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Abstract  

Gut microbiota colonization is a key event for host physiology that occurs early in life. 

Disruption of this process leads to altered brain development which ultimately manifests as 

changes in brain function and behaviour in adulthood. Studies using germ-free mice highlight 

the extreme impact on brain health that results from life without commensal microbes, 

however the impact of microbiota disturbances occurring in adulthood is less studied. To this 

end, we depleted the gut microbiota of 10-week-old male Sprague Dawley rats via chronic 

antibiotic treatment. Following this marked, sustained depletion of the gut bacteria, we 

investigated behavioural and molecular hallmarks of gut-brain communication. Our results 

reveal that depletion of the gut microbiota during adulthood results in deficits in spatial 

memory as tested by Morris water maze, increased visceral sensitivity and a greater display 

of depressive-like behaviours in the forced swim test. In tandem with these clear behavioural 

alterations we found changes in altered CNS serotonin concentration along with changes in 

the mRNA levels of corticotrophin releasing hormone receptor 1 and glucocorticoid receptor. 

Additionally, we found changes in the expression of BDNF, a hallmark of altered microbiota-

gut-brain axis signaling. In summary, this model of antibiotic-induced depletion of the gut 

microbiota can be used for future studies interested in the impact of the gut microbiota on 

host health without the confounding developmental influence of early-life microbial 

alterations.  
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Introduction  

There is growing appreciation for the importance of the gut microbiota in shaping brain 

function and behavior (Mayer 2011, Cryan and Dinan 2012). Alterations in the bidirectional 

microbiota-gut-brain axis are reported to be involved in the pathogenesis of many well 

described disorders of the gut including irritable bowel syndrome (IBS) and inflammatory 

bowel disorder (IBD) (De Palma et al., 2014; Distrutti et al., 2016; Staudacher and Whelan, 

2016). More recently brain disorders such as autism spectrum disorder (Mayer et al., 2014), 

and mood disorders have been associated with dysfunctional microbiota-gut-brain axis 

communication (Cryan and Dinan 2012, Foster and McVey Neufeld 2013).  

Multiple approaches have been used to study the modulatory effects of gut microbiota on gut-

brain interactions, and in particular the use of germ-free (GF) animals have highlighted an 

important role for the microbiota in stress-related behaviors and neurochemistry (Sudo et al., 

2004). However, GF studies have several limitations (Luczynski et al., 2016; Lundberg et al., 

2016) and ultimately there is no translational equivalent, especially during critical 

neurodevelopmental windows. For example, GF animals are born under aseptic conditions 

where they are maintained in the absence of any colonizing bacteria throughout their lifetime 

(Williams, 2014; Luczynski et al., 2016). Therefore, there is a rapidly growing need for more 

informative and gut-specific approaches such a humanized microbiota-associated mice 

(Arrieta et al., 2016) to investigate microbiota-mediated signaling along the gut-brain axis.  

There is a wide array of reported differences in brain biochemistry of GF animals compared 

to their conventionally raised counterparts, highlighting the essential role of the gut 

microbiota in normal brain development (Stilling et al. 2014a; Stilling et al. 2014b). This 

includes altered hypothalamic-pituitary-adrenal (HPA) axis responses/programming (Sudo et 

al., 2004), BNDF expression (Gareau et al., 2010; Heijtz et al., 2011; Neufeld et al., 2011; 

Stilling et al., 2015) and serotonergic system alterations (Clarke et al., 2013). Along with 

these alterations, many changes in behavioral outputs have been noted including social, 

anxiety-related and cognitive outputs (Gareau et al., 2010; Heijtz et al., 2011; Neufeld et al., 

2011; Clarke et al., 2012; Desbonnet et al., 2014; Arentsen et al., 2015; Buffington et al., 

2016). Alternative models must be evaluated to fully appreciate the role the gut microbiota 

plays in these aspects of brain function in the absence of the confounding impact of 

alterations to early-life trajectories of microbiota assembly.  
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The use of antibiotics has attracted attention in this regard as it allows us to effectively and 

specifically knock-down some of the gut microbiota for prolonged periods of time and at 

different developmental time points and then examine the impact on brain development and 

behaviour (Desbonnet et al. 2015; Bercik et al. 2011; Verdú et al. 2006). One recent study 

highlighted the impact of short 7 day exposure to antibiotics in adulthood (Fröhlich et al., 

2016)  however, few have looked at the impact of chronic long term treatment in adulthood 

(Möhle et al., 2016). Subsequently the use of antibiotics in order to deplete intestinal 

microbiota is a more controlled animal model as these animals are not hindered by any 

additional physiological differences as in the GF animals which have underdeveloped 

immune systems as well as major differences in metabolic processing.  Therefore, in order to 

more precisely appraise the role of the gut microbiota during adulthood we set out to 

establish an effective rat model of microbiota depletion via chronic antibiotic administration. 

In particular, we assess the effects of gut microbiota depletion on visceral sensitivity, 

cognitive, emotional behaviors and biological markers of microbiota-gut-brain axis 

dysfunction.  

 

Experimental Procedures  

Animals and treatments 

Adult male Sprague Dawley rats (n=10/group) were housed 5 per cage in standard rat cages. 

All animals were housed in our animal facility and maintained under a 12-h light/dark cycle. 

All experimental groups received the same autoclaved diet (Teklad Global 18% Protein 

Rodent diet, Product code 2018S). All experiments were conducted in accordance with 

European Directive 86/609/EEC. Approval by the Animal Experimentation Ethics Committee 

of University College Cork was obtained before commencement of all animal related 

experiments. In order to sufficiently deplete the gut microbiota rats were treated with a 

combination of antibiotics for 6 weeks at adulthood (10 weeks old at start of treatment) and 

throughout behavioral testing (total of 13 weeks treatment). The antibiotic cocktail was 

administered in drinking water to avoid any adverse effects from chronic stress induced by 

alternative administration methods such as oral gavage. The antibiotic cocktail consisted of 

ampicillin (1g/L), vancomycin (500mg/L), and ciprofloxacin HCL (20mg/L), imipenem 

(250mg/L) and metronidazole (1g/L) and was chosen based on published protocols from our 

group (Kelly et al., 2016) and others (Heimesaat et al., 2013) and was made up in autoclaved 
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water and changed every 3 days. Control animals received autoclaved water without any 

antibiotics which was also changed every 3 days. Bottle weights were taken before and after 

replenishment. Animal weights were taken every 3 days to ensure animals were not losing 

excessive body weight. Along with regular weight monitoring, weekly fresh fecal pellets 

were collected to ensure microbiota depletion. Cages were cleaned every second day to 

reduce the risk of re-establishment of a standard gut microbiota. Behavioral assessment 

commenced after 6 weeks of antibiotic treatment. Administration of antibiotics continued 

throughout all behavioral assessments until the animals were culled 13 weeks after beginning 

treatment (Figure 1 A, B). All 20 animals (n=10/group) completed each behavioural test and 

their accompanying tissue was used for all molecular assessments except for microbiota 

sequencing which is highlighted in figure 7.   

 

Open Field (OF) 

The open field is a novel stressful environment, where the animals are placed in an open 

arena that is brightly lit from above and was carried out as previously described (O’Mahony 

et al. 2014b). 30 minutes before behavioural testing, animals were habituate to the room.  The 

apparatus consisted of a white round arena measuring 90cm, brightly lit to 1000 lux. At the 

beginning of the test animals were placed into the center of the arena and allowed to explore 

for 10 minutes. After testing animals were returned to their home cage in the housing facility. 

The arena was cleaned with 70% ethanol to ensure that no cue smell remained form the 

previous trail. Faecal output was manually scored. Total distance travelled, distance moved in 

the inner zone, velocity and transitions were analyzed using a tracking software system 

(Ethovision, Noldus, The Netherlands).  

 

Elevated plus maze (EPM) 

The EPM is a commonly used behavioral paradigm used to investigate anxiety-like behaviors 

in rodents and was carried out as previously described (O’Mahony et al. 2014b). Animals 

were habituated to the testing room for 30 minutes prior to test. The maze is elevated 750mm 

from the floor, comprising of two open and closed arms (100mm x 500mm x 400mm walls; 

W x L x H). All arms of the maze were cleaned with 70% ethanol before introduction of the 

animal. Facing the open arm, each animal was placed into the center platform for 5 minutes. 
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The time spent in each arm and number of entries to the open and closed arm were manually 

scored.  

 

Forced swim test (FST) 

The FST is a behavioural test used in rodents to assess antidepressant-like behaviour and was 

carried out as previously described (Slattery and Cryan, 2012). All experimental animals 

were first habituate to the testing room 30 minutes prior testing. A pre-swim (15 min) was 

conducted first, 24 hours prior to the test swim. On test day, all animals were introduced 

again to the Plexiglas cylinder (46cm tall x 21cm in diameter) filled with water (24oC) to a 

depth of 30cm. Test sessions (5 minutes) were recorded by video camera positioned directly 

above the cylinder. Animals were removed from their homecage and placed into the tank. 

After 5 min, the animal was removed from the tank, dried and replaced back in its home cage. 

The tank was then emptied and fresh water replaced into the tank between animals. Analysis 

of behaviour was conducted by an experienced experimented for the test 5 minutes. The 

parameters of interest were the length of time immobile, swimming and climbing. The 

predominant behaviours were scored every 5 seconds within a 5 minute time frame. Climbing 

was defined by the rat presenting its forepaws along the edge of the cylinder in an upwards 

movement. Any horizontal movement was classified as swimming. Finally, immobility was 

defined as no additional movement required for the animal to maintain its head above water. 

Latency to first immobile display was also measured.  

 

 

Morris water maze (MWM) 

The MWM is a behavioural test used to assess hippocampal-dependent spatial learning. The 

protocol was adapted from (Vorhees & Williams 2006; O’Mahony et al. 2014b). Animals 

were trained (acquisition days 1-5) with a hidden clear Plexiglas platform in a constant 

position located in one quadrant of the pool. Animals were subjected to four trials on each 

training day. For each trial the starting point varied randomly. Trials started with the rat 

facing the wall of the pool. The animal was released into the water at water-level. Time was 

started the moment the animal was released and measured until the rat located the submerged 

platform. On conditions where the animal was unable to locate the platform within the 

allocated time frame (120 seconds), it was then guided by the experimenter. Once on the 
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platform animals were left there for 30s. For the probe trial (day 6) the platform was removed 

and the animal was placed in a novel start position in the maze, facing the tank wall. The 

animal was then removed after 60s. Videos for the probe trial were scored for the first 30s. 

 

Colorectal distension (CRD) 

CRD was performed as previously described (O’Mahony et al., 2009). Isoflurane was used to 

anaesthetize animals before a latex polyethylene balloon (6cm in length) was inserted into the 

colon of each animal. The balloon was inserted 1 cm from the anus and inflated following 10 

minutes recovery from anesthesia, the balloon was distended from 0 to 80 mmHg using a 

Distender Series IRRTM Barostat (G&J ElectronicsInc) over a period of 8 minutes. During 

this gradual inflation the pressure was increased 1 mmHg every 6s. DataTrax2 software was 

used to quantify the magnitude of the balloon pressure signals. Visceromotor responses 

(VMR), were assessed by an observer.  

 

Novel object recognition (NOR) 

The protocol used was adapted from (Bevins and Besheer, 2006). Animals were first 

habituated to the testing arena for 10 minutes and then removed. Following this two identical 

objects were placed in the arena, followed by the animal facing away from the objects. After 

the sample-object exposure time (10 minutes), the animal was removed and returned to home 

cage for 1 h. The testing arena was cleaned with 70% ethanol and one of the objects was 

exchanged with a new, novel object. The animal was placed back in the arena with the novel 

and familiar objects for 5 minutes.  Videos were scored by trained observers and measures of 

direct contact (including any contact with mouth, nose or paw) were manually scored.  

 

Hot Plate  

The hot plate test was used to assess somatic pain sensitivity and was carried out as 

previously described (Gosselin et al., 2010). Animals were placed on a hot plate with all four 

paws facing the plate. The plate was heated to 50oC (Plantar Test Analgesia Meter, Stoelting, 

IL, US) as previously described (Karlsten, Gordh Jr et al. 1990). The response to the hot plate 

was measured as latency in seconds to first hind paw lick or jump in response to heat. In 

order to avoid tissue damage a cut off time of 30s was put in place.  
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High-performance liquid chromatography (HPLC): brain monoamine analysis 

The monoamines noradrenaline (NA), serotonin (5-HT), dopamine (DA), monoamine 

metabolites 5-Hydroxyindoleacetic acid (5-HIAA), 3,4-Dihydroxyphenylacetic acid 

(DOPAC) and homovanillic acid (HVA) were measured in the prefrontal cortex, 

hippocampus, amygdala, striatum and hypothalamus using HPLC coupled to electrochemical 

detection as previously described (Clarke et al., 2013; Desbonnet et al., 2015). Dissected 

brain tissue was homogenised in a mobile phase containing 2 ng/20 µl of an internal standard 

N-methyl 5-HT. Following this, homogenised samples were centrifuged at 14,000g for 15 

min at 4
o
C. 20 µl of the supernatant was injected onto the HPLC system, which consisted of a 

SCL 10-Avp system controller, LC-10AS pump, SIL-10A autoinjector (with sample cooler 

maintained at 4
o
C), CTO-10A oven, LECD 6A electrochemical detector and an online 

Gastorr Degasser. A reverse-phase column (Synergi 4u MAX-RP 80A, 250 4.6 mm), 

maintained at 30oC, was employed in the separation (flow rate 0.9 ml/min). Characteristic 

retention times were determined by standard injection and were run at regular intervals 

during the sample analysis. Chromographs were generated using Class-VP5 software and 

allowed identification of the desired monoamines. Monoamine concentrations were 

calculated using analyte:internal standard peak height ratios and expressed as nanograms of 

neurotransmitter per gram of fresh tissue weight.  

 

RNA extractions, reverse transcription and quantitative RT-PCR 

The amygdala, hippocampus, prefrontal cortex and spinal cord (lower lumbar sacral portion) 

were rapidly dissected from individual animals and stored in RNAlater for 24h before 

freezing at -80
0
C (Desbonnet et al., 2015). Using a commercially available mirVana

TM
 total 

RNA extraction kit (Thermo Fisher Scientific/Ambion), total RNA was extracted from each 

brain region following manufacturer’s protocol. RNA was reverse transcribed using a high 

capacity cDNA reverse transcription kit (Thermo Fisher Scientific/Applied Biosystems) in a 

G-storm thermocycler (G-storm, Surrey, UK). Taqman gene expression assays were used to 

determine specific gene expression levels in individual brain regions using the AB7300 

system (Thermo Fisher Scientific/Applied Biosystems). Each transcript value was calculated 

as the average of triplicate samples from several rats per experimental condition. Values were 

normalized to β-actin. Gene expression was calculated using the formula 2-∆∆ct. This value 
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was then normalised to the vehicle group to calculate fold change. T-test was used for gene 

expression analysis. A p-value <0.05 was considered statistically significant.  

 

Serum corticosterone immunoassay 

On the first day of FST, tail blood samples were obtained from each individual animal at 4 

different time points. Blood was taken immediately before the FST and at 30 min, 45 min and 

90 min following the swim stress. Approximately 200 µl of blood was collected in tubes 

containing EDTA to avoid coagulation. The tubes were centrifuged at 3500 x g at room 

temperature for 15 minutes. Plasma was removed and stored at -80
0
c. Measurement of 

corticosterone levels was carried out using a commercially available ELISA kit 

(Corticosterone ELIA Kit, ADI-900-097, Enzo Life Sciences) according to the 

manufacturer’s protocol. Absorbance was read at 405nm using a plate reader (Synergy HT, 

BioTek Instruments, Inc.). 

 

DNA extraction and sequencing 

Total DNA was isolated from caecal and faecal contents and processed for analysis of 

microbiota composition in line with Illumina at Teagasc high throughput sequencing center. 

Using the Illumina platform, raw 300 bp paired-end reads were merged using Flash (Magoč 

and Salzberg, 2011)and quality checked using the split_libraries script from the Qiime 

package (version 1.80). (Caporaso et al., 2010). Following this, reads were clustered into 

operational taxonomical (OTUs) and chimeras removed using with the 64-bit version of 

USEARCH 7.0 (Edgar, 2010). Taxonomy was assigned through a blast search against the  

SILVA 16S specific database (version 111) (Quast et al., 2013). Alpha and beta diversities 

were generated within Qiime.  Using weighted Unifrac distances, principal coordinate 

analysis (PCoA) plots were generated and visualized using v0.9.3-dev (Vázquez-Baeza et al., 

2013) of the EMPeror.  

 

Statistics  

All data are presented as mean ± SEM and analyzed using a two-tailed t-test between vehicle 

and antibiotic treated rats using the statistical software package SPSS 21.0 (IBM). All data 
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presented was analyzed using parametric test (t-test) after both normality and homogeneity 

was determined (all passed normality and homogeneity test).  For MWM and corticosterone 

2-way ANOVA repeated measures was carried out on training data to determine significance 

and was corrected for multiple comparisons. All statistical analysis for microbiota sequencing 

analysis was carried out in R and corrections for multiple comparisons were made using the 

Benjammani-Hochberg method. For MWM and qPCR, averaging of individual 

measurements was averaged before doing groupwise statistics or ANOVA. qPCR was 

conducted in triplicate and averaged before appropriate statistical test.  Significance was 

denoted with selection of a P-value of less than 0.05. For plotting all data, Graphpad Prism 

(v5) was used. We also conducted Grubbs method to test for any specific outliers (Grubbs, 

1950). Statistical significance was indicated as follows: * indicates P<0.05, ** indicates 

P<0.01 and *** indicates P<0.001.  
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Results  

Altered gut microbiota during adulthood did not influence anxiety-related behaviors 

Antibiotic treatment had no impact on anxiety-related behaviors as examined by EPM and 

OF, two well-established behavioral paradigms commonly used to investigate anxiety-like 

behaviours in rodents (Table 1).  

 

Antibiotic treatment impaired aspects of hippocampal-based learning.  

Chronic antibiotic treatment resulted in impaired spatial learning as tested using the MWM. 

There were no visible differences in learning during the acquisition training days in the 

MWM (figure 2A). However, when challenged on the probe day (removal of the platform) 

antibiotic treated rats failed to remember where the platform was within the maze and spent 

less time in that quadrant (15.30±1.24 vs. 11.40±1.20, t(18)=2.250, p=0.037) (figure 2B). 

Probe trial was scored for the first 30 seconds. No differences in NOR task was noted 

between groups. Antibiotic treated rats spent the same amount of time interacting with the 

novel and familiar object as the vehicle treated rats (figure 2C). No difference was observed 

when a discrimination index was calculated between groups (figure 2D). 

 

Antibiotic treatment increased visceral sensitivity. 

Along with reduced spatial learning, antibiotic treated rats also displayed visceral 

hypersensitivity as measured by CRD. Antibiotic treatment increased threshold (42.90±4.40 

vs. 58.22±3.47, t(17)=2.688, p=0.015) indicating more pressure was required to induce pain 

behaviors (Figure 3A). However, total pain scores demonstrated were not significantly 

different between groups (5.70±1.89 vs. 4.44±0.74, t(17)=0.591, p=0.561) (figure 3B). No 

differences were observed in somatic pain sensation following antibiotic treatment in the hot 

plate test (figure 3C). 

 

Antibiotic treated rats displayed greater depressive-like behaviors.  

Following antibiotic treatment rats displayed great depressive-like behaviors as indicated by a 

decreased swimming and increased immobility scores (24.30±0.66 vs. 18.20±1.07, 

t(18)=4.828, p=0.001 and 27.80±0.85 vs. 31.90±1.64, t(18)=2.215, p=0.039) (figure 4A). No 

differences between groups were noticed in climbing score or latency (data not shown) to 
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first immobile episode (7.80±0.71 vs. 9.90±1.15, t(18) =1.544, p=0.140 and 41.60±11.38 vs. 

27.40±4.37, t(18)=1.156, p=0.259) (figure 4A). Antibiotic treated rats had a higher number 

of fecal pellets present at the end of the swim test (1.50±0.401 vs. 2.80±0.35, t(18)=2.414, 

p=0.026) (figure 4B). Treatment with antibiotics during adulthood did not affect plasma 

corticosterone response when compared to vehicle treated rats following the forced swim 

stress (figure 4C). 

 

Analysis of gene expression in the central nervous system 

Analysis of mRNA transcript levels in the hippocampus and amygdala revealed altered levels 

of glucocorticoid receptor (Nr3c1) (GR) and corticotrophin releasing hormone receptor 1 

(Crhr1) (Figure 5A,B). Whole amygdala and hippocampus homogenates revealed reduced 

expression levels of both receptors mRNA transcripts after antibiotic treatment compared to 

vehicle treated rats. Additionally Bdnf levels were increased in the amygdala and a trend to 

increase in the hippocampus (Figure 5A,B) (hippocampus Crhr1, t(17)=3.345, p=0.003/GR, 

t(18)=2.761 p=0.013 and amygdala Crhr1, t(18)=3.404, p=0.003/GR, t(18)=2.474, p=0.023, 

amygdala Bdnf mRNA levels, t(17)=2.976, p=0.008). Statistically we did find a significant 

change in Slcla3 and TripV1 however, the fold change was low and may not reflect 

functional changes at the protein level (Figure 5C).  Additionally we did not see any change 

in mRNA levels of myelin-related genes in the prefrontal cortex following chronic antibiotic 

treatment (Figure 5B).  

 

Long-term antibiotic treatment altered brain monoamines and plasma tryptophan levels 

Treatment with antibiotics altered the levels of key monoamine neurotransmitters in various 

brain regions. Within the hippocampus there was a reduction in the levels of 5-HT 

t(18)=2.445, p=0.025) along with increased 5-HIAA/5-HT turnover t(18)=4.286, p=0.0004). 

Noradrenaline (NA) was significantly increased in the striatum in antibiotic treated rats 

t(17)=4.582, p<0.003). The DA precursor, L-DOPA and metabolite HVA were altered in the 

hippocampus t(18)=5.134,p<0.0001 and t(17)=4.406,p=0.0004) and prefrontal cortex 

(t(18=4.988,p=0.0002 and t(17)=3.414,p=0.003). See table 2 for a full summary of all HPLC 

results. Tryptophan levels, the precursor to 5-HT, were increased in the plasma of antibiotic 

treated compared to vehicle treated rats (18568.0±824.2 vs. 21253.0±798.9, 
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t(17)=2.33,p=0.032) (figure 6A). There was no significant difference in kynurenine 

concentrations and trend to decrease in the kyn/trytophan ratio (figure 6B,C). 

 

Microbial diversity was affected by antibiotic treatment 

Following completion of the study, microbiota was sequenced from both 4 week faecal and 3 

month caecal contents of antibiotic and vehicle treated animals. Sequencing demonstrated 

that microbial diversity was affected by administration of antibiotic in the drinking water 

which was obvious from Unweighted UniFrac PCoA plot (beta-diversity) (Figure 7A,C). At 

the phylum level, relative abundance of detected bacteria of each animal revealed a 

significant decrease in abundance of Firmicutes and Bacteroidetes (Figure 7B,D, Figure 8 

A-B and E-F). Subsequently following this decrease there was also an increase in antibiotic 

treated rats for Proteobacteria and Cyanobacteria (Figure 7B,D). At the family level the 

impact on Firmicutes consisted of significant decreases in Porphyromonadaceae, 

Prevotellaceae, Bacteroideceae, Rikenellaceae, S24-7 and on Bacteroidetes composed of 

Lachnospiraceae and Ruminococcaceae for both the 4 week faecal and 3 month ceacal 

samples (Figure 8 C-D and G-H). 
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Discussion 

In this study, we assessed the impact of a chronic depletion of the gut microbiota during 

adulthood on behavioural and molecular hallmarks of altered microbiota-gut-brain axis 

dysfunction. Our results reveal both overlaps with domain-specific behavioural features of 

other microbiota-deficient rodents across earlier developmental periods as well as an overall 

distinct signature of antibiotic-induced microbiota depletion during adulthood. This includes 

an increase in depressive-like behaviours, lower visceral hypersensitivity and impaired 

cognition in the absence of anxiety-like behaviours. Moreover, our study once again confirms 

the importance an intact gut microbiota for normal tryptophan availability and the CNS 

serotonergic system.  

One of the main findings is that the phenotype observed is different from that reported in both 

GF rats which have increased anxiety and higher HPA axis response to stress (Crumeyrolle-

Arias et al., 2014) and the decreased anxiety in GF mice (Heijtz et al., 2011; Neufeld et al., 

2011; Clarke et al., 2012). However, we do find some similarities between our antibiotic-

induced microbiota depletion model and GF rats with GF rats displaying increased 

depressive-like behaviours with complimentary lower serotonin levels (Crumeyrolle-Arias et 

al., 2014). Moreover, although previous studies have employed adult antibiotic treatment 

regimes in mice, outcomes in rats have been less characterized (Verdú et al., 2006; Bercik et 

al., 2011a; Reikvam et al., 2011; Cho et al., 2012; Zhang et al., 2014; Desbonnet et al., 2015; 

Fröhlich et al., 2016; Möhle et al., 2016).  

As expected, chronic antibiotic exposure during adulthood significantly reduced the diversity 

and richness of the gut microbiota with significant decreases in both firmicutes and 

bacteriodetes which were the most abundant phylum present in vehicle treated animals, 

which is consistent with previous studies examining the effects of  antibiotic exposure (Verdú 

et al., 2006; Cho et al., 2012; Zhang et al., 2014; Fröhlich et al., 2016). Additionally, changes 

in these specific phyla have been associated with neurodevelopmental disorders such as 

autism and many gastrointestinal disorders (Clemente et al., 2012; Hsiao et al., 2013). 

Coinciding with this dramatic reshaping of the gut microbiome, our antibiotic treated rats also 

displayed significant changes in depressive-like behaviour as assessed in the FST. This 

sustained depletion of the gut microbiota induced increased immobility and decreased 

swimming behaviors in these rats. This finding is consistent with recent studies in GF 

animals (Zheng et al., 2016) and studies which demonstrated that targeting the gut microbiota 
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with probiotics can have antidepressant effects (Desbonnet et al., 2010; Bravo et al., 2011; 

Hsiao et al., 2013b).  

The alteration in depressive-like behaviours also tallies with the reduction in serotonin in the 

CNS. We specifically found a decrease in levels of hippocampal 5-HT and 5-HT/5HIAA 

turnover following antibiotic treatment during adulthood. Studies in GF rodents have also 

shown changes with regards to hippocampal 5-HT with a decrease reported in GF rats and 

increases in mice (Clarke et al., 2013; Crumeyrolle-Arias et al., 2014). We also investigated 

expression levels of the 5-HT transporter and receptors within the hippocampus to further 

probe this system in our model but found no changes in gene expression. This is in line with a 

previous study in GF mice that showed a change in 5-HT levels but no change in expression 

of serotonin transporter in the hippocampus (Clarke et al., 2013). Additionally we also found 

changes in the levels of dopamine precursor HVA and metabolite L-DOPA in the prefrontal 

cortex and hippocampus with changes in HVA/DA turnover in the striatum. These changes in 

dopamine turnover are in line with previous studies that also highlight a dysregulation in the 

synthesis and degradation of this monoamine (Heijtz et al., 2011; Crumeyrolle-Arias et al., 

2014). Although inconsistencies in the direction of changes observed following microbiota 

deficiency on monoamine levels are apparent in these studies, all highlight that absence or 

depletion of the gut microbiota deeply affect neurotransmitter systems.  

The most consistent finding in relation to behavioral changes in GF rodents is their altered 

anxiety-like phenotype (Heijtz et al., 2011; Neufeld et al., 2011; Clarke et al., 2012). 

Additionally, previous studies have also highlighted that depletion of the gut microbiota via 

antibiotics during adolescence can also alter anxiety in mice as tested by light/dark box 

(Desbonnet et al., 2015). Thus it is of interest that we observed no change in anxiety in two 

well-validated behavioural screens, the open field or elevated plus maze in antibiotic treated 

animals. This may be related to the timing or duration of microbiota depletion while the 

diverging findings in GF rats which display increased anxiety as compared to mice also needs 

to be considered. Ultimately GF rodents lack any exposure to microbiota during all key 

neurodevelopmental stages and colonization post-weaning of GF animals has the capacity to 

reverse the altered anxiety (Clarke et al., 2012) and HPA axis responses (Sudo et al., 2004). 

Therefore these data agree with the concept of critical windows during development and 

adolescence for microbial influence over anxiety circuits (Foster and McVey Neufeld, 2013; 

Borre et al., 2014; McVey Neufeld et al., 2016). However, transient gut-microbiota 

manipulations such as infection, antibiotics, probiotics do impact anxiety during adulthood 
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(Bercik et al. 2011; Bercik et al. 2010; Bravo et al. 2011; Messaoudi et al. 2010; Lyte et al. 

2006; Goehler et al. 2007).  

In agreement with the lack of impact on anxiety-like behaviours, corticosterone levels were 

also not altered in our study. Interestingly we found a significant decrease in GR mRNA 

levels in the amygdala and hippocampus of antibiotic-treated rats. This was also seen in GF 

rats where they displayed an increase in mRNA levels of CRF in the hypothalamus along 

with a decrease in GR in the hippocampus (Crumeyrolle-Arias et al., 2014).  

Although the current study demonstrates that these transient microbiota-deficient animals 

have increased circulating tryptophan levels, this is similar but less marked in magnitude to 

the changes seen in GF mice (Clarke et al., 2013) or in animals who were microbiota-

deficient in adolescence (Desbonnet et al., 2015).  Indeed, we have only observed a trend to 

reduction in the kyn/trp ratio, an index of metabolism along the kynurenine pathway. This 

suggests that alternative metabolic fates for tryptophan, such as bacterial indole production 

(Lee et al., 2015) are more disrupted following microbiota-depletion during adulthood. This 

also makes sense in the context of our normal HPA axis responses, a well-known stimulus for 

tryptophan 2,3-dioxygenase-mediated metabolism along the kynurenine pathway (O’Mahony 

et al. 2014a; O’Mahony et al. 2014b). Future studies should assess indole production and 

microbial metabolite-driven local 5-HT production (Reigstad et al., 2015; Yano et al., 2015). 

This increase in tryptophan availability, albeit less marked than GF animals, is in contrast to a 

reduction in 5-HT in the hippocampus. This appears to be driven by an increased serotonin 

turnover as indicated by the 5-HIAA/5HT ratio as we did not observe any alteration in 

serotonin-related gene expression for TPH and the precise stimulus for this increase is 

serotonin turnover is unclear.  

In our current study, we demonstrated that antibiotic treatment resulted in reduced visceral 

hypersensitivity as detected by CRD. This is somewhat contradictory to previous findings 

that showed decreased in pain threshold as measured by CRD following antibiotic treatment 

during early life. (O’Mahony et al. 2014a). However, this could be explained by the very 

different windows for antibiotic exposure in these studies. Contrary to our findings, a 

previous study did show that administration to an antibiotic cocktail increased visceral 

hypersensitivity which could be ameliorated by exposure to prebiotics (Verdú et al., 2006). 

Coinciding with this change in visceral sensitivity, we did not see a change in somatic pain 

following hot plate test. We also noted a decrease in Crhr1 mRNA levels in both the 
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hippocampus and amygdala of antibiotic treated rodents. Crhr1 in the CNS is implicated in 

stress-related alterations of both anxiety and depressive behaviours along with autonomic and 

visceral functions (Moloney et al., 2015b; Taché, 2015). Interestingly, Crhr1 signaling 

mediates hypersensitivity to colorectal distinction in animal models such as stress during 

early-life, prolonged psychological stress and even chronic anxiety. Intra-hippocampal 

administration of an antagonist to Crhr1 attenuates visceral perception and when CRH is 

administered to the central nucleus, increases in abdominal contraction response to CRD have 

been noted indicating that Crhr1 in the amygdala may mediate changes in visceral sensitivity. 

However, we did not see a change in noradrenaline which has been hypothesized to be 

implicated in the sensitization of visceral nociception by CRH acting on its receptor Crhr1 in 

these studies. Interestingly, previous work that studied microbial depletion with vancomycin 

in early life only impacted visceral pain with no changes in cognition or anxiety as tested by 

MWM, open field and EPM (O’Mahony et al. 2014b).  

Previous studies have highlighted the decline in cognition in relation to microbiota deficient 

models when tested in in the NOR (Gareau et al., 2010; Fröhlich et al., 2016) but a decline in 

spatial memory has not been observed in other studies. This highlights again that timing of 

depletion can have varying effects on behavioral outcome as we see a subtle profile of 

cognitive impairment following microbiota-depletion during adulthood which is apparent in 

the MWM but not the NOR. However, the type of antibiotic and the length of treatment must 

be considered when comparing different antibiotic depletion studies. 

CNS transcriptional regulation has emerged as a prominent feature of the gut microbiota 

(Stilling et al. 2014b; Luczynski et al. 2016). GF studies have highlighted that expression of 

BDNF is highly dysregulated in these animals. Many studies have shown changes in 

expression in both GF and antibiotic studies (Gareau et al. 2010; Sudo et al. 2004; Desbonnet 

et al. 2015; Hoban et al. 2016; Stilling et al. 2015; Fröhlich et al. 2016; Bercik et al. 2011). 

Here was see an increase and trend towards increased BDNF expression in the amygdala and 

hippocampus respectively. The majority of studies in GF mice show a decrease in various 

brain regions (Arentsen et al. 2015; Sudo et al 2004) however, others have shown increases 

(Neufeld et al., 2011; Stilling et al., 2015; Hoban et al., 2016). Regardless it is clear that 

dysregulated BDNF levels appear to be a hallmark of disturbed microbiota-gut brain axis. 

Recently we have shown a link between the ability of the microbiota to influence myelin 

gene expression and subsequently myelination (Hoban et al., 2016) in GF mice. However, 

when depleting the gut microbiota via antibiotics we did not see changes in prefrontal cortex 
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myelin gene expression. This could be due to timing of depletion. However, a recent study 

showing that in situations of demyelination, depleting the gut microbiota via antibiotics 

blunts the demyelination in these animals which could account for the absence of changes in 

our study (Gacias et al., 2016).  

 

Future studies should additionally consider measuring levels of sex hormones including 

testosterone post antibiotic treatment. A previous study conducted fecal microbiota 

transplantation form male to female mice resulted in an increase in testosterone in females 

(Markle et al., 2013). Since it is apparent that the gut microbiota influences hormonal levels 

and testosterone has been shown to influence BDNF expression this measure could underlie 

some of our observed molecular changes (Allen et al., 2015; Purves-Tyson et al., 2015). 

Furthermore, given that there are marked sex differences in many of the parameters assessed 

future studies should also include both males and females; indeed previous work has shown 

sex-dependent differences in relation to the gut microbiota (Clarke et al., 2013; Kundakovic 

et al., 2013; Bolnick et al., 2014; Moloney et al., 2015a; Hoban et al., 2016).  

 

Conclusion  

In conclusion, our data confirms that multiple aspects of behavior continue to be dictated by 

the composition of the gut microbiota during adulthood.  The current study suggests that 

long-term exposure to antibiotics in adulthood represents a period in which disturbance of the 

gut bacteria along with dysfunctional microbiota-gut-brain axis signaling can impact both 

brain and behavior. The data generated from this study demonstrates that chronic antibiotic 

treatment in rats represents a useful approach for investigating the impact of prolonged 

disturbance of the gut microbiota in adulthood. To our knowledge this study is among the 

first to demonstrate the impact of microbiota depletion in adulthood on both rat behaviour 

and brain neurochemistry and serves as a counterpoint to GF rodent-based studies which have 

significant drawbacks and limitations due to the extensive physiological systems critically 

impacted as a result of a lifetime without signals from the gut microbiota.  
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Figure Legends 

Figure 1. Experimental time line. (A) Graphic depiction of experimental treatment 

including time and duration of antibiotic treatment pre- and post-commencement of 

behavioral testing. Elevated plus maze (EPM), open field (OF), novel object recognition 

(NOR), colorectal distension (CRD), forced swim test (FST) hot plate, Morris water maze 

(MWM). (B) Individual animal weights during the first 6 weeks of antibiotic treatment before 

behavioral testing commenced. Day 0 weights highlighted in blue depict initial animal 

weights the day before antibiotic treatment started. p<0.05*,p<0.01** 

 

Figure 2. Effect of antibiotic treatment on hippocampal-based behavioral tests. No 

difference during training days (A) in time to find platform in antibiotic treated rats during 

MWM however, on probe day antibiotic treatment resulted in reduced time spent in the 

quadrant (B) that originally contained the platform. In NOR no difference in interaction time 

with novel or familiar object (C) was observed following antibiotic treatment nor was there 

any difference in ability to discriminate between objects (D). Bar graph data is represented as 

mean ± S.E.M (n=10 per group). * p<0.05 respectively compared to vehicle treated rats. 

 

Figure 3. Antibiotic treatment altered responses to visceral pain but not somatic 

sensitivity. Higher mmHg was required to display notable pain behaviors (A) however; no 

change in total pain behaviors was noted in antibiotic treated rats (B) compared to vehicle 

controls. There was no difference is somatic pain sensitivity between groups following hot 

plate test (C). Data is represented as mean ± S.E.M. * p<0.05 respectively compared to 

vehicle treated rats. 

 

Figure 4. Antibiotic treatment effect on depressive-like behaviours and corticosterone 

response to swim stress. (A) Antibiotic treatment significantly reduced the frequency of 

swimming episodes and increased the number of times to display immobility. No significant 

effect was noted in climbing episodes. (B) There were no differences noted in latency to first 

immobile phase. (C) Antibiotic treated rats had higher fecal output during the 6min forced 

swim trail. (D) No difference in corticosterone response to swim stress was observed in 

antibiotic treated rats. * indicates p<0.05 and *** indicated P<0.001 compared to vehicle 

treated rats. 

 

Figure 5. Antibiotic treatment alters mRNA expression levels of stress related genes in 

the hippocampus and amygdala. Antibiotic treated rats displayed decreased Crhr1 and 

Nr3c1 (Glucocorticoid receptor, GR) gene expression in the hippocampus and amygdala 

(A,B). Within the amygdala, Bdnf mRNA levels were increased in antibiotic treated rats (B). 

No changes in myelin-related were detected in the prefrontal cortex (B) Pain-related genes 

were investigated in the spinal cord (lower lumbar sacral) (C). Statistically we did find a 

significant change in Slcla3 and TripV1. Bar graphs indicate average values in n=10 per 

group after b-actin normalization relative to average control levels (p<0.05 * and p<0.01**). 

Data graphed as ± SEM. 
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Figure 6. Plasma levels of L-Tryptophan and Kynurenine following antibiotic treatment. 

(A) Antibiotic treated rats had increased Tryptophan levels compared to vehicle treated 

animals. (B) No effect of antibiotic was noted in kynurenine levels nor ratio between 

kynurenine and tryptophan (C) in blood plasma. Data is represented as mean ± S.E.M. * 

p<0.05 respectively compared to VEH treated rats. 

 

Figure 7. Antibiotic treatment altered faecal and caecal microbial contents. (A) 

Unweighted Principal Component Analysis (PCoA) of 4 week microbial contents of 

antibiotic and vehicle treated rats (beta diversity). (B) A doughnut plot representing the 

distribution at the Phylum level for the 4 week faecal samples. Each segment represents 

percentages of total reads for the individual phylum. The outer plot represents the vehicle 

treated phylum whereas the inner plot is antibiotic treated. Each segment is colour coded to 

represent individual phylum and is accompanied by a colour coded legend. (C,D) represents 

the 3 month cecal microbioal content and phylum distribution.  

 

Figure 8. Impact of antibiotic treatment on bacterial Phylum and Family. (A-H) Effect 

of antibiotic treatment on relative abundance of both Bacteroidetes and Firmicutes at both the 

phylum and family level in faecal (A-D) and caecal (E-H) samples. Data is represented as 

mean ±S.E.M. For statistical analysis corrections for multiple comparisons were made using 

the Benjammani-Hochberg method. ***P<0.001.  

 

Table 1. Antibiotic treatment did not affect anxiety-related behaviors. Locomotion was 

unaffected for both groups as total distance moved in the arena was not different. Antibiotic 

treated rats did not move or spend more time in the center of the open field arena nor did they 

enter the center portion of the arena more when compared to vehicle treated rats. In EPM, 

antibiotic treated rats did not spend more or less time in the open and closed arms nor did 

they transition differently to the open or closed arm then their vehicle treated counterparts. 

Data is presented as man ± S.E.M (n=10 per group). 

 

Table 2. Summary of the effect of antibiotics on brain monoamine levels. Concentrations 

(ng/g of tissue) of noradrenalin (NA), dopamine (DA) and their precursor L-3,4-

dihydroxyphenylalanine (L-DOPA), its metabolite homovanillic acid (HVA), and serotonin 

(5-HT), its metabolite 5-hydroxyindole acetic acid (5-HIAA) and both DA and 5-HT turnover 

in the prefrontal cortex, hippocampus, amygdala, hypothalamus and striatum of vehicle and 

antibiotic treated rats. Data is expressed as mean ± S.E.M. Within each row, *p<0.05 and 

***p<0.001 vs same brain areas in antibiotic treated rats. NA: not available 

 

 

 

 

 

 

 



  

21 

 

Acknowledgments  

We thank Dr. Gerard M Moloney and Mr. Patrick Fitzgerald for technical assistance with 

animal husbandry, tissue extraction, RNA extraction and qRT-PCR. The APC Microbiome 

Institute is a research centre funded by Science Foundation Ireland (SFI), through the Irish 

Government’s National Development Plan (Grant Number 12/RC/2273). TGD and JFC are 

also supported by the Irish Health Research Board, the Dept. of Agriculture, Food & the 

Marine and Enterprise Ireland. T.G.D., F.S. and J.F.C. are principal investigators in the APC 

Microbiome Institute, University College Cork. G.C. is a faculty member of the APC 

Microbiome Institute. The APC Microbiome Institute has conducted research funded by 

many Pharmaceutical & Food Companies. T.G.D. has been an invited speaker at meetings 

organized by Servier, Lundbeck, Janssen, and AstraZeneca and has received research funding 

from Mead Johnson, Cremo, Suntory Wellness, Nutricia and 4D Pharma. J.F.C. has been an 

invited speaker at meetings organized by Mead Johnson, Yakult, Alkermes, and Janssen and 

has received research funding from Mead Johnson, Cremo, Suntory Wellness, Nutricia and 

4D Pharma. 

 

 

 

 

 

 

 

  



  

22 

 

References  

Allen KM et al. (2015) The effect of adolescent testosterone on hippocampal BDNF and 

TrkB mRNA expression: relationship with cell proliferation. BMC Neurosci 16:4. 

Arentsen T, Raith H, Qian Y, Forssberg H, Diaz Heijtz R (2015) Host microbiota modulates 

development of social preference in mice. Microb Ecol Health Dis 26:29719. 

Arrieta M-C, Walter J, Finlay BB (2016) Human Microbiota-Associated Mice: A Model with 

Challenges. Cell Host Microbe 19:575–578. 

Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, 
McCoy KD, Verdu EF, Collins SM (2011a) The intestinal microbiota affect central 

levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 

141:599–609, 609.e1–e3. 

Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, 

Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli 

GE, Collins SM, Verdu EF (2011b) The anxiolytic effect of Bifidobacterium longum 

NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol 
Motil 23:1132–1139. 

Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, 

Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy-Theulaz I, Cherbut C, 

Bergonzelli GE, Collins SM (2010) Chronic gastrointestinal inflammation induces 

anxiety-like behavior and alters central nervous system biochemistry in mice. 

Gastroenterology 139:2102–2112.e1. 

Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-

to-sample learning task to study “recognition memory”. Nat Protoc 1:1306–1311. 

Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, Lusis AJ, Knight R, 
Caporaso JG, Svanbäck R (2014) Individual diet has sex-dependent effects on vertebrate 

gut microbiota. Nat Commun 5. 

Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and 

neurodevelopmental windows: implications for brain disorders. Trends Mol Med 
20:509–518. 

Bravo JA, Forsythe P, Chew M V, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, 
Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and 

central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 
108:16050–16055. 

Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M 

(2016) Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic 

Deficits in Offspring. Cell 165:1762–1775. 

Caporaso JG et al. (2010) QIIME allows analysis of high-throughput community sequencing 
data. Nat Methods 7:335–336. 

Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, 

Li H, Alekseyenko A V, Blaser MJ (2012) Antibiotics in early life alter the murine 

colonic microbiome and adiposity. Nature 488:621–626. 

Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF 

(2012) The microbiome-gut-brain axis during early life regulates the hippocampal 

serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. 



  

23 

 

Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF 

(2013) The microbiome-gut-brain axis during early life regulates the hippocampal 

serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. 

Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The Impact of the Gut Microbiota on 

Human Health: An Integrative View. Cell 148:1258–1270. 

Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, 

Rabot S (2014) Absence of the gut microbiota enhances anxiety-like behavior and 

neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217. 

De Palma G, Collins SM, Bercik P, Verdu EF (2014) The microbiota-gut-brain axis in 

gastrointestinal disorders: stressed bugs, stressed brain or both? J Physiol 592:2989–

2997. 

Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF (2014) Microbiota is essential for 

social development in the mouse. Mol Psychiatry 19:146–148. 

Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan 

TG, Cryan JF (2015) Gut Microbiota Depletion from Early Adolescence in Mice: 

Implications for Brain and Behaviour. Brain Behav Immun 48:165–173. 

Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the 
probiotic Bifidobacterium infantis in the maternal separation model of depression. 

Neuroscience 170:1179–1188. 

Distrutti E, Monaldi L, Ricci P, Fiorucci S (2016) Gut microbiota role in irritable bowel 

syndrome: New therapeutic strategies. World J Gastroenterol 22:2219–2241. 

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics 26:2460–2461. 

Foster JA, McVey Neufeld K-A (2013) Gut-brain axis: how the microbiome influences 
anxiety and depression. Trends Neurosci 36:305–312. 

Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, 
Magnes C, Fröhlich E, Kashofer K, Gorkiewicz G, Holzer P (2016) Cognitive 

Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain 
Communication. Brain Behav Immun. 

Gacias M, Gaspari S, Mae-Santos P, Tamburini S, Andrade M, Zang F, Shen N, Tolstikov V, 

Kiebish MA, Dupree JL, Zachariou V, Clemente JC, Casaccia P (2016) Microbiota-

driven transcriptional changes in prefrontal cortex override genetic differences in social 
behavior. Elife 5:e13442. 

Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, 

Sherman PM (2010) Bacterial infection causes stress-induced memory dysfunction in 

mice. Gut. 

Goehler LE, Lyte M, Gaykema RPA (2007) Infection-induced viscerosensory signals from 
the gut enhance anxiety: implications for psychoneuroimmunology. Brain Behav Immun 

21:721–726. 

Gosselin R-D, O’Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF (2010) 

Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of 

spinal glutamate reuptake mechanisms. Gastroenterology 138:2418–2425. 

Grubbs FE (1950) Sample Criteria for Testing Outlying Observations. Ann Math Stat 21:27–

58. 



  

24 

 

Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg 

H, Pettersson S (2011) Normal gut microbiota modulates brain development and 

behavior. Proc Natl Acad Sci 108:3047–3052. 

Heimesaat MM, Kupz A, Fischer A, Nies DH, Grass G, Göbel UB, Bereswill S (2013) 

Colonization resistance against genetically modified Escherichia coli K12 (W3110) 

strains is abrogated following broad-spectrum antibiotic treatment and acute ileitis. Eur J 

Microbiol Immunol (Bp) 3:222–228. 

Hoban AE, Stilling RM, Ryan FJ, Shanahan F, Dinan TG, Claesson MJ, Clarke G, Cryan JF 

(2016) Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 

6:e774. 

Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, 

Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013a) Microbiota Modulate 
Behavioral and Physiological Abnormalities Associated with Neurodevelopmental 

Disorders. Cell 155:1451–1463. 

Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, 

Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013b) Microbiota modulate 
behavioral and physiological abnormalities associated with neurodevelopmental 

disorders. Cell 155:1451–1463. 

Kelly JR et al. (2016) Transferring the blues: Depression-associated gut microbiota induces 

neurobehavioural changes in the rat. J Psychiatr Res 0:94–124. 

Kundakovic M, Lim S, Gudsnuk K, Champagne FA (2013) Sex-specific and strain-dependent 
effects of early life adversity on behavioral and epigenetic outcomes. Front psychiatry 

4:78. 

Lee J-H, Wood TK, Lee J (2015) Roles of Indole as an Interspecies and Interkingdom 

Signaling Molecule. Trends Microbiol 23:707–718. 

Luczynski P, McVey Neufeld K-A, Seira Oriach C, Clarke G, Dinan TG, Cryan JF (2016) 

Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut 
Microbiota on Brain and Behaviour. Int J Neuropsychopharmacol:pyw020. 

Lundberg R, Toft M, August B (2016) Antibiotic-treated versus germ-free rodents for 

microbiota transplantation studies. Gut  …. 

Lyte M, Li W, Opitz N, Gaykema RPA, Goehler LE (2006) Induction of anxiety-like 

behavior in mice during the initial stages of infection with the agent of murine colonic 
hyperplasia Citrobacter rodentium. Physiol Behav 89:350–357. 

Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve 
genome assemblies. Bioinformatics 27:2957–2963. 

Markle JGM et al. (2013) Sex Differences in the Gut Microbiome Drive Hormone-Dependent 

Regulation of Autoimmunity. Science (80- ) 339:e111–e111. 

Mayer EA, Padua D, Tillisch K (2014) Altered brain-gut axis in autism: comorbidity or 

causative mechanisms? Bioessays 36:933–939. 

McVey Neufeld K-A, Luczynski P, Dinan TG, Cryan JF (2016) Reframing the Teenage 

Wasteland: Adolescent Microbiota-Gut-Brain Axis. Can J Psychiatry 61:214–221. 

Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson J-F, Rougeot C, 

Pichelin M, Cazaubiel M, Cazaubiel J-M (2010) Assessment of psychotropic-like 

properties of a probiotic formulation ( Lactobacillus helveticus R0052 and 

Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764. 



  

25 

 

Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, 

Hambardzumyan D, Matzinger P, Dunay IR, Wolf SA (2016) Ly6Chi Monocytes 

Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult 

Hippocampal Neurogenesis. Cell Rep 15:1945–1956. 

Moloney RD, Dinan TG, Cryan JF (2015a) Strain-dependent variations in visceral sensitivity: 

relationship to stress, anxiety and spinal glutamate transporter expression. Genes Brain 

Behav 14:319–329. 

Moloney RD, O’Mahony SM, Dinan TG, Cryan JF (2015b) Stress-induced visceral pain: 

toward animal models of irritable-bowel syndrome and associated comorbidities. Front 

psychiatry 6:15. 

Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety‐like behavior and 

central neurochemical change in germ‐free mice. Neurogastroenterol Motil 23:255–

e119. 

O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2014a) Serotonin, Tryptophan 

Metabolism and the Brain-Gut- Microbiome Axis. Behav Brain Res 277:32–48. 

O’Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, Woznicki J, 

Hyland NP, Shanahan F, Quigley EM, Marchesi JR, O’Toole PW, Dinan TG, Cryan JF 

(2014b) Disturbance of the gut microbiota in early-life selectively affects visceral pain 

in adulthood without impacting cognitive or anxiety-related behaviors in male rats. 

Neuroscience 277:885–901. 

O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A-M, Quigley EMM, Cryan JF, 

Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: 

implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 

65:263–267. 

Purves-Tyson TD, Allen K, Fung S, Rothmond D, Noble PL, Handelsman DJ (2015) 
Adolescent testosterone influences BDNF and TrkB mRNA and neurotrophin–

interneuron marker relationships in mammalian frontal cortex. Schizophr Res 168:661–
670. 

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) 
The SILVA ribosomal RNA gene database project: improved data processing and web-

based tools. Nucleic Acids Res 41:D590–D596. 

Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, 

Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production 

through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 

29:1395–1403. 

Reikvam DH, Erofeev A, Sandvik A, Grcic V, Jahnsen FL, Gaustad P, McCoy KD, 
Macpherson AJ, Meza-Zepeda LA, Johansen F-E (2011) Depletion of Murine Intestinal 

Microbiota: Effects on Gut Mucosa and Epithelial Gene Expression Heimesaat M, ed. 

PLoS One 6:e17996. 

Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like 
activity in rodents. Nat Protoc 7:1009–1014. 

Staudacher H, Whelan K (2016) Altered gastrointestinal microbiota in irritable bowel 
syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. 

Proc Nutr …. 

Stilling RM, Bordenstein SR, Dinan TG, Cryan JF (2014a) Friends with social benefits: host-



  

26 

 

microbe interactions as a driver of brain evolution and development? Front Cell Infect 

Microbiol 4:147. 

Stilling RM, Dinan TG, Cryan JF (2014b) Microbial genes, brain & behaviour - epigenetic 

regulation of the gut-brain axis. Genes Brain Behav 13:69–86. 

Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF 

(2015) Microbes & neurodevelopment - Absence of microbiota during early life 

increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun. 

Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X, Kubo C, Koga Y (2004) Postnatal 

microbial colonization programs the hypothalamic–pituitary–adrenal system for stress 

response in mice. J Physiol 558:263–275. 

Taché Y (2015) Corticotrophin-releasing factor 1 activation in the central amygdale and 

visceral hyperalgesia. Neurogastroenterol Motil 27:1–6. 

Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing 

high-throughput microbial community data. Gigascience 2:16. 

Verdú EF, Bercik P, Verma-Gandhu M, Huang X-X, Blennerhassett P, Jackson W, Mao Y, 

Wang L, Rochat F, Collins SM (2006) Specific probiotic therapy attenuates antibiotic 

induced visceral hypersensitivity in mice. Gut 55:182–190. 

Vorhees C V, Williams MT (2006) Morris water maze: procedures for assessing spatial and 

related forms of learning and memory. Nat Protoc 1:848–858. 

Williams SCP (2014) Gnotobiotics. Proc Natl Acad Sci U S A 111:1661. 

Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, 

Mazmanian SK, Hsiao EY (2015) Indigenous Bacteria from the Gut Microbiota 
Regulate Host Serotonin Biosynthesis. Cell 161:264–276. 

Zhang Y, Limaye PB, Renaud HJ, Klaassen CD (2014) Effect of various antibiotics on 

modulation of intestinal microbiota and bile acid profile in mice. Toxicol Appl 

Pharmacol 277:138–145. 

Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X, 

Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P (2016) Gut 

microbiome remodeling induces depressive-like behaviors through a pathway mediated 

by the host’s metabolism. Mol Psychiatry 21:786–796. 

 

  



  

Open Field (OF) Vehicle n=10 Antibiotic n=10

Locomotion (total Distance) (cm) 5904.0±355.2 5572.0±603.0

Distance in Center (cm) 9.27±3.34 8.14±2.29

Time in Center (s) 82.92±26.77 125.20±24.68

No. Transition to Center 2.89±0.96 2.66±0.72

Elevated Plus Maze (EPM) Vehicle Antibiotic

Time in Closed arm (s) 81.90±21.06 56.10±13.32

Time in Open arm (s) 167.10±22.34 117.30±18.52

Time in Center (s) 51.00±9.07 66.60±9.82

No. Transition to Open arm 4.90±1.29 4.40±0.93

No. Transition to Closed arm 9.70±0.97 9.30±0.77

Table 1. Effect of antibiotics on behavioural response in OF and EPM. 

No significant effect of antibiotic exposure on anxiety-related behaviours was observed



  

Table 2. Effect of antibiotics on brain monoamine levels.  
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Highlights 

• Chronic antibiotic treatment affects visceral pain and CNS monoamine levels 

• Distinct behavioural profile after microbiota depletion 

• No change in anxiety and HPA axis 

 


