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Adaptive, Group Sequential Designs that Balance the Benefits and

Risks of Wider Inclusion Criteria

Michael Rosenblum,∗ Brandon Luber,∗ Richard E. Thompson,∗ and Daniel Hanley†

January 13, 2015

Abstract

We propose a new class of adaptive randomized trial designs aimed at gaining the advantages of wider

generalizability and faster recruitment, while mitigating the risks of including a population for which

there is greater a priori uncertainty. Our designs use adaptive enrichment, i.e., they have preplanned

decision rules for modifying enrollment criteria based on data accrued at interim analyses. For example,

enrollment can be restricted if the participants from predefined subpopulations are not benefiting from

the new treatment. To the best of our knowledge, our designs are the first adaptive enrichment designs

to have all of the following features: the multiple testing procedure fully leverages the correlation among

statistics for different populations; the familywise Type I error rate is strongly controlled; for outcomes

that are binary, normally distributed, or Poisson distributed, the decision rule and multiple testing

procedure are functions of the data only through minimal sufficient statistics. The advantage of relying

solely on minimal sufficient statistics is that not doing so can lead to losses in power. Our designs

incorporate standard group sequential boundaries for each population of interest; this may be helpful in

communicating our designs, since many clinical investigators are familiar with such boundaries, which

can be summarized succinctly in a single table or graph. We demonstrate these adaptive designs in

the context of a Phase III trial of a new treatment for stroke, and provide user-friendly, free software

implementing these designs.

1 Introduction

This work is motivated by challenges that arose in designing a Phase III trial of a new treatment for stroke.
However, we expect similar challenges to occur in other domains. Our goal in designing the Phase III trial
was to evaluate a new surgical treatment for intracerebral hemorrhage (ICH), called Minimally-Invasive
Surgery Plus rt-PA for Intracerebral Hemorrhage Evacuation, abbreviated as MISTIE [1]. The treatment
showed promise in a completed Phase II trial, which enrolled individuals with ICH who had small or no
intraventricular hemorrhage (IVH) at baseline, called “small IVH” participants. The study investigators
debated whether to expand the inclusion criteria of the proposed Phase III trial to also enroll “large IVH”
participants, defined as having baseline IVH volume at least 10ml or requiring a catheter for intracranial
pressure monitoring. Based on their understanding of brain hemorrhage, the investigators conjectured that
the new treatment would benefit large IVH participants. Advantages of including them in the Phase III trial
are that it would answer a question relevant to a larger population, and it would increase the enrollment rate.
However, since there were few participants with large IVH who had ever undergone the MISTIE procedure,
to include this population in the Phase III trial would pose a substantial risk. Specifically, if the treatment
only benefits those with small IVH, then a trial targeting the larger population may have low power to detect
this.

Motivated by the above issues, we propose a new class of adaptive enrichment designs that is the first,
to the best of our knowledge, to have all of the following properties: the multiple testing procedure fully
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leverages the correlation among statistics for different populations; the familywise Type I error is controlled
in the strong sense [2]; for outcomes that are binary, normally distributed, or Poisson distributed, the decision
rule and multiple testing procedure are functions of the data only through minimal sufficient statistics at
each interim analysis. The last property is important since not using minimal sufficient statistics can lead to
losses in precision and power. According to Rice [3, p. 284], “If an estimator is not a function of a sufficient
statistic, it can be improved.” This property is especially relevant in our context, since a major criticism
of many adaptive enrichment designs is that they do not use minimal sufficient statistics [4]. We focus on
binary, normally distributed, or Poisson distributed outcomes since these are cases where simple, minimal
sufficient statistics exist. Our designs also have the above properties under more general conditions given in
Section 3.5.

Others have proposed adaptive enrichment designs that have some, but not all, of the above features.
Adaptive designs based on the p-value combination approach [5, 6, 7, 8, 9, 10], on the conditional error
function approach [11], or on the approaches in [12, 13, 14], do not use data only through minimal sufficient
statistics, as we describe in Section 3.5. The methods of [15, 16] do not fully leverage the covariance between
statistics for different populations; they use, e.g, the Hochberg multiple testing correction [17]. The method
of [18], which has different goals than here, uses minimal sufficient statistics but is not proved to strongly
control the familywise Type I error rate.

Each of our adaptive designs uses group sequential boundaries [19] in its decision rules and hypothesis
tests. For example, boundaries can be based on those of O’Brien and Fleming [20]. This may be helpful in
communicating our designs, since many clinical investigators are familiar with group sequential boundaries.
Computation of such boundaries is essentially instantaneous since they are based on the multivariate normal
distribution function that can be computed by standard statistical software.

In the context of the MISTIE trial, we searched over a large set of our new designs to select one that
minimizes expected sample size subject to constraints on power. This new adaptive design is compared to
standard designs and to other adaptive designs, in scenarios relevant to the MISTIE trial. The expected
sample size averaged over the scenarios of primary interest is 635 for our adaptive design, compared to 889
for the best alternative design considered. Based on the estimated cost per patient in the MISTIE Phase III
trial of $29,000, the reduced expected cost from our adaptive design would be roughly $7 million.

A limitation of our designs is that each participant’s outcome is assumed to be observed relatively
soon after enrollment. We discuss future research directions for extending these designs to handle delayed
outcomes in Section 8.

The goals of the MISTIE trial are presented in the following section. Our general statistical problem is
defined in Section 3. In Section 4, we present a new class of adaptive enrichment designs. These are tailored
to the goals of the MISTIE trial in Section 5, and compared to alternative designs in Section 6. In Section 7,
we describe our software package that enables users to compare the performance of our adaptive designs
versus standard designs. Limitations and directions for future research are discussed in Section 8.

2 Application: Planning the MISTIE Phase III Trial

The aim is to assess whether the MISTIE surgical treatment is superior to the standard of care. The primary
outcome is a participant’s degree of disability on the modified Rankin Scale (mRS). A successful outcome is
defined to be mRS ≤ 3. Define the average treatment effect to be the difference between the probability of a
successful outcome under assignment to MISTIE treatment versus standard of care. Based on the MISTIE
Phase II randomized trial, which enrolled 96 small IVH participants and no large IVH participants, the
estimated average treatment effect is 0.12 [95% CI: (-0.07, 0.29)].

The clinical investigators indicated the following three scenarios to consider in planning the MISTIE Phase
III trial: the average treatment effect is (a) 12.5% for both the small IVH and large IVH subpopulations;
(b) 12.5% for the small IVH subpopulation and 0% for the large IVH subpopulation; (c) 0% for both
subpopulations. The design goals are:

(i) ≥ 80% power to detect an average treatment benefit for the combined population, in scenario (a);
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(ii) ≥ 80% power to detect an average treatment benefit for the small IVH subpopulation, in scenario (b);

(iii) strong control of the familywise Type I error rate at level 2.5%. (We use 2.5% rather than 5%, because
we consider one-sided hypotheses.)

The design goals are asymmetric, i.e., there is a power requirement for detecting a benefit for the small
IVH subpopulation, while there is no analogous requirement for the large IVH subpopulation. This is due
to the stronger prior evidence, from the MISTIE Phase II trial, for a potential benefit in the small IVH
population. Focusing on the overall population and a single subpopulation is not uncommon in adaptive
enrichment designs, e.g., [15, 8, 9, 10], [14, Section 5]. Our general method can also be applied to achieve
symmetric design goals, as discussed in Section 8.

The motivation for considering adaptive enrichment designs is that standard randomized trial designs do
not allow early stopping of subpopulations for futility. Such standard designs may continue to enroll large
IVH participants despite strong evidence of no benefit to them, leading to inefficiency, and unnecessarily
exposing large IVH participants to a non-efficacious treatment.

3 General Problem Definition

3.1 Hypotheses and Assumptions

Consider two subpopulations that partition the overall population, defined in terms of baseline measurements.
For example, in the MISTIE trial, subpopulation 1 represents those with small IVH, and subpopulation 2
represents those with large IVH. Let πs denote the proportion of the combined population in subpopulation
s, for s ∈ {1, 2}; π1 + π2 = 1.

Each participant i in stage k contributes data (Si,k, Ai,k, Yi,k), where Si,k is the subpopulation (1 or
2); Ai,k is an indicator of being randomized to treatment (Ai,k = 1) versus control (Ai,k = 0); and Yi,k

is a real-valued outcome (which may be binary, count, or continuous). We assume at each stage, for each
subpopulation, half of the participants are randomly assigned to treatment; this can be approximately
achieved by using block randomization stratified by subpopulation.

In designs with preplanned rules to modify enrollment criteria based on prior stage data, subpopulation
membership in a given stage depends on data from earlier stages. We assume that conditioned on the
subpopulation membership and study arm assignments of all participants in stage k, the outcome Yi,k is a
random draw from an unknown distribution Qsa, for s = Si,k, a = Ai,k, independent of the data on all other
participants in stages 1 through k. Denote the vector of unknown distributions by Q = (Q10, Q11, Q20, Q21).
Let µ(Qsa) and σ2(Qsa) denote the mean and variance of Qsa, respectively, for each s ∈ {1, 2}, a ∈ {0, 1}.
We assume that the unknown distribution Q is in the class Q defined to be all vectors (Q10, Q11, Q20, Q21)
that satisfy the following integrability condition for a fixed C > 3:

EQsa
[{Y − µ(Qsa)} /σ(Qsa)]

4
≤ C, (1)

for each s ∈ {1, 2}, a ∈ {0, 1}. This guarantees the joint distribution of z-statistics for each population, given
in Section 3.4, converges uniformly to a multivariate normal distribution as in [21]. Such convergence is
generally required to control the familywise Type I error rate as defined in Section 3.3. For binary outcomes,
condition (1) is equivalent to Pr(Y = 1|S = s, A = a) being uniformly bounded away from 0 and 1. For
count outcomes that follow a Poisson distribution, (1) is equivalent to µ(Qsa) being uniformly bounded
away from 0. For continuous outcomes that follow a normal distribution with arbitrary mean and positive
variance, (1) holds if and only if C ≥ 3. For the class of all distributions Q for which each Qsa has support
in [−M,M ] and variance at least τ > 0, (1) holds for C > (2M)4/τ2. The general condition (1) allows us to
simultaneously handle these different classes of distributions.

For each subpopulation s ∈ {1, 2}, define the average treatment effect as ∆s = µ(Qs1) − µ(Qs0). Define
the average treatment effect for the combined population as ∆C = π1∆1 + π2∆2. The null hypotheses of
primary interest are

H01 = {Q ∈ Q : ∆1 ≤ 0}; H0C = {Q ∈ Q : ∆C ≤ 0}.

3
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This pair of null hypotheses (or versions with inequalities replaced by equalities) is also considered in related
work on adaptive enrichment designs [15, 8, 9, 10], [14, Section 5].

3.2 Designs

Adaptive enrichment designs involve preplanned rules for modifying enrollment criteria based on data accrued
at an interim analysis [15]. Our adaptive enrichment designs in Section 4 have such a rule for potentially
switching to enroll only one subpopulation. Our designs also incorporate group sequential testing, i.e., at
each interim analysis, hypotheses are tested and enrollment may be completely stopped. For conciseness,
we refer to designs that incorporate features of adaptive enrichment designs and group sequential designs
simply as “adaptive designs”. We refer to standard, group sequential designs, defined to be group sequential
designs where the only decision about enrollment at each interim analysis is whether to continue the trial or
stop it entirely, as “standard designs”.

For each adaptive design, the following are defined before the trial starts: K ≥ 1, the maximum number
of stages; ns,k, the number of participants from subpopulation s ∈ {1, 2} to be enrolled during stage k ≤ K,
assuming enrollment has not been stopped for that subpopulation at a previous stage; k∗, the last stage
at which subpopulation 2 can be enrolled. The reason that we include the design parameter k∗ is that
in some contexts, setting k∗ < K leads to lower maximum sample sizes and lower expected samples sizes
than comparable rules with k∗ = K, as described at the end of Section 6.3; such designs are still adaptive
enrichment designs since enrollment of subpopulation 2 may be stopped before stage k∗, based on accrued
data. Let nk = n1,k + n2,k for each k ≤ K. By construction, for any stage k > k∗, we have n2,k = 0.

The maximum total sample size is n =
∑K

k=1 nk. At each stage in which both subpopulations are enrolled,
we assume the ratio of subpopulation 1 participants to subpopulation 2 participants equals the ratio of the
corresponding subpopulation sizes π1/π2; i.e., for any stage k ≤ k∗, we have ns,k = πsnk for each s ∈ {1, 2}.
If the combined population is enrolled during stage k (which only occurs for k ≤ k∗), then ns,k are enrolled
from each subpopulation s ∈ {1, 2}; if only subpopulation 1 is enrolled during stage k, then n1,k are enrolled.

In an adaptive design, at the end of each stage k < K, a prespecified decision rule is used to determine
enrollment for the next stage. Prespecified decision rules are generally required by the U.S. Food and Drug
Administration (FDA) for Phase III adaptive designs of drugs and biologics [22]. We assume all data from
participants enrolled at or before stage k are available at this interim analysis. The allowed decisions are
the following: if k < k∗ and enrollment in stage k was from the combined population, then enrollment in
stage k + 1 can be from the combined population, from subpopulation 1, or the trial can be stopped; else,
if k ≥ k∗ or enrollment has already been restricted to subpopulation 1, enrollment in stage k + 1 can be
from subpopulation 1 or the trial can be stopped. We do not allow restarting enrollment of a subpopulation
once it has been stopped. We define a decision rule to be a function from the cumulative data collected at
or before each stage k to the set of allowed decisions for stage k + 1 enrollment. We assume this function is
measurable, which is important in adaptive designs as discussed by Liu et al. [23].

3.3 Strong Control of the Familywise Type I Error Rate

The familywise Type I error rate is the probability that at least one true null hypothesis is rejected. Control
of the familywise Type I error rate is generally required by the U.S. FDA and the European Medicines
Agency for confirmatory randomized trials [24]. A multiple testing procedure is said to strongly control the
familywise Type I error rate at level α if for any data generating distribution Q ∈ Q, the familywise Type I
error rate is at most α [2].

We consider a sequence of per-stage sample sizes that go to infinity, holding constant k∗ and the
proportions of the total sample size allocated to each stage (r1, . . . , rK) = (n1/n, . . . , nK/n). For given
K, k∗, r1, . . . , rK , we say a trial design D strongly controls the asymptotic, familywise Type I error rate at
level α if

lim sup
n→∞

sup
Q∈Q

PrQ,D,n(at least one true null hypothesis is rejected) ≤ α, (2)
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where PrQ,D,n represents the probability under distribution Q, design D, and per-stage sample sizes
(nr1, . . . , nrK). We prove all of our designs satisfy (2) for α = 0.025. The above definition of strong control
of the familywise Type I error is asymptotic, as sample size goes to infinity. Even in the simpler setting of a
standard design testing a single null hypothesis with a z-test or t-test, if the outcome is binary then the Type
I error is only controlled asymptotically. We also examined the familywise Type I error rate of our designs at
realistic sample sizes, using simulations described in Section 6. For conciseness, we refer to “strong control
of the asymptotic, familywise Type I error rate at level α” as “strong control of the familywise Type I error
rate.”

3.4 Statistics

At each interim analysis k ≤ k∗, if the combined population is enrolled through stage k, define the (cumula-
tive) z-statistic for the combined population, ZC,k, to be the standardized difference between sample means
comparing treatment to control for all participants enrolled during stages 1 through k:

ZC,k =

{

∑k
k′=1

∑nk′

i=1 Yi,k′Ai,k′

∑k
k′=1

∑nk′

i=1 Ai,k′

−

∑k
k′=1

∑nk′

i=1 Yi,k′ (1−Ai,k′ )
∑k

k′=1

∑nk′

i=1(1−Ai,k′ )

}

se−1
C,k, (3)

where seC,k =
[

∑2
s=1 πs

{

σ2(Qs0) + σ2(Qs1)
}

/
∑k

k′=1(nk′/2)
]1/2

is the standard error of the quantity in

curly braces above. If the combined population is not enrolled through stage k, then ZC,k is undefined.
The (cumulative) z-statistics Z1,k for subpopulation 1 and Z2,k for subpopulation 2 are defined analogously
in Appendix A.1 of the Supplementary Materials, except restricted to participants in the corresponding
subpopulations. The statistic Z1,k is defined for each k ≤ K, while Z2,k is only defined for k ≤ k∗ since
subpopulation 2 enrollment never goes beyond stage k∗.

The joint distribution of ZC = {ZC,k}
k∗

k=1 has the canonical covariance structure of a standard group
sequential design [19, Chapter 3]. The same holds for Z1 = {Z1,k}

K
k=1 and Z2 = {Z2,k}

k∗

k=1. Let Σ denote
the covariance matrix of (ZC ,Z1,Z2), given in Appendix A.1 of the Supplementary Materials.

3.5 Minimal Sufficient Statistics

Consider any adaptive design D as defined in Section 3.2. First, we examine the cases where the outcome
is binary, or is a count with Poisson distribution. Then there is a single unknown parameter for each Qsa.
At the end of stage k, the following are minimal sufficient statistics: for each s ∈ {1, 2} and a ∈ {0, 1}, the
total number enrolled and the sample mean of the outcome, based on all data from subpopulation s and arm
a enrolled at or before stage k. For the case where the outcome is normally distributed, minimal sufficient
statistics consist of the aforementioned statistics plus the sample variances. (These claims are proved in
Appendix B of the Supplementary Materials.) In each case, the z-statistics Z1,k, Z2,k, ZC,k, with standard
errors computed using sample variances in place of true variances σ2(Qsa), are functions of the data only
through minimal sufficient statistics. Our adaptive designs in the next section use only these statistics in
the decision rule and multiple testing procedure at the end of each stage k.

The p-value combination approach does not use the data only through minimal sufficient statistics at
each interim analysis. This is because designs based on the p-value combination approach require a test of
the intersection H01 ∩ H0C based on a weighted combination of statistics across stages, which can involve
contributions from different populations at different stages. These statistics can lead to inefficiency as pointed
out by Emerson [4].

Other common approaches do not use the data solely through minimal sufficient statistics at each in-
terim analysis. This is the case for designs using the conditional error function approach of Proschan and
Hunsberger [25], such as the designs of Friede et al. [11], since the rejection thresholds at interim analy-
ses depend on the conditional error computed from previous stages, thereby using more than the minimal
sufficient statistics at the current stage. The method of Stallard [12] uses the maximum score statistic over
different populations at each stage, and combines these maxima across stages; when there are multiple stages

5
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at which an enrollment modification is considered, their procedure does not use data only through minimal
sufficient statistics. As acknowledged by Stallard [12, p. 796], since different populations can contribute to
this overall statistic at different stages, their method is conservative. The method of Rosenblum and van
der Laan [13] does not use data solely through minimal sufficient statistics when enrollment is restricted to
a single population for stage 2.

For clarity, we focus on outcomes that are binary-valued, are count-valued with Poisson distribution, or
are continuous-valued with normal distribution. However, in Appendix B of the Supplementary Materials, we
generalize the adaptive enrichment designs from Section 4 to handle outcomes Y with distribution belonging
to any exponential family (also called exponential class) [26]; this includes the following distributions, among
others: binomial, negative binomial, exponential, Pareto, Weibull, Laplace, chi-squared, gamma, beta, etc.
The only change to the adaptive designs is that z-statistics are replaced by a generalization involving stan-
dardized sample means of the sufficient statistic from the corresponding exponential family. Under regularity
conditions given in Appendix B of the Supplementary Materials, the resulting adaptive enrichment designs
have the desirable properties listed in the Abstract, i.e., they use data only through minimal sufficient
statistics, strongly control the familywise Type I error rate, and fully leverage the correlation among the
generalized z-statistics.

4 Proposed Class of Adaptive Designs for Testing H0C , H01

Efficacy boundaries for the combined population and subpopulation 1 are denoted by uC = {uC,k}
k∗

k=1 and
u1 = {u1,k}

K
k=1, respectively. Futility boundaries are denoted by l1 = {l1,k}

K
k=1 and l2 = {l2,k}

k∗

k=1. Each
design takes (uC ,u1, l1, l2, π1,K, k∗, {ns,k : s ∈ {1, 2}, k ≤ K}) as input prior to the trial. Based on z-
statistics at the end of each stage, the rule below determines which hypotheses (if any) to reject and which
subpopulations (if any) to enroll in the next stage. Enrollment is initially from the combined population.

Adaptive Designs for Testing {H0C , H01}. At each interim analysis k ≤ K:

1. (Assess Efficacy for H0C and H01) This step is only done if the combined population was enrolled
during stage k. If ZC,k > uC,k or Z1,k > u1,k, then stop the trial and reject H0j for each j ∈ {C, 1}
for which Zj,k > uj,k.

2. (Assess Futility of Entire Trial) Else, if Z1,k ≤ l1,k, stop the trial and reject nothing.

3. (Decide Whether to Stop Subpopulation 2 Enrollment) Else, if k = k∗ or Z2,k ≤ l2,k, stop subpopulation
2 enrollment and at each stage k′ > k: enroll only subpopulation 1, and:

(a) If Z1,k′ > u1,k′ , reject H01 and stop the trial.

(b) Else, if Z1,k′ ≤ l1,k′ , stop the trial and reject nothing.

(c) Else, if k′ < K, continue enrolling from subpopulation 1 until analysis k′ + 1.

4. Else, continue enrolling the combined population unless the end of stage K has been reached.

For any u = (uC ,u1) and l = (l1, l2), let D(u, l) denote the above design using these boundaries. We
always set l1,K = u1,K and l2,k∗ = ∞ (since subpopulation 2 enrollment always stops by the end of stage
k∗).

The entire trial is stopped for futility in step 2 if Z1,k ≤ l1,k. This reflects the prior belief that if the
treatment benefits at least one subpopulation, it will benefit subpopulation 1; this was the motivation from
the MISTIE trial for considering the null hypotheses H01, H0C , and also may be appropriate, e.g., in trials
of biomarker positive and biomarker negative participants as considered by Wang et al. [15] and Boessen et
al. [10]. However, the above designs are flexible in that arbitrary futility stopping rules can be used in place
of steps 2 and 3b, as described later in this section.

Throughout, we treat the futility boundaries l as nonbinding, i.e., we require strong control of the
familywise Type I error rate as in (2) even if futility stopping based on l is ignored. Nonbinding futility
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boundaries are typically preferred by the FDA as described by Liu and Anderson [27]. Define the special set
of futility boundaries l̄ to represent no early futility stopping, i.e., l̄1,k = −∞ for all k < K and l̄2,k = −∞
for all k < k∗. We note that, as specified in Section 3.2, enrollment of subpopulation 2 always stops by the
end of stage k∗; this rule cannot be ignored.

We next describe a method for selecting boundaries u, l such that the design D(u, l) is guaranteed to
strongly control the familywise Type I error rate. Below, for clarity of presentation, we assume the covariance
matrix Σ and subpopulation 1 proportion π1 are known. However, in practice, these will generally be
unknown. In Section 6.4, we examine the impact of using estimates of Σ and π1. In all the scenarios we
considered, our adaptive designs have similar performance as in the setting where variances and π1 are
assumed known.

The theorem below gives the following useful property: for any adaptive design D(u, l), to verify it
strongly controls the familywise Type I error rate, it suffices to verify familywise Type I error control for
D(u, l̄) under the null hypothesis H0 = {Q ∈ Q : ∆1 = ∆2 = 0}. Though this property is often easy to
prove for standard (non-adaptive) trials involving a single null hypothesis, it is not automatic in our setting
of multiple hypotheses and potential enrollment adaptations. As described below, this property allows fast
and precise computation of boundaries u, l that are guaranteed to control the familywise Type I error rate.

Define Z′ = {Z ′
C,k}

k∗

k=1

⋃

{Z ′
1,k}

K
k=1 to be a multivariate normal family of random variables with all compo-

nents having zero mean, and covariance matrix equal to the restriction of Σ to statistics {ZC,k}
k∗

k=1

⋃

{Z1,k}
K
k=1.

For any efficacy boundaries u, define

α0(u,Σ) = PrΣ

{

(

for at least one k ≤ k∗, Z ′
C,k > uC,k

)

⋃

(

for at least one k ≤ K,Z ′
1,k > u1,k

)

}

. (4)

The above quantity is the asymptotic familywise Type I error rate under the null hypothesis H0 = {Q ∈
Q : ∆1 = ∆2 = 0} for the design D(u, l̄). In Appendix A of the Supplementary Materials, we prove the
following theorem:

Theorem 1: Consider any α ∈ (0, 1), any efficacy boundaries u such that α0(u,Σ) ≤ α, and any futility
boundaries l. The adaptive design D(u, l) strongly controls the familywise Type I error rate at level α.

Therefore, to prove strong control of the familywise Type I error rate for the adaptive design D(u, l) at
level α, it suffices to compute α0(u,Σ) and show it is at most α. For any given u and Σ, this can be
computed by a single evaluation of the multivariate normal distribution function, which is implemented in
the mvtnorm package in R [28]. For Σ known, a simple way to select u that satisfies α0(u,Σ) ≤ α is to set u
proportional to a standard set of group sequential boundaries. Binary search can be used to find the smallest
proportionality constant such that α0(u,Σ) ≤ α is satisfied. For the case of Σ unknown and estimated at
each stage, we extend the error-spending approach [29, 30] to our context involving multiple hypotheses, as
described in Section 6.4.

Consider a set of efficacy boundaries u satisfying the condition in Theorem 1. A benefit of such boundaries
is that one can switch to only enrolling subpopulation 1 for any reason, and still strong control of the
familywise Type I error rate holds; such a switch could be warranted, for example, if the adverse event rates
are high for only subpopulation 2. A second benefit of such boundaries is that the above designs can be
generalized to use arbitrary futility stopping rules in steps 2 and 3b, and still strong control of the familywise
Type I error rate holds. A third benefit of such boundaries is that the above designs can be generalized to
continue after a single null hypothesis is rejected in order to test the remaining null hypothesis, and still
strong control of the familywise Type I error rate holds; this feature is discussed in Section 8. We prove the
above claims in Appendix A of the Supplementary Materials.

We always select efficacy boundaries u that satisfy the criterion α0(u,Σ) = α. This criterion fully
leverages the correlation Σ among z-statistics for different populations, which is built into (4) through the
joint distribution of Z′. Efficacy boundaries satisfying this criterion cannot be uniformly improved, that is, a
reduction in any of the efficacy boundaries would lead to an asymptotic familywise Type I error rate strictly
greater than α at H0 if all futility boundaries are ignored (which is an important case since we treat futility
boundaries as nonbinding). In contrast, designs using multiple testing procedures of Bonferroni, Holm [31],
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or Hochberg [17], none of which take Σ as input, do not exhaust the level in this sense, and so may sacrifice
power.

5 Selecting an Efficient Adaptive Design Tailored to the MISTIE

Trial Goals

Consider the goals of the MISTIE Phase III trial from Section 2. Let subpopulation 1 denote those with
small IVH at baseline, and subpopulation 2 denote the complementary subpopulation, i.e., those with large
IVH at baseline. The outcome is binary valued, with 1 denoting a successful outcome. We assume the
following based on prior studies [32]:

π1 = 1/3; µ(Q10) = 0.25; µ(Q20) = 0.2. (5)

Designs with K = 5 stages are considered. We generated a list of adaptive designs from the class in
Section 4, each defined by sample sizes {ns,k : s ∈ {1, 2}, k ≤ K} and boundaries (u, l) such that D(u, l)
satisfies goals (i)-(iii) and α0(u,Σ) = 0.025. We then selected the design, denoted DADAPT, that minimizes
the average of the expected sample sizes over scenarios (a)-(c). We explain the search procedure below, but
first give the results.

The boundaries and sample sizes for DADAPT are given in Table 1. In each of stages k = 1 through k = 3,
nk = 270 participants are enrolled from the combined population, unless enrollment is restricted or the trial
is stopped. If enrollment is restricted to subpopulation 1 after some stage k < 3, then 270 ∗π1 = 270/3 = 90
are enrolled from subpopulation 1 in each subsequent stage k′ ≤ 3 for which the trial continues. The design
always stops enrolling from subpopulation 2 by the end of stage 3. In each of stages k = 4 and k = 5, unless
the trial stops early, nk = 186 participants are enrolled from subpopulation 1. The maximum total sample
size is 1182. However, the expected sample size in each of scenarios (a)-(c), is 645, 737, 522, respectively. The
performance of DADAPT under a variety of scenarios, which includes scenarios (a)-(c), is shown in Table 4
and discussed in Section 6.

A feature of our adaptive designs is that their boundaries can be displayed in a simple plot, similar to
standard, group sequential boundaries. The boundaries for DADAPT are displayed in Figure 1.

We next define our search algorithm, leading to the design DADAPT. For each k∗ ∈ {1, 2, 3, 4}, we
consider vectors of per-stage sample sizes (n1, . . . , nK) where in each stage k ≤ k∗, nk is a common value
denoted by n(1), and in each stage k > k∗, nk is a common value denoted by n(2). Similarly, for k∗ = K = 5,
for each k̃ ∈ {1, . . . , 5} we consider per-stage sample sizes (n1, . . . , nK) where each nk equals a common value
n(1) up through stage k̃, and then all subsequent per-stage sample sizes equal a common value n(2).

We use efficacy and futility boundaries that are generalizations of the boundaries of O’Brien and Fleming
[20] to our setting of unequal, per-stage sample sizes. For proportionality constants eC , e1, f1, f2, which are
selected using the algorithm described below, boundaries are set as follows:

i. Efficacy boundaries: uC,k = eC(k/k
∗)−1/2 for k ≤ k∗; u1,k = e1

{

k
∑

k′=1

n1,k′

/

K
∑

k′=1

n1,k′

}−1/2

for k ≤ K.

(6)

ii. Futility boundaries: l1,k = f1{k/(K − 1)}−1/2 for k ≤ K − 1; l2,k = f2{k/(k
∗ − 1)}−1/2 for k ≤ k∗ − 1,

and we set l1,K = u1,K , l2,k∗ = ∞.
Throughout, power and expected sample sizes are computed assuming futility boundaries are adhered

to. We considered a range of pairs (f1, f2) given in Appendix D.1 of the Supplementary Materials. For each
k∗ ∈ {1, 2, 3, 4} and (f1, f2), we considered each n(1) in increments of 10 participants from 10 to 400. We
then computed the minimum n(2), if any exists, such that goals (i)-(iii) are achieved and α0(u,Σ) = 0.025; in
such cases we computed the corresponding values of eC , e1. Analogous computations were done for k∗ = 5.
We describe this computation in Appendix D.1 of the Supplementary Materials.
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In our search algorithm, whenever we computed the power, Type I error, or expected sample size for a
given configuration (k∗, f1, f2, n

(1), n(2), eC , e1), we used the asymptotic approximation of the joint distribu-
tion of the z-statistics (3), by a multivariate normal distribution with covariance matrix Σ. This allows faster
computations, compared to simulations that generate outcomes for each participant. To compute α0(u,Σ),
we used the R package mvtnorm, which uses numerical integration based on the algorithm of Genz and
Bretz [28] to evaluate multivariate normal probabilities. To compute power, we used Monte Carlo simula-
tion of multivariate normal distributions with 105 simulated trials per power computation. We discuss the
reason for this choice in Appendix D.1 of the Supplementary Materials. We recorded every configuration
(k∗, f1, f2, n

(1), n(2), eC , e1) in our search for which the design goals (i)-(iii) are achieved and α0(u,Σ) = 0.025.
Among these, we selected the configuration with the smallest average expected sample size over scenarios
(a)-(c), which is the design DADAPT given in Table 1.

6 Comparison of Designs Achieving Goals (i)-(iii) for the MISTIE
Phase III trial

6.1 Comparator Designs

We compare DADAPT to two other types of designs that achieve goals (i)-(iii). First, consider the class of
standard designs defined exactly as the adaptive designs in Section 4 except leaving out step 3 (the adaptive
feature allowing a switch to only enroll from subpopulation 1), and setting k∗ = K. This is equivalent to
setting k∗ = K and setting the futility boundary for stopping subpopulation 2 enrollment l2,k = −∞ for
each k < K; therefore, the class of standard designs is a subclass of the adaptive designs defined in Section 4.
We executed the same search algorithm as used in selecting DADAPT, except restricted to standard designs;
full details are given in Appendix D.2 of the Supplementary Materials. The optimal design returned by the
search, denoted DSTD, is given in Table 2.

Second, we consider a class of adaptive enrichment designs based on the p-value combination approach
[33, 34, 35, 5]. This approach has been applied to construct adaptive enrichment designs [6, 7, 8, 9].
Specifically, we apply the method from Jennison and Turnbull [7, Section 6] using the Simes test [36] to
combine p-values within a given stage, and the weighted inverse normal method [37, 35] to combine p-values
across stages. We additionally consider designs where the Simes test is replaced by a generalization of the
Dunnett test [38], which improved the performance of these designs. This class of designs is precisely defined
in Appendix C of the Supplementary Materials. We executed a search over this class similar to that used in
selecting DADAPT. The optimal design returned by the search is denoted DCOMB, which is summarized in
Table 3.

6.2 Comparison of Designs when π1 = 1/3

In Table 4, we compare the performance of DADAPT, DSTD, and DCOMB. The expected sample size and
power for each design is given in twelve scenarios, which include scenarios (a)-(c). For each scenario and
design, we simulated 105 trials. For conciseness, we refer to the average treatment effect (on the risk difference
scale) as the percent benefit. We vary the percent benefit in each subpopulation, and for each design we
report the expected sample size and the power to reject at least H0C , to reject at least H01, and to reject at
least one of H0C , H01, respectively.

The expected sample size averaged over scenarios (a)-(c), for DADAPT, DSTD, and DCOMB, is 635, 889,
and 1263, respectively. In every scenario in Table 4, which includes scenarios (a)-(c), DADAPT has the
minimum expected sample size among the three designs. The maximum sample size, which occurs when
there is no early stopping, is 1182, 1546, and 2098 for DADAPT, DSTD, and DCOMB, respectively. This
shows a substantial savings in terms of the maximum sample size forDADAPT compared to the other designs.

Scenario (c), in which ∆1 = ∆2 = 0, is represented in row 5 of the bottom half of Table 4. The probability
of rejecting at least one null hypothesis for DADAPT is 2.0%, which is less than the required familywise Type
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I error rate α = 0.025. The reason is that we use nonbinding futility boundaries, which can be a desirable
property as discussed in Section 4.

The p-value combination design DCOMB requires substantially greater sample size at each stage, com-
pared toDADAPT andDSTD, as shown in Tables 1–3. This is because the class of p-value combination designs
that we considered, which use standard combination tests and intersection tests, is not flexible enough to
take advantage of the asymmetry of our problem. Specifically, neither H0C norH01 can be rejected unless the
intersection test for H0C ∩H01 is rejected, and standard intersection tests such as the aforementioned Simes
and generalized Dunnett tests treat p-values from each population symmetrically. The resulting inefficiency
can be seen in Table 4, where DCOMB exactly achieves goal (ii), but has much more power than required
to achieve goal (i) and has familywise Type I error only 1.2% in scenario (c). It is possible to replace the
intersection tests by more flexible tests that allocate Type I error asymmetrically to the two null hypotheses,
e.g., by using the Spiessens–Debois test with unequal α allocations [39]. However, to the best of our knowl-
edge, this test with such an unequal allocation has not been implemented in a way that is straightforward
to use within the p-value combination approach; such an implementation would be nontrivial, as we discuss
in Appendix C of the Supplementary Materials. Also, the resulting design and testing procedure using the
p-value combination approach would still not be based solely on minimal sufficient statistics.

We have shown that our proposed adaptive designs can have superior performance for achieving the goals
in Section 2 compared to a subclass of designs based on the p-value combination approach that use standard
intersection tests and combination functions. This is a proof-of-concept demonstration that our designs may
have advantages in some situations, and does not imply our adaptive designs are better than all possible
designs based on the p-value combination approach; in order to determine this, one would need to conduct
extensive comparisons of all possible designs from these classes, which is beyond the scope of this work.

6.3 Comparison of Designs at Different Subpopulation Proportions

We examine the impact of different subpopulation proportions π1 on the relative performance of different
types of designs. For each π1 ∈ {1/3, 1/2, 2/3}, we constructed designs DADAPT, DSTD, and DCOMB by
executing the search described above at this value of π1. The designs minimizing the expected sample
size averaged over scenarios (a)-(c) for π1 = 1/3 are given in Tables 1–3, while the corresponding designs
for π1 ∈ {1/2, 2/3} are given in Appendix F of the Supplementary Materials. Figure 2 summarizes their
performance.

Figure 2a plots the expected sample size averaged over scenarios (a)-(c), for each of the three types of
designs. Under this metric, the design DADAPT is better than the other designs, at all values of π1 we
considered. The improvement of DADAPT over the other designs is largest when π1 = 1/3. When π1 = 1/2,
the expected sample size averaged over scenarios (a)-(c) is 550, 624, and 1016 for DADAPT, DSTD, and
DCOMB, respectively. For π1 = 2/3, DADAPT is only slightly better than the standard design in terms of
the expected sample size averaged over scenarios (a)-(c). The expected sample sizes and power for each
design, in scenarios that include (a)-(c), are given in Tables 6 and 7 of the Supplementary Materials for the
cases of π1 = 1/2 and π1 = 2/3, respectively.

Consider DADAPT versus DSTD. The former has the ability to stop enrolling subpopulation 2 and switch
to only enrolling from subpopulation 1. This ability pays off most when π1 is relatively small, since then
there is faster accrual of information on subpopulation 2 to use in deciding whether to stop enrolling them.
Also, the sample size reduction due to stopping enrollment from subpopulation 2 is amplified at smaller π1.

For each design, the expected sample size averaged over scenarios (a)-(c) is decreasing in π1. This makes
sense intuitively, since for larger π1, there are more subpopulation 1 participants in a sample of fixed size
from the combined population, making goal (ii) easier to achieve.

Figure 2b compares the maximum sample size for each of the three types of designs. The maximum
sample size of DADAPT is substantially smaller than the other designs for π1 = 1/3, while it is essentially
tied with DSTD for π1 ∈ {1/2, 2/3}.

For each π1 ∈ {1/3, 1/2, 2/3}, the corresponding value of k∗ for the optimal adaptive design DADAPT
from our search is 3, 4, and 5, respectively. The main advantage of having k∗ < 5 is that in some cases it
reduces the maximum sample size of the trial. To demonstrate this, at π1 = 1/3, we repeated our adaptive
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design search algorithm from Section 5 but only allowing designs with k∗ = 5. The maximum sample size of
the resulting design was 1393, which is substantially larger than the maximum sample size of 1182 for the
design DADAPT with k∗ = 3. Intuitively, the reason is that enrolling from subpopulation 2 is only useful
for achieving goal (i), and DADAPT has enrolled enough participants from the combined population by the
end of stage 3 to achieve this goal. In contrast, subpopulation 1 participants contribute to goals (i)-(ii), and
DADAPT has not enrolled enough such participants by the end of stage 3 to achieve goal (ii). Therefore, it
is efficient for DADAPT to enroll only subpopulation 1 in stages 4 and 5.

It is possible to consider other types of designs, e.g., a sequence of standard designs where the first
enrolls from the combined population, and if it fails to reject H0C , it is followed by a second standard design
that enrolls only from subpopulation 1 and tests H01. This overall procedure is an example of an adaptive
enrichment design, since enrollment can be modified (restricted to subpopulation 1) in response to accrued
data. This adaptive enrichment design can be considered a crude version of the adaptive designs above, with
the difference that those above have a more flexible rule for modifying enrollment and use a multiple testing
procedure that leverages the correlation among statistics.

6.4 Impact of Estimated Variances and Subpopulation Proportions

Above, for clarity, we focused on the case where variances σ2(Qsa) and the subpopulation proportions π1, π2

are known. In practice, these will generally not be known with certainty at the start of the trial, and will
be estimated based on data accrued at each interim analysis. Also, we had assumed at each stage in which
both subpopulations are enrolled, the ratio of subpopulation 1 participants to subpopulation 2 participants
equals the ratio of the corresponding subpopulation sizes. In practice, there can be variability in the sample
proportions of participants from each subpopulation.

We now consider the setting where variances and subpopulation proportions are unknown. The null
hypotheses defined in Section 3.1 remain the same. We assume that during each stage k where the com-
bined population is enrolled, the total number enrolled is nk (which is preplanned), and the subpopulation
membership Si,k of each participant is an independent draw with probability π1 of Si,k = 1. The variances
in the statistics (3) are replaced by sample variances. We estimate Σ by the formulas in Appendix A.1 of
the Supplementary Materials, using sample variances and the sample proportion π̂1, which are based on all
relevant data accrued in previous stages.

In the case where Σ was assumed known, the boundaries u and l for our adaptive designs were selected
such that α0(u,Σ) = α, which by Theorem 1 guarantees strong control of the familywise Type I error rate at
level α. In Appendix E of the Supplementary Materials, we assume Σ and π1 are unknown and estimated by
Σ̂ and π̂1, respectively. We generalize the adaptive design algorithm from Section 4 to handle estimated Σ
and π1. This is based on an extension of the error spending approach [29, 30] to handle multiple hypotheses.
The result is a modified version of DADAPT, denoted D∗

ADAPT, that constructs efficacy boundaries UC,k, U1,k

at the end of each stage k based on the current estimates of Σ and π1. The design D∗
ADAPT is constructed

such that at the end of the trial, when the assumptions (5) hold, goals (i)-(iii) are approximately achieved.
Even when these assumptions fail to hold, we have α0(U, Σ̂) = α, where U = {UC,k}

k∗

k=1 ∪ {U1,k}
K
k=1. We

next examine the power and Type I error of D∗
ADAPT based on simulations.

First, consider π1 = 1/3, for which the power and Type I error of DADAPT are given in Table 4 in the
setting of known Σ and π1. For the case where Σ and π1 are estimated, we computed analogous quantities
for D∗

ADAPT under identical scenarios (one per row) as in Table 4, under the assumptions (5). We simulated
10,000 trials in each scenario, and give full results in Appendix E.3 of the Supplementary Materials. The
main result is that the familywise Type I error rate was always less than α = 0.025, and goals (i)-(iii) were
all achieved.

In Appendix E.3 of the Supplementary Materials, we examine the impact of true subpopulation propor-
tions differing by ±5% from those planned for, on the design D∗

ADAPT. We applied D∗
ADAPT, which was

constructed to achieve goals (i)-(iii) at π1 = 1/3, in simulations where the true value of π1 was set to either
0.28 or to 0.38. The power to reject H0C in scenario (a) ranged from 80% to 82%, and the power to reject
H01 in scenario (b) ranged from 78% to 83%, as the true value of π1 ranged from 0.28 to 0.38. In all cases,
the familywise Type I error rate was at most 0.023. This shows the design D∗

ADAPT is robust to the value of
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π1 differing by 5% from that planned for, in the case of π1 = 1/3. It is an area of future research to examine
the robustness of this method to different types of deviations from the assumptions (5).

7 Software

The open-source, free software package interAdapt [40] implements the class of designs from Section 4. It
can be used to compute power, expected sample size, and expected trial duration for these designs. The
adaptive designs are automatically compared to standard designs, and the results are displayed in plots and
tables. This software can be used as a trial planning tool, to evaluate whether an adaptive design from
Section 4 offers tangible benefits over standard designs. The software includes a user-friendly, graphical
interface that runs through a web browser. This makes the software accessible to a wider audience, since
users do not need to know R, the programming language in which the software is written. The results
of the power, sample size, and duration comparisons are automatically compiled into a report that can be
downloaded as a pdf document. The software can be used when outcomes are binary, such as in the examples
in this paper; future work is to extend this to handle any real-valued outcome.

8 Discussion

An alternative to restricting to the class of designs in Section 5 would be to extend the dynamic programming
method of Eales and Jennison [41], which was designed for a single null hypothesis in a standard group
sequential design, to our setting that involves multiple hypotheses and adaptive designs. However, this
could be extremely difficult computationally, given the many parameters underlying each design and the
constraints that each design must strongly control the familywise Type I error rate. It is an area of future
research to attempt to extend the approach of Eales and Jennison [41] to our setting.

Though our hypothesis tests were based on z-statistics, it is possible to apply the same approach using
statistics that appropriately leverage baseline variables as in, e.g., [42]. If these variables are prognostic for
the primary outcome, there is potential to increase power. It is an open research problem to determine how
much can be gained by leveraging such information.

An area of future research is to consider modifications of the adaptive design algorithm in Section 4 that
permit continuation after H0C or H01 is rejected to allow further testing of the remaining null hypothesis;
we still assume enrollment of subpopulation 2 stops by the end of stage k∗, and that the entire trial stops by
the end of stage K. Even with such a modification, any design D(u, l) satisfying the condition in Theorem
1 is guaranteed to strongly control the familywise Type I error rate at level α, as proved in Appendix A of
the Supplementary Materials. Such a modified design would generally lead to higher power, but also higher
expected sample size, compared to the same design without this modification; characterizing this tradeoff
between power and expected sample size is an area of future research.

Another open problem is to consider different goals than (i)-(iii), e.g., to add a power requirement for
the null hypothesis of no average treatment benefit for subpopulation 2 (those with large IVH), under a
scenario where the treatment only benefits this population. The class of adaptive designs from Section 4
can be generalized to also test such a null hypothesis, and to incorporate a rule for switching to only enroll
subpopulation 2, as we outline in Appendix G of the Supplementary Materials.

A limitation of our designs is that each participant’s outcome is assumed to be observed relatively
soon after enrollment. A more challenging problem is to handle outcomes observed with delay, since less
information will be available at each interim analysis upon which to base decisions about enrollment changes.
It is an area of future work to characterize when adaptive designs can be useful in this setting. The
adaptive design algorithm from Section 4 could be extended to handle this case, with the modification that
if enrollment is stopped early, an additional analysis will be conducted once all pipeline participants (i.e.,
those enrolled whose outcomes are not yet observed) complete the trial, as in [43].

An open research question is how to plan follow-up trials after adaptive, enrichment designs. We briefly
discuss this issue in Appendix H of the Supplementary Materials.
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Supplementary Materials

Appendices A-H and R code are available in the separate files:

http://people.csail.mit.edu/mrosenblum/MISTIE_supp_mat.pdf

http://people.csail.mit.edu/mrosenblum/MISTIE_R_Files.zip
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Table 1: At π1 = 1/3, the sample sizes and boundaries for the adaptive design DADAPT. No boundaries
are given for uC,k and l2,k at the stage 4 and 5 analyses, since k∗ = 3, i.e., enrollment of subpopulation 2
participants always stops after interim analysis 3. All boundaries are on the z-statistic scale.

Adaptive, Group Sequential Design DADAPT

Interim Analysis (k) 1 2 3 4 5

Cum. Sample Size Subpopulation 1 90 180 270 456 642
Cum. Sample Size Subpopulation 2 180 360 540 540 540
Cum. Sample Size Combined Population 270 540 810 996 1182

H0C Efficacy Boundary (uC,k) 4.76 3.36 2.75
Boundary to Stop Subpop. 2 Enrollment (l2,k) 0 0 ∞
H01 Efficacy Boundary (u1,k) 5.48 3.88 3.17 2.44 2.05
Boundary to Stop All Enrollment (l1,k) 0 0 0 0 2.05

Table 2: At π1 = 1/3, standard design DSTD described in Section 6.1.

Standard Design DSTD

Interim Analysis (k) 1 2 3 4 5

Cum. Sample Size Subpopulation 1 97 193 290 387 515
Cum. Sample Size Subpopulation 2 193 387 580 773 1030
Cum. Sample Size Combined Population 290 580 870 1160 1546

H0C Efficacy Boundary (uC,k) 6.70 4.74 3.87 3.35 2.90
H01 Efficacy Boundary (u1,k) 4.70 3.32 2.71 2.35 2.04
Boundary to Stop All Enrollment (l1,k) 0 0 0 0 2.04
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Table 3: At π1 = 1/3, adaptive design DCOMB based on combination tests and closure principle described in
Section 6.1. Full details including the definition of local tests are given in Appendix C of the Supplementary
Materials. The generalized Dunnett test defined there is used to combine p-values within each stage for the
local test of H0C ∩H01.

Adaptive Design Using Combination Tests and Closure Principle DCOMB

Interim Analysis (k) 1 2 3 4 5

Cum. Sample Size Subpopulation 1 223 446 670 714 759
Cum. Sample Size Subpopulation 2 446 893 1339 1339 1339
Cum. Sample Size Combined Population 670 1339 2009 2054 2098

Note: Local Test of H0C ∩H01 Must Reject Before Any Elementary Null Hyp. Rejected

H0C ∩H01 Local Test Efficacy Boundary 3.66 2.59 2.12 2.09 2.07
H0C Local Test Efficacy Boundary (uC,k) 3.47 2.45 2.00
Boundary to Stop Subpop. 2 Enrollment (l2,k) 0 0 ∞
H01 Local Test Efficacy Boundary (u1,k) 3.82 2.70 2.20 2.13 2.07
Boundary to Stop All Enrollment (l1,k) 0 0 0 0 2.07
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Table 4: Comparison of expected sample size (ESS) and power (as a percent) at π1 = 1/3. Each row
corresponds to a different treatment effect for subpopulation 2. The column headings H0C , H01, and ≥ 1,
denote power to reject at least H0C , at least H01, and at least one null hypothesis, respectively. The three
rows in boldface correspond to scenarios (a)-(c), respectively.

Subpopulation 1 Treatment Effect ∆1 set at 12.5%

Subpop. 2 DADAPT DSTD DCOMB

Effect ∆2

{ { {

(%) ESS H0C H01 ≥ 1 ESS H0C H01 ≥ 1 ESS H0C H01 ≥ 1
15.0 594 86 6 89 802 85 33 90 1078 98 31 98

scenario (a): 12.5 645 80 13 88 870 80 44 89 1281 96 47 97
10.0 702 69 25 87 942 70 56 89 1484 93 63 96
5.0 779 34 59 84 1042 30 76 83 1699 68 80 89

scenario (b): 0.0 737 7 80 84 1062 2 80 80 1442 22 80 80
-5.0 648 0 83 84 1063 0 80 80 1140 1 80 80

Subpopulation 1 Treatment Effect ∆1 set at 0

Subpop. 2 DADAPT DSTD DCOMB

Effect ∆2

{ { {

(%) ESS H0C H01 ≥ 1 ESS H0C H01 ≥ 1 ESS H0C H01 ≥ 1
15.0 474 33.0 0.1 33.1 594 31.1 0.4 31.2 1029 43.9 0.5 44.0
12.5 505 25.6 0.3 25.9 637 27.4 0.7 27.5 1121 36.6 0.8 36.6
10.0 535 17.0 0.6 17.6 681 21.3 1.2 21.6 1190 27.3 1.0 27.5
5.0 560 3.8 1.4 5.2 729 4.8 1.9 6.1 1222 7.5 1.2 8.1

scenario (c): 0.0 522 0.3 1.8 2.0 735 0.1 2.1 2.2 1065 0.4 0.9 1.2
-5.0 475 0.0 1.9 1.9 735 0.0 2.1 2.1 913 0.0 0.9 0.9
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Figure 1: Boundaries for DADAPT at π1 = 1/3. Subpopulation 2 enrollment always stops at or before
the end of stage k∗ = 3. The boundaries u1,k, uC,k, l1,k, l2,k correspond to the cumulative z-statistics
Z1,k, ZC,k, Z1,k, Z2,k, respectively; these are used in the adaptive, group sequential algorithm from Section 4.
These boundaries are also given in Table 1.

19

Hosted by The Berkeley Electronic Press



0
20

0
40

0
60

0
80

0
12

00

1a. Expected Sample Size Averaged over
 (a)−(c) versus Subpop. 1 Proportion

Subpopulation 1 Proportion π1

E
xp

ec
te

d 
S

am
pl

e 
S

iz
e

 A
ve

ra
ge

d 
ov

er
 (

a)
−

(c
)

Design Type:

DADAPT

DSTD

DCOMB

1/3 1/2 2/3

0
50

0
10

00
15

00
20

00

1b. Maximum Sample Size versus
 Subpopulation 1 Proportion

Subpopulation 1 Proportion π1

M
ax

im
um

 S
am

pl
e 

S
iz

e

Design Type:

DADAPT

DSTD

DCOMB

1/3 1/2 2/3

Figure 2: Fig. 2a: At different values of subpopulation 1 proportion π1, comparison of expected sample size
averaged over scenarios (a)-(c) for optimal designs. Fig. 2b: Analogous comparison of maximum sample
sizes.
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