic system, as 

phenotype transfer via microbiota has also been demonstrated for behaviour.  

 

When the microbiota from BALB/c mice was transferred into adult GF NIH Swiss mice, 

the result was a decrease in exploratory behaviour and when the NIH Swiss microbiota 

was transferred into the BALB/c GF mice there was an increase in exploratory behaviour, 

associated with an increase in hippocampal BDNF levels (Bercik et al., 2011b). Thus, 

the anxiety-like behavioural phenotype could be transferred via the microbiota, 

independent of the autonomic nervous system, gastrointestinal specific neurotransmitters 
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or inflammation. Restoration of normal gut microbiota normalised anxiety like behaviour 

in GF mice (Clarke et al., 2013). It has been shown that mice that received an obesity 

associated microbiota exhibit more anxiety-like behaviours associated with increased 

evidence of neuroinflammation compared to controls (Bruce-Keller et al., 2015).  

 

More recently, a FMT from depressed patients to GF mice resulted in depression and 

anxiety like behaviours and disturbances of microbial genes and host metabolites 

involved in carbohydrate and amino acid metabolism (Zheng et al., 2016). While GF 

animals are an excellent proof-of principal tool, we and others have shown that these 

animals have some profound CNS abnormalities in adulthood as a consequence of GF 

status during critical neurodevelopmental windows, many of which are relevant for the 

depressive phenotype. The main advantage then of antibiotic-induced microbiota 

depletion during adulthood is that it avoids these potential confounding influences 

(Arrieta et al., 2016, Luczynski et al., 2016). 

 

Consequently, to confirm that an altered gut microbiota specifically influences aspects 

of depressive symptomatology, we carried out an FMT from depressed patients to a 

microbiota depleted antibiotic rat model to assess if a depressive-like phenotype emerged 

in the treated animals. In addition, using the same microbiota depleted antibiotic rat 

model we also determined the impact of the FMT on neurobiology.  

 

3.3 Methods 
Animals and Treatments 

Twenty-eight male Sprague-Dawley rats obtained from Harlan Laboratories UK, 

weighing an average of 350 g. Food and water was available ad libitum and animals were 

maintained on a 12:12-h dark–light cycle with temperature at 21 ± 1°C.  All experiments 

were in full accordance with the European Community Council Directive (86/609/EEC). 

The animals were acclimated to the environment and handling for 14 days. They were 

divided into control and depressed groups, matched for average body weight. Rats were 

then given a cocktail of ampicillin and metronidazole (both at 1g/L), vancomycin (500 

mg/L), ciprofloxacin HCl (200 mg/L) and imipenem (250 mg/L) once daily for 28 

consecutive days in drinking water. Seventy-two hours later, animals were colonized via 

daily oral gavage of donor microbiota (300 µL) for 3 days. Donor microbiota was 

acquired from pooled fecal samples from 3 of the most severely depressed male patients 
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and 3 age and sex matched healthy controls. To offset potential founder and/or cage 

effects and to reinforce the donor microbiota phenotype, booster inoculations were given 

biweekly throughout the study. Body weight was measured regularly, and all animals 

were euthanized following behavioural testing. 

 

Behaviour test battery 

Following the FMT and recolonization period, animals underwent a behavioural test 

battery. For all behavioural tests, animals were habituated to the testing room by placing 

home-cages in the test room for at least 30 min prior to testing. The same animals were 

assessed across all behavioural tests with at least 6-7 days of resting in between tests.  

 

Sucrose preference test 

Sucrose preference test assesses animal’s depressive like behaviour - anhedonia. Animals 

were single-housed 24 hours prior to and for the duration of the procedure. Twenty-four 

hours later, animals were presented with 2 bottles of water: one containing plain drinking 

water, and the second contains a 1% sucrose solution.  Animals were then given the free 

choice of either drinking the 1% sucrose solution or plain water for a period of 24hr 

hours. The positions of two bottles is switched every 12 hours to reduce any confound 

produced by a side bias. Water and sucrose solution intake was measured 24 hours after 

introducing sucrose solution by weighing the bottles. Sucrose preference was calculated 

as a percentage of the volume of sucrose intake over the total volume of fluid intake. At 

the end of the procedure, animals were group housed and returned to their home cage. 

 

Elevated plus maze 

The elevated plus maze is one of the most commonly used rodent tests of anxiety-like 

behaviours and was performed as previously described (Cryan et al., 2004). The maze 

consisted of two open arms (51 × 10 cm) and two enclosed arms (51 × 10 × 41 cm) that 

all extended from a common central platform (10 × 10 cm). The apparatus was elevated 

55 cm above the floor on a central pedestal. Animals were acclimatized to the testing 

room for 30 min prior experiment. At week 11, animals were placed in the centre of the 

maze facing an open arm to begin. Animal behaviour was videotaped for the duration of 

5 min test. Frequency of open and closed arms entries were scored and percentage visits 

to the open arms was calculated.  
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Open field test 

At week 12, rats were tested in the open field as described previously (O’Mahony et al., 

2014). At the beginning of each trial, animals were placed in the centre of a brightly 

illuminated white open field arena (1000 lux), measuring 0.9 m in diameter, and observed 

for 10 min. Animals were acclimatized to the testing room for 30 min prior experiment. 

The arena was cleaned with 70% ethanol to avoid cue smell between each trial. At the 

end of each trial, animals were returned to their cages. Total activity and time spent in 

inner zone were analyzed as recorded using a tracking system (Ethovision XT 8.5, 

Noldus). 

 

Forced swim test 

To assess depression-like behaviours at week 14, a modified rat forced swim test (FST) 

(Slattery and Cryan, 2012) was used. Briefly, on day one, rats were placed individually 

in Pyrex cylinders (46 cm tall × 21 cm in diameter) filled with water to 30 cm depth at 

25°C for habituation to the test. The rats were removed 15 min later, dried and placed in 

their home cage. On day two, 24 h after the first exposure, the rats were again placed in 

the swim apparatus for 5 min and behaviours were monitored from above by video 

camera for subsequent analysis. Three predominant behaviours were recorded in each 5 s 

period of the 300 s test. Climbing behaviour was defined as upward movements of the 

forepaws along the edge of the swim chamber. Swimming behaviour was identified as 

horizontal movements throughout the cylinder. Immobility was described when no 

additional activity was observed other than that required to keep the rat's head above the 

water. Latency to become immobile was defined as the time at which the rat first initiated 

a stationary posture that did not reflect attempts to escape from the water. In this 

characteristic posture, the forelimbs are motionless and tucked towards the body. To 

qualify as immobility, this posture had to be clearly visible and maintained for ≥ 2s. 

 

Rat Intestinal Transit time determination 

Animals were single-housed (with a thin layer of bedding) with food and water ad 

libitum. Three hours after being single-housed, animals were given 200 ul of 6% carmin 

red in 0.5% methylcellulose (in PBS) given by oral gavage.  After the gavage, the cages 

were inspected every 10 minutes, and the appearance of the first red fecal pellet was 

recorded. After the test, animals were group housed in their home cages. 
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Rat corticosterone determination 

On day one of the FST, blood samples via tail incision were collected 15 min after the 

test. Rats were restrained and the end of the tails was held with two fingers. Using a 

single edge razor blade a diagonal incision of 2 mm long was made at 15 mm from the 

end of the tail. Approximately 200 μl blood was collected in a collecting tube containing 

EDTA to avoid blood coagulation by increasing the pressure of the fingers on the tail 

above the incision. Blood was mixed with EDTA by gently inverting the tube and 

centrifuged at 3500 × g at room temperature for 15 min. Plasma was carefully aspirated 

and stored at −80°C. Corticosterone levels were assayed using a commercially-available 

ELISA kit (Corticosterone EIA Kit, ADI-900-097, Enzo®, Life Sciences) according to 

manufacturer instructions. Light absorbance was read with a multi-mode plate reader 

(Synergy HT, BioTek Instruments, Inc.) at 405 nm. Sensitivity: 27.0 pg/ml (range 32 - 

20,000 pg/ml). 

 

Rat CRP and cytokine determination 

Animals were sacrificed by decapitation and immediately after culling, trunk blood was 

collected in EDTA-coated tubes and centrifuged at 3500 × g for 15 min. Plasma 

supernatant was collected and stored on dry ice. All samples were frozen at −80°C for 

later analysis. CRP was determined using commercially available RayBio® Rat CRP 

ELISA Kit. Sensitivity 200 pg/ml. Detection Range 0.2 ng/ml - 60 ng/ml. TNF-α and IL-

6 were analyzed using a commercially available electrochemiluminescence multiplex 

system (MSD, Gaithersburg, MD, USA) according to the manufacturer protocol. The 

median lower limits of detection for; TNF-α; 0.72 pg/ml, IL-6; 13.8 pg/ml. 

 

Rat Lipopolysaccharide determination 

LBP concentrations were determined using the Enzyme Immunoassay Kit as per 

manufacturers’ instruction (Enzo®, Life Sciences). Detection Range 1-50ng/ml. 

 

Rat Short Chain Fatty Acid Caecal Content determination 

Caecal content was vortex-mixed with Milli-Q water, incubated at room temperature for 

10 min and centrifuged to pellet bacteria and other solids. The supernatant was filtered, 

transferred to a clear GC vial and 2-ethylbutyric acid (Sigma) was added as internal 

standard. The concentrations of SCFA were measured using a Varian 3800 GC flame-

ionization system, fitted with a ZB-FFAP column (30 m x 0.32 mm x 0.25 um; 



99 
 

Phenomenex, Macclesfield, Cheshire, UK). The initial oven temperature was set at 50oC 

for 0.5 min, raised to 140oC at 10oC/min and held for 0.5 min, then increased to 240oC at 

20oC/min, and finally held at this temperature for 12 min. The temperature of the injector 

and the detector were set at 240oC and 250oC, respectively. Helium was used as the 

carrier gas at a flow rate of 1.3 mL/min. A standard curve was built with different 

concentrations of a standard mix containing acetic acid, propionic acid, n-butyric acid 

and iso-butyric acid (Sigma). Peaks were integrated by using the Varian Star 

Chromatography Workstation version 6.0 software.  

 

Rat BDNF determination 

The hippocampus was rapidly hand-dissected and stored in RNAlater at 4°C for 24h 

followed by removal of RNAlater and storage at -80°C until tissues was processed for 

RNA extraction. RNA was isolated for the Hippocampus (healthy n=15 and depressed n 

= 13) using miRVanaTM miRNA Isolation Kit, with Phenol following (Thermo Fisher 

Scientific, AM1560) manufactures protocol for total RNA. Quantitative real-time PCR 

(qRT-PCR) reverse transcription was carried out on isolated RNA using the high capacity 

cDNA reverse transcription kit (Applied Biosystems, 4368814) in a G-storm 

thermocycler (G-storm, Surry, UK). Analyses of gene expression was carried out using 

TaqMan Gene Expression Assay for brain derived neurotrophic factor (BDNF) on a 

Roche LightCycler 480 instrument. Gene expression levels for BDNF was calculated as 

the average ct value of 3 replicates for each biological sample from both groups relative 

to Gapdh expression. Following this fold change was calculated using the ΔΔCt method 

(Livak and Schmittgen, 2001). For statistical analysis t-test was carried out. 

 

Statistical Analysis. Data that were normally distributed according to Shapiro-Wilk test 

were analyzed using unpaired t tests. Outliers were removed by Grubbs' test. Data that 

were not normally distributed were transformed by square root transformation. 

Microbiota data were analyzed using non parametric tests. Benjamini-Hochberg 

procedure was used to correct for multiple comparisons with a FDR-adjusted p-value ≤ 

0.1 considered significant. Statistical procedures were carried out using IBM SPSS 20.0. 

Graphs were generated using GraphPad Prism 5.  
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3.4 Results 
Adoptive transfer of depressive phenotype 

Behaviour 

Rats that received the FMT from the depressed pool demonstrated anhedonia-like 

behaviours as assessed in the sucrose preference test (t (12) = 2.628, p = 0.022) (Figure 

3.1B) with a significant decrease in sucrose intake without affecting fluid intake. Rats 

receiving FMT from depressed patients also exhibited anxiety-like behaviours as 

demonstrated by a significant decrease in visits to the open arms (t (12) = 2.471, p = 

0.029) in the elevated plus maze (Figure 3.1C) and a reduction in time spent in the centre 

in the open field (t (24) = 2.662, p = 0.013) (Figure 3.1D). Importantly, these changes 

occurred without alterations in overall activity as measured in the total visits to the closed 

and open arms in the EPM and total activity in the open field. In the forced swim test, 

there were no significant differences between the groups in immobility time (t (26) = - 

0.43, p = 0.966), swimming (t (26) = 1.164, p = 0.255) or climbing (t (26) 0.629, p = 

0.535) (Figure 3.1E). 

 

Physiology altered following FMT 

Rats that received the depression FMT had significantly increased plasma kynurenine 

levels (t (25) = 2.3, p = 0.029) and an increased plasma kynurenine/tryptophan ratio (t 

(25) = 2.9 p = 0.008) (Figure 3.1F) but no differences in plasma tryptophan levels (t (25) 

= 0.41, p = 0.686). There was a trend toward increased levels of plasma CRP in rats that 

received the depression FMT (t (25) = 1.803, p = 0.083) (Figure 3.1G) though no 

differences in the levels of plasma IL-6, (t (23) = -0.173, p = 0.864), TNF-α, (t (24) = 

0.569, p = 0.574) or IL1b (t (24) = 1.716, p = 0.09). There were no significant differences 

in plasma LBP levels (t (22) = 0.15, p = 0.878) (Figure 3.1H) or plasma corticosterone 

levels (t (26) = 0.063, p = 0.949) (Figure 3.1 I). Rats receiving the depression FMT 

demonstrated a significant increase in intestinal transit time (t (26) = 2.652, p = 0.013) 

(Figure 3.1J).  
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Figure 3.1: Behavioural and physiological changes following fecal transplantation  

(A) Experimental design (Sucrose preference; SP, Open field; OF, Elevated plus maze; 

EPM, Intestinal motility; IM, Forced swim test FST, Inoculation boost; IB (twice a 

week). The rats that received the depression FMT (n = 13) exhibited (B) anhedonia like 

behaviour, indicated by a decrease in the 24 hour 1% sucrose preference test (t (12) = 

2.628, p = 0.022) and an increase in anxiety like behaviour measured by (C) a decrease 

in open arm visits in the elevated plus maze (EPM) (t (12) = 2.471, p = 0.029) and (D) a 

decrease in time spent in the open field (t (24) = 2.662, p = 0.013) and compared to rats 

that received the healthy FMT (n = 15). (E) There were no differences in the immobility, 

swimming or climbing time in the Forced Swim Test (FST). (F) There was an increase 

in the plasma Kynurenine/Tryptophan ratio (t (25) = 2.9 p = 0.008) in the rats that 

received the FMT from depressed patients. (G) There was a trend for increased plasma 

CRP levels in the rats that received the FMT from depressed patients (t (25) = 1.803, p = 

0.083). There were no significant differences in (H) plasma Lipopolysaccharide binding 

protein (LBP) levels (t (22) = 0.15, p = 0.878) or (I) plasma corticosterone levels 15 

minutes post-acute FST stressor (t (26) = 0.063, p = 0.949). (J) Rats that received the 

FMT from depressed patients demonstrated a significant increase in intestinal transit time 

(t (26) = 2.652, p = 0.013).  
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Neurobiology following FMT 

There were no significant differences in hippocampal BDNF expression (t (26) = 0.312, 

p = 0.757) (Figure 3.2). 

 
Figure 3.2: Quantitative real-time PCR (qRT-PCR) of BDNF gene expression levels in 

the rat hippocampus. 15 rats received the healthy FMT and 13 rats received the 

depression FMT. There were no significant differences in hippocampal BDNF 

expression (t (26) = 0.312, p = 0.757). Bar graphs indicate average values after Gapdh 

normalization relative to average control levels.  

 

 

Altered Gut Microbiota Richness, Diversity, Composition & SCFAs following FMT 

Rats that received the FMT from depressed patients had reduced gut microbiota richness 

as measured by Chao1 (p = 0.004) and observed species (p = 0.006) and reduced diversity 

measured by phylogenetic diversity (p = 0.006) and Shannon index (p = 0.002) (Figure 

3.3A-D). 

 

At the phylum level, the relative abundances of Actinobacteria (U = 32, p = 0.013) and 

Candidate Division TM7 (U = 28.5, p = 0.006) were decreased in rats that received the 

depression transplantation (Figure 3.3E). At the family level, the relative proportions of 

Bifidobacteriaceae (U = 138.5, p = 0.001), Coriobacteriaceae (U = 129, p = 0.004), 

Porphyromonadaceae (U = 123, p = 0.012), Candidate division TM7 uncultured 

bacterium (U = 128, p = 0.005), Caldicoprobacteraceae (U = 126.5, p = 0.007), 

Alcaligenaceae (U = 144, p = < 0.000) were decreased in rats that received the depression 

FMT. Propionibacteriaceae (U = 27, p = 0.006) was increased in the rats that received 

the depression FMT (Figure 3.3F). 



103 
 

At the genus level, the relative abundances of Bifidobacterium uncultured (U = 136, p = 

0.001), Coriobacteriaceae uncultured (U = 128, p = 0.005), Caldicoprobacter (U = 124, 

p = 0.01), Roseburia (U = 132, p = 0.003), Allobaculum (U = 126, p = 0.004), 

Burkholderiales (U = 146, p = < 0.000) were decreased in rats that received the 

depression FMT. Freudenreichii (U = 26, p = 0.004), Staphyloccus (U = 37, p = 0.013), 

Peptococcus (U = 27.5, p = 0.006) were increased in rats that received the depression 

transplantation (Figure 3.3G).  

 

Fecal acetate and total SCFAs were increased in the rats that received the depression 

FMT (p= 0.011). There was a trend toward significant increases in the levels of 

propionate (p = 0.068) and butyrate (p = 0.06) following FMT from depressed patients 

(Figure 3.3H). 
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Figure 3.3:  Altered Gut Microbiota Richness, Alpha Diversity & SCFAs following 

fecal transplantation  

Rats that received the FMT from depressed patients (n = 13) had reduced gut microbiota 

richness as measured by (A) Chao1 (p = 0.004) and (B) observed species (p = 0.006) and 

reduced diversity measured by (C) phylogenetic diversity (p = 0.006) and (D) Shannon 

index (p = 0.002). Significant differences at the phylum level (E), the family level (F) 

and the (G) genus level between the rats that received the FMT from the depressed 

patients compared to the rats that received the healthy FMT (n = 15). (H) Levels of fecal 

acetate and total SCFAs were increased in the rats that received the depression FMT (p= 

0.011). There was a trend toward significant increases in the levels of propionate (p = 

0.068) and butyrate (p = 0.06) following FMT from depressed patients. 
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Figure 3.4:  Altered Beta Diversity following fecal transplantation 

(A) PCoA plot representing unweighted unifrac beta diversity in the rats. Red represents 

rats that received the healthy FMT (n = 15) and black represents the rats that received the 

FMT from depressed patients (n = 13).   
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3.5 Discussion   
The present findings represent definitive evidence that depression-associated alterations 

in the gut microbiome are sufficient to disrupt behavioural and physiological 

homeostasis. Specifically, transplantation of the perturbed microbiota signature from 

depressed patients to microbiota-depleted rats induced the development of some of the 

behavioural and physiological features of the depressive phenotype. Furthermore, this 

data indicates that a gut microbiota transfer from depressed patients could serve as a 

novel animal model of depression in the context of microbiome-gut-brain axis 

dysfunction. 

 

We have demonstrated, that transferring the gut microbiota from depressed patients to 

rats with a depleted gut microbiota can induce the development of some of the features 

of the depressive phenotype, such as anhedonia and anxiety-like behaviours, and produce 

a physiological profile similar to depressed individuals. In contrast to a recent FMT study 

from depressed patients using germ-free mice (Zheng et al., 2016a), we did not observe 

alterations in the FST. Our data is consistent with the view that the emergence of only 

some of the behavioural and neurobiological correlates of depression are contingent on 

the gut microbiota (De Palma et al., 2015).  

 

Similar to the depressed patients, the rats that received the depression FMT also had an 

increased kynurenine: tryptophan ratio. The pro-inflammatory profile was also partially 

transferred, with a trend towards an increase in plasma CRP in the rats that received the 

depressed FMT. However, there were no differences in the levels of plasma IL-6, TNF-

α, or IL1b in the rats that received the depression FMT. A dysregulated HPA axis 

function was not observed following the FMT, at least in terms of corticosterone output 

following an acute stressor. However, single time point analysis of HPA axis function 

can be unreliable (Allen et al., 2014b).  

 

Rats that received the depression FMT demonstrated increased intestinal transit, 

suggestive of colonic motility dysfunction. Altered gastro-intestinal function is a well-

established but often neglected characteristic of depression (Gorard et al., 1996, Haug et 

al., 2002). Importantly, there were also comparable significant differences in gut 

microbiota richness and diversity following FMT as between the clinical depression and 

control groups (Figure 3.3A-D). The rats that received the FMT from depressed patients 
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had altered levels of caecal SCFAs (Figure 3.3H) despite this not being noted in the 

clinical fecal samples (Figure 2.5A) suggesting that a depression-associated microbiota 

can impact SCFA production. Microbial metabolites such as SCFAs can reach the 

circulation, cross the BBB (Frost et al., 2014, Vijay and Morris, 2014) and activate 

specific receptors in relevant brain regions underpinning the neurocircuitry pertinent to 

the expression of depression and anxiety-related behaviours (Schroeder et al., 2007, Wei 

et al., 2015).  

 

We acknowledge that antidepressant use in the depressed group is a limitation of our 

study, and that we cannot exclude the possibility of an antidepressant-related serotonin-

driven contribution to the alteration in the gut microbiota. However, antidepressants 

would be expected to reduce the kynurenine/tryptophan ratio rather than increase it via, 

for example, activity on TDO (Badawy and Morgan, 1991, Badawy et al., 1991) making 

it unlikely that residual medication in the fecal transplantation from the depressed 

patients would increase depressive and anxiety like behaviours in the rats that received 

the depressed FMT. Regardless of the origins of the gut microbiota differences in the 

transplant, the preclinical data confirms that when a depression-associated microbiota is 

transferred, neurobiological and behavioural consequences can ensue. Although the gut 

microbiota can impact transcriptional regulation (Stilling et al., 2015) we found no 

significant differences in hippocampal BDNF expression in the rats that received the 

FMT.  

 

In conclusion, we have demonstrated that it is possible to reproduce aspects of depressed 

behaviour and physiology via a gut microbiota transfer. This suggests that the gut 

microbiota could play a causal role in the complex mechanisms underlying the 

development of depression. The profile of depression-like behaviours and physiological 

alterations noted following FMT suggests that this represents a novel paradigm in 

behavioural pharmacology to investigate microbiota-associated depression. Ultimately, 

findings from this study advance the concept that targeting the gut microbiota may be a 

viable therapeutic strategy for novel antidepressant development in sub groups of 

depressed patients and may augment depression prevention strategies.  
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Chapter 4: Targeting the Microbiota-gut-
brain axis with Lactobacillus Rhamnosus 

(JB-1): Evaluation of a Candidate 
Psychobiotic in healthy male volunteers 
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4.1 Abstract  
Background: Preclinical studies have identified certain probiotics as psychobiotics - live 

microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) 

has been shown to reduce stress-related behaviour, corticosterone release and alter central 

expression of GABA receptors in an anxious mouse strain. However, it is unclear if this 

single putative psychobiotic strain has psychotropic activity in humans. Consequently, 

we aimed to examine if these promising preclinical findings could be translated to healthy 

human volunteers. 

Objectives: To determine the impact of L. rhamnosus on stress-related behaviours, 

physiology, inflammatory response, cognitive performance and brain activity patterns in 

healthy male participants. 

Methods: An 8 week, randomized, placebo-controlled, cross-over design was employed. 

Twenty-nine healthy male volunteers participated. Participants completed self-report 

stress measures, cognitive assessments and resting electroencephalography (EEG). 

Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR4) 

agonist cytokine release were determined by multiplex ELISA. Salivary cortisol was 

determined by ELISA and subjective stress measures were assessed before, during and 

after a socially evaluated cold pressor test (SECPT).  

Results: There was no overall effect of probiotic treatment on measures of mood, 

anxiety, stress or sleep quality and no significant effect of probiotic over placebo on 

subjective stress measures, or the HPA response to the SECPT. Visuospatial memory 

performance, attention switching, rapid visual information processing, emotion 

recognition and associated EEG measures did not show improvement over placebo. No 

significant anti-inflammatory effects were seen as assessed by basal and stimulated 

cytokine levels. 

Conclusions: L. rhamnosus was not superior to placebo in modifying stress-related 

measures, HPA response, inflammation or cognitive performance in healthy male 

participants. These findings highlight the challenges associated with moving promising 

preclinical studies, conducted in an anxious mouse strain, to healthy human participants. 

Future interventional studies investigating the effect of this psychobiotic in populations 

with stress-related disorders are required. 
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4.2 Introduction 
An abundance of preclinical studies have shown that probiotics acting via the brain-gut-

axis can affect brain development, function and behaviour (Cryan and Dinan, 2015b, 

Desbonnet et al., 2014, Desbonnet et al., 2010, Hsiao et al., 2013). This has prompted a 

growing interest in the possibility of targeting the gut microbiome to beneficially impact 

human brain and behaviour. Psychobiotics have been defined as bacteria that ingested in 

adequate amounts produce a positive mental health benefit (Dinan et al., 2013).  

 

Considering the potential impact of putative psychobiotics upon central nervous system 

processes, especially stress, mood, anxiety and cognition (Cryan and Dinan, 2012c, 

Dinan et al., 2015), the prospect of targeting the gut microbiota as a potential modifiable 

risk factor for stress-related disorders is appealing (Kelly et al., 2015). Preclinical 

research has indicated that chronic probiotic administration can reduce anxiety-like and 

depressive-like behaviour, and can normalise associated physiological outputs such as 

corticosterone, noradrenaline, brain-derived neurotrophic factor (BDNF) and immune 

function (Bercik et al., 2011a, Bravo et al., 2011, Desbonnet et al., 2010, Janik et al., 

2016, Messaoudi et al., 2011). There is a growing appreciation of the need to translate 

this promising preclinical work to the clinic while at the same time  recognising the 

challenges inherent in this process (Kelly et al., 2016c).  

 

To date, there are indications from a number of sources that highlight the opportunities 

in this regard, for example, probiotic use in irritable bowel syndrome (IBS) (O’Mahony 

et al., 2005, Whorwell et al., 2006), a stress-related brain-gut axis disorder associated 

with high rates of psychopathology (Whitehead et al., 2002) as well as altered 

hypothalamic-pituitary-adrenal (HPA) axis activity (Kennedy et al., 2014c) and 

cognition (Kennedy et al., 2015, Kennedy et al., 2014b). A number of proof-of-principle 

studies in healthy human volunteers have demonstrated that multi-strain probiotics, 

fermented drinks containing probiotics, or prebiotics, can alter resting brain activity, 

cognitive performance, baseline physiological stress outputs and self-reported 

psychological variables (Benton et al., 2007, Chung et al., 2014, Messaoudi et al., 2011, 

Schmidt et al., 2015, Steenbergen et al., 2015a, Tillisch et al., 2013b). More recently, 

Bifidobacterium longum 1714, selected based on pre-clinical evidence (Savignac et al., 

2014, Savignac et al., 2015a), reported reduce stress levels and a neurocognitive profile 

associated with enhanced memory in healthy volunteers (Allen et al., 2016).  
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By utilizing a well-validated preclinical screening platform, developed to inform efficient 

selection of prospective psychobiotic strains, we identified L. rhamnosus (JB-1). In these 

studies, which were carried out in the stress-sensitive BALB/c mice, ingestion of the JB-

1 strain reduced anxiety in the elevated plus maze and despair-like behaviour in the 

forced swim test. Moreover, there was enhanced learning in a fear conditioning paradigm 

and reduced stress-induced corticosterone levels. At a brain level there were marked 

alterations in central GABAA and GABAB receptor levels (Bravo et al., 2011). 

Furthermore, a magnetic resonance spectroscopy study, also conducted in BALB/c mice 

showed that treatment with the JB-1 strain significantly elevated central GABA levels by 

25% after four weeks of treatment (Janik et al., 2016). In addition, L. rhamnosus 

treatment modulates the immune system (Forsythe et al., 2012, Karimi et al., 2009, 

Kozakova et al., 2016, Ma et al., 2004), intestinal motility (Wang et al., 2010), gut barrier 

function (Patel et al., 2012b, Wang et al., 2012b) and enteric nervous system (Kamiya et 

al., 2006, Ma et al., 2009). Taken together, these preclinical studies identify L. 

rhamnosus as the candidate psychobiotic with the most comprehensive behavioural, 

physiological and neurobiological profile. 

 

We employed a randomized, placebo-controlled, cross-over, repeated measures design 

to examine the effects of the JB-1 strain compared to placebo on the psychobiological 

response to an acute, controlled stressor (Schwabe et al., 2008, Schwabe and Wolf, 2010) 

and assessed cognitive performance on tests assessing memory, sustained attention, 

social cognition and emotional processing. In addition, we measured the immune 

response to this candidate psychobiotic by measuring a panel of cytokines and TLR4 

induced cytokine release. 

 

Finally, to ascertain if the JB-1 strain effected brain activity patterns, we assessed brain 

activity in frontal, parietal and central regions using EEG following 4-week 

supplementation with the JB-1 strain in comparison to placebo, as these regions have 

been associated with memory and sustained attention (Coull et al., 1996, Hales et al., 

2009) and are sensitive to anxiolytics (Fukami et al., 2010).  
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4.3 Methods  
Subjects 

Approval of the study protocol was granted by the Cork University Hospital ethics 

committee (Protocol Number: APC057) and conducted in accordance with the ICH 

Guidelines on Good Clinical Practice, and the Declaration of Helsinki. Written informed 

consent was obtained from all subjects before any study procedures were conducted.  

 

Participants were aged between 20 and 33 years of age. Inclusion criteria were as follows: 

aged between 18 - 40 years, able to speak English, in good health as determined by the 

investigator. Male participants were selected to avoid the need to control for menstrual 

cycle, which can impact upon cortisol output and other readouts. Exclusion criteria were 

as follows: having a significant acute or chronic illness, following a diet or taking a 

medication that would interfere with the objectives of the study, pose a safety risk or 

confound the interpretation of the study results, to include, probiotics, antibiotics, 

antipsychotics, anxiolytics, laxatives, enemas, anti-coagulants and over-the counter non-

steroidal anti-inflammatorys (NSAIDS), antidepressants or any other psychotropic 

medication, Evidence of immunodeficiency, bleeding disorder or coagulopathy, colour 

blindness, dyslexia or dyscalculia, or receiving any treatment involving experimental 

drugs.  

 

Design 

A repeated measures crossover design was employed. Participants were screened at an 

initial visit for psychiatric disorder using the MINI International Neuropsychiatric 

Interview (MINI)(Sheehan et al., 1998) and demographic and baseline psychological 

information was collected. Following screening, participants completed neurocognitive 

visits and acute stress visits utilizing the socially evaluated cold pressor test (SECPT) at 

baseline, at 4 weeks and at 8 weeks. Participants were administered placebo capsules for 

four weeks or L. Rhamnosus capsules for four weeks in a randomized single blind 

placebo controlled cross over trial. (See Table 4.1 for detailed participant 

characteristics).  

 

Materials  

Both active and placebo capsules contained corn starch, magnesium stearate and silicon 

dioxide. The count for L. Rhamnosus (JB-1) in the active capsules was 1x109 colony-
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forming units (CFU). Participants were instructed to take one capsule each morning. 

Compliance was assessed by self-report at each study visit.  

 

Tests from the CANTAB Battery  

Tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) 

were presented on a touch-screen monitor, Sahara i440D Slate Tablet PC (Sand Dune 

Ventures, Tablet Kiosk) running CANTABeclipse™ software (Cambridge, UK). The 

researcher provided verbal instructions to participants from a standardised script, and had 

full control of a keyboard used to start, pause or abort each test. As a test battery of 

multiple cognitive tests was employed, test order was counterbalanced, using a Latin 

square design, to avoid effects of fatigue for tests completed later in the session. The test 

battery lasted approximately 45 minutes in total. Participants were assessed on the 

following tests from the battery: 

 

Motor Screening Test (MOT)  

The MOT is a screening test and allows participants to get familiar with using the 

touchscreen. It screens for difficulty with movement, comprehension and vision. 

Participants are presented with a series of crosses in different locations on the screen and 

instructed to touch them in turn. The administration time was approximately 2 minutes. 

 

Paired Associates Learning (PAL)  

PAL test was used to assess conditional learning of pattern-location associations. Paired 

associate performance has shown sensitivity to functional changes in the hippocampus 

(de Rover et al., 2011) and frontal lobes (Hales et al., 2009). The parallel mode (which 

presents different shapes at each visit) was used in order to avoid practice effects. White 

boxes are presented on-screen and each opens in a randomized order; in some boxes a 

pattern is shown. Participants must remember patterns associated with different 

locations. In the practice phase 2 patterns are presented and after this presentation the 

participant must touch the boxes the patterns appeared in. Participants then have to 

remember 2 patterns for 1 trial, 3 for 1 trial, 6 for 1 trial and 8 for 1 trial. If the participant 

makes an error the patterns are presented again to remind the participant of their 

locations. When all pattern locations are correctly identified the test proceeds to the next 

stage. If participants do not correctly identify the pattern locations within 10 trials the 

test terminates. The administration time was approximately 10 minutes. Outcomes 
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assessed: Total errors per stage (8 shapes), mean trials required to locate all patterns 

correctly, first trial memory score. 

 

Attention Switching Task (AST) 

AST was used to measure the subject’s ability to switch attention between the direction 

of an arrow and its location on the screen and to ignore task-irrelevant information. This 

test has been designed to measure top-down cognitive control processes involving the 

prefrontal cortex. The test displays an arrow which can appear on either side of the screen 

(right or left) and can point in either direction (to the right or to the left). Each trial 

displays a cue at the top of the screen that indicates to the participant whether they have 

to press the right or left button according to the “side on which the arrow appeared” or 

the “direction in which the arrow was pointing”. Some trials display congruent stimuli 

(e.g. arrow on the right side of the screen pointing to the right) whereas other trials display 

incongruent stimuli which require a higher cognitive demand (e.g. arrow on the right side 

of the screen pointing to the left). The administration time was approximately 8 minutes. 

Outcomes assessed: Reaction latency, Reaction latency congruent, Reaction latency 

incongruent, congruency cost, switching cost, percent correct. 

 

Rapid visual information processing (RVP)  

RVP was used to assess sustained attention. Performance on this task activates a fronto-

parietal network of brain regions (Coull et al., 1996), and a modified version of this task 

is sensitive to changes in frontal EEG (Allen et al., 2014a). Subjects are presented with 

digits appearing on screen one at a time. Participants are required to press the button on 

the press pad as soon as they detect target sequences of digits (e.g. 3-5-7). The test 

consists of a practice phase followed by a four-minute testing phase. The administration 

time was approximately 7 minutes. Outcomes assessed: Targets correctly detected, false 

alarms and reaction time. 

 

Emotion Recognition Task (ERT)  

ERT was used to assess social cognition. fMRI has previously demonstrated probiotic 

effects on a network of brain regions involved in emotional and viscerosensory 

processing in healthy controls (Tillisch et al., 2013b). The participant is briefly shown 

faces displaying distinct emotions; happiness, anger, sadness, fear, surprise and disgust. 

The participant is then required to identify the emotion as quickly as possible from a list 
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of possible options. The administration time was approximately 8 minutes. Outcomes 

assessed: Total correct, total errors, mean speed of response. 

 

Other cognitive tests 

Emotional Stroop  

In addition to tests from the CANTAB battery, we assessed emotional processing using 

an Emotional Stroop (Strauss et al., 2006). The Stroop test was presented on the same 

high-resolution touch screen monitor used with the CANTAB battery. The emotional 

Stroop is associated with activation in the anterior cingulate cortex (Bush et al., 2000, 

Etkin et al., 2006). Positively, negatively and neutrally valenced words were presented, 

matched for length in letters, orthographic neighbourhood size (i.e. the number of words 

which differ from a given word by only one letter) and frequency of use (Larsen et al., 

2008). Participants were asked to name the colour the word was printed in. 

Administration time was approximately 10 minutes. Outcomes assessed: Positive percent 

correct, Positive reaction time, Negative percent correct, Negative reaction time, Neutral 

percent correct, Neutral reaction time.  

 

Acute Stress Procedure  

We employed the socially evaluated cold pressor test (SECPT) (Schwabe et al., 2008) as 

a combined psychological and physiological stressor procedure, which has been shown 

not to induce HPA axis habituation across repeated exposures (Minkley et al., 2014). 

Participants were required to avoid alcohol for 24 hours prior to the visit, as well as 

caffeinated beverages on the day of the stress procedure and strenuous exercise from 2pm 

the day before, and to fast for 2 hours prior to testing.  

 

After the participant completed the state items from the state-trait anxiety inventory 

(Spielberger et al., 1970) a baseline saliva sample was taken. The baseline measures were 

followed by a 5-minute resting phase. Following the 5-minute resting phase, another 

saliva sample was taken. The participant read the instructions for the SECPT and the 

experimenter answered any questions. The participant was then lead into a second room 

in which a confederate, who was dressed in a white lab coat and maintained a neutral 

demeanour throughout, was seated at a table with a container of ice water (at 0-4°C), and 

a camera which was directed towards the participant’s face during completion of the 

SECPT. Paper towels were kept beside the container. The experimenter said: 
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“Researcher, this is subject number xxx. Subject xxx, remember that your task is to keep 

your hand submerged in cold water, that your facial expressions will be video recorded 

for later analysis, and that the researcher is specially trained to monitor non-verbal 

behaviour. Do you have any questions?” After answering any questions the experimenter 

left. The confederate instructed the participant to complete the cold pressor test and 

started the timer; during the entire procedure the confederate maintained a neutral 

demeanour. After withdrawing their hand from the water, the participant returned to the 

previous room, and completed the post-stress state anxiety questionnaire. Further saliva 

samples were taken 1 minute after the cessation of the stressor, as well as, 10, 20, 30, and 

60 minutes post-stressor cessation.  

 

Neurocognitive assessment 

Prior to EEG testing participants were asked to refrain from caffeine on the morning of 

their experimental session, as well as ensuring they got a good night’s sleep, to remove 

any piercings and avoid wearing hair gel. All EEG measurements were made using a 

Neuroscan®, SynAmps 2 Amplifier and Neuroscan 4.3.1 acquisition software. EEG was 

recorded at a sampling rate of 1,000Hz. Scalp electrodes were attached at midline 

positions Fz, Pz, Cz, (see Figure 4.1) and F1, F2, F3, F4, F5, F6, F7, F8, according to 

the international 10/20 system, as well as mastoid electrodes and a reference electrode 

on the nose. Vertical eye movements were detected using electrodes attached above and 

below the orbit of the left eye, simultaneously horizontal eye movements were monitored 

by electrodes at the right and left outer canthi. EEG recordings were made using 

Neuroscan ® Quick-Cap (containing AgCl sintered electrodes and Neuroscan Quick-Cell 

technology) therefore ensuring reduced impedance levels for optimized recordings at 

each electrode. Following a resting EEG recording, the cognitive tasks were completed 

(see Cognitive tasks).  
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Figure 4.1: Electrode position of Fz, Cz and Pz. Scalp electrodes were attached at 

midline positions Fz, Pz, Cz according to the international 10/20 system.  

 

Resting EEG 

EEG measures of absolute power in the delta (2-4Hz), theta1 (4-6Hz), theta2 (6-8 Hz) 

alpha1 (8-10Hz), alpha2 (10-12Hz), beta (15-30Hz) frequency bands were taken for five 

minutes with eyes closed. Participants were requested to relax and sit still with their eyes 

closed while resting EEG was recorded.  

 

EEG analysis  

The EEG signal was down sampled from 1000Hz to 256Hz with an antialiasing filter set 

at 128Hz. The filtered EEG signal was segmented into 1s windows without overlap. 

Curve length, root mean squared amplitude, Hjorth parameters (activity, mobility, 

complexity) (Hjorth, 1970), zero crossings (raw epoch, first and second derivative), 

autoregressive modelling error (model order 1-9), nonlinear energy, variance (first and 

second derivative), entropy (Shannon entropy, spectral entropy, singular value 

decomposition entropy), Fisher information, and wavelet energy (Daubechy 4) were 

calculated using MATLAB. EEG measures of absolute power were extracted in the delta 

(2-4Hz), theta1 (4-6Hz), theta2 (6-8 Hz) alpha1 (8-10Hz), alpha2 (10-12Hz), beta (15-

30Hz) frequency bands. 
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Sample analysis 

Cortisol sampling & analysis 

Salivettes were centrifuged at 1000 g for 5 min and aliquoted and stored at -80oC until 

analysis. Cortisol concentrations were determined using the Cortisol Enzyme 

Immunoassay Kit as per manufacturers’ instruction (Enzo®, Life Sciences). Assay 

detection limit was 0.16 nmol/L. Inter and intra-assay % C.Vs were 11.24% and 8.2% 

respectively. 

 

Cytokine sampling & analysis 

10ml of whole blood was collected in an EDTA tube. Samples were centrifuged at 1000 

g for 15 minutes and then aliquoted and stored at -80oC until analysis. Plasma levels of 

IL1β, IL6, IL8, IL10 and TNFα were assayed in duplicate using high sensitivity 

commercially available electrochemiluminescence MULTI-SPOT® Meso Scale 

Discovery kits (MSD, Rockville, MD, 75USA) as per manufacturer’s instructions. The 

median lower limits of detection for each cytokine are; IL-1β; 0.04 pg/ml, IL-6; 0.06 

pg/ml, IL-8; 0.04 pg/ml, IL-10; 0.03 pg/ml, TNF-α 0.04 pg/ml.  

 

TLR4 cytokine release 

TLR cytokine release was determined as previously described (McKernan et al., 2011). 

Whole blood was collected in lithium heparin tubes and diluted 1:10 with Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% Fetal Calf Serum (FCS) 

and 5% penicillin streptomycin. Each blood sample was cultured with and without the 

TLR4 receptor ligand - lipopolysaccharide (LPS), from the Human TLR agonist kit 

(InvivoGen, San Diego, CA, USA) for 24 hours. After the 24 hour culture period the 

supernatant from both untreated and stimulated cells was aspirated and stored at -80°C. 

Levels of IL1β, IL6, IL8, I-10 and TNFα were assayed in duplicate using high sensitivity 

commercially available electrochemiluminescence MULTI-SPOT® Meso Scale 

Discovery kits (MSD, Rockville, MD, 75USA) as per manufacturer’s instructions. 

 

Statistical analysis 

With a power of 0.8 for a one-way ANOVA, a minimum sample size of 20 was required 

to demonstrate an effect sized f = 0.3 at alpha = 0.05 (Buchner et al., 1997) (Allen et al., 

2016). Data were analysed using SPSS 21. Repeated measures ANOVA and pairwise t-

tests using post-hoc Fisher's least significant difference (LSD) were used to examine 
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differences between conditions, and non-parametric equivalents (Friedman and 

Wilcoxon respectively) were used where parametric assumptions were violated. Areas 

under the curve with respect to ground (AUCg) were also calculated (Pruessner et al., 

2003), and analysed in the same manner.  

 

4.3 Results 
Demographic data  

See (Table 4.1) for Participant characteristics. 

 

Table 4.1: Participant characteristics. Means and Standard errors of the mean in 

parentheses 
Participant characteristics Total sample 

(n=29) 
Placebo / Probiotic  

(n=15) 

Probiotic / placebo 
(n=14) 

p-value 

Age (mean) 24.59 (0.75) 23.6 (0.97) 25.64 (1.14) 0.22 

Ethnicity         

Caucasian 25 13 12   

Asian 4 2 2 1.00 

BMI 24.55 (0.58) 24.8 (0.69) 24.29 (0.96) 0.66 

Alcohol (units per week) 10.14 (1.85) 11.85 (2.68) 8.42 (2.56) 0.36 

Years of Education 18.45 (0.49) 17.87 (0.71) 19.07 (0.65) 0.22 
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Subjective stress measures 

A repeated measures ANOVA with a Greenhouse-Geisser correction determined that 

there was no overall effect of treatment phase on the Beck Depression Inventory (p = 

0.75), the Beck Anxiety Inventory (p = 0.95), the Perceived Stress Scale (p = 0.053), 

the State Anxiety Inventory (p = 0.09), the Trait Anxiety Inventory (p = 0.72), the 

Symptom Checklist-90 (p = 0.87) or the Pittsburgh sleep quality index (p = 0.07). In the 

coping checklist, there was a reduction in wishful thinking (p = 0.03) in the placebo (p 

= 0.04) and probiotic phase (p = 0.02), see (Figure 4.1). For pairwise comparisons see 

(Table 4.2). 

 
 

Figure 4.1: Subjective Stress Measures 

There was no overall effect of treatment phase in the (A) Beck Depression Inventory (F 

1.93, 50.36 = 0.27, p = 0.75), (B) the Beck Anxiety Inventory (F 1.53, 43.00 = 0.02, p = 

0.95) (C) the Perceived Stress Scale (F 1.80, 50.38 = 3.23, p = 0.053) (D), the State 

Anxiety Inventory (F 1.72, 48.18 = 2.57, p = 0.09), (E) the Trait Anxiety Inventory (F 

1.97, 55.19 = 0.31, p = 0.72, (F) the Symptom Checklist-90 (F 1.93, 52.11 = 0.12, p = 

0.87) or (G) the Pittsburgh sleep quality index (F 1.74, 47.16 = 2.80, p = 0.07). (H) In 

the coping checklist, there was a reduction in wishful thinking (F 1.74, 47.08 = 3.96, p = 

0.03) in the placebo (p = 0.04) and probiotic phase (p = 0.02).  
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Table 4.2: Subjective Stress Measures. Means and Standard errors of the mean in parentheses. 

 

  Baseline  Placebo  Probiotic 
Baseline V 

Placebo 
Placebo V 
Probiotic 

Baseline V 
Probiotic 

Treatment Effect (Repeated 
Measures ANOVA) 

        (p value)  (p value)  (p value)    
Beck Depression 
Inventory 3.92 (0.76) 4.33 (0.72) 3.88 (0.67) 0.57 0.95 0.51 F (1.93, 50.36) = 0.27, p = 0.75 
Beck Anxiety Inventory 4.31 (0.88) 4.17 (1.04) 4.17 (0.67) 0.88 1.00 0.84 F (1.53, 43.00) = 0.02, p = 0.95 
Perceived Stress Scale 10.75 (0.98) 12.96 (1.12) 11.72 (0.94) 0.03 0.10 0.26 F (1.80, 50.38) = 3.23, p = 0.053 
Symptom Checklist                
Total (global severity 
index) 24.28 (3.47) 25.57 (4.05) 24.35 (3.68) 0.65 0.69 0.97 F (1.93, 52.11) = 0.12, p = 0.87 
State Trait Anxiety 
Inventory               
Trait 31.69 (1.50) 30.96 (1.50) 31.58 (1.36) 0.47 0.54 0.91 F (1.97, 55.19) = 0.31, p = 0.72 
State 24.58 (0.95) 26.10 (1.18) 27.20 (1.13) 0.26 0.36 0.008 F (1.72, 48.18) = 2.57, p = 0.09 
Pittsburgh Sleep 
Quality Index (PSQI) 4.57 (0.47) 5.50 (0.62) 4.96 (0.47) 0.008 0.25 0.32 F (1.74, 47.16) = 2.80, p = 0.07 
Coping Checklist                
Wish % 44.19 (4.62) 37.50 (3.99) 35.56 (4.45) 0.04 0.48 0.02 F (1.74, 47.08) = 3.96, p = 0.03 
Positive % 56.98 (2.24) 56.34 (2.98) 52.54 (3.11) 0.78 0.30 0.18 F (1.63, 44.08) = 1.17, p = 0.30 
Escape % 22.09 (3.72) 23.01 (3.13) 19.04 (3.02) 0.74 0.08 0.43 F (1.41, 38.28) = 0.95, p = 0.36 
Advice (%) 46.03 (3.15) 46.82 (3.96) 43.45 (3.91) 0.83 0.46 0.47 F (1.84, 49.80) = 0.38, p = 0.66 
Blame % 36.60 (4.33) 32.14 (4.10) 32.73 (4.34) 0.22 0.87 0.37 F (1.92, 51.91) = 0.75, p = 0.47 
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Acute Stress response to the Socially Evaluated Cold Pressor Test (SECPT) 

There was no overall effect of treatment phase on subjective stress measures pre or post 

the SECPT (see Figure 4.2A-H), and no significant overall effect of probiotic over 

placebo in HPA response to the SECPT (Figure 4.2I-J). See (Table 4.3) for pairwise 

comparisons.   

 

 
Figure 4.2: Acute Stress response to the Socially Evaluated Cold Pressor Test 

(SECPT) 

In the primary appraisal/secondary appraisal scale, there was no significant effect of 

probiotic the (A) primary appraisal (F 1.52, 42.70 = 0.23, p = 0.73), (B) secondary 

appraisal (F 1.69, 47.56 = 2.10, p = 0.14) in (C) control expectancy (F 1.58, 44.39 = 1.91, 

p = 0.16), (D) self-control (F 1.80, 50.62 = 2.21, p = 0.12), (E) threat (F 1.45, 40.70) = 

1.28, p = 0.27), (F) challenge (F 1.83, 51.48 = 0.64, p = 0.51), (G) or stress index (F 1.54, 

41.65 = 1.01, p = 0.35). (H) There was no significant effect of treatment in pre-stress (F 

1.66, 46.58 = 2.59, p = 0.09), post-stress, (F 1.89, 52.92 = 0.65, p = 0.51), difficulty (F 

1.83, 51.38 = 1.23, p = 0.29), unpleasantness (F 1.91, 53.55 = 2.16, p = 0.12), or pain 

reports (F 1.60, 45.04 = 1.27, p = 0.28). (I) There were no significant differences in the 

HPA response to the SECPT (F 4.53, 104.22 = 0.80, p = 0.54), the (J) Area under the 

curve with respect to ground (AUCg) (F 1.60, 38.52 = 1.03, p = 0.35) or the (K) delta 

cortisol response (p = 0.28). 
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Table 4.3:  Subjective Stress Measures in the SECPT. Means and Standard errors of the mean in parentheses. 

  Baseline Placebo  Probiotic  
Baseline V 

Placebo 
Placebo V 
Probiotic 

Baseline V 
Probiotic 

Treatment Effect (Repeated 
Measures ANOVA) 

        (p value)  (p value)  (p value)    
Primary Appraisal/Secondary 
Appraisal               
Threat 1.87 (0.14) 1.67 (0.10) 1.66 (0.12) 0.26 0.92 0.20 F (1.45, 40.70) = 1.28, p = 0.27 
Challenge 3.32 (0.12) 3.48 (0.16) 3.39 (0.18) 0.29 0.46 0.64 F (1.83, 51.48) = 0.64, p = 0.51 
Self-Control 4.36 (0.13) 4.41 (0.11) 4.58 (0.10) 0.68 0.08 0.04 F (1.80, 50.62) = 2.21, p = 0.12 
Control Expectancy 3.81 (0.17) 4.11 (0.19) 3.94 (0.17) 0.11 0.12 0.43 F (1.58, 44.39) = 1.91, p = 0.16 
Primary appraisal 2.60 (0.09) 2.57 (0.11) 2.53 (0.11) 0.83 0.51 0.55 F (1.52, 42.70) = 0.23, p = 0.73 
Secondary appraisal 4.09 (0.12) 4.26 (0.12) 4.26 (0.11) 0.14 1.00 0.07 F (1.69, 47.56) = 2.10, p = 0.14 
Stress index -2.89 (0.12) -3.20 (0.29) -3.30 (0.19) 0.39 0.65 0.18 F (1.54, 41.65) = 1.01, p = 0.35 
Socially Evaluated Cold Pressor 
(SPECT) %               
Prestress 12.50 (2.33) 17.14 (4.04) 18.57 (3.59) 0.16 0.70 0.02 F (1.66, 46.58) = 2.59, p = 0.09 
Difficulty 34.82 (4.31) 36.89 (4.86) 41.72 (5.15) 0.63 0.35 0.09 F (1.83, 51.38) = 1.23, p = 0.29 
Unpleasantness 40.69 (4.88) 36.55 (4.92) 46.55 (4.94) 0.41 0.06 0.18 F (1.91, 53.55) = 2.16, p = 0.12 
Post stress 25.51 (3.27) 21.03 (3.62) 24.13 (3.92) 0.31 0.45 0.69 F (1.89, 52.92) = 0.65, p = 0.51 
Painful 43.10 (5.08) 37.93 (4.53) 45.17 (4.64) 0.37 0.09 0.60 F (1.60, 45.04) = 1.27, p = 0.28 
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Immune response 

There was no overall treatment effect on the concentrations of IL10 (p = 0.32), IL1β (p 

= 0.08), IL6 (p = 0.13) or IL8 (p = 0.16) (Figure 4.3A-D). The concentration of TNFα 

increased from baseline during the placebo phase (p = 0.02), but there was no 

significant change in baseline versus probiotic (p = 0.08) or placebo versus probiotic (p 

= 0.18) (Figure 4.3E). There was no overall treatment effect on the IL1β:IL10 (p = 

0.68), IL6:IL10 (p = 0.12), IL8:IL10 (p = 0.97), or TNFα:IL10 (p = 0.99) ratios (Figure 

4.3F-I). Inspection of IL6:IL10 data suggested differences during the probiotic phase so 

we carried out exploratory analysis by using pairwise comparisons (Table 4.4) which 

indicated a lower IL6:IL10 ratio from baseline (p = 0.03) (Figure 4.3G), however this 

was non-significantly lower than placebo levels (p = 0.13). 

 

TLR4 cytokine release 

In the TLR4 stimulated cytokines, there was an increase in the level of IL1β (p = 0.02) 

(Figure 4.3J) and TNFα (p = 0.01) (Figure 4.3K) during the placebo phase compared 

to baseline (p = 0.01) but no effect of probiotic (p = 0.03). There was no effect of either 

treatment phase on TLR4 stimulated IL10 (p = 0.12), IL6 (p = 0.22) or IL8 (p = 0.25) 

cytokine release (Figure 4.3L-M).  
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Figure 4.3: Immune response 

There was no overall treatment effect on the plasma concentrations of (A) IL10 (F 1.64, 

34.57 = 1.12, p = 0.32) (B) IL1β (F 1.69, 47.46 = 2.72, p = 0.08), (C) IL6 (F 1.97, 51.38 

= 2.11, p = 0.13) or (D) IL8 (F 1.78, 50.00) = 1.87, p = 0.16). (E) The concentration of 

TNFα increased from baseline during the placebo phase (p = 0.02), but there was no 

significant change in baseline versus probiotic (p = 0.08) or placebo versus probiotic (p 

= 0.18). There was no overall treatment effect on the (F) IL1β:IL10 (F 1.91, 51.81 = 0.36, 

p = 0.68), (G) IL6:IL10 (F 1.84, 48.00 = 2.165, p = 0.12) (H) IL8:IL10 (F 1.91, 51.56 = 

0.02, p = 0.97), or (I) TNFα:IL10 (F 1.96, 54.90 = 0.006, p = 0.99) ratios. Pairwise 

comparisons showed that the probiotic decreased the IL6:IL10 ratio (p = 0.03), though 

not significantly over placebo (p = 0.13). In the TLR4 stimulated cytokines, there was an 

increase in the level of (J) IL1β (F 1.77, 40.77 = 4.46, p = 0.02) and (K) TNFα (p = 0.01) 

during the placebo phase compared to baseline (p = 0.01). There was no effect of either 
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treatment phase on (L) IL10 (F 1.68, 42.04 = 2.30, p = 0.12) (M) IL6 (F 1.72, 43.02 = 

1.57, p = 0.22) or (N) IL8 (F 1.17, 29.24 = 1.409, p = 0.25) cytokine release.  
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Table 4.4: Inflammatory Measures. Means and Standard errors of the mean in parentheses. 

  Baseline  Placebo  Active  
Baseline V 

Placebo 
Placebo V 
Probiotic 

Baseline V 
Probiotic 

Treatment Effect (Repeated 
Measures ANOVA) 

        (p value)  (p value)  (p value)    
IL10 0.35 (0.10) 0.36 (0.07) 0.39 (0.13) 0.80 0.30 0.22 F (1.64, 34.57) = 1.12, p = 0.32 
IL1b 0.09 (0.01) 0.10 (0.01) 0.11 (0.01) 0.25 0.62 0.11 F (1.69, 47.46) = 2.72, p = 0.08 
IL6 0.38(0.03) 0.49 (0.05) 0.44 (0.05) 0.05 0.31 0.31 F (1.97, 51.38) = 2.11, p = 0.13 
IL8 2.45 (1.22) 2.84 (1.25) 2.61 (0.96) 0.10 0.25 0.37 F (1.78, 50.00) = 1.87, p = 0.16 
TNFα 1.23 (0.07) 1.42 (0.11) 1.31 (0.08) 0.02 0.18 0.08 F (1.50, 42.00) =  3.79, p = 0.04 
IL1b:10  0.24 (0.03) 0.24 (0.03) 0.26 (0.03) 0.91 0.52 0.39 F (1.91, 51.81) = 0.36, p = 0.68 
IL6:10  1.07 (0.09) 1.05 (0.11) 0.90 (0.09) 0.84 0.13 0.03 F (1.84, 48.00) = 2.165, p = 0.12 
IL8:10  5.99 (0.63) 6.12 (0.62) 5.99 (0.57) 0.85 0.87 0.99 F (1.91, 51.56) = 0.02, p = 0.97 
TNFα:10  3.10 (0.22) 3.08 (0.22) 3.09 (0.22) 0.91 0.97 0.95 F (1.96, 54.90) = 0.006, p = 0.99 
TLR4 IL10 185.26 (18.55) 160.83 (12.16) 161.14 (14.10) 0.09 0.98 0.12 F (1.68, 42.04) = 2.30, p = 0.12 
TLR4 IL1b 669.17 (58.91) 903.14 (89.57) 763.95 (59.51) 0.01 0.12 0.15 F (1.77, 40.77) = 4.46, p = 0.02 

TLR4 IL6 2002.99 (119.85) 
1960.94 
(121.74) 1821.67 (92.86) 0.62 0.25 0.13 F (1.72, 43.02) = 1.57, p = 0.22 

TLR4 IL8 7781.87 (625.10) 
7043.81 
(575.93) 

7739.74 
(644.47) 0.22 0.25 0.83 F (1.17, 29.24) = 1.409, p = 0.25 

TLR4   
TNFα 612.12 (66.22) 909.65 (124.17) 637.77 (75.06) 0.00 0.03 0.64 F (1.29, 31.04) = 6.717, p = 0.009 
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Cognitive Measures  

Paired Associates Learning (PAL) 

There was no overall treatment effect on the total errors made (p = 0.06) (Figure 4.4A), 

however at the 8 shape stage (Figure 4.4B), there was a significant reduction in errors 

from baseline in the placebo (p = 0.04) and probiotic phases (p = 0.04), but no significant 

difference between the placebo and probiotic. There was no significant difference in the 

mean trials to success (p = 0.13) (Figure 4.4AC).  

 

Attention Switching Task (AST) 

There was an increase in the correct response in the placebo (p = 0.03) (Figure 4.4D) 

and probiotic phases (p = 0.01) compared to baseline, and a decrease in the reaction time 

to correct response (Figure 4.4E) in the probiotic phase compared to baseline (p = 0.006), 

however the differences between placebo and probiotic were not significant.  

 

Rapid visual information processing (RVP)  

The placebo and probiotic improved the total correct hits (p = < 0.001) (Figure 4.4F), 

but there was no overall effect in the total false alarms (p = 0.53) (Figure 4.4F), or the 

reaction time (p = 0.48) (Figure 4.4H). 

 

Emotional Stroop 

There was an increase in the percentage of correctly identified neutral words in the 

probiotic phase of treatment (p = 0.03) (Figure 4.4I), but this was not significantly 

greater than baseline (p = 0.54). There was no difference in reaction time to identify 

neutral words (p = 0.85) (Figure 4.4J). There were no significant differences in positive 

percent correct, positive reaction time, negative percent correct, negative reaction time 

(data not shown).  

 

Emotion Recognition task 

The total correctly identified emotions increased in the placebo and probiotic phase 

compared to baseline (p = < 0.001) (Figure 4.4K), manifest in the disgust (p = 0.02) and 

fear (p = < 0.001) categories, but no differences between placebo and probiotic. In 

addition, there was a non-significant decrease in time taken to correctly identify emotions 

in the placebo and probiotic phases (Figure 4.4L).    
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Figure 4.4: Cognitive Measures  

In the paired associates learning task, there was no overall treatment effect on the (A) 

total errors made (F 1.71, 48.05 = 3.09, p = 0.06), however at the (B) 8 shape stage, there 

was a significant reduction in errors from baseline in the placebo (p = 0.04) and probiotic 

group (p = 0.04), but no significant difference between the placebo and probiotic. There 

was no significant difference in the (C) mean trials to success (F 1.55 , 42.10 = 2.21, p = 

0.13). (D) In the attention switching task, there was an increase in the correct responses 

in the placebo (p = 0.03) and probiotic phases (p = 0.01) compared to baseline, and a 

decrease in the (E) reaction time to correct response in the probiotic phase compared to 

baseline (p = 0.006), however the differences between placebo and probiotic were not 
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significant. In the rapid visual information processing task, the placebo and probiotic 

improved the (F) total correct hits (p = < 0.001), but there was no overall effect in the 

(G) total false alarms (F 1.57, 44.06 = 0.55, p = 0.53) or the (H) reaction time (F 1.65, 

44.55 = 0.68, p = 0.48). In the emotional stroop task there was an increase in the 

percentage of correctly identified neutral words in the probiotic phase of treatment (I) (p 

= 0.03), but this was not significantly greater than baseline (p = 0.54). There was no 

difference in (J) reaction time to identify neutral words (F 1.93, 54.09 = 0.15, p = 0.85). 

In the emotion recognition task, the (K) total correctly identified emotions increased in 

the placebo and probiotic phase compared to baseline (p = < 0.001), manifest in the 

disgust (p = 0.02) and fear (p = < 0.001) emotion sub-categories. (L) In addition, there 

was a non-significant decrease in time taken to correctly identify emotions in the placebo 

and probiotic phases.  
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Table 4.5: Cognitive Measures. Means and Standard errors of the mean in parentheses 

 Baseline  Placebo  Active  
Baseline V 

Placebo 
Placebo V 
Probiotic 

Baseline V 
Probiotic 

Treatment Effect (Repeated 
Measures ANOVA) 

        (p value)  (p value)  (p value)    
Paired associate learning 
(PAL)               

Total errors 5.58 (0.82) 4.00 (0.59) 3.82 (0.57) 0.08 0.78 0.04 F (1.71, 48.05) = 3.09, p = 0.06 

Total errors (8 shape) 4.93 (0.74) 3.17 (0.49) 3.44 (0.50) 0.05 0.58 0.04 F (1.51, 42.47) = 3.73, p = 0.04 

First trial memory score 17.27 (0.47) 18.10 (0.40) 18.13 (0.37) 0.12 0.94 0.11 F (1.87, 50.653 = 2.47, p = 0.09 

Mean trials to success 1.42 (0.06) 1.33 (0.040 1.30 (0.04) 0.22 0.49 0.06 F (1.55 , 42.10) = 2.21, p = 0.13 
Attention Switching Task 
(AST)               

Mean correct latency 472.10 (13.87) 455.39 (13.36) 
437.41 

(12.740 0.13 0.05 0.00 F (1.90, 53.36) = 6.40, p = 0.004 

Correct % 96.75 (0.57) 98.22 (0.34) 98.10 (0.33) 0.03 0.74 0.01 F (1.34, 32.22) = 5.25, p = 0.02 
Rapid visual information 
processing (RVP)               

Total hits 21.17 (0.62) 23.53 (0.60) 23.50 (0.47) <0.001 0.93 <0.001 F (1.97, 55.19) = 15.21, p = <0.001 

Total false alarms 1.27 (0.22) 1.41 (0.27) 1.13 (0.19) 0.67 0.29 0.49 F (1.57, 44.06) = 0.55, p = 0.53 

Mean reaction time (ms) 344.69 (9.77) 338.21 (8.68) 
334.03 
(7.32) 0.55 0.56 0.26 F (1.65, 44.55) = 0.68, p = 0.48 

Emotional Stroop               

% correct (positive) 99.04 (0.29) 98.61 (0.37) 99.30 (0.21) 0.35 0.12 0.42 F (1.72, 48.40) = 1.50, p = 0.23 

Mean RT (positive) 943.00 (22.72) 944.77 (21.46) 
933.77 
(20.13) 0.91 0.36 0.56 F (1.81, 49.09) = 0.34, p =  0.69 

% correct (negative) 98.70 (0.39) 98.95 (0.27) 98.78 (0.27) 0.57 0.65 0.84 F (1.92, 53.97) = 0.19, p = 0.81 

Mean RT (negative) 957.07 (28.42) 952.15 (22.43) 
958.02 
(22.22) 0.79 0.67 0.96 F (1.81, 50.78) = 0.07, p = 0.91 

% correct (neutral) 92.06 (0.87) 90.00 (0.67) 92.75 (0.65) 0.07 0.00 0.54  F (1.86, 52.25) = 3.82, p = 0.03 
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Mean RT (neutral) 948.86 (25.19) 956.45 (24.04) 
953.71 
(21.66) 0.55 0.85 0.75 F (1.93, 54.09) = 0.15, p = 0.85 

Emotion recognition test 
(ERT)               

Tot % correct 71.01 (1.37) 74.19 (1.03) 74.84 (1.32) 0.01 0.48 <0.001 F (1.75, 49.22) = 9.90, p =  <0.001 

Tot latency 1011.50 (44.13) 976.05 (47.91) 
930.58 
(40.97) 0.40 0.15 0.08 F (1.74, 48.71) = 2.15, p = 0.13 

Happiness % correct 90.92 (1.64) 90.00 (1.82) 91.26 (1.34) 0.55 0.39 0.79 F (1.94, 54.33) = 0.42, p = 0.65 

Happiness latency 726.16 (43.26) 732.21 (45.98) 
680.12 
(42.39) 0.88 0.18 0.26 F (1.98, 55.45) = 1.02, p = 0.36 

Sadness % correct 76.09 (2.11) 78.62 (1.79) 79.65 (2.40) 0.14 0.48 0.08 F (1.78, 50.07) = 2.31, p = 0.11 

Sadness latency 1064.43 (53.11) 957.13 (50.14) 
932.41 
(50.56) 0.03 0.58 0.02 F (1.87, 52.54) = 4.19, p = 0.02 

Anger % correct 64.94 (1.54) 67.12 (1.96) 67.58 (1.89) 0.14 0.82 0.14 F (1.72, 48.39) = 1.30, p = 0.27 

Anger latency 1121.31 (68.90) 1039.89 (57.12) 
975.70 
(54.96) 0.21 0.11 0.04 F (1.53, 43.03) = 3.14, p = 0.06 

Disgust % correct 68.69 (1.97) 74.64 (1.87) 74.99 (1.60) 0.04 0.86 0.01 F (1.73, 46.76) = 4.53, p = 0.02 

Disgust latency 1125.91 (56.6) 1019.41 (60.29) 
1003.65 
(49.46) 0.14 0.73 0.04 F (1.61, 45.31) = 2.62, p = 0.09 

Fear % correct 47.01 (3.66) 57.12 (2.87) 57.24 (4.21) 0.00 0.97 0.00 F (1.97, 55.39) = 9.47, p = <0.001 

Fear latency 1098.88 (62.36) 1096.51 (57.85) 
1092.25 
(57.53) 0.97 0.90 0.91 F (1.92, 53.77) = 0.28, p = 0.74 

Surprise % correct 81.54 (1.38) 78.92 (2.04) 79.64 (1.60) 0.27 0.73 0.33 F (1.90, 51.41) = 0.84, p = 0.43 

Surprise latency 914.41 (43.160 970.46 (47.000 
897.11 
(43.54) 0.30 0.09 0.77 F (1.78, 49.83) = 1.12, p = 0.32 
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EEG 

There was a significant difference between placebo and probiotic for F3 zero crossings 

(second derivative) (p = 0.015), however, there was no significant difference in this index 

between baseline and placebo (p = 0.693) or between baseline and probiotic (p = 0.058). 

There were no significant differences between placebo and probiotic in any of the other 

measures. See (Table 4.6) for pairwise comparisons.   
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  Baseline  Placebo  Probiotic 
Baseline V 

Placebo 
Placebo V 
Probiotic 

Baseline 
V 

Probiotic 
Treatment Effect (Repeated 

Measures ANOVA) 
        (p value)  (p value)  (p value)    

F3 Normalised Power (delta) 0.074 (0.005) 0.083 (.006) 0.093 (0.006) 0.202 0.194 
 

0.023 F (2, 48) = 3.29, p = 0.046 

Fz Normalised Power (theta 2) 0.037 (0.005) 0.028 (0.004) 0.031 (0.004) 0.017 0.278 
 

0.069 F (1,.45, 34.69) = 4.57, p = 0.027 

Fz Normalised Power (alpha 1) 0.041 (0.005) 0.031 (0.005) 0.033 (0.005) 0.043 0.56 
 

0.041 F (2, 48) = 3.52, p = 0.037 

Pz Normalised Power (alpha 2) 0.084 (0.016) 0.052 (0.014) 0.05 (0.012) 0.03 0.84 
 

0.02 F (2, 48) = 4.67, p = 0.014 

Pz Normalised Power (Beta) 0.078 (0.012) 0.047 (0.004) 0.051 (0.006) 0.034 0.43 
 

0.065 F (1.23, 29.46) = 4.14, p = 0.044 

Fz Shannon Entropy 4 (0.05) 4.13 (0.07) 4.07 (0.06) 0.019 0.22 
 

0.064 F (2.48) = 4.07, p = 0.023 
        

Fz Root mean square amplitude 16.45 (1.22) 19.57 (1.53) 18.13 (1.19) 0.005 0.157 
 

0.053 F (2, 48) = 5.42, p = 0.008 

Pz Peak Frequency of spectrum 5.45 (0.75) 3.4 (0.53) 3.36 (0.48) 0.004 0.903 
 

0.01 F (1.35, 32.29) = 7.86, p = 0.005 

Fz Activity 318.33 (60.4) 444.57 (75.56) 376.58 (53.93) 0.01 0.122 
 

0.141 F (2, 48) = 4.55, p = 0.016 

Pz Complexity 3.93 (0.26) 4.75 (0.36) 4.7 (0.31) 0.05 0.88 
 

0.04 F (2, 48) = 3.28, p = 0.046 

Pz Non-linear energy 85.29 (29.24) 46.98 (16.72) 48.66 (18.92) 0.046 0.717 
 

0.05 F (1.01, 26.33) = 4.22, p = 0.047 

Pz Spectral entropy 5.63 (0.16)| 5.14 (0.14) 5.24 (0.14) 0.019 0.476 
 

0.02 F (2, 48) = 4.92, p = 0.01 

Pz Wavelet Energy 22.58 (1.91) 19.5 (1.36) 20.29 (1.55) 0.016 0.491 
 

0.055 F (2, 48) = 3.87, p = 0.03 

Pz Fisher information 0.15 (0.01) 0.21 (0.02) 0.2 (0.01) 0.006 0.420 
 

0.005 F (2, 48) = 7.34, p = 0.002 
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Table 4.6: Pairwise Comparisons of EEG indices. Mean values (standard errors of the mean in parentheses) 

Cz Zero crossings (first 
derivative) 

1056.68 
(26.04) 

1112.53 
(21.81) 

1089.64 
(19.88) 0.006 0.291 

 
0.212 F (2, 48) = 3.26, p = 0.47 

Pz Zero crossings (first 
derivative) 

1015.28 
(32.26) 

1099.23 
(26.07) 

1074.44 
(21.48) < 0.001 0.305 

 
0.047 F (2,48) = 6.4, p = 0.003 

F3 Zero crossings (second 
derivative) 1385.68 (7.22) 1388.55 (6.18) 1368.56 (7.56) 0.693 0.015 

 
0.058 F (2, 48) = 3.82, p = 0.03 

Fz total power 303423.9 
(59749) 

430219.4 
(74428.2) 

359577.3 
(51091.7) 0.008 0.1 

 
0.14 F (2, 48) = 4.85, p = 0.012 
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4.5 Discussion 
Preclinical data strongly supports the view that L. rhamnosus (JB-1) has the capacity to 

alter central GABA transmission by acting through the vagus nerve (Bravo et al., 2011) 

and in so doing impact significantly on stress responses and behaviour. In this 

translational study conducted in healthy volunteers we failed to replicate the preclinical 

findings, which were conducted in an anxious mouse strain. In contrast to the preclinical 

data, this cross-over study found that L. rhamnosus treatment was not superior to placebo 

in improving cognitive performance and did not attenuate reported stress in healthy male 

subjects. Furthermore, probiotic treatment did not have a clear anti-inflammatory effect 

and did not attenuate the subjective stress response or HPA axis response during an acute 

stress procedure. This study highlights the challenges in translating the findings from 

candidate psychobiotics in stress-susceptible animals, to healthy human populations. 

 

The candidate psychobiotic used in this study displayed a strong behavioural signal 

across multiple aspect of behaviour in well-validated screening assays in an anxious 

mouse strain (Bravo et al., 2011). However, over the eight week period of this trial, self-

reported mood, anxiety, stress and sleep were constant and not significantly altered from 

baseline during the placebo or probiotic phases (Figure 1A-H). The data from other 

studies is mixed. For example, our results are consistent with a study by (Benton et al., 

2007), albeit in an older age group, that showed no overall effect of Lactobacillus casei 

Shirota on mood and only a small improvement when post-hoc analysis of the lowest 

tertile mood scores were considered. After a 6 week, randomized, double-blind, placebo-

controlled trial in petrochemical workers, there was a significant improvement in the 

general health questionnaire score in the probiotic yogurt group (L. acidophilus LA5 and 

B. lactis BB12) and in the probiotic capsule group (Actobacillus casei, L. acidophilus, L. 

rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophiles), as well as a significant 

improvement in the depression anxiety and stress scale score in the probiotic yogurt and 

the multispecies probiotic capsule group. The improvement in scores in these scales were 

not seen in the conventional yogurt group (containing the starter cultures of 

S.thermophilus and L. bulgaricus). The probiotic did not alter HPA axis function or the 

kynurenine/tryptophan ratio (Mohammadi et al., 2015c). The same group did not observe 

a significant effect between the groups in oxidative stress markers (Mohammadi et al., 

2015b).   
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A more recent study, using a multi-species probiotic (B. bifidum W23, B. lactis W52, L. 

acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, and Lactococcus lactis 

(W19 and W58), did not find significant changes in mood or anxiety as measured by the 

Beck Depression Inventory or Beck Anxiety Inventory, but reported a reduction on 

subscales of the Leiden index of depression for rumination and aggressive thoughts 

(Steenbergen et al., 2015a). Another study in healthy controls, using L. helveticus R0052 

and B. Longum R0175 found no change in stress, as measured by the perceived stress 

scale, but did report a reduction in anxiety scores using the Hospital Anxiety and 

Depression Scale and a reduction in the global severity index, somatisation, depression 

and anger–hostility scores in the Hopkins Symptoms Checklist (HSCL-90) (Messaoudi 

et al., 2011). Interestingly, we have recently shown that a B. Longum which also had anti-

stress and precognitive effects in BALB/c mice (Savignac et al., 2014, Savignac et al., 

2015a), also was able to modulate behaviour and stress responses in healthy volunteers. 

 

From a physiological perspective, L. rhamnosus (JB-1) also exhibited the capacity to 

reduce acute stress responses in mice (Bravo et al., 2011). Our participants exhibited an 

increased cortisol output in response to the acute stressor (Figure 2I). However, probiotic 

treatment did not attenuate cortisol output and there were no differences in subjective 

stress reports (Figure A-H). Although not utilizing an acute stress procedure, Messaoudi 

and colleagues found a significant difference in urinary cortisol levels between the L. 

helveticus R0052 and B. longum R0175 group and placebo groups (Messaoudi et al., 

2011). In a study administering a prebiotic (galactooligosaccharide) to healthy controls 

for three weeks a significant decrease in the salivary cortisol awakening response 

compared to placebo was found (Schmidt et al., 2015).  

 

Our results suggest that L. rhamnosus (JB-1) treatment doesn’t affect either basal or 

stimulated immune responses. In contract to our findings, both preclinical and clinical 

studies have previously shown that L. rhamnosus has anti-inflammatory effects (Forsythe 

et al., 2012, Mortaz et al., 2015, Pessi et al., 2000). Thus, two key pillars of brain-gut 

axis signalling were not modified following psychobiotic treatment. In terms of 

cognition, the parallel mode of the PAL test (which presents different shapes at each 

visit) was used in order to avoid practice effects, and to assess conditional learning of 

pattern-location associations. PAL test performance is dependent upon the hippocampus 

(de Rover et al., 2011, Eichenbaum and Bunsey, 1995), which has a high proportion of 



138 
 

glucocorticoid receptors (McEwen, 1999). A deficit in visuospatial memory 

performance, evident in PAL test performance, has been demonstrated in stress-related 

brain-gut axis disorders with a cognitive component such as IBS (Kennedy et al., 2015, 

Kennedy et al., 2014b). In this study, the probiotic was not superior to placebo across 

multiple cognitive domains including memory, attention, executive function and emotion 

recognition. Similarly, there were no significant differences of relevance in EEG 

measures between the probiotic and the placebo.  

 

We employed a rigorous cross-over trial with a repeated measures design to control for 

potential effects of individual differences. Given that our study consisted of young 

healthy males, with low baseline mood, stress and anxiety scores and no deficits in HPA, 

inflammatory or cognitive function, demonstrating a clear probiotic effect over placebo 

in this population may be challenging. This inability to demonstrate superiority of 

treatment over placebo is not unusual, either in the assessment of psychotropics in general 

or in microbiota-directed interventions. For example, a novel and initially promising 

spore based microbiome therapy (SER-109) in Clostridium difficile infection (Khanna et 

al., 2016), was shown not to be statistically superior to placebo in a larger phase II trial 

(Seres, 2016). At each study visit, participants were asked whether they experienced any 

side effects from consumption of the capsules. Side effects were negligible, however, 

formal assessment of gastrointestinal function, was not carried out and is thus a limitation 

of the study. 

 

There is an important difference in vulnerability between the anxious mouse strain used 

in the preclinical study and the healthy human volunteers that make up the clinical 

sample. It is worth noting that probiotics may be of limited benefit in healthy populations. 

Comparably, antidepressants also have a limited beneficial effect in healthy controls 

(Serretti et al., 2010). Moreover, antidepressants have a delayed onset of action (Taylor 

et al., 2006) and we acknowledge that more than four weeks of psychobiotic treatment 

may be required in future studies in populations with stress-related psychiatric 

disorders.A recent systematic review indicated that the impact of probiotic 

supplementation on gut microbiota structure, including an assessment across features 

such as α-diversity, richness and evenness, in healthy controls was minimal (Kristensen 

et al., 2016). However, it is important to consider that probiotics may impact the function 

of colonizing microbes or promote homeostasis of the gut microbiota, rather than change 
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its composition (Sanders, 2016). A more defined role for probiotic intervention may be 

in populations with some degree of pathology, for example IBS (Didari et al., 2015). 

Recently, several studies have demonstrated altered gut microbiota composition in 

depression (Jiang et al., 2015, Kelly et al., 2016b, Naseribafrouei et al., 2014) and 

suggest that this altered gut microbiota composition may play a causal role in the 

development of certain features of depression (Kelly et al., 2016b, Zheng et al., 2016b), 

though the precise mechanisms have yet to be elucidated. To date, only one small study 

has investigated a probiotic intervention in depressed patients (Akkasheh et al., 2016). 

In this study, eight weeks of a multispecies probiotic containing L. acidophilus, L. casei 

and B. bifidum, reportedly reduced depressive symptoms in moderately depressed 

patients compared to placebo. Although, microbiota analysis was not completed in this 

study and it was not clear what other forms of treatment patients were undergoing.  

 

Despite the momentum provided by preclinical microbiome studies, there is a growing 

appreciation of the challenges in moving this work from bench to bedside (Arrieta et al., 

2016, Dinan and Cryan, 2016). This includes the fact that the rodent gastrointestinal tract 

and microbiota composition differs from the human equivalent (Nguyen et al., 2015). It 

is worth noting that the effects of L. rhamnosus were dependent on the vagus nerve 

(Bravo et al., 2011). The precise mediators between the gut microbiota and the vagus 

nerve have not been defined and could not therefore be assessed in this study. Moreover, 

it is important to note that the preclinical analysis of L. rhamnosus was carried out in 

BALB/c mice which are innately anxious and have different brain and gut responses to 

stress (Browne et al., 2011, Julio-Pieper et al., 2012, O'Mahony et al., 2010, Savignac et 

al., 2011).  

 

Moreover, Bercik and colleagues have shown alterations in microbiota composition in 

this strain compared with strains with normal stress responses. Further, when these mice 

were transplanted with microbiota from a normo-anxious mouse their behaviour 

normalised suggesting a strong connection between host microbiota and behaviour 

(Collins et al., 2013). Recently, B. longum 1714, an alternative candidate psychobiotic 

selected following a similar preclinical screening battery in BALB/c mice, has been 

reported to reduce stress and improve memory (Allen et al., 2016), although a detailed 

mechanistic understanding of its effects in this regard is currently lacking. These 

diverging outcomes highlight the issue of different putative psychobiotics likely 
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exhibiting different mechanisms of action. Ultimately, this study, together with the SER-

109 study illustrate the need to better understand the mechanisms, for effective 

translation. Whether the JB-1 strain has potential in the treatment of stress-related 

psychiatric disorders, either as a single agent, or in combination with other potential 

psychobiotics, remains an open question and further investigations are warranted. 

 

Conclusions 

This eight week randomized cross-over trial did not show that L. rhamnosus (JB-1) was 

superior to placebo in modifying stress-related measures, HPA responses, inflammation 

or cognitive performance in healthy male participants. These results suggest that some 

caution is required regarding expectations of targeting the gut microbiome in healthy 

populations and that there may be challenges in translating candidate psychobiotics 

with promising preclinical signals in anxious mouse strains into healthy human 

subjects. Future interventional studies investigating the effect of this probiotic in 

populations with stress-related disorders are required. 
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Chapter 5: General Discussion 
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5.1 Overview and summary 
A growing body of literature suggests a role for the gut microbiota in stress-related 

disorders but the clinical implications of these findings lags behind this promising 

research. In this thesis, we assessed this hypothesis using a translational approach. We 

have demonstrated that depression is associated with an altered gut microbiota. Further, 

this altered gut microbiota contributes to the complex underlying pathophysiology of 

depression. These findings can be incorporated within a neurobiological model of 

depression, and together with the existing literature, these results support the possibility 

of therapeutic targeting of the gut microbiota in stress-related disorders such as 

depression.  

 

In Chapter 2, we demonstrated that depression is associated with altered gut microbiota 

composition, including decreased richness and diversity. In addition, we affirmed that 

depression is associated with increased levels of inflammatory markers, altered 

tryptophan metabolism along the kynurenine pathway and HPA axis dysfunction – all 

factors which have been linked to gut microbiota alterations in preclinical studies. In 

Chapter 3, we showed that transferring the gut microbiota from depressed patients to 

microbiota-depleted rats can induce behavioural and physiological features characteristic 

of depression in the recipient animals, including anhedonia and anxiety-like behaviours, 

as well as alterations in tryptophan metabolism. In Chapter 4, we conducted an 

interventional study in a healthy male cohort to attempt to translate a candidate 

psychobiotic identified from our preclinical screening platform. Although we provide 

evidence that the gut microbiota is altered in depression and that this alteration could 

have a role in prominent features of depression, therapeutic targeting of the gut 

microbiota in healthy males using L. Rhamnosus (JB-1) was not superior to placebo in 

modifying self-reported stress, HPA axis response to an acute stressor, inflammation, 

cognition or neurophysiological measures.  

 

5.2 The Gut Microbiota as a Neurobiological factor in Depression 
As we have highlighted throughout, depression is a heterogeneous disorder and the 

pathophysiology is complex. The factors contributing to the onset of this condition will 

vary widely from person to person but the interaction of genetic predisposition with 

environmental factors, such as significant psychosocial stress, particularly in early life, 

and biological systems such as the neuroendocrine and neuroimmune pathways are 
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cardinal. To this complex model, we now propose that the gut microbiota be added. In 

this thesis, we have demonstrated that a depression-associated gut microbiota can induce 

common features of depression such as anhedonia and anxiety and as well as altered 

tryptophan metabolism. By incorporating the gut microbiota into existing concepts of 

depression a more comprehensive model has been developed (Figure 5.1). 

 

 
Figure 5.1: Neurobiological model of depression. Genetic and environmental factors 

interact to predispose the individual to the risk of depression. Due to these gene-

environment interactions, alterations in the gut microbiome, acting via the brain-gut-axis, 

function as an additional biological vulnerability factor. Psychosocial stressors can 

precipitate depression symptom expression and can result in gut microbiome alterations. 

At this stage, gut microbiome alterations both increase the biological vulnerability to 

subsequent stressors and may act as a perpetuating factor for depressive symptom 

expression.  

 

5.3 The Microbiome as a Stratification tool  
What exactly constitutes a “healthy microbiome” has not yet been clearly defined 

(Backhed et al., 2012), and there are considerable interpersonal differences in healthy 
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individuals (Falony et al., 2016, Zhernakova et al., 2016). Consequently, there are 

multiple possible configurations for a healthy gut microbiome and it is also likely that 

some stable configurations are associated with disease (Relman, 2015). It is important 

also to appreciate that the functional output of multiple microbiome configurations may 

in fact be equivalent, given that concepts of redundancy and pleiotropy can also be 

applied to specific microbial members of the overall consortium. Indeed, our 

metabolomics analysis indicated that even though the gut microbiome was less diverse 

in depression, it was not associated with differential microbial metabolite production. 

 

 

Despite the considerable and complex challenges of defining a healthy gut microbiome, 

and the relevant features that might be implicated in stress-related disorders, we 

anticipate that successful translation of our work to date on pathological microbiomes 

could lead, for example, to stratification based on gut microbiome composition profiles, 

which in turn could identify sub-groups of patients that may be more likely to respond to 

a microbiome-based therapeutic approach. A major, as yet unfulfilled objective in 

psychiatry is the identification of biomarkers. Due to the complexity of the brain, it is 

perhaps no surprise that psychiatry is the only medical speciality that has no robust 

biomarker to assist in diagnosis or treatment, and unfortunately the dogma of trial and 

error prevails. Considerable effort has been invested into rectifying this situation. For 

example, studies utilizing a range of techniques, including, but not limited to 

neuroimaging (McGrath et al., 2013), microRNAs (Gururajan et al., 2016b) and 

inflammatory profiles (Cattaneo et al., 2013, Raison et al., 2013, Uher et al., 2014) have 

reported to be of benefit. However, none of these approaches are near the stage of 

benefitting decision making in routine clinical practice.   

 

It is likely that a constellation of biomarkers will be necessary. Thus, the addition of gut 

microbiota profiling may deliver further diagnostic accuracy and potentially extend 

personalized medicine. For example, Irritable bowel syndrome (IBS) subtypes have been 

stratified according to their gut microbiota profiles, specifically those with an increased 

Firmicutes: Bacteroidetes ratio (Jeffery et al., 2012a). Furthermore, depression was the 

most robust clinical discriminator between a high Firmicutes: Bacteroidetes ratio in IBS 

patients relative to IBS patients with a healthy-like microbiota signature (Jeffery et al., 
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2012a). In addition, the order Actinomycetales and the family Actinomycetaceae were 

inversely associated with clinically significant depression (Jeffery et al., 2012a).  

 

Although, microbiome-based biomarkers in depression have not yet been developed, the 

current study identified some interesting candidate microbiota signatures which could be 

considered in this regard. In the depressed group, the most pronounced difference was 

observed in the reduction of the relative abundance of prevotellaceae at the family level 

and in the prevotella at the genus level, whereas the thermoanaerobacteriaceae family 

were increased. At the genus level, the relative proportions of eggerthella, holdemania, 

gelria, turicibacter, paraprevotella, and anaerofilum were increased in the depressed 

group, whereas dialister was decreased. We also observed more general markers which 

might have utility, including reductions in richness and diversity. However, given our 

limited sample size, we did not note any marked correlations between specific alterations 

and symptoms. Future large scale studies that focus on the possible links between gut 

microbiota signatures and components of depression are necessary to address this issue. 

We speculate that in conjunction with a range of other biomarkers (Gururajan et al., 

2016a) gut microbiota signatures will be of increasing importance in psychiatry.  

 

 

It is interesting to note that the emergence of the gut microbiome as a key player in brain 

and behaviour parallels another major development: The Research Domain Criteria 

(RDoC) (Glannon, 2015, Morris and Cuthbert, 2012). This research initiative, although 

the subject of much debate (Frances, 2014, Kraemer, 2015, Weinberger et al., 2015, Yee 

et al., 2015) presents an exciting opportunity to advance psychiatric research (Casey et 

al., 2014, Cuthbert and Insel, 2013, Insel, 2014). Rather than using the traditional 

restricted categorical diagnostic approaches to psychiatric diagnosis, the RDoC matrix of 

functional dimensions, grouped into broad domains such as cognition and reward-related 

systems, examined across units of analysis ranging from genetic, molecular, and circuit 

activity to psychology and behaviour. Furthermore, by removing the constraints of 

classical psychiatric disease diagnosis, the RDoC leads to a better alignment of pre-

clinical and clinical studies to build a common framework of comparable neurobiological 

abnormalities, for example, based on microbiome alterations, to help form subgroups of 

patients on the basis of similar pathophysiology (Kaiser and Feng, 2015). For example, 
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in our study, anhedonia and anxiety emerged in our preclinical model and this may be a 

useful starting point for stratification across other psychiatric diagnoses.   

 

5.4 The Microbiome as a therapeutic target in Depression 
Novel psychiatric drug development is in a state of stagnation (Nutt and Goodwin, 2011). 

In the last 40 years, very few therapeutics with novel mechanisms have progressed to 

phase III clinical trials or regulatory approval. In this context, targeting the gut 

microbiome is an appealing option and potentially represents a major advance. Our 

results with a potential psychobiotic, which failed to demonstrate an impact in healthy 

human subjects despite a strong preclinical profile, suggest that the development of 

microbiome-based therapeutics will also be challenging. It is not immediately obvious 

why our current psychobiotic exhibited a limited impact while a previous and recent 

study in our laboratory using B. longum 1714, was translatable (Allen et al., 2016). It is 

important to note that the preclinical analysis in both studies was carried out in BALB/c 

mice which are innately anxious and have different brain and gut responses to stress 

(Browne et al., 2011, Julio-Pieper et al., 2012, O'Mahony et al., 2010, Savignac et al., 

2011). These diverging outcomes highlight the issue of different putative psychobiotics 

likely exhibiting different mechanisms of action. 

 

The overall probability of success of bringing any new drug, through preclinical stages 

and clinical trial stages I through III to market is approximately 8% (DiMasi et al., 2003). 

The glycine reuptake inhibitor Bitopertin, serves as a recent example. After an initially 

promising proof-of-concept study, for the treatment of negative symptoms of 

schizophrenia (Umbricht et al., 2014), Roche announced that it was not going to proceed 

with further development of the drug. Indeed, major pharmaceutical companies have 

shifted drug discovery efforts away from psychiatric toward non-psychiatric disorders 

with identified biological targets (Cressey, 2010, Miller, 2010, Munos, 2013). A 

multitude of factors may account for this, including the high levels of heterogeneity and 

co-morbidity in psychiatry, the absence of molecular targets, the increasing cost and 

average duration of treatment discovery (Morgan et al., 2011), together with the 

increasing placebo response rate and failure rates in clinical trials. 

 

Given the stasis in psychiatric drug development, expanding potential therapeutic targets 

is an essential endeavour. The gut microbiome, acting via the brain-gut-axis, is an easily 
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accessible and druggable target. Our results show that there is reduced gut microbiota 

richness and diversity in depressed patients and this was sufficient to produce anhedonia 

and anxiety-like behaviour in a rodent model. This concept of an entire ecosystem as a 

potential pathogen is a somewhat unfamiliar concept in clinical psychiatry, but the 

concept of diversity and stability as key indices in healthy ecosystems is generally 

accepted (Guarner et al., 2006, Hidaka, 2012, Klerman and Weissman, 1989, Lozupone 

et al., 2012b, Rook and Lowry, 2008, Rook et al., 2013, Rook et al., 2014, Turnbaugh et 

al., 2009a, Weissman, 1992). Clearly, gut microbiota alterations are just one of many 

potential vulnerability factors that may lead to symptom expression in depression (see 

Figure 5.1).  

 

The formidable challenges of developing an effective drug also applies to microbiome-

based therapies. This has recently been highlighted in a study using a spore based 

microbiome therapy (SER-109) in Clostridium difficile infection. After, an initially 

promising Phase Ib trial of a spore based microbiome therapy (SER-109) for C. difficile 

infection (Khanna et al., 2016), was shown not to be statistically superior to placebo in a 

larger phase II trial (Seres, 2016). This interim failure, which cost at least 120 million 

dollars, emphasizes the significant challenges in developing new effective therapies. 

Considering this failure to achieve the primary efficacy endpoint was in a gastro-

intestinal infection, for which FMT is of proven clinical benefit (Kelly et al., 2015, van 

Nood et al., 2013), it emphasizes the significant challenges for the development of a 

microbiome based therapy in psychiatric disorders.  

 

To date, only one small study has investigated a probiotic intervention in depressed 

patients (Akkasheh et al., 2016). In this study, eight weeks of a multispecies probiotic 

containing L. acidophilus, L. casei and B. bifidum, reportedly reduced depressive 

symptoms in moderately depressed patients compared to placebo. Although, microbiota 

analysis was not completed in this study and it was not clear what other forms of 

treatment patients were undergoing, it does provide a platform for larger and more 

detailed clinical probiotic trials. This suggests that a revision of current preclinical 

screening platforms to include an assessment of psychobiotics under pathological 

conditions may be a necessary refinement. 
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5.5 A new animal model of depression 
As is the case in our study, animal models will never recapitulate all the disease 

symptoms of a psychiatric diagnosis. But many of the questions we have raised will 

require evaluation in reliable preclinical models. However, most currently used 

behavioural models do not include the gut microbiota as a factor (relying instead on 

stressors, for example). The humanized FMT model is an integral component to 

demonstrate cause and effect in gut microbiota studies involving psychiatric populations. 

While GF animals are an excellent proof-of principal tool, we and others have shown that 

these animals have some profound CNS abnormalities in adulthood as a consequence of 

GF status during critical neurodevelopmental windows, many of which are relevant for 

the depressive phenotype. The main advantage of antibiotic-induced microbiota 

depletion during adulthood is that it avoids these potential confounding influences 

(Arrieta et al., 2016, Luczynski et al., 2016).  

 

The profile of depression-like behaviours and physiological alterations noted following 

FMT from depressed patients suggest that this model may be a useful paradigm in 

behavioural pharmacology to investigate microbiota-associated depression. Of course, as 

with any potential novel model, further rigorous validation is imperative, especially given 

the well described issues of reproducibility (Baker, 2016, Omary et al., 2016). While, 

humanized non germ-free mice using antibiotic treatment and human fecal transfer has 

been performed previously (Hintze et al., 2014), it is also important to acknowledge that 

some antibiotics act directly on the brain (Nau et al., 2010) to impact behaviour, anatomy, 

and physiology (Desbonnet et al., 2015, Frohlich et al., 2016, Mohle et al., 2016). 

 

A key question that must be addressed is, why were only some features of depression 

transferred? We can speculate that different donor profiles may account for this, but to 

answer this question, we need to investigate whether different donor symptom profiles 

can be transferred via FMT. For example, would it be possible to further disentangle the 

contribution of the gut microbiota to the pathophysiology of depression, by attempting 

to transfer sub-categories of depressed subjects with different levels of severity or 

different co-morbidities. As an extension, could other domains from other psychiatric 

disorders, for example anxiety disorders be transferred via FMT? Another question, to 

be addressed, is the precise temporal dynamics of the emergence and possible persistence 

of the behavioural alterations post FMT.  
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Further validation of the model developed in this thesis would provide the opportunity to 

further dissect the mechanistic properties of potential psychobiotics and expedite the 

screening process for translation into clinical populations. The current pre-clinical 

screening process does not include pathological models of depression, and thus the 

development of this new model could facilitate a superior platform to evaluate potential 

psychobiotics and delineate further, what the optimal combination of synergistic strains 

would be for the treatment of stress-related disorders. Furthermore, prebiotics, short 

chained fatty acids, antibiotics, and indeed currently available antidepressants could also 

be tested and compared.  

 

5.6 Limitations of the reported studies 
Although, the studies reported in this thesis have generated some novel and exciting 

insights into how the gut microbiota acting via the brain-gut axis contributes to the 

underlying neurobiological mechanisms of depression, there are a number of limitations 

which must be accounted for when interpreting our findings. In Chapter 2, the study was 

cross-sectional in design, thus precluding longitudinal assessment of changes in the gut 

microbiota as they related to changes in depressive symptoms. Our depressed group 

consisted of more males than females, whereas epidemiological studies show that 

females have higher rates of depression (Kessler, 2003, Weich et al., 2001, WHO, 2008). 

However, it is interesting to point out that this sex difference may partially be attributed 

to different manifestations of depressive symptoms in males (Martin et al., 2013). 

Regardless, the unbalanced sex profile in our study was due to the fact that more males 

than females were willing to provide fecal samples. Although our depressed group and 

healthy control group were matched on sex, age and body mass index, there were 

significant differences in alcohol and cigarette consumption. In terms of gut microbiota 

collection and DNA extraction, a mixture of fresh and frozen samples were used. 

However, this has been shown to have minimal impact on the integrity of the gut 

microbiota (Fouhy et al., 2015).  

 

In recent years, there has been a focus on the complex interaction between the gut 

microbiota and drug metabolism (Clayton et al., 2009, Saad et al., 2012, Swanson, 2015). 

For example, the gut microbiota can modulate the effects of oncology drugs (Viaud et 

al., 2013), cardiac drugs (Haiser et al., 2013, Saha et al., 1983), proton pump inhibitors 
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(Imhann et al., 2015) and statins (Kaddurah-Daouk et al., 2011). In a recent well powered 

cross-sectional microbiome study, medication had the largest explanatory power on 

microbiome composition, accounting for 10% of community variation (Falony 2016). Of 

the medications reported in this study the anti-depressant venlafaxine and the 

benzodiazepine clonazepam were the psychiatric medications included in the analysis, 

though a thorough investigation of the effects of anti-depressants on the gut microbiota 

has not yet been conducted. It is well established that recruiting medication free 

depressed patients is a significant challenge, and in our study, the majority of the 

depressed patients, who were at least moderately depressed, were prescribed anti-

depressant medication. We acknowledge the possibility of an antidepressant-related and 

serotonin-driven contribution to the alteration in the gut microbiota. However, 

antidepressants would be expected to reduce the kynurenine/tryptophan ratio rather than 

increase it via, for example, activity on TDO (Badawy and Morgan, 1991, Badawy et al., 

1991) making it unlikely that residual medication in the fecal transplantation from the 

depressed patients would increase depressive and anxiety like behaviours in the rats that 

received the depressed FMT.  

 

The full impact of the effect of psychotropic medication on the gut microbiota has yet to 

be established, but several pre-clinical and clinical studies have started to examine the 

bidirectional relationship between the gut microbiota and antipsychotic medication. 

Antipsychotics result in metabolic dysregulation and weight gain (Bak et al., 2014). In a 

preclinical study chronic olanzapine treatment altered gut microbiota composition and 

induced significant body weight gain in the female rats, while both males and females 

had olanzapine-induced increases in adiposity (Davey et al., 2012). Pre-treatment with 

an antibiotic cocktail attenuated this weight gain (Davey et al., 2013). Another preclinical 

study using GF mice, demonstrated that the gut microbiota are necessary and sufficient 

for weight gain caused by oral olanzapine, which shifted the microbiota profile towards 

an "obesogenic" bacterial profile (Morgan et al., 2014). Similarly risperidone, alters gut 

microbiota in mice and a FMT from risperidone-treated mice to naive recipients resulted 

in a 16% reduction in total resting metabolic rate (Bahra et al., 2015). The same group 

translated the findings into an adolescent clinical cohort to show that chronic risperidone 

treatment was associated with an increase in body mass index and a significantly lower 

ratio of Bacteroidetes:Firmicutes compared to antipsychotic-naive psychiatric controls 

(Bahr et al., 2015).  
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In Chapter 3, given that rodent and human microbiota are different and the inherent 

translational challenges in moving from rodent to man, it is perhaps not surprising that 

overlap of specific taxa were not reflected in the rat microbiota following the FMT. In 

addition, the microbiota composition was determined using fecal samples in the human 

study and from cecal samples in the rodent study. Considering, not all behavioural 

readouts of relevance to depression were recapitulated in our preclinical study, this 

suggests that those domains which were impacted relate to the missing taxa which are a 

feature of the rodent microbiota following the transfer. In addition, as mentioned above, 

our depressed patients were on anti-depressant medication and it would be important to 

determine the effects of a FMT from medication free depressed patients in future studies.   

 

In Chapter 4, male participants were selected to avoid the need to control for menstrual 

cycle, which can impact upon cortisol output and other readouts. Future studies will need 

to assess the impact of probiotic interventions in female participants and may need to 

consider the incorporation of a washout period into the study design. Given that our study 

population consisted of young healthy males, with low baseline mood, stress and anxiety 

scores and no deficits in HPA, inflammatory or cognitive function, this finding does not 

necessarily preclude the exploration of this probiotic or a combination, in stress-related 

disorders.  

 

5.7 What Future Studies are needed? 
The investigation of the role of the gut microbiota in clinical psychiatric populations is 

in its infancy and the few clinical studies conducted thus far are cross-sectional. The 

failure to find a robust and consistent gut microbiota signature in depression thus far is 

not surprising given the small sample sizes and lack of a standardized approach (Jiang et 

al., 2015, Naseribafrouei et al., 2014, Zheng et al., 2016a). This is not confined to 

depression studies and there are also considerable variation in the results reported in IBS. 

Two recent large scale cross-sectional microbiome studies, with a combined sample size 

of 3948, have highlighted some of the major challenges in the field of microbiome 

research (Falony et al., 2016, Zhernakova et al., 2016). These studies re-iterate the 

problems in defining a “normal” microbiome and the importance of large sample sizes 

and the need to consider confounding variables, such as stool consistency, medication 

use, and diet.  
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Interestingly, and contrary to some studies, early-life events such as birth mode were not 

reflected in adult microbiota composition. With a strikingly low cumulative, 

nonredundant effect size of 7.63%, the study emphasizes the influence of additional, 

currently unknown covariates as well as intrinsic microbial ecological processes such as 

founder effects, species interactions, and dynamics. Most studies of the gut microbiome 

in specific disorders have sample numbers well below the impressive size of these studies 

and have not even taken into account many of the known confounding variables. It is 

nonetheless striking that we and others have been able to pick up a narrowing of 

microbiota diversity under various pathologies in much smaller populations, suggesting 

that some of these factors may be subservient under certain disease-associated conditions. 

 

With these issues in mind, identification and validation of specific microbiome-based 

biomarkers in psychiatric disorders will require large scale longitudinal studies that 

assess the trajectory of the gut microbiota and its relationship to neuropsychiatric 

symptom development across the lifespan. There are already some examples from 

epidemiological research, focused on the impact of various insults to the microbiome, for 

example, following different modes of birth (Curran et al., 2016, Curran et al., 2015, 

Curran et al., 2014, O'Neill et al., 2015) and antibiotic use (Lurie et al., 2015). And large 

scale studies, such as The American Gut (Goedert et al., 2014) and associated British Gut 

projects (http://www.britishgut.org/) are ongoing in healthy volunteers and may assist in 

providing an appreciation of what is meant by a healthy microbiome and a template for 

future studies in psychiatry.  

 

In order to establish solid clinical relevance in psychiatric populations, microbiome based 

interventional studies, will also need to assess the functional consequences of microbiota 

shifts, as well as the impact on central markers of brain activity, before, during and after 

the intervention. Clinical trials of probiotic interventions in depressed patients at different 

levels of severity, and in comparison to other treatment modalities including 

antidepressants would be an interesting prospect. Consideration should also be given to 

investigation of pharmacokinetic, toxicological and dose-responses, to precisely 

determine optimal concentration and frequency of probiotic dosing (Marteau and 

Shanahan, 2003a).  
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5.8 Perspectives and conclusions 
The fusion of neuroscience and the microbiome is a new frontier in psychiatric research. 

This thesis, together with existing data demonstrates that the contemporary 

neurobiological models of depression should be extended to incorporate the gut 

microbiome. This data provides a platform to further delineate the precise gut microbiota 

signatures and functional outputs of relevance to depression in large scale longitudinal 

studies. Exploration of the role of the microbiome in other psychiatric disorders is now 

warranted. We propose that this process should involve breaking down psychiatric 

diagnoses into biological dimensions using an evolving RDoC framework which 

includes the microbiome as an additional dimensional construct. Merging the 

microbiome project and the brain connectome project (Toga et al., 2012) using the RDoC 

framework, although a significant multi-disciplinary endeavour, provides an important 

opportunity to advance the understanding of the pathophysiology of these complex brain 

disorders.  

 

It is an unanswered question whether sub-groups of depressed patients with specific gut 

microbiome profiles would respond better to microbiome based therapies than other 

treatments. And although, a promising approach, we acknowledge that targeting the gut 

microbiome in depression needs to be put into current clinical context. This will depend 

on many factors, but primarily on level of severity. Probiotics will be of negligible utility 

in the treatment of severe depression, however, in depression of mild to moderate 

severity, they may prove useful augmenting agents to other treatment modalities. Perhaps 

the strongest indication of probiotic intervention may be as part of a pre-emptive strategy, 

either in those in remission or with other vulnerability factors.  

 

Of course, in clinical practice, probiotic supplementation, would form only one 

component in the overall multimodal treatment strategy for depressed patients, which 

includes, but is not limited to, recommendations regarding healthy diet and exercise. A 

key question is whether probiotic supplementation is superior to dietary alteration. The 

immediacy of probiotic supplementation, in patient populations with potential 

motivational issues offers one potential advantage over dietary alteration, and thus this 

could be the first step for a further and more sustained transition to a healthier diet. Our 

results certainly highlight the role of the gut microbiome in depression and indicate that 
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further studies that extend across neurobiological and symptom domains in psychiatric 

populations, with implications for patient management strategies are now warranted.  
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Appendix 
 

Subject information sheet 

Study title:  The gut microbiome in major depression  

 

Principal Investigators: 

Professor Ted Dinan 

Professor John Cryan 

Professor Catherine Stanton 

Professor Paul Ross 

 

Site of Investigation: 

Cork University Hospital, Mercy University Hospital and University College Cork.  

 

Site of Laboratory: 

Alimentary Pharmabiotic Centre, University College Cork 

 

Why is this study being run? 

Depression is the most common mental disorder. It will affect up to 15% of the 
population during their lifetime. It can have a profound negative impact on the 
sufferer’s quality of life and it can incur significant health care costs. 

We do not have a complete understanding of the mechanism underlying depression, 
however it is well established that exposure to stress, particularly at an early age, is an 
important factor for the development of depression later in life. Stress can result in 
changes in the bacterial composition of the gut (microbiota). There is now increasing 
evidence that this communication pathway works in both directions and it has been 
shown that bacteria within the gut may influence brain function and behaviour. This 
study aims to investigate whether the gut microbiota is altered in people with 
depression. 

 

Study Proceedure 

Depending on your location the visits will take place at Cork University Hospital, 
Mercy University Hospital, University College Cork, or outpatients departments. 
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Thirty male and female patients diagnosed with major depressive disorder between the 
ages of 18 and 65 years will be enrolled.  

 

You will be advised of the purpose of the study and the procedures which will be 
undertaken. You will be given a copy of the subject information sheet, which will 
explain what is required from you. If interested, you will then be requested to read and 
sign the informed consent form and will receive a signed copy. 

 

Your suitability to participate in the study will be checked. You will be asked questions 
about your mood both now and in the past and will be asked about alcohol and drug 
use. You will also be asked questions about your current medical health, previous 
medical problems. You will be asked whether anybody in your family suffers from 
medical or mental health problems. You will be asked about your medications and 
allergies. 

 

Your height and weight will be measured and your body mass index (BMI) will be 
calculated. A urine sample will be taken for a HCG pregnancy test if you are a woman 
of childbearing age. 

 

A blood sample (nine millilitres) will be collected to measure inflammatory markers 
and a nine millilitre sample for haematology and biochemistry analysis performed as 
per standard of care.  

 

Three early morning saliva samples will be collected. You will be provided with 
containers and instructed how to do this. 

 

A faecal (stool) sample will be collected (which has been collected at home, within 12 
hours of your visit to the clinic). You will be provided with a container and an 
information sheet. You will be instructed how to do this. 

 

What happens if I start the study and change my mind later? 

You do not have to take part in the study, participation is entirely voluntary. Refusal to 
participate, or discontinuing participation at any time, will involve no penalty, loss of 
benefits or denial of treatment or services by the Cork teaching hospital or the 
participating doctor. 

 

Who is funding the trial? 
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There are no cost implications for the Health Service Executive (HSE) or to you. The 
management of patients and investigative tests will comply with current standards of 
care. Cost of research tests will be incurred by the Alimentary Pharmabiotic Centre, 
University College Cork. 

 

Is the information confidential? 

All information which is collected about you during the course of the research 
programme will be kept strictly confidential.  Any information about you which leaves 
the hospital will have your name and address removed so that you cannot be recognised 
from it. To protect your privacy, your sample and any medical information that is 
transferred to our collaborators, will be labelled (or “coded”) only with a study subject 
number, not your name. Only your doctor at the hospital and his or her staff will keep 
the link between your subject number and your name. In the event of any publication 
regarding this study, your identity will not be disclosed. 

 

Blood samples may be sent to third party service providers for specialised analyses or 
to collaborators in other Universities. In all instances, anonymity will be preserved and 
the samples will not be used for commercial purposes. 

 

What will happen to the results of the research study? 

It is intended that the data will be combined with data obtained using material from 
several different patients. We hope to publish the results so that as many of our findings 
as possible will be made available to the medical and scientific community. You will 
not be personally identified in any publication. Because of the exploratory nature of the 
work, none of the results will be provided to you or to the physicians who are treating 
you or may treat you in the future. The timing of any publication will depend mostly on 
the speed with which we collect the data and cannot be predicted with certainty. 

 

What happens if there is anything I do not understand? 

If there is anything you are not sure about, the Doctor will be happy to explain in more 
detail to yourself or your relatives, guardians (or legal representative if required). The 
study will be fully explained to you before you decide if you want to take part.  

 

Who has reviewed the study? 

This study has been checked and approved by the Clinical Research Ethics Committee 
of the Cork Teaching Hospitals, Lancaster Hall, 6 Little Hanover Street, Cork. 

 

Professor Ted Dinan 
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Professor of Psychiatry, Cork University Hospital (CUH), and Alimentary 
Pharmabiotic Centre, University College Cork. 

 

 

Dr John Kelly, Lecturer in Psychiatry, University College Cork  

Telephone number: 021 4901224 

 

Informed Consent Form by subject for participation in a human intervention 
study 

 

Protocol Number:  APC045 

 

Patient Name:  ________________________________ 

 

Title of protocol: 

The gut microbiome in major depression and response to treatment 

 

Principal Investigator(s): 

Professor Ted Dinan (021-4901224) 

 

Participation in this study is voluntary and you may withdraw at any time for any 
reason. 

 

The research project and procedure associated with it have been fully explained to me. 
All experimental procedures have been identified and no guarantees have been given 
about the possible results. I have had the opportunity to ask questions concerning any 
and all aspects of the project and any procedures involved. I am aware that participation 
is voluntary and I may withdraw my consent at any time. I am aware that my decision 
not to participate or to withdraw will not restrict my access to heath care services 
normally available to me. Confidentiality of records concerning my involvement in this 
project will be maintained in an appropriate manner. I understand that the investigators 
have such insurance as is required by law in the event of injury resulting form this 
research. 
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I, the undersigned, hereby consent to participation as a subject in the above described 
project conducted at Cork University Hospital, Mercy University Hospital and 
University College Cork.  

 

I have received a copy of this consent form for my records. 

I understand that if I have any questions concerning this research, I can contact the 
Doctor listed below. 

 

If I have further queries concerning my rights in connection with the research, I can 
contact the Clinical Research Ethics Committee of the Cork Teaching Hospitals, 
Lancaster Hall, 6 Little Hanover Street, Cork. 

 

After reading the entire consent form, if you have no further questions about giving 
consent, please sign where indicated. 

 

Informed Consent Form by subject for participation in a human intervention 
study 

 

Name (Block letters):_________________ 

 

 

Subject’s Signature:__________________  Date:_____________ 

        dd.mm.yy 

 

 

Name (Block letters):_________________ 

 

 

Investigator’s Signature:_______________  Date;______________ 

        dd.mm.yy 
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SUBJECT INFORMATION SHEET 

 

Study Title: The effect of probiotics on stress and cognition. 

 

Protocol No.:   APC057 

 

Principal Investigator: Professor Ted Dinan 

                                                 

Co-Investigators:  Professor John Cryan, Professor Paul Ross,  

Professor Catherine Stanton, Prof Geraldine Boylan 

Dr Gerard Clarke, Dr Paul Kennedy  

Dr Andrew Allen, Dr Fahmi Ismail, Dr John Kelly 

  

Site of Investigation:             Cork University Hospital, 

Wilton, Cork. 

 

Brookfield Health Sciences Complex, Human Nutrition Studies Unit and Alimentary 
Pharmabiotic Centre, 

University College Cork, Cork.  

 

Alimentary Pharmabiotic Centre, UCC  

 

Why is this study being run?  

You are invited to participate in a research study to determine how the consumption of 
probiotics influences cognitive function and stress in healthy individuals. This study 
will also assess the role that the immune system plays in the effect of probiotics on 
cognitive function and stress, as well as the role of recent and early life traumatic 
experiences and sleep patterns.  

 

Study procedures 

This study will involve up to 20 – 30 healthy subjects, aged between 18 and 40 years.  
In total, participation will involve five main study visits, including one screening visit 
prior to the first main study visit. If you agree to participate in the study you will first 
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be asked to visit the Alimentary Pharmabiotic Centre UCC for a short screening visit 
lasting around one hour. You will be asked to visit the study site for collection of blood 
and will be asked to provide saliva and stool samples at home. You will be provided 
with probiotic or placebo capsules but you will not be aware of which capsule you are 
receiving. You will be required to take the capsule once a day every day for four weeks. 
At the end of the four-week period you will return for another study visit, this time 
looking at cognitive performance with EEG measures. You will then complete another 
period of consuming the probiotic/placebo capsule, which will be followed by another 
cognitive performance/EEG test.  

 

Screening Visit Outline 

You will be advised of the purpose of the study and the procedures which will be 
undertaken. You will be given a copy of the Subject Information Sheet, which will 
explain what is required from you. If interested, you will then be requested to read and 
sign the Informed Consent form, and receive a signed copy. 

 

You will be asked some general questions concerning your health and personal details, 
including your medical history, your family medical history and current medical status. 
Details of your current and/or past medications will also be collected. Your height and 
weight will be taken to determine your body mass index (BMI). You will be asked to 
complete questionnaires regarding recent and early life traumatic experiences, general 
stress levels and how you respond to stress, your general health and activity levels, 
sleeping habits, diet and current levels of depression and anxiety. You will complete a 
brief verbal IQ test. In addition, you will be given containers to collect saliva and stool 
samples to bring along to the later visits, and specific instructions on how to collect 
these samples. 

 

Pre-supplementation visit outline 

You will be asked to bring a stool sample to this visit. You will fill in a number of 
questionnaires assessing stress, anxiety and depression, as well as sleep disturbances, 
and gastrointestinal symptoms. Five venous blood samples (10mls each) will be 
obtained and assessed for levels of tryptophan (an amino acid) and immune system 
measurements in the blood. During the collection of blood samples, you may 
experience a slight scratch, which may be uncomfortable for a moment but quickly 
passes. Probiotic or placebo capsules will be provided, with instructions for when to 
take them.  

 

Baseline cognitive performance 

You will visit the research centre for assessment of cognitive performance. You will be 
asked to refrain from strenuous exercise and alcohol for 24 hours prior to the 
experimental session and from caffeine for two hours prior to testing. Sensors will be 
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attached to the scalp to measure brain activity (EEG). During this visit you will 
complete a handedness scale and a number of cognitive tests using a touch screen 
computer apparatus. 

 

Supplementation phase 

During this period you will be required to take the capsule once a day, every day for 
four weeks. You are requested not to make any major changes to your diet during this 
phase, and to avoid taking any probiotics or antibiotics.  

Pre-experimental Day Outline 

On the morning of this day you will be required to take a number of saliva samples 
after awakening. You will be asked to provide these saliva samples, as well as stool 
samples at this visit. The stool samples are taken to ensure that probiotics have entered 
the digestive system in the probiotic condition. A blood sample will also be obtained 
during this visit, to assess effects of the probiotic supplementation on tryptophan and 
immune factors.  

 

Experimental Study Day Outline: Cognitive performance 

At the end of the supplementation phase, you will visit the research centre for 
assessment of cognitive performance, similar to the baseline cognitive performance 
visit.  

 

Second supplementation phase 

This will follow the same procedure as the first supplementation phase; you will be 
consuming the capsule you did not consume during the first consumption phase. 

 

Cognitive performance test 

At the end of the second supplementation phase you will complete one more 
assessment of cognitive performance and EEG as before. 

 

What happens if I start the study and change my mind later?   

You do not have to take part in the study, participation is entirely voluntary. Refusal to 
participate, or discontinuing participation at any time, will involve no penalty, loss of 
benefits or denial of treatment or services by the Cork Teaching Hospital or the 
participating doctor. 

Will I experience any unpleasant side effects?    
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During the collection of your blood sample, you may experience a slight scratch, which 
may be uncomfortable for a moment but quickly passes.  

 

Funding of trial 

There are no cost implications for the Health Board or to you. The management of 
patients and investigative tests will comply with current standards of care. Cost of 
research tests will be incurred by the Alimentary Pharmabiotic Centre, University 
College Cork. Upon completion of the study, you will receive €200 on completion of 
the study to cover your costs and expenses.  

 

Confidentiality  

All the information gathered from this study will be stored on a computer and paper 
files and will be treated confidentially. You will be identified only by a subject number. 
In the event of any publication regarding this study, your identity will not be disclosed.  

 

What happens if there is anything I do not understand?   

The study will be fully explained to you before you decide if you want to take part. If 
there is anything you are not sure about, the investigators will be happy to explain in 
more detail. If you have any problems or questions after the study has started you may 
call: 

 

Dr John Kelly 

GF Unit         

Cork University Hospital                                       

Wilton Cork                                       

Telephone Number:  +353 (0)21 4901224 

 

Professor Ted Dinan                                                     

GF Unit         

Cork University Hospital                                       

Wilton Cork                                      

Telephone Number:  +353 (0)21 4901224 
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CONSENT BY SUBJECT FOR PARTICIPATION IN RESEARCH PROTOCOL 
           Section A 

Protocol Number:                  Patient Name:   
  
 
 Title of Protocol: The effects of probiotics on stress and cognition 

       
Doctor(s) Directing Research:  Professor Ted Dinan   Phone: +353(0)21 
4901224                                   Dr John Kelly    Phone: 
+353(0)21 4901224                                  
     
 
You are being asked to participate in a research study. The doctors at University College Cork 
study the nature of disease and attempt to develop improved methods of diagnosis and 
treatment. In order to decide whether or not you want to be a part of this research study, you 
should understand enough about its risks and benefits to make an informed judgment. This 
process is known as informed consent. This consent form gives detailed information about the 
research study, which will be discussed with you.  Once you understand the study, you will be 
asked to sign this form if you wish to participate. 

Section B 
I. NATURE AND DURATION OF PROCEDURE(S): Studies suggest that probiotics are 
associated with reduced stress and improved cognitive function, but few have actually 
investigated physiological factors associated with cognitive performance and stress. We 
hypothesise that probiotic consumption will lead to effects on physiological measurements of 
the stress response system and changes in cognitive functioning. By carrying out a clinical 
assessment of factors such as early life trauma and sleep quality we can further characterize 
the role these factors may play in the stress response and their relationship to cognitive 
functioning following probiotic administration. Understanding the interactions between probiotic 
consumption, the physiological response to stress and the subsequent effects on cognitive 
functioning may potentially aid in developing new products which can aid in the reduction of 
stress and the improvement of cognitive function. 
 
II. POTENTIAL RISKS AND BENEFITS: 
1. Collection of blood samples (in amounts not exceeding 50 millilitres - 4 tablespoons) by 
venipuncture might cause hematoma, a bruise at the site of vein puncture, inflammation of the 
vein and possible infection. Care will be taken to avoid these complications.  
2. While there is no immediate direct benefit to you from this study, more research like this 
may ultimately lead to new treatments for stress. 
 
III. POSSIBLE ALTERNATIVES: 
 You may choose not to participate, or participate voluntarily. 
 
Confidentiality and Anonymisation  
Your medical history will be used in the research. To preserve confidentiality, full 
anonymisation applies to all participants. Your personal data will be stored, processed and 
analysed in a form that does not allow individuals to be identified. Identifiable data (name, 
address) should only be accessible to staff who have a formal duty of confidence to the 
participant. 
 
Section C                                                                    AGREEMENT TO CONSENT 
The research project and the treatment procedures associated with it have been fully explained 
to me.  All experimental procedures have been identified and no guarantee has been given about 
the possible results.  I have had the opportunity to ask questions concerning any and all aspects 
of the project and any procedures involved.  I am aware that participation is voluntary and that 
I may withdraw my consent at any time.  I am aware that my decision not to participate or to 
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withdraw will not restrict my access to health care services normally available to me.  
Confidentiality of records concerning my involvement in this project will be maintained in an 
appropriate manner.  When required by law, the records of this research may be reviewed by 
government agencies and sponsors of the research. 
 I understand that the sponsors and investigators have such insurance as is required by law in 
the event of injury resulting from this research. 
 I, the undersigned, hereby consent to participate as a subject in the above described project 
conducted at the Cork Teaching Hospitals.  I have received a copy of this consent form for my 
records.  I understand that if I have any questions concerning this research, I can contact the 
doctor(s) listed above.  If I have further queries concerning my rights in connection with the 
research, I can contact the Clinical Research Ethics Committee of the Cork Teaching Hospitals, 
Lancaster Hall, 6 Little Hanover Street, Cork. 
 After reading the entire consent form, if you have no further questions about giving consent, 
please sign where indicated. 
 
 

 

Subject’s Signature: ________________________  Date: __________________ 

        dd          mm    yy                        

NAME (BLOCK LETTERS):  ________________   Time: 

__________________         

 

Investigator’s Signature:  ____________________  Date: __________________ 

        dd          mm    yy     

NAME (BLOCK LETTERS)  _________________ 
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