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Abstract 

The use of Cyber Physical Systems (CPS) to optimise industrial energy systems is an approach which has the potential to positively impact on 
manufacturing sector energy efficiency. The need to obtain data to facilitate the implementation of a CPS in an industrial energy system is 
however a complex task which is often implemented in a non-standardised way. The use of the 5C CPS architecture has the potential to 
standardise this approach. This paper describes a case study where data from a Combined Heat and Power (CHP) system located in a large 
manufacturing company was fused with grid electricity and gas models as well as a maintenance cost model using the 5C architecture with a 
view to making effective decisions on its cost efficient operation. A control change implemented based on the cognitive analysis enabled via 
the 5C architecture implementation has resulted in energy cost savings of over €7400 over a four-month period, with energy cost savings of 
over €150,000 projected once the 5C architecture is extended into the production environment. 
 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 5th CIRP Global Web Conference Research and Innovation for Future 
Production. 
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1. Introduction & Motivation 

Industry 4.0 is a synonym for the transformation of today’s 
factories to smart factories through the use of information 
technology within production environments [1],[2]. In an 
industry 4.0 enabled factory, field devices, machines and 
production systems seek to autonomously exchange 
information triggering optimisation actions [1]. 

Cyber Physical Systems (CPS) are defined as 
transformative technologies for managing interconnected 
systems between their physical assets and their computational 
capabilities [3]. Recent advances in sensor, data acquisition 
and network technology has facilitated a move by more 
factories to implement high tech methodologies towards 
production system optimisation [3] hence preparing the sector 
for the further proliferation of CPSs [4]. Flexibility in 
production processes can be achieved through IT integration 
between production systems, planning processes and supply 
chains [5]. The integration of CPSs into production systems 
would provide factories with the information to intelligently 

adjust production patterns [4] based on a fluid set of 
requirements.  

Modern manufacturing facilities are data-rich 
environments that support the transmission, sharing and 
analysis of information across pervasive networks to produce 
manufacturing intelligence [6–8]. However, similar to other 
industries and domains, the current information systems that 
support business and manufacturing intelligence are being 
tasked with the responsibility of storing increasingly large 
data sets, as well as supporting the real-time processing of 
these large data sets using advanced analytics [9–14] when 
they were not designed to do so. Managing the vast quantities 
of data created by such connected systems, known as Big 
Data, requires careful consideration [4]. It is therefore critical 
to utilise a structured approach to acquiring, managing and 
analysing data in order to gain knowledge [4] for effective 
decision making. The 5C architecture provides a step by step 
approach to deploying CPS in the manufacturing sector [4]. 

This paper describes the fusion of data collected from a 
CHP system with grid electricity and gas models as well as a 
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maintenance cost model using the 5C architecture. The goal 
of this research work was hence to identify the optimal usage 
profile of the CHP system to minimise its operating costs 
using both internal operational data and external cost and 
maintenance cost data. This work was seen as the first step in 
integrating the operation of the CHP system into the overall 
manufacturing planning process as once the generation 
efficiency of the CHP system was known, the use of waste 
heat in the factory could then be maximised. The contribution 
starts with Section 2 which provides a short review of related 
literature in this field with a view to positioning this research. 
Section 3 introduces a case study at a manufacturing company 
where the CHP system is described in operational detail. 
Section 4 then describes the application of the 5C architecture 
to this system to enable effective decision making with results 
and conclusions outlined in Section 5. 

2. Review of Related Literature 

The potential benefits of CPSs include improvements in 
operational efficiency, process innovation, and environmental 
impact [14,15]. As an example of a simple use case of this 
data added value, many companies do not know enough about 
where and how energy is consumed within their operations 
and hence do not have the knowledge to make decisions 
which would result in more efficient utilisation [5].  

Relationships can be often be found between energy 
consumption and one or more suitable energy drivers in many 
production systems [16]. Based on this knowledge, Giacone et 
al [16] developed a structured framework to measure energy 
efficiency in industrial processes. This however was highly 
data dependent in order to populate the models developed to 
describe each process, data which proved difficult to obtain in 
many cases. In a similar vein, May et al [17] developed a 
method to identify the most applicable energy performance 
indicators (EnPIs) to allow the effective control of 
manufacturing equipment. As with previous studies however, 
the major limitation identified during this work was the 
availability of energy-related data to populate these advanced 
metrics  

In a complimentary theme to this work, and based on the 
principle that load management of a manufacturing process 
can offer significant energy savings, Apostolos et al [18] 
found that tools and methods for the integration of energy 
efficiency into the manufacturing planning process in a 
systematic manner is becoming more important. Traditional 
closed loop control philosophies can result in less than 
optimal operation of manufacturing equipment assets which 
are not operated with their effects on ancillary systems taken 
into account. For example, industrial chilled water systems 
are often used to cool exhaust streams from high temperature 
processes when the use of the waste heat could be efficiently 
used in another part of the factory rather than being dissipated 
mechanically were the data there to support the holistic 
process control. However, as is now a common theme in all of 
these next generation optimisation systems/tools, a lack of 

available data has meant that data driven decision making is 
difficult 

Leveraging data-driven analytics is an essential part of 
smart manufacturing. Indeed, many of the high-impact 
benefits of smart manufacturing are dependent on facilities 
being able to access, explore and analyse industrial data in a 
timely manner, while utilizing open standards and 
technologies. However, analytical capabilities can be impeded 
by time-consuming, complex and manual data integration. 
Weyer et al [1] discuss how the optimisation of the 
manufacturing sector is being impeded by the proliferation of 
proprietary and vendor specific standalone solutions in the 
field. The authors instead champion a more open, vendor 
agnostic approach and test this hypothesis by building a smart 
production line which is modular and scalable and full 
accessible in terms of future CPS integration.  

Lee et al [3] presented a unified framework, the 5C 
architecture, for integrating CPS in manufacturing. The 5C 
architecture provides a step by step approach to deploying a 
CPS in the manufacturing sector [4]. At a high level, the 5C 
architecture [3] constitutes two key functional components: 
(1) real time data acquisition from the physical world and (2) 
intelligent data management and analytical decision making. 
In order to enact these two high level components, the 5C 
architecture proposes a sequential workflow which if followed 
will result in the construction of a CPS. Bagheri et al [4] 
implemented a short case study on the integration of the 5C 
architecture using three band saw machines in different 
geographical locations. Twenty different pieces of machine 
specific information were gathered from a PLC via the smart 
connection layer then transferred to the cloud for analysis in 
the cyber layer using an adaptive prognostic algorithm. This 
resulted in a machine health score which was then 
communicated to the user via a web based application with 
actions taken manually to optimise operations. D Wu et al 
[19] describe how CPS is expected to play a major role in the 
design and development of future Cloud-based design 
manufacturing (CBDM) systems. The authors describe how 
advances in CPS research can help integrate design and 
manufacturing related knowledge and principles as well as 
connect both cyber and physical components thus 
strengthening the case for the use of a standardised 
architecture such as the 5C CPS architecture to empower 
effective decision making in the manufacturing sector.  

3. Method 

In existing manufacturing companies, the enactment of the 
5C architecture can prove difficult in practice as many 
manufacturing systems are not ready to manage big data due 
to a lack of smart analytic tools [8] and the presence of legacy 
equipment from where data is difficult to migrate to the 
conversion layer.  This can be due to a number of reasons 
with for example, unconnected portions of network or 
unplanned and unstandardized growth resulting in non-
standard communication protocols being utilised from 
proprietary vendors.  
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A demonstration facility was selected which is in the midst 
of undergoing a step change from conventional energy 
systems to that including a larger mix of renewable energy 
systems this being a common issue in large manufacturing 
[20,21] to test the implementation of the 5C architecture. This 
factory generates approximately 9 GWh of electrical energy 
from a 3MW wind turbine and approximately 3.5 GWh of gas 
generated electricity from 405kWe CHP system annually. 
With varying choices as to where to procure or generate 
electricity from, the existing automation control system is not 
equipped to make operating, energy and cost efficient choices 
as it was not designed for this purpose.  

In order to bound the case study, the CHP system was 
selected as it is a somewhat complex system when compared 
to other utility systems whereby the use of the output streams 
impacted on its optimal operation, while the variable nature of 
the gas, electricity and maintenance costs meant that a static 
embedded closed loop control methodology not taking 
external factors such as cost of gas input to the system, cost of 
alternative electricity from the national grid or maintenance 
costs at time of operation into consideration was bound for 
sub optimal operation in terms of running costs. 

The CHP system was found to be operating on a 24/7 basis 
and was capable of generating 405 kWe of electrical energy 
with 538kW of thermal energy as a by-product. An energy 
input of 1045 kW of gas was required to deliver these figures 
resulting in a design generation efficiency of 90.2%. On 
observation, the CHP generated between 399 and 404 kWe 
with heat supplied varying between 475 and 510kW. On spot 
check analysis however, as little as 250kW of this heat was 
utilised in the factory with the remainder dumped via blast 
coolers. This constituted a generation efficiency of just 84% 
and a useful operating efficiency of just 62.4%.  

In order to inform a more strategic data driven decision 
process to minimise the cost per kWh electricity generated by 
the CHP system, the 5C architecture was proposed for 
implementation to capture operational data to allow analysis 
to inform decision making. This was seen as the first step in 
maximising the operational performance of the system. The 
next step, which is discussed in Section 5, will be to maximise 
the use of waste heat generated through the integration of heat 
loads from the factory floor, thus maximising generation 
efficiency and elongating the operational hours where the cost 
to generate electricity from the CHP is less than that which 
could be procured from the national grid. 

4. Implementation of 5C Architecture 

4.1. Smart Connection Level 

The CHP (Sokratherm GG 402) system was surveyed in 
August 2015 with a view to ascertaining its current operation. 
It was controlled by a Programmable Logic Controller (PLC) 
via an embedded closed loop control algorithm based on 
maximising the electrical output with little heed to the heat 
utilised. It communicated with a Building Management 
System (BMS) via Modbus connection to a Cylon© BMS. 

The BMS could enact time-schedule control, but the PLC 
controlled all other key operational parameters.  

On inspection of the BMS, it was found that a Comma 
Separated Value (CSV) based data archive was maintained for 
each point routed through the system once it was set to log 
daily at 5am (Table 1). This system recorded one CSV file for 
each data point, with one new line of data appended each day 
at the set logging timestamp. This line of data constituted 
1024 data values with a value recorded for each 900 second 
(or 15 minute) interval. This constituted approximately 10.67 
days of logged data (96 values per day).  

Table 1: Format of CHP Power Generation point recorded in Cylon generated 
CSV log file 

UC32netK/Web/MO
D-002-UC3224 

CHP Power 
Generation 

900 kWh     

42392.60417 1024 401 401 400 

Electricity and gas costs were available via a MS Excel 
based spreadsheet which was maintained by the facilities 
department within the manufacturing company. This 
spreadsheet detailed the unit cost and transmission costs per 
kWh of electricity and gas based on the time of day in which 
they were consumed. This spreadsheet was largely static but 
was recently updated due to a new procurement contract. It 
typically updated annually. Maintenance costs were obtained 
from a third party contract on a per kWh generated schedule. 
These were taken as a fixed cost per kWh for analysis 
purposes with no time of day impact.  

4.2. Data to Information Conversion 

The data ingestion process was implemented as a single-
thread C# .NET application, which utilized AWS SDK for 
.NET to facilitate communication between the factory and 
cloud infrastructures. The data ingestion application was 
deployed on the BMS PC in the facility, with a scheduled task 
set to trigger its execution at 09:00 each day. During the 
exploration phase it was found that there were a number of 
issues that caused difficulty in obtaining the BMS data and 
preparing and transferring it to a remote location for analysis. 
Firstly, the four key points recorded for the CHP system as 
detailed in Table 2 were of different measurement types. The 
CHP Power, Heat Generation and Heat Dump values were all 
taken as instantaneous values while the Gas Consumption was 
recorded as a totalised cumulative value each 15 minutes. The 
units also needed to be taken into account as they would need 
to be normalised for further analysis. 

Table 2: CHP Points logged via Cylon BMS  

CHP Point Filename Unit Meter Type 

CHP Power Generation D0010208 kWh Instantaneous 

CHP Heat Generation D0010209 kWh Instantaneous 

CHP Heat Dump D0010210 kWh Instantaneous 

CHP Gas Consumption D0010211 M3 15 minute cumulative 
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Secondly, due to the poor interoperability and integration 
methods exposed by most BMS software, extracting and 
integrating BMS data can result in many data anomalies, 
including missing or null values, irregular timestamps (e.g. 
dd/mm/yyyy hh:mm compared to yyyy-mm-dd hh:mm), 
differing numerical representations (e.g. percentage 
measurements can be represented as an integer or as a floating 
point number) and spurious outliers in the data that need to be 
corrected or removed prior to processing, storage and further 
analysis. The workflow described in Table 3 addressed 
anomalies in the ingested data by transforming the proprietary 
format to a basic time-series. The basic time-series leads to 
data redundancy being removed with measurements 
consolidated: each row now representing a single observation 
(i.e. point-in-time) and each column representing a single 
variable (i.e. timestamp and value). 

Table 3 CHP data workflow modules 

Type Name Description 
Parser cylon-log 

(stage 1) 
Transforms Cylon log files to a time-
series format with timestamp and value. 

Mapper chp-points 
(stage 2) 

Renames the auto-generated filenames 
using a convention for CHP 
instrumentation. 

Aggregator time-series Merges log files for CHP 
instrumentation and writes contents to a 
single file. 

There were no such issues with the electricity, gas and 
maintenance costs as the excel spreadsheets were organised in 

such a manner that they were easily transformed and archived 
for analysis. 

4.3. Cyber Level 

A Matlab model (Figure 1) was built (using Equations 1 & 
2) to determine the cost per unit of electricity generated by the 
CHP system when compared to the cost per unit of electricity 
purchased from the national grid taking maintenance costs 
into account. 
Equation 1 : CHP Fuel Conversion Efficiency 

                                                   (1) 

Equation 2: Cost per unit of electricity generated 

                                                                (2) 

Where: 
FE = CHP Fuel Conversion Efficiency (%) 

CE = Cost per unit of electricity generated by CHP (€) 
 = Total electric power output by CHP (kWh) 
 = Total energy entering as fuel (Gas) Input (kWh) 

Q = Useful heat generated (kWh) 
 = Efficiency of technology that would otherwise be utilised to 

produce thermal energy (i.e. gas boiler efficiency) 

 

 

Figure 1: Matlab Model utilised to calculate the unit price of CHP generated electricity 

Data for each of the key variables was fed into the Matlab 
model from the processed logged data and combined with the 
electrical and natural gas data based on time of day and the 
cost per kWh to maintain the CHP system. By merging the 
machine level PLC data with the grid price and maintenance 
models in this layer and exposing one value, the cost to 
generate electricity at any given time, the facilities engineers 
on the case study site could, for the first time, make 

knowledge based decisions as to when the operate the CHP 
system effectively. This data also facilitates the next step to 
the optimisation of this assets operation, that being to increase 
the use of its waste heat within the production environment, 
thus minimising the cost to generate each kWh of electricity 
and eventually extending its hours of operation.  

The next phase of this project includes taking data from a 
cleaning process within the factory where de-ionised water is 
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currently heated electrically at end use point and evaluating 
the potential to utilise CHP waste heat to replace or 
supplement this process. This has the potential to be a major 
cost saving project for the case study manufacturing site with 
savings in excess of €150,000 per annum potentially possible 
through the elimination of the electrical heating elements, the 
removal of current cooling on the waste heat stream from the 
CHP system and the elongation of operational hours of the 
CHP thus reducing electrical consumption costs. The 5C 
architecture has allowed the merging of disparate data sources 
within the factory to be done in a standardised and repeatable 
manner. It has also exposed the mechanism by which a CPS 
can be built using a bottom up approach. The CHP data was 
initially analysed in the Cyber layer in isolation, then merged 
with maintenance and grid cost models and eventually will be 
merged with factory level production data.  

4.4. Cognition Level 

The Simulink output from the Matlab model was utilised to 
aid the facilities engineers in making effective decisions as to 
when to operate the CHP system to minimise its operational 
cost. Figure 2 details the graphical (Simulink) results of this 
analysis showing that the CHP system was generating 
electricity at a unit cost greater than that which could be 
procured from the national grid for over 37% of its 
operational time. There were a number of reasons for this 

operational deficiency. The cost of grid electricity had 
reduced since the CHP system was installed and this control 
put in place. This grid electricity price drop coupled with a 
lack of a similar price reduction for gas had resulted in what is 
known as a ‘spark price’ (the gap between the electrical and 
gas prices) reduction. Another contributing factor is the non-
optimal use of the heat generated by the CHP system, with 
approximately only 50% of this being utilised with the 
remainder being dumped via cooling towers. The latter 
pointing to the potential to extend the analysis carried out in 
the cyber layer to the production environment as previously 
described in section 4.3. 

4.5. Configuration Level  

The decision making surrounding the operation of the CHP 
system is now being done using the output from the Matlab 
model via Simulink. Figure 3 details the result of the control 
strategy change implemented based on the analysis 
undertaken in the Cyber layer with the CHP now only 
operational during the more financially beneficial daytime 
period. This decision was informed by the Matlab model 
analysis made possible by the implementation of the first 
three steps of the 5C architecture. Therefore further research 
is required in order to automate this decision loop via the 
effective implementation of the fifth step of the 5C 
architecture. 

 

Figure 2: Comparison of Grid electricity unit price versus CHP generated electricity unit price 

 

Figure 3: Altered operational control strategy 

Cost per unit of 
electricity 
procured from the 
national grid based 
on time of day 

Cost per unit of 
electricity 
generated by the 
CHP 

€/kWh 

Time 

Cost per unit of 
electricity 
procured from the 
national grid based 
on time of day 

Cost per unit of 
electricity 
generated by the 
CHP 

€/kWh 

Time 
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5. Results & Conclusions 

The 5C architecture has facilitated effective decision 
making on the cost efficient operation of the CHP system. The 
unit price to generate electricity using the CHP system was 
determined to be less than the grid price during the winter 
(November – February) weekday period only. Based on the 
projected unit price of daytime (08:00 – 23:00) and night-time 
(23:00 – 08:00) electricity in the coming summer period, this 
finding will hold for this period also. The control change 
enacted on the CHP system for the previous winter period has 
resulted in financial savings of €7400 being delivered based 
on a business as usual scenario. If this control change was 
maintained for the duration of the year, savings of over 
€20000 would be achieved.  

The current operation of the CHP system at just 62.4% 
generation efficiency is not sustainable in the long term as the 
system is not being optimally utilised. It is critical to utilise 
the waste heat generated from a CHP system during the 
generation of electricity in order to minimise the cost to 
generate electricity from the CHP. It is therefore essential to 
improve the utilisation of the useful heat generated by the 
CHP system in order to raise this generation efficiency and in 
doing so reduce the cost to generate electricity from the unit. 
By doing this, the pinch point of 6.77c/kWh will be reached 
when approximate 65% of the waste heat is being usefully 
consumed and the operational timeframe of the unit can be 
extended. 

Initial analysis has found a matching electrically driven 
heat sink on a cleaning process present in the factory which 
potentially could result in over 80% of the waste heat from the 
CHP system being utilised. This would also serve to reduce 
the load on the blast coolers which currently operate to cool 
the waste heat ejected from the system. In order to do this 
however, the operation of the cleaning process would need to 
be analysed in conjunction with that of the CHP system, thus 
bringing the manufacturing floor into scope and thus 
widening this research work in the Cyber Level of the 5 C 
architecture.   
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