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Targeted Maximum Likelihood Estimation of
Natural Direct Effect

Wenjing Zheng and Mark J. van der Laan

Abstract

In many causal inference problems, one is interested in the direct causal effect
of an exposure on an outcome of interest that is not mediated by certain inter-
mediate variables. Robins and Greenland (1992) and Pearl (2000) formalized the
definition of two types of direct effects (natural and controlled) under the coun-
terfactual framework. Since then, identifiability conditions for these effects have
been studied extensively. By contrast, considerably fewer efforts have been in-
vested in the estimation problem of the natural direct effect. In this article, we
propose a semiparametric efficient, multiply robust estimator for the natural direct
effect of a binary treatment using the targeted maximum likelihood framework of
van der Laan and Rubin (2006) and van der Laan and Rose (2011). The proposed
estimator is asymptotically unbiased if either one of the following holds: i) the
conditional outcome expectation given exposure, mediator, and confounders, and
the mediated mean outcome difference are consistently estimated; (ii) the expo-
sure mechanism given confounders, and the conditional outcome expectation are
consistently estimated; or (iii) the exposure mechanism given confounders, and
a ratio of conditional mediator densities are consistently estimated. Moreover,
case (iii) implies in particular that estimation of the conditional mediator den-
sity may be replaced by consistent estimation of the exposure mechanism and the
conditional distribution of exposure given confounders and mediator. If all three
conditions hold, then the effect estimate is asymptotically efficient.



1 Introduction

The causal effect of an exposure (or treatment) on an outcome of interest is often times
mediated by intermediate variables (mediator). In many causal inference problems,
one is interested in the direct effect of such exposure on the outcome, not mediated
by the effect of the intermediate variables. Robins and Greenland (1992) and Pearl
(2000) defined two types of direct effects under the counterfactual framework. The
controlled direct effect refers to the effect of the exposure on the outcome under an
idealized experiment where the mediator is set to a given constant value, whereas the
natural (or pure) direct effect pertains to an experiment where the mediator is set
to be distributed according to the null exposure level and the individual’s covariates.
The definition of these causal effects are based on counterfactual outcomes that are
not fully observed, therefore they are not always identifiable from the observed data.
Identifiability conditions are studied extensively in Robins and Greenland (1992),
Pearl (2000), Robins (2003), van der Laan and Petersen (2004), Hafeman and Van-
derWeele (2010), Imai et al. (2010), and Pearl (2011).

Prior to the formal frameworks developed by Robins and Greenland (1992) and
Pearl (2000), the social science literature had proposed the use of parametric linear
structural equations in mediation analysis (e.g. Baron and Kenny (1986)), where the
outcome response and mediator response are each modeled using linear main term
regression on their parent nodes, and the direct and indirect effects are defined and
estimated in terms of coefficients in these regression equations. The limited causal
validity of this parameter due to its dependence on model specification (e.g. no-
interactions and linearity assumptions) is discussed in Kaufman et al. (2004). The
developments of Robins and Greenland (1992) and Pearl (2000), and the identifiability
studies that followed suit, address definition and identification of direct and indirect
effects in a framework that is detached from statistical model specifications, allowing
one to separate the identification problem from the estimation problem.

Several approaches to the estimation problem are available in the current litera-
ture. A likelihood-based estimator approach (the g-computation formula) builds upon
the identifiability results using a substitution estimator plugging in maximum likeli-
hood based estimates of the relevant components of the data generating distribution.
The natural direct effect may be identified as a function of the marginal covari-
ate distribution, the conditional mediator distribution, conditioned on null exposure
and individual covariates, and the conditional outcome distribution, conditioned on
exposure, mediator and individual covariates (Robins and Greenland (1992), Pearl
(2000), Robins (2003) and van der Laan and Petersen (2004)). When all of these
components of the data generating distribution are estimated consistently, the re-
sulting g-computation estimate is unbiased and efficient. However, if either of these
components is inconsistent, the effect estimate will be biased. VanderWeele and
Vansteelandt (2010) illustrated how this approach may be applied to the estima-
tion of natural direct effect odds ratio of rare outcomes. The use of (sequential)
g-computation in structural nested models for estimation of controlled direct effects
is proposed in Vansteelandt (2009). A second approach to causal effects estimation is
based on the estimating function methodology developed by Robins (1999), Robins
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and Rotnitzky (2001) and van der Laan and Robins (2003), where the root to a score
equation is used as the effect estimate. For most parameters arising from missing data
problems (including causal effect parameters), the efficient score under a nonparamet-
ric model is a robust estimating function (i.e. unbiased against mis-specification of
the missingness mechanism or mis-specification of the full data model), therefore the
resulting effect estimate shares the same robustness properties. In van der Laan and
Petersen (2008), an application of this approach to a generalized class of direct effects
using marginal structural models was discussed. The parameter studied in that work
is a population mean of a subject-specific average controlled direct effect, averaged
with respect to a user-specified conditional mediator density given null exposure and
individual covariates. If the supplied conditional mediator density is the true condi-
tional mediator density of the data generating process, then the parameter of van der
Laan and Petersen (2008) evaluates to the same value as the natural direct effect
parameter. However, even in such case, these two parameters are not the same maps
on the model since the former is a map indexed by the supplied mediator density and
is a function of the outcome expectation and marginal covariate distribution alone.
As a consequence, the efficient score of the parameter of van der Laan and Petersen
(2008) is not the same as the efficient score of the natural direct effect parameter we
study in this article. VanderWeele (2009) discussed more fully the use of marginal
structural models with inverse probability weighting for estimation of the natural
direct effect parameter. Most recently, Tchetgen Tchetgen and Shpitser (2011) devel-
oped the application of the estimating function methodology to natural direct effect
estimation using the efficient score equation, as well as a sensitivity analysis frame-
work for the assumption of ignorability of the mediator variable. We also refer the
interested reader to their work for discussion on semiparametric efficiency bounds for
the nonparametric model. A third approach to causal effect estimation is the targeted
maximum likelihood framework of van der Laan and Rubin (2006) and van der Laan
and Rose (2011). For each relevant component of the data generating distribution,
one obtains a loss-based estimate that would solve the corresponding component of
the efficient score equation. These estimates are then used to obtain a substitution
estimator of the parameter of interest. The resulting estimator solves the efficient
score equation, therefore also shares its robustness properties. In addition, the sub-
stitution principle allows for estimation of the parameter range providing additional
information gain, and preserves properties of the parameter as a map on the model.
van der Laan and Petersen (2008) also applied the targeted MLE procedure to their
generalized class of direct effect parameters. Both the estimating function approach
and the targeted MLE approach in van der Laan and Petersen (2008) are robust (with
respect to its parameter of interest) against mis-specification of the conditional ex-
pected outcome or mis-specification of the treatment mechanism. However, since its
parameter of interest is indexed by the user-supplied conditional mediator density, if
one is interested in the natural direct effect, then the user-specified conditional medi-
ator density in the method of van der Laan and Petersen (2008) must be correct. The
use of propensity score matching in estimation of causal effects from observational
studies was introduced in Rosenbaum and Rubin (1983). Application of propensity
score in mediation analysis has also been proposed (e.g. Jo et al. (2011)).
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In this article, we apply the targeted MLE framework of van der Laan and Rubin
(2006) and van der Laan and Rose (2011) to the estimation of the natural direct ef-
fect of a binary exposure. The identifiability results in Robins and Greenland (1992),
Pearl (2000), Robins (2003) and van der Laan and Petersen (2004) imply in particular
that the natural direct effect of a binary treatment may be estimated as the marginal
mean (over strata of confounders) of the mediated mean outcome difference, where
the mediated mean outcome difference is the conditional expectation of the difference
in outcome under two different exposure levels, conditioned with respect to the medi-
ator given null exposure and confounders. We propose a semiparametric efficient and
robust estimator which, given initial estimators of the exposure mechanism, condi-
tional mediator density and conditional outcome expectation, targetedly modifies the
estimates of the conditional outcome expectation and the mediated mean outcome
difference using a set of parametric working submodels. These resulting targeted
components are then used to produce a plug-in estimator for the parameter of in-
terest. The procedure systematically incorporates estimation of the boundary of the
parameter domain. The set of parametric working submodels are defined such that
the resulting estimator solve the efficient score equation, and hence inherits its robust-
ness properties. The proposed estimator is asymptotically unbiased if either one of
the following holds: i) the conditional outcome expectation, and the mediated mean
outcome difference are consistently estimated; (ii) the exposure mechanism given con-
founders, and the conditional outcome expectation are consistently estimated; or (iii)
the exposure mechanism given confounders, and a ratio of conditional mediator den-
sities are consistently estimated. If all three conditions hold, then the effect estimate
is asymptotically efficient.

This article is organized as follows: In section 2 we define formally the natural
direct causal effect of a binary treatment on an outcome using the Non-Parametric
Structural Equations Model framework of Pearl (2009), and summarize its identifi-
ability conditions. Based on the identifiability result, one may consider the natural
direct effect parameter as a map from the model to the parameter space. We study
this map in greater detail in section 2.3. In particular, the robustness properties of
its efficient score under a nonparametric model are summarized in lemma 1 of that
section. Section 3 begins with a general description of the targeted MLE estima-
tion framework of van der Laan and Rubin (2006), and then presents a step by step
construction of the targeted MLE estimator for the natural direct effect of a binary
treatment. Asymptotic properties of this estimator are summarized in section 3.2
and proved in the Appendix A. The estimation procedure in section 3 focuses on the
targeted estimation of the conditional outcome expectation and the mediated mean
outcome difference, as described above. An alternative procedure focusing on the
conditional outcome expectation and the conditional mediator density is described in
Appendix B. This alternative estimator shares the same asymptotic properties as the
one proposed in section 3. Section 4 describes in greater detail two alternative esti-
mators under the estimation equation framework of Robins (1999), and the maximum
likelihood based g-computation framework. In section 5, we illustrate with simula-
tions the robustness of the targeted MLE estimator against model mis-specifications.
We will also explore the performance of the various estimators in the presence of data
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sparsity. This article concludes with a summary.

2 Natural Direct Effect of a binary treatment

2.1 Causal Parameter

Consider n i.i.d observations of O = (W,A,Z, Y ), where W represents baseline co-
variates, A a binary treatment, Z represents the mediator between the treatment
and the outcome of interest Y . Let P0 denote the distribution of O. We apply here
the Non-Parametric Structural Equations Model of Pearl (2009) to encode the causal
relations of interest. The NPSEM on an unit consists of a set of exogenous random
variables U which are determined by factors outside the model, a set of endogenous
variables X which are determined by variables inside the system (U ∪X), and a set
of unspecified deterministic functions {fx : x ∈ X} which encodes for each x ∈ X the
variables that have direct influence on x. More specifically, in the present situation
the causal relations are encoded by the NPSEM

U = (UW , UA, UZ , UY ) ∼ PU

W = fW (UW )

A = fA(W,UA)

Z = fZ(W,A,UZ)

Y = fY (W,A,Z, UY ),

where X = (W,A,Z, Y ) is the endogenous variable, and U = (UW , UA, UZ , UY ) is the
unobserved exogenous variable. This model defines a random variable (U,X) on the
unit of observation, we denote its distribution by PU,X .

One may define a submodel of the NPSEM by intervening on a subset of the
equations. The counterfactual variables or potential outcomes in the Rubin Causal
Model (Rubin (1978), Rosenbaum and Rubin (1983) and Holland (1986)) may then
be interpreted as variables in the post-intervention submodel. For instance, the coun-
terfactual Z(a) is defined as the random variable Z in a system where one intervened
to set Z = fZ(W,a, UZ), and may be interpreted as the mediator variable that the
unit would have had if the exposure had been a. Similarly, Y (a′, Z(a)) is the coun-
terfactual outcome that results from setting Y = fY (W,a′, Z(a), UY ), and may be
interpreted as the response that one may have had if the exposure had been a′ while
the mediator variable had been identical to the one under exposure a.

Under the NPSEM, a causal parameter of interest may be defined as a function
of the distribution PU,X . More specifically, the natural direct causal effect is defined
as

Ψ(PU,X) = E [Y (1, Z(0))− Y (0, Z(0))] .

This causal parameter may be interpreted from the following hypothetical randomized
trial: one randomly assigns each subject to treatment or control, while setting the
subject’s mediator variable to be distributed as if treatment was absent, and then
take the difference in mean outcome between the treated and control cohort.
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2.2 Identifiability

Under experimental or observational studies, for each unit the investigator only ob-
serves the outcome and mediating response under the unit’s actual exposure, that is,
O = (W,A,Z(A), Y (A,Z(A)). Hence, the causal parameter Ψ(PU,X) is not always
identifiable from the observed data.

Conditions under which the natural direct effect will be identifiable are addressed
extensively in Robins and Greenland (1992), Pearl (2000), Robins (2003), van der
Laan and Petersen (2004), Hafeman and VanderWeele (2010), Imai et al. (2010), and
Pearl (2011). In particular, if the randomization assumptions

1. For all values (a, z), (A,Z) is independent of Y (a, z), given W ;

2. For all values of a, A is independent of Z(a), given W ;

and the conditional independence assumption

3. For all z, E (Y (1, z)− Y (0, z)|Z(0) = z,W ) = E (Y (1, z)− Y (0, z)|W )

are satisfied, then the causal effect Ψ(PU,X) may be expressed as a function of the
observed data generating distribution P0:

Ψ(P0) = EW

{∑
z

[E(Y |W,A = 1, Z = z)− E(Y |W,A = 0, Z = z)] p(z|W,A = 0)

}
. (1)

In the following sections, we will focus on the estimation of this statistical parameter.
The randomization assumptions 1 and 2 ensure that sufficient covariates are mea-

sured to control for confounding of the effects of treatment on outcome, treatment on
mediator, and mediator on outcome. As a result, the counterfactual elements Y (a, z)
and Z(a) will be identifiable within covariate stratum. Under these randomization
assumptions alone, the statistical parameter (1) equals the population mean of a
subject-specific average controlled direct effect

∑
z(Y (1, z)− Y (0, z))P (Z(0) = z|W )

(van der Laan and Petersen (2008)). Therefore, in the absence of the conditional
independence assumption 3 the statistical parameter (1) still offers a causal interpre-
tation.

2.3 The Natural Direct Effect parameter

Let M denote a model containing the true data generating distribution P0. For any
P ∈M, the likelihood decomposes into

P (O) = PW (W )PA(A|W )PZ(Z|W,A)PY (Y |W,A,Z).

For later convenience, we adopt the notations g(A|W,Z) = PA(A|W,Z), QW (W ) =
PW (W ), QZ(Z|W,A) = PZ(Z|W,A), and Q̄Y (W,A,Z) = E(Y |W,A,Z). Moreover,
let Q = (QW , QZ , Q̄Y ). The notations Q0 and g0 are reserved for the corresponding
components of the true data generating distribution P0. For a function f(O), we will
use Pf to denote the expectation of f(O) under the probability distribution P ∈M.
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For instance, P0f ≡
∑

o∈O f(o)dP0(o) denotes the expectation of f under the true
data generating distribution, while Pnf ≡ 1

n

∑n
i=1 f(oi) is the empirical mean of f .

One may consider the natural direct effect parameter Ψ as a map

Ψ : M→ R
P 7→ Ψ(P ) = Ψ(Q) ≡ EQW

[
EQZ

(
Q̄Y (W, 1, Z)− Q̄Y (W, 0, Z)|W,A = 0

)]
.

The parameter of interest in (1) is thus

ψ0 ≡ Ψ(P0) = EQW,0

[
EQZ,0

(
Q̄Y,0(W, 1, Z)− Q̄Y,0(W, 0, Z)|W,A = 0

)]
.

We refer to the inner expectation above as the (null level) mediated mean outcome
difference, and denote it by

EQZ
(Q̄Y |W, 0) ≡

∑
z

(
Q̄Y (W, 1, z)− Q̄Y (W, 0, z)

)
QZ(z|W, 0). (2)

This mediated difference is a function of W alone. For convenience, we may abuse
the notation EQZ

(Q̄Y ) ≡ EQZ
(Q̄Y |W, 0) when referring to the function of W. This

way, Ψ(P ) = Ψ
(
QW , EQZ

(Q̄Y )
)
.

Effcient score

Under a nonparametric model M, for any P ∈ M, the efficient score (efficient
influence curve, or canonical gradient) of Ψ at P is given by

D∗(Q, g,Ψ(Q)) =

{
I(A = 1)

g(1|W )

QZ(Z|W, 0)

QZ(Z|W, 1)
− I(A = 0)

g(0|W )

}(
Y − Q̄Y (W,A,Z)

)
+
I(A = 0)

g(0|W )

{
Q̄Y (W, 1, Z)− Q̄Y (W, 0, Z)− EQZ

(
Q̄Y (W, 1, Z)− Q̄Y (W, 0, Z)|W, 0

)}
+ EQZ

(
Q̄Y (W, 1, Z)− Q̄Y (W, 0, Z)|W, 0

)
−Ψ(Q)

= D∗Y +D∗Z +D∗W .

Note that the components D∗Y , D∗Z , D∗W are respectively the projection of D∗ onto
the tangent subspaces corresponding to the components P (Y |W,A,Z), P (Z|W,A),
P (W ) of the likelihood.

This efficient score for a nonparametric model may be derived by first considering
Ψ(P ) as a function of P = (Pf : f ∈ F), where F is a class of indicator functions
F = {I(w, a, z, y), I(w, a, z), I(w, a), I(w) : w ∈ W , a ∈ {0, 1}, z ∈ Z, y ∈ Y}. For
any given ”vector” h = (h(f) : f ∈ F), one may consider a directional derivative
d
dε

Ψ(P + εh)|ε=0. The efficient score is then given by the directional derivative ap-
plied to the direction of h = (f(O)− Pf : f ∈ F). In other words, it is given by∑

f∈F
∂Ψ(P )
∂Pf

(f(O) − Pf). A more detail exposition may be found in van der Laan

and Rose (2011).

Lemma 1. Robustness of the efficient score
Suppose there exists 1 > δ > 0 such that g(A = 1|W ) < 1 − δ a.e. over the support
of W . The efficient score is a robust estimating function for the parameter at P0, in
the sense that

P0D
∗ (Q, g, ψ0) = 0

if either of the following holds:
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(i) The conditional outcome expectation Q̄Y = E(Y |W,A,Z), and the mediated
mean outcome difference EQZ

(
Q̄Y,0(W, 1, Z)− Q̄Y,0(W, 0, Z) | W, 0

)
are correct.

(ii) The treatment mechanism g = p(A|W ), and the conditional outcome expectation
Q̄Y = E(Y |W,A,Z) are correct.

(iii) The treatment mechanism g = p(A|W ), and the conditional mediator density
ratio QZ(Z|W, 0)/QZ(Z|W, 1) are correct.

(iv) The treatment mechanism g = p(A|W ), and the conditional distribution of treat-
ment given mediator and covariates p(A|W,Z) are correct.

The proof of this lemma is straightforward, and we refer the interested reader to
Appendix A. A noteworthy observation is that in case (i), it was not necessary that
QZ = QZ,0. But rather, any function EZ(Q̄Y,0|W, 0) which captures the dependence of
the true outcome difference on the null exposure and confounder, and equals the true
mediated mean difference EQZ,0

(Q̄Y,0|W, 0) will yield the desired result. This suggests
that in the case where the outcome expectation can be correctly estimated while the
treatment mechanism and the mediator density are difficult to ascertain, one may
still obtain unbiasedness using a consistent data-adaptive estimator that regresses the
correctly predicted outcome difference on W among the control observations. On the
contrary, in cases when g is correct, robustness does not impose any requirement on
EQZ

(Q̄Y |W, 0). In fact, the cancelation in the proof shows that it may be any function
of W . We illustrate this last observation in the simulation section (implemented as
TMLE 2). Case (iv) is a simple consequence of case (iii). In situations when Z is
high dimensional, consistent estimation of p(A|W,Z) may prove more attainable than
consistent estimation of QZ(Z|W,A).

It is worthwhile to note that in the case where only Q̄Y is correctly specified, the
solution ψ1 to the equation P0D

∗(Q̄Y,0, QZ , g, ψ) = 0 corresponds to an alternative
effect parameter of the form

ψ1 = EW,0

{∑
z

(
Q̄Y,0(W, 1, z)− Q̄Y,0(W, 0, z)

)
×

{
(QZ,0(z|W, 0)−QZ(z|W, 0))

g0(0|W )

g(0|W )
+QZ(z|W, 0)

}}
= ψ0

+ EW,0

{∑
z

(
Q̄Y,0(W, 1, z)− Q̄Y,0(W, 0, z)

)
×

{
(QZ,0(z|W, 0)−QZ(z|W, 0))

(
g0(0|W )

g(0|W )
− 1

)}}
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3 Targeted MLE for the Natural Direct Effect of

a binary treatment

In general, under the framework of van der Laan and Rubin (2006) the construction of
a targeted estimator of a parameter of interest Ψ(P0) calls for two sets of ingredients.
For each component Qj of Q, one defines a uniformly bounded (w.r.t. the supremum
norm) loss function Lj : Qj → L∞(K) satisfying

Qj,0 = arg min
Qj∈Qj

P0Lj(Qj),

where L∞(K) is the class of functions of O with bounded supremum norm over a set
of K containing the support of O under P0. Given the loss function Lj, one defines a
one-dimensional parametric working submodel {Qj(Q, g, ε) : ε} ⊂ M passing through
Q at ε = 0 with score D∗j (Q, g) at ε = 0 that satisfies

〈 d
dε
Lj (Qj(Q, g, ε)) |ε=0〉 ⊃ 〈D∗j (Q, g)〉. (3)

The acceptable functional forms of the submodel are thus ruled by the loss function
Lj and the functional form of D∗j . The loss functions and their respective parametric
submodels satisfying (3) allow for loss-based estimates of each components of Q that
would also solve the corresponding component of the efficient score equation.

To specialize to the natural direct effect, we first note that the parameter of interest
and the components D∗Z and D∗W of the efficient score depend on QZ only through
the mediated mean outcome difference EQZ

(Q̄Y ) as denoted in (2). Secondly, the

empirical marginal distribution Q̂W of W is a consistent estimator of QW,0 that readily

solves the equation PnD
∗
W (EQZ

(Q̄Y ), Q̂W ) = 0 for any EQZ
(Q̄Y ). Hence, the proposed

estimator will focus on targeted estimation of Q̄Y,0(W,A,Z), and EQZ,0
(Q̄Y,0|W, 0).

An alternative targeted estimation to the one proposed above is to targetedly es-
timate the conditional mediator density QZ,0 instead of the mediated mean outcome
difference EQZ,0

(Q̄Y,0|W, 0). We refer the interested reader to Appendix B for this
alternative approach. The proposed and the alternative targeted procedures both
require an initial estimator of the conditional mediator density QZ,0. Their key differ-
ence lies in that the former defines a loss function and parametric working submodel
for the mediated mean outcome difference EQZ

(Q̄Y |W, 0), whereas the latter defines a
loss function and parametric working submodel for the conditional mediator density
QZ and then estimates the mediated mean outcome difference plugging in the targeted
mediator density and the targeted Q̄Y . The bias-variance trade-off in the targeting
step of the first approach is more optimal for estimating the ultimate component of
interest, which is the mediated mean outcome difference.

3.1 Construction of the targeted MLE

Loss functions

Suppose Y is binary or continuous and bounded. In the latter case, without loss
of generality we may assume that Y is bounded in (0, 1). In this case, a valid loss
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function for Q̄Y is the minus-loglikelihood

LY (Q̄Y )(O) = −
{
Y log Q̄Y (W,A,Z) + (1− Y ) log(1− Q̄Y (W,A,Z))

}
. (4)

For a given Q̄Y (·), suppose Q̄Y (W, 1, Z)− Q̄Y (W, 0, Z) is also bounded. Without
loss of generality, we may also assume it’s bounded between (0, 1). Let the loss
function for EQZ

(Q̄Y |W, 0) be

LZ(EQZ
(Q̄Y ))(O) =

− I(A = 0)×{
Q̄Y (W,A,Z) logEQZ

(Q̄Y |W, 0) + (1− Q̄Y (W,A,Z)) log(1− EQZ
(Q̄Y |W, 0))

}
. (5)

Linear transformations onto the unit interval may be needed in order to use loss
functions LY and LZ . However, since the parameter of interest and the components of
the efficient score are linear in Q̄Y and EQZ

(Q̄Y ), the necessary linear transformations
and their inverse maps do not affect the properties of the estimators.

In a more general setting one may instead use the squared error loss functions

LY (Q̄Y )(O) =
(
Y − Q̄Y (W,A,Z)

)2
,

and
LZ(EQZ

(Q̄Y ))(O) =
(
Q̄Y (W,A,Z)− EQZ

(Q̄Y |W, 0)
)2
I(A = 0).

Parametric working submodels.

Under the loss function (4) for Q̄Y , consider the logistic working submodel

Q̄Y (QZ , g)(ε1) ≡ expit
{
logit(Q̄Y ) + ε1CY (QZ , g)

}
,

where CY (QZ , g)(O) =
{
I(A=1)
g(1|W )

QZ(Z|W,0)
QZ(Z|W,1)

− I(A=0)
g(0|W )

}
. This submodel satisfies

d

dε1
LY
(
Q̄Y (QZ , g)(ε1)

)
|ε1=0= D∗Y (Q̄Y , QZ , g). (6)

Similarly, for a given EQZ
(Q̄Y |W, 0), under the loss function (5) the logistic work-

ing submodel

EQZ
(Q̄Y )(g)(ε2) ≡ expit

{
logit(EQZ

(Q̄Y )) + ε2CZ(g)
}
,

with CZ(g)(O) = 1
g(0|W )

, satisfies

d

dε2
LZ
(
EQZ

(Q̄Y )(g)(ε2)
)
|ε2=0= D∗Z(EQZ

(Q̄Y ), Q̄Y , g). (7)

In the case where the squared error loss function is used, the parametric working
submodels are of the form

Q̄Y (QZ , g)(ε1) = Q̄Y + ε1CY (QZ , g)

and
EQZ

(Q̄Y )(g)(ε2) = EQZ
(Q̄Y ) + ε2CZ(g).
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Implementation

Let Pn denote the empirical distribution of n i.d.d observations of O. Let ˆ̄QY , Q̂Z ,
and ĝ be respectively initial estimators of Q̄Y,0, QZ,0 and g0. Let

ε̂1
∗ = arg min

ε
PnLY

(
ˆ̄QY (Q̂Z , ĝ)(ε1)

)
be the optimal ε1 which minimizes the empirical risk. The update

ˆ̄Q∗Y ≡ ˆ̄QY (Q̂Z , ĝ)(ε̂∗) (8)

is the targeted MLE estimator of Q̄Y,0.

Next, let ÊZ( ˆ̄Q∗Y |W, 0) be an initial estimator of the mediated mean outcome

difference EQZ,0

(
ˆ̄Q∗Y (W, 1, Z) − ˆ̄Q∗Y (W, 0, Z) | W,A = 0

)
. This may be constructed

using a plug-in estimator with Q̂Z and ˆ̄Q∗Y . The optimal ε2 is given by

ε̂2
∗ = arg min

ε
PnLZ

(
ÊZ( ˆ̄Q∗Y )(ĝ)(ε2)

)
.

The update

Ê∗Z( ˆ̄Q∗Y ) ≡ ÊZ( ˆ̄Q∗Y )(ĝ)(ε∗2) (9)

is the targeted MLE estimator of EQZ,0

(
ˆ̄Q∗Y (W, 1, Z)− ˆ̄Q∗Y (W, 0, Z) | W,A = 0

)
. More-

over, it is a function of W alone, i.e. Ê∗Z( ˆ̄Q∗Y |W, 0) = Ê∗Z( ˆ̄Q∗Y )(W ). The targeted MLE
estimator of ψ0 is thus given by

ψ̂∗ =
1

n

n∑
i=1

Ê∗Z( ˆ̄Q∗Y )(Wi). (10)

It follows from (6) that PnD
∗
Y ( ˆ̄Q∗Y , Q̂Z , ĝ) = 0 and it follows from (7) that PnD

∗
Z

(
Ê∗Z( ˆ̄Q∗Y ), ˆ̄Q∗Y , ĝ

)
=

0. Moreover, the empirical distribution Q̂W of W solves PnD
∗
W (Ê∗Z( ˆ̄Q∗Y ), Q̂W ) = 0.

Therefore the resulting targeted estimator solves the efficient score equation.

Remarks on implementation

When Z is high dimensional, consistent estimation of p(A|W,Z) may be more at-
tainable than consistent estimation of QZ(Z|W,A). In such case, instead of using an
estimator of QZ to estimate the ratio QZ(Z|W, 0)/QZ(Z|W, 1) in the targeting step

of Q̄Y , one may use an estimator p̂(A=0|W,z)
ĝ(A=0|w)

ĝ(A=1|W )
p̂(A=1|W,z) .

In the step of targeting the mediated mean outcome difference, we mentioned the
plug-in estimator using the initial mediator density and the targeted outcome pre-
dictor as an initial estimator. However, the initial estimator may be any function

EZ( ˆ̄Q∗Y |W, 0) of W which regresses the predicted outcome difference given by ˆ̄Q∗Y
on W among control observations. From lemma 1, we see that when the treatment
mechanism is correct, i.e. in cases (ii), (iii), and (iv), the specification of the me-
diated mean outcome difference per se does not affect robustness (we illustrate this
observation using implementation TMLE 2 in the simulations section).
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3.2 Asymptotic Properties of the Targeted MLE

Since the proposed targeted MLE estimator solves the efficient score equation, lemma
1 implies in particular that the estimator is asymptotically unbiased if either of the
following is true: (i) The conditional outcome expectation Q̂∗Y and the mediated mean

outcome difference Ê∗Z( ˆ̄Q∗Y |W, 0) are consistent; (ii) the treatment mechanism ĝ and

the conditional outcome expectation ˆ̄Q∗Y are consistent; (iii) the treatment mechanism
g, and the conditional mediator density ratio QZ(Z|W, 0)/QZ(Z|W, 1) are consistently
estimated. These properties are illustrated in the simulations section below.

Under certain empirical conditions, an estimator that solves an estimating equa-
tion will be asymptotically linear with influence curve given by the estimating func-
tion (e.g.. van der Vaart (1998), van der Laan and Robins (2003), Tsiatis (2006),
Kosorok (2008)). In such case, central limit theorem implies that one may obtain an
asymptotic variance estimate of the said estimator using the variance estimate of its
influence curve. We detail conditions for asymptotic linearity of the targeted MLE
estimator in the theorem 1 in Appendix A.

Empirical process conditions are often necessary for the asymptotic linearity of an
Z-estimator as they restrict the size of the class of functions containing the influence
curve (we refer to the CV-TMLE framework in Zheng and van der Laan (2010) and
Zheng and van der Laan (2011) for an alternative targeted estimator which avoids
such conditions through the use of cross-validation). The conclusion (18) of theorem
1 shows that under certain empirical process conditions, the estimator behaves as an
empirical mean of mean zero i.i.d. random variables (which converges to a normal
distribution by CLT), plus specified second order remainders from which one may
infer the conditions needed for asymptotic linearity.

When true treatment mechanism g0 is used in the estimation procedure (e.g. in
an RCT), the remainders concerning estimation of g0 vanish, leaving only a second
order remainder term which concerns the speed at which the targeted outcome expec-

tation estimator ˆ̄Q∗Y and the initial mediator density Q̂Z converge to their respective
limits, and two first order remainder terms concerning the difference between these
limits and the truth. Asymptotic linearity requires firstly that the second order term

be oP (1/
√
n) (condition (19) of theorem 1). If both ˆ̄Q∗Y and Q̂Z are consistent (and

satisfies this speed condition), then the estimator is asymptotically linear. Moreover,
if the plug-in initial estimator for the mediated mean outcome difference is used in
this case, it follows that the estimator is in fact asymptotically efficient. Otherwise,
asymptotic efficiency follows only if the initial estimator of the mediated mean out-
come difference is also consistent. In the case that one of the two components, Q̄Y or
QZ , is inconsistently estimated, the resulting first order remainder will have to satisfy
an asymptotically linear condition ((23) or (21)). This implies in particular that if
one uses a data-adaptive estimator for the outcome Q̄Y,0, then the estimator Q̂Z,n for
the mediator density needs to converge fast enough so that second order condition
(19) is satisfied. Even though this compromise may cause the mediator density es-
timator to be inconsistent, as long as the outcome estimator Q̂∗Y,n is consistent and
satisfies the asymptotic linearity condition of (21), then the effect estimate will still

11
Hosted by The Berkeley Electronic Press



be asymptotically linear. On the other hand, if one chooses to use a data-adaptive
estimator for the mediator density, it may come at the expensive of a smaller model
for the outcome so that (19) is met. If this smaller model for the outcome is not
correct, then the mediator density estimator will need to be consistent and satisfy
the asymptotically linear condition of (23).

When the true treatment mechanism g0 is not used, one is confronted with 3 second

order remainders that concern the speeds at which the pairs
(

ˆ̄Q∗Y , Q̂Z

)
,
(

ˆ̄Q∗Y , ĝ
)

, and(
ĝ, Ê∗Z( ˆ̄Q∗Y )

)
converge to their respective limits, and 3× 2 = 6 first order remainders

that concern the difference between these limits and the truth. Asymptotic linearity
requires firstly that the 3 second order remainders are oP (1/

√
n) (conditions (19), (25)

and (26) ). This impose restrictions on how large a model one may use to estimate each
component. If g0 is contained in a correctly specified parametric model (e.g. it only
depends on a discrete covariate and one uses a saturated model), then rate conditions
(25) and (26) are satisfied for reasonable estimators of Q̄Y,0 and QZ,0. However, if g0 is
contained in a large semiparametric model, the estimators for outcome and mediator
density will need to both converge fast enough so that conditions (25) and (26) are
satisfied, which severely restrict their data-adaptiveness. If all the components are
consistently estimated, then the effect estimator is asymptotically efficient. However,
if one of the components is inconsistent, then one is confronted with two first order
remainders and asymptotic linearity conditions on these terms are needed to ensure
asymptotic linearity of the resulting effect estimate.

In short, asymptotic linearity requires that (a) estimators of each component con-
verge to their respective limits at a reasonable speed; (b) at most one component may
be inconsistently estimated, in which case the consistent estimators of the remaining
components must meet stricter asymptotic linearity conditions.

More generally, many conditions which concern estimation of the mediator density
are in fact conditions on estimation of the mediator density ratio (as we see in theorem
1). Therefore, if one decides to make use of case (iv) in lemma 1, the estimation of
p(A|W,Z) ought to be such that the corresponding speed conditions and first-order
linearity conditions are satisfied for the resulting mediator density ratio estimator.

4 Some existing estimation methodologies

In this section, we describe how the estimating equation approach and the g-computation
approach may be applied to the natural direct effect of a binary exposure, and contrast
their theoretical properties with those of the proposed targeted estimator.

4.1 Estimating equation approach

Under the estimating equation based approach (Robins (1999), Robins and Rotnitzky
(2001), van der Laan and Robins (2003)), one may use the efficient score under a
nonparametric model as the estimating function. An estimate of the parameter is
given by a root of the efficient score equation. In missing data and causal inference
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applications, where the observed data is regarded as a ’censored’ version of a full
data structure, the efficient score of a parameter of the observed data distribution
will involve inverse weighting of the treatment (censoring) mechanism. Moreover, the
efficient score is an unbiased estimating function if either the relationship between
outcome and covariates under the full data model or the treatment mechanism is
correct. Therefore, this approach is also known as doubly robust inverse probability
treatment (or censoring) weighting (DR-IPTW).

Under this framework, an estimate for the natural direct effect is given by solving
for the root of the equation given by the efficient score in section 2.3. We refer to
Tchetgen Tchetgen and Shpitser (2011) for detailed study of this estimator. For given

estimators Q̂Y , Q̂Z , ÊZ( ˆ̄QY ) and ĝ, the natural direct effect estimate is given by

ψ̂driptw =
1

n

n∑
i=1

{{
I(Ai = 1)

ĝ(1|Wi)

Q̂Z(Zi|Wi, 0)

Q̂Z(Zi|Wi, 1)
−
I(Ai = 0)

ĝ(0|Wi)

}(
Yi − ˆ̄QY (Wi, Ai, Zi)

)
+
I(Ai = 0)

ĝ(0|Wi)

{
ˆ̄QY (Wi, 1, Zi)− ˆ̄QY (Wi, 0, Zi)− ÊZ

(
ˆ̄QY (Wi, 1, Zi)− ˆ̄QY (Wi, 0, Zi)|W, 0

)}
+ ÊZ

(
ˆ̄QY (Wi, 1, Zi)− ˆ̄QY (Wi, 0, Zi)|W, 0

)}

By design, this estimator solves the efficient score equation

PnD
∗
(
Q̂Y , Q̂Z , ÊZ( ˆ̄QY ), ĝ, ψ̂driptw

)
= 0.

Therefore, the DR-IPTW estimator and the proposed targeted MLE estimator share
the same asymptotic properties that are inherited from the efficient score. By the
same token, they are both sensitive to extreme values of the treatment model, such as
in the case of near positivity violations. This was demonstrated in Kang and Schafer
(2007). Indeed, in the case of natural direct effect, when ĝ(Ai|Wi) is small for some
observations, the estimated D∗Y component of the efficient score will be large; this
problem is exacerbated if Ai = 0, in which case the estimated D∗Z is also large.

When near positivity violation is present, the estimating equation estimator may
yield estimates that are out of the bounds of the parameter. For instance, in the case
of binary outcome Ψ is the mean difference of two probabilities and hence bounded
between -1 and 1. But under extreme values of PnD̂

∗
Y and PnD̂

∗
Z , the DR-IPTW may

yield estimates that are out of these bounds. The proposed targeted estimator using
a logistic working submodel (introduced in Gruber and van der Laan (2010)) aims
to provide more stable estimates through the combination of a unit linear transfor-
mation, which estimates implicitly the boundary of the parameter domain, and the
virtue of a substitution estimator, which effectively translates domain boundary into
bounds of the parameter range.

4.2 G-computation approach

The sensitivity to near positivity violation of the targeted estimator and the DR-
IPTW estimator stem from the use of inverse probability weightings in the efficient
score. A g-computation approach based on the identifiability result in (1) avoids this
inverse weighting. More specifically, for Q̂Y and Q̂Z likelihood based estimators of
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the outcome expectation and mediator density, respectively, consider a g-computation
estimator given by:

ψ̂gcomp =
1

n

n∑
i=1

(
Q̂Y (Wi, 1, Zi)− Q̂Y (Wi, 0, Zi)

)
Q̂Z(Zi|Wi, 0).

Unlike the robustness of the targeted estimator and the DR-IPTW estimator,
the consistency of the g-computation estimator relies on correct specification of both
the outcome expectation and mediator density. In the case of these likelihood-based
estimates being correct, the resulting ψ̂gcomp is more efficient than the two robust
estimators. However, even though this g-computation estimator does not use inverse
probability weighting explicitly, it may still be affected by the data sparsity, since
quality of the outcome expectation estimate (even under the correct model) is sensitive
to the overlap between the empirical covariate distribution of the treated and the
empirical covariate distribution of the control.

5 Simulation Study

In this section we evaluate the performance of the targeted estimator, the DR-IPTW
estimator, and the g-computation estimator under model mis-specification and data
sparsity. From lemma 1, one expects to see that in the absence of positivity violations,
the TMLE and DR-IPTW be robust against model mis-specifications.

5.1 Simulation schemes

The following three data generating schemes are used. The mediator variable Z
is discrete with three categories, i.e. Z ∈ {0, 1, 2}. Each scheme has a version
with a binary outcome Y and a version with a continuous and bounded outcome Y .
Simulations 2 and 3 differ from simulation 1 in their mediator density and treatment
mechanism, respectively.
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1. Simulation 1: no positivity violations.

W ∼ U(0, 2)

A ∼ Bern
(
expit(−1 + 2W − 0.08W 2)

)
Z ∼Multinom

(
p(Z = 0) = expit(−0.2 + 0.5A+ 0.3A×W + 0.7W − 1.5W 2),

p(Z = 1|Z 6= 0) = expit(−0.2 + 0.4A+ .8A×W + 0.4W − 2.5W 2)

)
version a:

Y ∼ Bern

(
expit(−2 +A−W +W 2 + Z + 0.8A×W −A×W 2

− 0.5A× Z + 0.7A× Z2)

)
version b:

Y ∼ −0.1 + 0.5A− 0.2W + 0.1W 2 + 0.2Z + 0.4A×W − 0.5A×W 2

− 0.3A× Z + 0.5A× Z2 +N(0, 1)

Probability of receiving treatment give covariate, gA(A = 1|w), is bounded
in (0.26, 0.94). Probability of a particular mediator value z given A = 1 and
W = w, QZ(z|A = 1, w), is bounded between (0.0005, 0.9753), whereas the
ratio QZ(z|A = 0, w)/QZ(z|A = 1, w) for a particular z and w is bounded
in (0.1376, 2.0103). In version b with continuous outcome, the expected value
E(Y |W,A,Z) is bounded in (−0.8, 2.25).

The parameters of interest are ψ0 = 0.2585079 for the binary version, and
ψ0 = 1.158052 for the continuous version. The semiparametric efficiency bounds
are var(D∗(P0)) = 1.157 for the binary version, and var(D∗(P0)) = 7.967 for
the continuous version.

2. Simulation 2: larger effect of treatment on the distribution of mediator.

Z ∼ Multinom

(
p(Z = 0) = expit(−2− 2A− 0.5A×W + 3W −W 2),

p(Z = 1|Z 6= 0) = expit(1− 4A−A×W +W +W 2)

)
.

Conditional distribution for W,A, Y are the same as simulation 1. The con-
ditional probability of a particular mediator value z given A = 1 and W = w,
QZ(z|A = 1, w), range in (0.017, 0.081) for Z = 0, (0.046, 0.697) for Z = 1 and
(0.256, 0.936) for Z = 2. The ratio of conditional mediator density QZ(z|A =
0, w)/QZ(z|A = 1, w) range in (6.583, 10.543) for Z = 0, (0.717, 13.826) for
Z = 1 and (0.0018, 0.253) for Z = 2.

The parameters of interest are ψ0 = 0.12556476 for the binary version, and ψ0 =
0.4183004 for the continuous version. The semiparametric efficiency bounds are
var(D∗(P0)) = 3.721905 for the binary version, and var(D∗(P0)) = 17.53054
for the continuous version.
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3. Simulation 3: near positivity violation the treatment mechanism.

A ∼ Bern
(
expit(−2− 3W + 5W 2)

)
.

Conditional distributions for W,Z, Y are the same as simulation 1, therefore
the values of the parameters of interest also remain the same. The treatment
mechanism is bounded in gA(A = 1|W ) ∈ (0.0794, 0.999994). Moreover, gA(A =
1|W ) > 0.99 for W > 1.5.

5.2 Estimators

For each data generating distribution, initial maximum likelihood based estimators of
the outcome expectation Q̄Y,0, treatment mechanism gA,0 and mediator density QZ,0

will be obtained according to each of the three cases of model mis-specification in
lemma 1, as well as the case where all models are correct. The model mis-specifications
considered are as follows:

• Mis-specified outcome model is Y ∼ A+W +Z +A×Z, with gaussian family
for Continuous outcome, and binomial family (with logit link) for binary Y .

• Mis-specified mediator density is multinomial with p(Z = 0|A,W ) ∼ A and
p(Z = 1|A,W,Z 6= 0) ∼ A, both from a binomial family with logit link.

• Mis-specified treatment mechanism is A ∼ W 2 for simulations 1 and 2, and
A ∼ W for simulation 3, both from a binomial family with logit link.

The estimators ψ̂gcomp and ψ̂driptw will be implemented using these likelihood-based
estimators as described in section 4.

The targeted estimator ψ̂∗ will be constructed using these initial estimators un-
der logistic working submodels. Firstly, in the case of continuous outcome, linear

transformation T1 is performed on Y and the initial estimator ˆ̄QY , using bounds
given by the range of the observed outcomes and the predicted outcomes under
ˆ̄QY . After obtaining the targeted estimator ˆ̄Q∗Y on unit scale using logistic work-
ing submodel, we perform a second linear transformation T2 to bound the difference
ˆ̄Q∗Y (W, 1, Z) − ˆ̄Q∗Y (W, 0, Z) in the unit interval, and obtain the targeted estimator

Ê∗Z( ˆ̄Q∗Y |W, 0) using logistic working submodel. Finally, we apply the inverse map T−1
2

to Ê∗Z( ˆ̄Q∗Y |W, 0) and T−1
1 to the final effect estimate and estimate of Q̄Y .

We will consider two implementations of TMLE which differ in their initial esti-
mator of the mediated mean outcome difference. In TMLE 1, that initial estimator

is given by a plug-in estimator EQ̂Z
( ˆ̄Q∗Y |W, 0) using Q̂Z and the updated ˆ̄Q∗Y . In

TMLE 2, that initial estimate is obtained by performing a main term regression

( ˆ̄Q∗Y,n(W, 1, Z) − ˆ̄Q∗Y,n(W, 0, Z)) ∼ W among the observations with A = 0. With the
data generating distributions under consideration, the initial estimate in TMLE 2 is
incorrect regardless of the consistency of Q̄Y or QZ . However, from lemma 1, we
expect that TMLE 2 to be consistent in the cases (ii) and (iii), in the absence of
positivity violation.
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5.3 Results

For each data generating distribution, 1000 samples of each size n = 500 and n = 5000
are generated. Bias, variance and mse for each sample size are estimated over the
1000 samples.

5.3.1 Simulation 1: No positivity violation

Recall that the parameters of interest are ψ0 = 0.2585079 for the binary version, and
ψ0 = 1.158052 for the continuous version, and the semiparametric efficiency bounds
are var(D∗(P0)) = 1.157 for the binary version, and var(D∗(P0)) = 7.967 for the
continuous version. Therefore, var(D∗(P0))/n ≈ 2.314e− 03 and 2.314e− 04 for n =
500 and 5000, respectively, in the case of the binary outcome, and var(D∗(P0))/n ≈
1.593e− 02 and 1.593e− 03 in the case of continuous Y .

The results are detailed in tables 1 and 2. When the outcome expectation and
the mediator density are correctly specified, the robust estimators TMLE and DR-
IPTW provide little advantage over the g-computation estimator in terms of bias or
efficiency. However, when either the outcome expectation or the mediator density are
mis-specified, TMLE and DR-IPTW using a correct treatment mechanism provide
substantial bias correction so that MSE is reducing at rate 1/n. The two robust
estimators behave similarly. Moreover, as predicted by lemma 1, TMLE 2, which
utilizes a mis-specified initial estimator of the mediated mean outcome difference,
behaves as well as TMLE 1 when the treatment mechanism is correct.

Table 1: Simulation 1: Binary outcome, no positivity violations

Bias Var MSE
n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct
gcomp: qy.c, qz.c 6.350e-04 5.837e-04 2.452e-03 2.261e-04 2.452e-03 2.264e-04
tmle 1: qy.c, qz.c, ga.c 2.394e-04 5.223e-04 2.499e-03 2.287e-04 2.499e-03 2.290e-04
tmle 2: qy.c, qz.c, ga.c 3.104e-04 5.647e-04 2.525e-03 2.295e-04 2.525e-03 2.298e-04
driptw: qy.c, qz.c, ga.c 2.005e-04 5.227e-04 2.501e-03 2.287e-04 2.501e-03 2.289e-04
tmle: qy.c, qz.c, ga.m 4.453e-04 4.694e-04 2.627e-03 2.373e-04 2.627e-03 2.375e-04
driptw: qy.c, qz.c, ga.m 7.288e-04 4.583e-04 2.754e-03 2.447e-04 2.754e-03 2.449e-04

Q̄Y correct, gA correct
gcomp: qy.c, qz.m 4.260e-02 4.075e-02 3.017e-03 2.771e-04 4.832e-03 1.937e-03
tmle 1: qy.c, qz.m, ga.c 2.221e-04 5.691e-04 2.478e-03 2.279e-04 2.478e-03 2.282e-04
tmle 2: qy.c, qz.m, ga.c 2.004e-04 6.232e-04 2.495e-03 2.286e-04 2.495e-03 2.289e-04
driptw: qy.c, qz.m, ga.c 2.714e-04 5.474e-04 2.494e-03 2.289e-04 2.494e-03 2.292e-04

QZ correct, gA correct
gcomp: qy.m, qz.c 2.834e-02 2.825e-02 2.434e-03 2.258e-04 3.238e-03 1.024e-03
tmle 1: qy.m, qz.c, ga.c 2.072e-04 5.450e-04 2.530e-03 2.288e-04 2.530e-03 2.291e-04
tmle 2: qy.m, qz.c, ga.c 4.050e-04 5.664e-04 2.543e-03 2.296e-04 2.543e-03 2.299e-04
driptw: qy.m, qz.c, ga.c 3.716e-04 5.493e-04 2.532e-03 2.292e-04 2.532e-03 2.295e-04

17
Hosted by The Berkeley Electronic Press



Table 2: Simulation 1: Continuous outcome, no positivity violations

Bias Var MSE
n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct
gcomp: qy.c, qz.c 4.786e-04 5.049e-04 1.597e-02 1.663e-03 1.597e-02 1.663e-03
tmle 1: qy.c, qz.c, ga.c 5.390e-04 4.571e-04 1.654e-02 1.704e-03 1.654e-02 1.704e-03
tmle 2: qy.c, qz.c, ga.c 2.140e-03 4.496e-04 1.686e-02 1.719e-03 1.686e-02 1.720e-03
driptw: qy.c, qz.c, ga.c 4.788e-04 4.569e-04 1.653e-02 1.703e-03 1.653e-02 1.704e-03
tmle: qy.c, qz.c, ga.m 7.706e-04 8.787e-04 1.737e-02 1.797e-03 1.737e-02 1.797e-03
driptw: qy.c, qz.c, ga.m 1.142e-03 9.824e-04 1.844e-02 1.886e-03 1.844e-02 1.887e-03

Q̄Y correct, gA correct
gcomp: qy.c, qz.m 2.150e-01 2.143e-01 1.778e-02 1.759e-03 6.402e-02 4.767e-02
tmle 1: qy.c, qz.m, ga.c 9.824e-04 5.641e-04 1.666e-02 1.692e-03 1.666e-02 1.692e-03
tmle 2: qy.c, qz.m, ga.c 1.334e-03 5.689e-04 1.679e-02 1.706e-03 1.679e-02 1.706e-03
driptw: qy.c, qz.m, ga.c 6.694e-04 5.908e-04 1.652e-02 1.695e-03 1.652e-02 1.696e-03

QZ correct, gA correct
gcomp: qy.m, qz.c 7.574e-02 7.435e-02 1.364e-02 1.457e-03 1.938e-02 6.984e-03
tmle 1: qy.m, qz.c, ga.c 7.186e-04 4.839e-04 1.656e-02 1.705e-03 1.656e-02 1.706e-03
tmle 2: qy.m, qz.c, ga.c 1.272e-03 4.591e-04 1.675e-02 1.710e-03 1.675e-02 1.710e-03
driptw: qy.m, qz.c, ga.c 6.413e-04 4.597e-04 1.673e-02 1.707e-03 1.673e-02 1.707e-03
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5.3.2 Simulation 2: larger effect of treatment on mediator

Under this simulation scheme, the parameters of interest are ψ0 = 0.12556476 for
the binary version, and ψ0 = 0.4183004 for the continuous version. The efficiency
bounds are var(D∗(P0)) = 3.721905 for the binary version, and var(D∗(P0)) =
17.53054 for the continuous version. Therefore, var(D∗(P0))/n ≈ 7.444e − 03 and
7.444e − 04 for n = 500 and 5000, respectively, in the case of the binary outcome,
and var(D∗(P0))/n ≈ 3.506e− 02 and 3.506e− 03 in the case of continuous Y .

In this simulation, the treatment has a moderately large effect on the mediator
distribution. Compared to simulation 1, this simulation scheme has a larger ratio of
QZ(z|0, w)/QZ(z|1, w) for categories of Z = 0, 1 over a region of the sample space of
W (details are explained previously). We see that in this case all estimators behave
as expected as in the previous simulation. When implemented using the correct
treatment mechanism, they provide bias reduction over g-computation estimator in
the cases when either the mediator density or the outcome model are mis-specified.
When the outcome model and mediator density are both correct, then g-computation
is consistent. In this case the TMLE and DR-IPTW are also consistent but less
efficient. In all cases, TMLE and DR-IPTW behave similarly. We observe again that
when the treatment mechanism is correct, TMLE 2, which utilizes a mis-specified
initial estimator of the mediated mean outcome difference, behaves as well as TMLE
1.

Table 3: Simulation 2: Binary outcome, larger effect of treatment on mediator

Bias Var MSE
n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct
gcomp: qy.c, qz.c 1.993e-03 3.457e-04 6.090e-03 5.743e-04 6.094e-03 5.744e-04
tmle1 : qy.c, qz.c, ga.c 5.457e-03 5.824e-04 8.710e-03 7.873e-04 8.740e-03 7.877e-04
tmle 2: qy.c, qz.c, ga.c 5.226e-03 5.029e-04 8.733e-03 7.889e-04 8.761e-03 7.892e-04
driptw: qy.c, qz.c, ga.c 6.046e-03 5.692e-04 8.973e-03 7.862e-04 9.009e-03 7.865e-04
tmle: qy.c, qz.c, ga.m 5.124e-03 6.550e-04 8.076e-03 7.339e-04 8.102e-03 7.343e-04
driptw: qy.c, qz.c, ga.m 5.140e-03 6.736e-04 8.330e-03 7.693e-04 8.357e-03 7.697e-04

Q̄Y correct, gA correct
gcomp: qy.c, qz.m 1.200e-02 1.308e-02 5.907e-03 5.674e-04 6.050e-03 7.384e-04
tmle 1: qy.c, qz.m, ga.c 3.042e-03 4.958e-04 6.233e-03 5.812e-04 6.242e-03 5.814e-04
tmle 2: qy.c, qz.m, ga.c 2.854e-03 4.200e-04 6.245e-03 5.833e-04 6.253e-03 5.835e-04
driptw: qy.c, qz.m, ga.c 2.891e-03 4.714e-04 6.194e-03 5.788e-04 6.203e-03 5.791e-04

QZ correct, gA correct
gcomp: qy.m, qz.c 8.807e-03 1.350e-02 5.736e-03 5.824e-04 5.813e-03 7.648e-04
tmle 1: qy.m, qz.c, ga.c 7.602e-03 5.844e-04 8.903e-03 7.961e-04 8.961e-03 7.964e-04
tmle 2: qy.m, qz.c, ga.c 7.810e-03 6.202e-04 8.902e-03 7.947e-04 8.963e-03 7.951e-04
driptw: qy.m, qz.c, ga.c 6.843e-03 5.093e-04 8.931e-03 7.918e-04 8.978e-03 7.921e-04
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Table 4: Simulation 2: Continuous outcome, larger effect of treatment on mediator

Bias Var MSE
n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct
gcomp: qy.c, qz.c 1.090e-02 4.189e-04 2.494e-02 2.392e-03 2.506e-02 2.392e-03
tmle 1: qy.c, qz.c, ga.c 1.203e-02 2.325e-03 4.245e-02 3.498e-03 4.260e-02 3.504e-03
tmle 2: qy.c, qz.c, ga.c 1.105e-02 2.488e-03 4.236e-02 3.507e-03 4.248e-02 3.513e-03
driptw: qy.c, qz.c, ga.c 1.023e-02 2.373e-03 4.295e-02 3.493e-03 4.305e-02 3.499e-03
tmle: qy.c, qz.c, ga.m 1.244e-02 1.670e-03 3.908e-02 3.094e-03 3.924e-02 3.096e-03
driptw: qy.c, qz.c, ga.m 1.134e-02 1.834e-03 3.991e-02 3.253e-03 4.004e-02 3.257e-03

Q̄Y correct, gA correct
gcomp: qy.c, qz.m 5.763e-02 6.780e-02 2.317e-02 2.244e-03 2.649e-02 6.841e-03
tmle 1: qy.c, qz.m, ga.c 1.276e-02 2.737e-04 2.624e-02 2.418e-03 2.640e-02 2.418e-03
tmle 2: qy.c, qz.m, ga.c 1.149e-02 4.602e-04 2.626e-02 2.426e-03 2.639e-02 2.426e-03
driptw: qy.c, qz.m, ga.c 1.219e-02 3.249e-04 2.598e-02 2.405e-03 2.613e-02 2.405e-03

QZ correct, gA correct
gcomp: qy.m, qz.c 2.742e-02 4.450e-02 2.947e-02 2.816e-03 3.022e-02 4.796e-03
tmle 1: qy.m, qz.c, ga.c 1.134e-02 2.905e-03 4.632e-02 3.546e-03 4.645e-02 3.555e-03
tmle 2: qy.m, qz.c, ga.c 1.217e-02 2.793e-03 4.613e-02 3.529e-03 4.628e-02 3.537e-03
driptw: qy.m, qz.c, ga.c 5.395e-03 2.925e-03 4.125e-02 3.552e-03 4.128e-02 3.561e-03
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5.3.3 Simulation 3: Near positivity violation.

The parameters of interest are the same as in simulation 1: ψ0 = 0.2585079 for
the binary version, and ψ0 = 1.158052 for the continuous version. Probability of
treatment given covariate W is bounded between (0.0794, 0.999994), with treatment
probability > 1.99 for W > 1.5. Estimators using a truncated version of the correct
treatment mechanism with an a-priori specified bound of (0.025, 0.975) were also
considered (’ga.tr’).

In the presence of data sparsity, the robustness results of lemma 1 no longer apply
when the treatment model values are extreme. We observe here that the MSE of
TMLE and DR-IPTW in the case of mis-specification of outcome model or mediator
density cease to reduce at a rate proportional to sample size. However, when both
of the outcome model and mediator density are correct, TMLE and DR-IPTW with
an incorrect treatment mechanism (either through truncation or incorrect modeling)
yields MSE that are proportional to sample size. This last result is predicted by the
robustness result (i) of lemma 1 and the fact that the mis-specified treatment models
is bounded away from 1.

We observe also that in the case of near positivity violation, TMLE 2 is less favor-
able than TMLE 1 across all cases. This may suggest that under data sparsity, the
use of plug-in estimator for the mediated mean outcome difference is more beneficial
than considerations such as the rate at which it is estimated. Interestingly, in table
5, which pertains to a binary outcome, we observe an increase in MSE (driven by the
increase in variance) as one moves away from the use of substitution principle (with
TMLE 1 being the one which uses substitution estimators in all its steps, TMLE 2
which does not use substitution estimator in the initial estimate of the mediated mean
outcome difference but uses substitution in the final effect estimate, and DR-IPTW
which does not use substitution at all). This may suggest that in the case of positivity
violation, when strict bounds exist on the parameter, the degree at which each step
of the estimation procedure respects the bounds affects the stability of the resulting
estimate. Nonetheless, rigorous analysis is needed to provide more valid insights.

Unlike in previous two cases, we observe that TMLE and DR-IPTW behave dif-
ferently in some cases. We first consider the version with binary outcome. Since
the parameter is an average of probability differences, for a given dataset one would
like the effect estimates to be bounded between −1 and 1. However, when using a
correctly specified treatment mechanism, the DR-IPTW estimator exhibits estimates
that are out of bound (of magnitude larger than 3 in some cases, and of magnitude 11
and 14 in one dataset). The bias, variance and mse of each estimator are detailed in
table 5. When outcome model and mediator density are correct, the g-computation is
still consistent despite the positivity violation. Nonetheless, the effect of data-sparsity
on g-comp is apparent when comparing this g-comp estimator with its counterpart in
the case of no positivity violation (table 1, line 1). On the other hand, under correct
outcome model and mediator density, TMLE and DR-IPTW have poor variance when
implemented with an untruncated correct treatment mechanism (’qy.c, qz.c, ga.c’).
However, their performances are improved when implemented with a truncated or
mis-specified treatment (’qy.c, qz.c, ga.tr’ and ’qy.c, qz.c, ga.m’). We also observe
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that in the case of all models correct (’qy.c, qz.c, ga.c’), TMLE and DR-IPTW have a
different bias-variance trade-off, with TMLE having smaller variance but larger bias,
with respect to DR-IPTW (which has a larger variance but smaller bias). This differ-
ence in relative bias and variance is also present in the case of mis-specified mediator
density but correct outcome and treatment (’qy.c, qz.m, ga.c’): we observe that using
the untruncated correct treatment, TMLE has larger bias and smaller variance than
DR-IPTW; but when the truncated treatment mechanism is used, the two robust
estimators behave similarly and provide bias reduction over the g-computation es-
timator. When the outcome model is mis-specified, TMLE and DR-IPTW provide
similar bias reduction over g-computation estimator. However, in this case TMLE
has a smaller variance (than DR-IPTW) when the untruncated treatment mechanism
is used, while the opposite is true when the truncated treatment mechanism is used.

Consider now the case of continuous outcome (table 6). When the outcome model
and mediator density are correct, the g-computation is consistent, though converging
at a slower rate than its counterpart in the no-sparsity case (table 2, line 1) due to the
larger variances. We also observe that when using an untruncated correct treatment
mechanism (’qy.c, qz.c, ga.c’), the TMLE 1 has a larger bias but substantially smaller
variance than the DR-IPTW in smaller sample size. This is likely due to some large
effect estimates in DR-IPTW in the dataset with smaller sample size. The variance
of DR-IPTW decreases substantially when sample size increases. On the other hand,
when the treatment mechanism is truncated (’qy.c, gz.c, ga.tr’). DR-IPTW has now
a smaller variance but larger bias than TMLE 1. When a mis-specified treatment
mechanism is used, the two robust estimators behave similarly, but still have larger
variance than the g-computation estimator. In the case of incorrect mediator density,
when the untruncated treatment mechanism is used, we observe again that DR-IPTW
has much smaller bias than TMLE 1, but substantially larger variance in finite sample
(for the same reason mentioned above). This difference largely disappears when sam-
ple size increases. But when the treatment is truncated, we observe again that TMLE
has smaller bias but larger variance than DR-IPTW. In the case when the outcome
model is incorrect: when the treatment is not truncated, TMLE 1 has larger bias
and smaller variance than DR-IPTW, and that relation is reversed when truncation
is applied.
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Table 5: Simulation 3: Binary outcome, positivity violations in p(A|W )

Bias Var MSE
n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct
gcomp: qy.c, qz.c 2.352e-02 2.019e-03 1.092e-02 1.145e-03 1.147e-02 1.149e-03
tmle 1: qy.c, qz.c, ga.c 5.681e-02 3.592e-02 3.450e-02 1.556e-02 3.773e-02 1.685e-02
tmle 2: qy.c, qz.c, ga.c 4.660e-02 7.505e-02 5.915e-02 2.513e-02 6.132e-02 3.076e-02
driptw: qy.c, qz.c, ga.c 1.846e-02 3.097e-04 4.691e-02 4.824e-02 4.725e-02 4.824e-02
tmle 1: qy.c, gz.c, ga.tr 2.586e-02 2.088e-03 1.555e-02 1.591e-03 1.622e-02 1.596e-03
driptw: qy.c, gz.c, ga.tr 2.393e-02 1.815e-03 1.235e-02 1.248e-03 1.292e-02 1.252e-03
tmle 1: qy.c, qz.c, ga.m 2.324e-02 2.792e-03 1.338e-02 1.381e-03 1.392e-02 1.388e-03
driptw: qy.c, qz.c, ga.m 2.635e-02 2.223e-03 1.837e-02 1.570e-03 1.907e-02 1.575e-03

Q̄Y correct, gA correct
gcomp: qy.c, qz.m 5.017e-02 5.847e-02 1.063e-02 1.355e-03 1.315e-02 4.773e-03
tmle 1: qy.c, qz.m, ga.c 1.434e-01 1.129e-01 1.770e-02 6.660e-03 3.825e-02 1.940e-02
tmle 2: qy.c, qz.m, ga.c 4.655e-02 7.698e-02 5.442e-02 2.105e-02 5.658e-02 2.697e-02
driptw: qy.c, qz.m, ga.c 5.417e-03 7.108e-03 1.768e-01 5.231e-02 1.768e-01 5.236e-02
tmle 1: qy.c, gz.m, ga.tr 3.359e-02 1.655e-02 1.526e-02 1.798e-03 1.638e-02 2.072e-03
driptw: qy.c, gz.m, ga.tr 2.893e-02 3.711e-02 1.391e-02 1.605e-03 1.475e-02 2.982e-03

QZ correct, gA correct
gcomp: qy.m, qz.c 8.195e-02 8.263e-02 4.271e-03 4.561e-04 1.099e-02 7.284e-03
tmle 1: qy.m, qz.c, ga.c 4.855e-02 9.406e-03 3.555e-02 1.585e-02 3.791e-02 1.594e-02
tmle 2: qy.m, qz.c, ga.c 1.087e-03 6.615e-02 6.191e-02 2.847e-02 6.191e-02 3.285e-02
driptw: qy.m, qz.c, ga.c 3.791e-02 1.157e-02 2.738e-01 1.149e-01 2.753e-01 1.151e-01
tmle 1: qy.m, gz.c, ga.tr 6.252e-02 5.530e-02 1.367e-02 1.342e-03 1.758e-02 4.401e-03
driptw: qy.m, gz.c, ga.tr 7.356e-02 7.080e-02 6.202e-03 6.226e-04 1.161e-02 5.635e-03

Table 6: Simulation 3: Continuous outcome, positivity violations in p(A|W )

Bias Var MSE
n 500 5000 500 5000 500 5000

Q̄Y correct, QZ correct
gcomp: qy.c, qz.c 2.390e-03 3.603e-03 7.999e-02 8.030e-03 8.000e-02 8.043e-03
tmle 1: qy.c, qz.c, ga.c 6.235e-02 4.228e-02 7.509e-01 4.091e-01 7.548e-01 4.109e-01
tmle 2: qy.c, qz.c, ga.c 2.556e-01 4.214e-01 1.080e+00 6.355e-01 1.145e+00 8.130e-01
driptw: qy.c, qz.c, ga.c 1.847e-02 2.185e-02 1.836e+00 2.474e-01 1.836e+00 2.479e-01
tmle 1: qy.c, gz.c, ga.tr 2.895e-03 1.652e-03 1.227e-01 1.087e-02 1.227e-01 1.087e-02
driptw: qy.c, gz.c, ga.tr 2.733e-03 2.608e-03 8.762e-02 8.473e-03 8.763e-02 8.479e-03
tmle 1: qy.c, qz.c, ga.m 3.104e-04 4.806e-03 1.231e-01 1.209e-02 1.231e-01 1.212e-02
driptw: qy.c, qz.c, ga.m 6.349e-03 4.447e-03 1.497e-01 1.228e-02 1.497e-01 1.230e-02

Q̄Y correct, gA correct
gcomp: qy.c, qz.m 2.927e-01 2.996e-01 8.383e-02 8.112e-03 1.695e-01 9.787e-02
tmle 1: qy.c, qz.m, ga.c 5.792e-01 4.894e-01 2.332e-01 1.429e-01 5.687e-01 3.824e-01
tmle 2: qy.c, qz.m, ga.c 2.114e-01 4.413e-01 9.927e-01 5.920e-01 1.037e+00 7.867e-01
driptw: qy.c, qz.m, ga.c 4.033e-02 6.585e-02 8.779e+00 1.899e-01 8.781e+00 1.943e-01
tmle 1: qy.c, gz.m, ga.tr 1.077e-01 8.515e-02 1.030e-01 1.046e-02 1.147e-01 1.771e-02
driptw: qy.c, gz.m, ga.tr 1.795e-01 1.873e-01 9.681e-02 9.235e-03 1.290e-01 4.433e-02

QZ correct, gA correct
gcomp: qy.m, qz.c 1.553e-01 1.616e-01 2.087e-02 2.142e-03 4.499e-02 2.825e-02
tmle 1: qy.m, qz.c, ga.c 2.451e-02 2.284e-01 7.689e-01 4.513e-01 7.695e-01 5.035e-01
tmle 2: qy.m, qz.c, ga.c 7.633e-02 2.932e-01 1.051e+00 6.325e-01 1.057e+00 7.185e-01
driptw: qy.m, qz.c, ga.c 4.949e-02 9.666e-03 8.180e-01 7.365e-01 8.205e-01 7.366e-01
tmle 1: qy.m, gz.c, ga.tr 1.017e-01 1.108e-01 8.538e-02 6.351e-03 9.573e-02 1.862e-02
driptw: qy.m, gz.c, ga.tr 1.323e-01 1.361e-01 3.437e-02 3.049e-03 5.189e-02 2.157e-02
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6 Summary

Using the framework of van der Laan and Rubin (2006), we have proposed a semi-
parametric efficient, multiply robust substitution estimator for the natural direct
effect of a binary exposure in a nonparametric model. The estimation procedure con-
sists of targetedly modifying the conditional outcome expectation and the mediated
mean outcome difference, in that order, and then obtaining the effect estimate as the
marginal mean of the targeted mediated mean outcome difference. This estimator is
asymptotically unbiased if either one of the following holds: i) the conditional out-
come expectation given exposure, mediator, and confounders, and the mediated mean
outcome difference are consistently estimated; (ii) the exposure mechanism given con-
founders, and the conditional outcome expectation are consistently estimated; or (iii)
the exposure mechanism given confounders, and the conditional mediator density ra-
tio are consistently estimated. If all three conditions hold, then the effect estimate is
asymptotically efficient.

In applications, the components that are difficult to estimate are often times
the outcome model or the mediator density. Case (iii) implies in particular, that
one may still obtain unbiased effect estimates without correct estimation of either
of these components. More specifically, if the conditional distribution of treatment
given confounders, and the conditional distribution of treatment given confounders
and mediator are correct, then the targeted estimator will be asymptotically unbiased.
Case (i) implies that if one can only consistently estimate the outcome model, but not
the mediator density or treatment mechanism, it is still possible to obtain unbiased
estimates if one has available a consistent initial estimator for the mediated mean
outcome difference itself (e.g. a data-adaptive estimator which regresses the predicted
outcome difference on the confounders, among control observations).

We have also described general conditions for the estimator to be asymptotically
linear. More specifically, (a) estimators of each component must converge to their
respective limits at a reasonable speed; (b) at most one component may be inconsis-
tently estimated, in which case the consistent estimators of the remaining components
must meet stricter asymptotic linearity conditions. These conditions provide a guide
for situations where influence curve based variance estimates are realistic.

Estimators which make use of the efficient score are robust, but are generally sen-
sitive to practical positivity violations. We refer to Petersen et al. (2010) for methods
of diagnosing and responding to violations of the positivity assumption. The sub-
stitution principle and the logistic working submodels in the targeted estimation
procedure aims to provide more stable estimates in such situations. However, identi-
fication of the parameter depends ultimately on the information available in the given
finite sample. A way to improve finite sample robustness is the Collaborative TMLE
framework of van der Laan and Gruber (2010), where, instead of estimating the true
treatment mechanism, for a given initial estimator of the Q component one estimates
a conditional distribution of the treatment, conditioned only on confounders which
explain the residual bias of the estimator of Q. We aim to investigate applications of
Collaborative TMLE to the effect mediation problem.
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Appendix A

A1. Proof of lemma 1

P0D
∗(Q, g, ψ0) = PW,0

{
g0(1|W )

g(1|W )

∑
z

QZ,0(z|W, 1)
QZ(z|W, 0)

QZ(z|W, 1)

(
Q̄Y,0(W, 1, z)− Q̄Y (W, 1, z)

)}
(11)

− PW,0

{
g0(0|W )

g(0|W )

∑
z

QZ,0(z|W, 0)
(
Q̄Y,0(W, 0, z)− Q̄Y (W, 0, z)

)}
(12)

+ PW,0

{
g0(0|W )

g(0|W )

∑
z

QZ,0(z|W, 0)
(
Q̄Y (W, 1, z)− Q̄Y (W, 0, z)

)}
(13)

− PW,0

{g0(0|W )

g(0|W )
EQZ

(Q̄Y |W, 0)
}

(14)

+ PW,0

{
EQZ

(Q̄Y |W, 0)
}
− ψ0 (15)

Suppose (i) holds, i.e. Q̄Y = Q̄Y,0 and EQZ
(Q̄Y,0|W, 0) = EQZ,0

(Q̄Y,0|W, 0). Then (11)
and (12) are each exactly 0; the expectation in (13) and (14) are the same exactly; and

PW,0

{
EQZ

(Q̄Y |W, 0)
}

= PW,0EQZ,0
(Q̄Y,0|W, 0) = ψ0. Notice that in this case, it was

not necessary that QZ = QZ,0. But rather, any function EZ(Q̄Y,0|W, 0) which equals
the true mediated mean difference EQZ,0

(Q̄Y,0|W, 0) will yield the desired result.
Suppose now that (ii) holds. Then (11) and (12) are each exactly 0. The expression

in (14) equals PW,0

{
EQZ

(Q̄Y |W, 0)
}

, and the expression in (13) equals ψ0. Therefore

the mean is zero.
Suppose that (iii) holds. Then, rearranging (11) and (12) we may rewrite the
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above expectation as

P0D
∗(Q, g, ψ0) = PW,0

{∑
z

QZ,0(z|W, 0)
(
Q̄Y,0(W, 1, z)− Q̄Y,0(W, 0, z)

)}

− PW,0

{∑
z

QZ,0(z|W, 0)
(
Q̄Y (W, 1, z)− Q̄Y (W, 0, z)

)}

+ PW,0

{∑
z

QZ,0(z|W, 0)
(
Q̄Y (W, 1, z)− Q̄Y (W, 0, z)

)}
− PW,0EQZ

(Q̄Y |W, 0) + PW,0

{
EQZ

(Q̄Y |W, 0)
}
− ψ0

= 0

Moreover, contrary to scenario (i), we see that when g is correct, robustness does
not impose any requirement on EQZ

(Q̄Y |W, 0). In fact the cancelation suggests that
it may be any function of W .

A2. Asymptotic linearity of the targeted MLE

Theorem 1. Let Q̂Z,n, ĝn be estimators of QZ,0 and g0, and ˆ̄Q∗Y,n, Ê∗Z,n( ˆ̄Q∗Y,n) be the
TMLE estimators, as defined in (8) and (9), of Q̄Y,0 and EQZ,0

(Q̄Y,0).
The TMLE estimator ψ∗n defined in (10) satisfies

ψ∗
n − ψ0 = (Pn − P0)D∗

(
ˆ̄Q∗
Y,n, Q̂Z,n, ĝn, Ê

∗
Z,n( ˆ̄Q∗

Y,n)
)

+PW,0

∑
z

(
QY,0(W, 1, z)− ˆ̄Q∗

Y,n(W, 1, z)
)(

QZ,0(z|W, 1)
Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ,0(z|W, 0)

)
+P0

(
CY (ĝn, Q̂Z,n)− CY (g0, Q̂Z,n)

)(
QY,0 − ˆ̄Q∗

Y,n

)
+P0

(
I(A = 0)

ĝn(0|W )
−
I(A = 0)

g0(0|W )

)(
EQZ,0

( ˆ̄Q∗
Y,n|W, 0)− Ê∗

Z,n( ˆ̄Q∗
Y,n|W, 0)

)
(16)

Suppose the estimators Q̂Z,n, ĝn, ˆ̄Q∗Y,n and Ê∗Z,n( ˆ̄Q∗Y,n) have limits QZ, g, Q̄∗Y , and

E∗Z(Q̄∗Y ) such that

(Pn − P0)

{
D∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, Ê
∗
Z,n( ˆ̄Q∗Y,n)

)
−D∗

(
Q̄∗Y , QZ , g, E

∗
Z(Q̄∗Y )

)}
= oP (1

√
n), (17)

then

ψ∗
n − ψ0 = (Pn − P0)D∗ (Q̄∗

Y , QZ , g, E
∗
Z(Q̄∗

Y )
)

+PW,0

∑
z

(
Q̄Y,0(W, 1, z)− ˆ̄Q∗

Y,n(W, 1, z)
)(

QZ,0(z|W, 1)
Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ,0(z|W, 0)

)
+P0

(
CY (ĝn, Q̂Z,n)− CY (g0, Q̂Z,n)

)(
Q̄Y,0 − ˆ̄Q∗

Y,n

)
+P0

(
I(A = 0)

ĝn(0|W )
−
I(A = 0)

g0(0|W )

)({
EQZ,0

( ˆ̄Q∗
Y,n|W, 0)

}
− Ê∗

Z,n( ˆ̄Q∗
Y,n|W, 0)

)
+oP (1

√
n)

(18)
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We proceed now under the assumption of (17) and the assumption that ˆ̄Q∗Y,n and

Q̂Z,n converge to their respective limits at a rate satisfying:

√
PW,0

(
Q̄∗

Y (W, 1, z)− ˆ̄Q∗
Y,n(W, 1, z)

)2√√√√PW,0

(
QZ(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ(z|W, 0)

)2

≤ oP (1
√
n) a.e. over the support of Z,

(19)

Consider firstly the case where the true treatment mechanism is given, i.e. ĝn =
g0. If Q̄∗Y = Q̄Y,0 and QZ = QZ,0, then it follows from (17) and (19) that ψ∗n is
asymptotically linear:

ψ∗n − ψ0 = (Pn − P0)D∗
(
Q̄Y,0, QZ,0, g0, E

∗
Z(Q̄Y,0)

)
+ oP (1

√
n). (20)

Moreover, if E∗Z(Q̄Y,0) = EQZ,0
(Q̄Y,0), then ψ∗n is asymptotically efficient. On the

other hand, suppose Q̄∗Y = Q̄Y,0 but QZ 6= QZ,0. If there exists a mean zero function
ICZ(O) satisfying

PW,0

∑
z

(
Q̄Y,0(W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)
×

{∑
a=0,1

(QZ,0(z|W,a)−QZ(z|W,a))
(
a
Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
− (1− a)

)}
= (Pn − P0)ICZ + oP (1

√
n), (21)

then (17), (19) and (21) imply that ψ∗n is asymptotically linear:

ψ∗n − ψ0 = (Pn − P0)D∗
(
Q̄Y,0, QZ , g0, E

∗
Z(Q̄Y,0)

)
+ ICZ + oP (1

√
n). (22)

Analogously, if QZ = QZ,0 but Q̄∗Y 6= Q̄Y,0, and there exists a mean zero function
ICY (O) such that

PW,0

∑
z

(
Q̄Y,0(W, 1, z)− Q̄∗Y (W, 1, z)

)(
QZ,0(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ,0(z|W, 0)

)
= (Pn − P0)ICY + oP (1

√
n), (23)

then (17), (19) and (23) imply that ψ∗n is asymptotically linear:

ψ∗n − ψ0 = (Pn − P0)D∗
(
Q̄∗Y , QZ,0, g0, E

∗
Z(Q̄∗Y )

)
+ ICY + oP (1

√
n). (24)

More generally, consider the case when the treatment mechanism is not given.
Assume in addition to the rate condition of (19), the following rate conditions:√

P0

(
CY (ĝn, Q̂Z,n)− CY (g, Q̂Z,n)

)2
√
P0

(
Q̄∗Y − ˆ̄Q∗Y,n

)2

≤ oP (1/
√
n), (25)

and√
P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g(0|W )

)2
√
P0

(
E∗Z( ˆ̄Q∗Y,n|W, 0)− Ê∗Z,n( ˆ̄Q∗Y,n|W, 0)

)2
≤ oP (1/

√
n). (26)
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If g = g0, Q̄∗Y = Q̄Y,0, QZ = QZ,0 and E∗Z( ˆ̄Q∗Y,n) = EQZ,0
( ˆ̄Q∗Y,n), then (17), (19),

(25) and (26) imply ψ∗n is asymptotically linear, as in (20). Moreover, it follows from
these conditions that E∗Z(Q̄∗Y ) = EQZ,0

(Q̄Y,0), therefore ψ∗n is in fact asymptotically

efficient. Suppose g = g0, Q̄∗Y = Q̄Y,0, QZ 6= QZ,0 but E∗Z( ˆ̄Q∗Y,n) = EQZ,0
( ˆ̄Q∗Y,n), then

(17), (19), (25), (26), (21) imply the asymptotic linearity of ψ∗n as in (22). However,

if QZ 6= QZ,0 and E∗Z( ˆ̄Q∗Y,n) 6= EQZ,0
( ˆ̄Q∗Y,n), in addition to the asymptotically linear

condition of (21), assume there exists another mean zero function IC ′Z(O) such that

P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g0(0|W )

)({
EQZ,0

( ˆ̄Q∗Y,n|W, 0)
}
− E∗Z( ˆ̄Q∗Y,n|W, 0)

)
= (Pn − P0)IC ′Z + oP (1

√
n), (27)

then (17), (19), (25), (26), (21) and (27) imply that ψ∗n is asymptotically linear:

ψ∗n − ψ0 = (Pn − P0)D∗
(
Q̄Y,0, QZ , g0, E

∗
Z(Q̄Y,0)

)
+ (ICZ + IC ′Z) + oP (1

√
n). (28)

Analogously, suppose only g = g0, QZ = QZ,0, and E∗Z(Q̄∗Y ) = EQZ,0
(Q̄∗Y ), but Q̄∗Y 6=

Q̄Y,0. If the condition (23) holds and there exists a mean zero function IC ′Y (O) such
that

P0

(
Q̄Y,0 − Q̄∗Y

) (
CY (ĝn, Q̂Z,n)− CY (g0, Q̂Z,n)

)
= (Pn − P0)IC ′Y + oP (1/

√
n), (29)

then (17), (19), (25), (26), (23) and (29) imply that ψ∗n is asymptotically linear:

ψ∗n − ψ0 = (Pn − P0)D∗
(
Q̄∗Y , QZ,0, g0, E

∗
QZ,0

(Q̄∗Y )
)

+ (ICY + IC ′Y ) + oP (1
√
n). (30)

Lastly, consider the case where Q̄∗Y = Q̄Y,0, QZ = QZ,0 and E∗Z( ˆ̄Q∗Y,n) = EQZ,0
( ˆ̄Q∗Y,n),

but g 6= g0. If there exist mean zero function ICg(O) and IC ′g(O) such that

P0

(
Q̄Y,0 − ˆ̄Q∗Y,n

)(
CY (g, Q̂Z,n)− CY (g0, Q̂Z,n)

)
= (Pn − P0)ICg + oP (1

√
n) (31)

and

P0

(
I(A = 0)

g(0|W )
− I(A = 0)

g0(0|W )

)({
EQZ,0

( ˆ̄Q∗Y,n|W, 0)
}
− Ê∗Z,n( ˆ̄Q∗Y,n|W, 0)

)
= (Pn − P0)IC ′g + oP (1

√
n), (32)

then (17), (19), (25), (26), (31) and (32) imply that ψ∗n is asymptotically linear:

ψ∗n − ψ0 = (Pn − P0)D∗
(
Q̄Y,0, QZ,0, g, EQZ,0

(Q̄Y,0)
)

+ (ICg + IC ′g) + oP (1
√
n). (33)

Proof of theorem 1

To see (16) we note firstly that for any Q and ψ

P0D
∗ (Q̄Y , QZ , g0, ψ

)
= EW,0EQZ,0

(
Q̄Y,0|W, 0

)
− ψ

+ PW,0

∑
z

(
Q̄Y,0(W, 1, z)− Q̄Y (W, 1, z)

)(
QZ,0(z|W, 1)

QZ(z|W, 0)

QZ(z|W, 1)
−QZ,0(z|W, 0)

)
= ψ0 − ψ

+ PW,0

∑
z

(
Q̄Y,0(W, 1, z)− Q̄Y (W, 1, z)

)(
QZ,0(z|W, 1)

QZ(z|W, 0)

QZ(z|W, 1)
−QZ,0(z|W, 0)

)
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On the other hand, PnD
∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, Ê
∗
Z,n( ˆ̄Q∗Y,n)

)
= 0 by design of the TMLE

estimator. Combining these two results, we may express

ψ̂∗n − ψ0 = (Pn − P0)D∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, Ê
∗
Z,n( ˆ̄Q∗Y,n)

)
+ PW,0

∑
z

(
Q̄Y,0(W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)(
QZ,0(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ,0(z|W, 0)

)
+ P0

{
D∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, Ê
∗
Z,n( ˆ̄Q∗Y,n)

)
−D∗

(
ˆ̄Q∗Y,n, Q̂Z,n, g0, Ê

∗
Z,n( ˆ̄Q∗Y,n)

)}
,

where the last summand may be rewritten as

P0

{
D∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, Ê
∗
Z,n( ˆ̄Q∗Y,n)

)
−D∗

(
ˆ̄Q∗Y,n, Q̂Z,n, g0, Ê

∗
Z,n( ˆ̄Q∗Y,n)

)}
=

+P0

(
CY (ĝn, Q̂Z,n)− CY (g0, Q̂Z,n)

)(
Q̄Y,0 − ˆ̄Q∗Y,n

)
+P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g0(0|W )

)(
EQZ,0

( ˆ̄Q∗Y,n|W, 0)− Ê∗Z,n( ˆ̄Q∗Y,n|W, 0)
)
.

(34)

Result (16) thus follows. Moreover, the Donsker class condition in (17) yields (18).
The conditions for asymptotic linearity can now be ascertained from the second

order terms of (18), namely,

PW,0

∑
z

(
Q̄Y,0(W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)(
QZ,0(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ,0(z|W, 0)

)
+ P0

(
CY (ĝn, Q̂Z,n)− CY (g0, Q̂Z,n)

)(
Q̄Y,0 − ˆ̄Q∗Y,n

)
+ P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g0(0|W )

)({
EQZ,0

( ˆ̄Q∗Y,n|W, 0)
}
− Ê∗Z,n( ˆ̄Q∗Y,n|W, 0)

)
,
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by a straightforward expansion:

PW,0

∑
z

(
Q̄∗Y (W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)(
QZ(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ(z|W, 0)

)
(35)

+ P0

(
CY (ĝn, Q̂Z,n)− CY (g, Q̂Z,n)

)(
Q̄∗Y − ˆ̄Q∗Y,n

)
(36)

+ P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g(0|W )

)({
E∗Z( ˆ̄Q∗Y,n|W, 0)

}
− Ê∗Z,n( ˆ̄Q∗Y,n|W, 0)

)
(37)

+ PW,0

∑
z

(
Q̄∗Y (W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)
×

{∑
a=0,1

(QZ,0(z|W,a)−QZ(z|W,a))
(
a
Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
− (1− a)

)}
(38)

+ PW,0

∑
z

(
Q̄Y,0(W, 1, z)− Q̄∗Y (W, 1, z)

)(
QZ(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ(z|W, 0)

)
(39)

+ P0

(
CY (g, Q̂Z,n)− CY (g0, Q̂Z,n)

)(
Q̄∗Y − ˆ̄Q∗Y,n

)
(40)

+ P0

(
CY (ĝn, Q̂Z,n)− CY (g, Q̂Z,n)

) (
Q̄Y,0 − Q̄∗Y

)
(41)

+ P0

(
I(A = 0)

ĝn(0|W )
− I(A = 0)

g(0|W )

)({
EQZ,0

( ˆ̄Q∗Y,n|W, 0)− E∗Z( ˆ̄Q∗Y,n|W, 0)
})

(42)

+ P0

(
I(A = 0)

g(0|W )
− I(A = 0)

g0(0|W )

)({
E∗Z( ˆ̄Q∗Y,n|W, 0)

}
− Ê∗Z,n( ˆ̄Q∗Y,n|W, 0)

)
(43)

+ PW,0

∑
z

(
Q̄Y,0(W, 1, z)− Q̄∗Y (W, 1, z)

)
×

{∑
a=0,1

(QZ,0(z|W,a)−QZ(z|W,a))
(
a
Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
− (1− a)

)}
+ P0

(
CY (g, Q̂Z,n)− CY (g0, Q̂Z,n)

) (
Q̄Y,0 − Q̄∗Y

)
+ P0

(
I(A = 0)

g(0|W )
− I(A = 0)

g0(0|W )

)(
EQZ,0

( ˆ̄Q∗Y,n|W, 0)− E∗Z( ˆ̄Q∗Y,n|W, 0)
)
.

In this theorem we study situations pertaining to (i) g = g0 and Q̄∗Y = Q̄Y,0; (ii) g =

g0, QZ = QZ,0; or (iii) Q̄∗Y = Q̄Y,0, QZ = QZ,0 and E∗Z( ˆ̄Q∗Y,n|W, 0) = EQZ,0
( ˆ̄Q∗Y,n|W, 0).

Under either case, the last three unlabeled summands above are exactly zero. There-
fore, we only need to focus on the first order ( (38), (39),(40), (41), (42), (43)) and
second order ((35), (36), (37)) remainders.

Under condition (19), the second order term in (35) is bounded by∣∣∣∣∣∑
z

PW,0

(
Q̄∗Y (W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)(
QZ(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ(z|W, 0)

)∣∣∣∣∣
≤
∑
z

∣∣∣∣∣PW,0

(
Q̄∗Y (W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)(
QZ(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ(z|W, 0)

)∣∣∣∣∣
≤
∑
z

√√√√PW,0

(
Q̄∗Y (W, 1, z)− ˆ̄Q∗Y,n(W, 1, z)

)2
PW,0

(
QZ(z|W, 1)

Q̂Z,n(z|W, 0)

Q̂Z,n(z|W, 1)
−QZ(z|W, 0)

)2

≤ oP (1/
√
n).
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If g0 is given (e.g. in a randomized controlled trial), i.e. ĝn = g0 , then the term

P0

{
D∗
(

ˆ̄Q∗Y,n, Q̂Z,n, ĝn, Ê
∗
Z,n( ˆ̄Q∗Y,n)

)
−D∗

(
ˆ̄Q∗Y,n, Q̂Z,n, g0, Ê

∗
Z,n( ˆ̄Q∗Y,n)

)}
= 0,

which implies that (36), (37), (40)- (43) are all exactly 0. When Q̄∗Y = Q̄Y,0 and
QZ = QZ,0, the remainders in (38) and (39) vanish. Therefore (20) holds. If Q̄∗Y =
Q̄Y,0 and QZ 6= QZ,0, the condition (21) ensures the asymptotic linearity of the first
order remainder (38). Therefore, (22) holds. When Q̄∗Y 6= Q̄Y,0 and QZ = QZ,0, a
similar argument applying condition (23) on (39)implies (24).

Now, consider the case where ĝn is an estimator of g0 which converges to some
g. The rate condition (19) bounds the second order term in (35), as mentioned
before. The rate conditions (25) and (26) ensure that the second order terms (36)

and (37) are also oP (1/
√
n). If g = g0, Q̄∗Y = Q̄Y,0 and QZ = QZ,0 and E∗Z( ˆ̄Q∗Y,n) =

EQZ,0

ˆ̄Q∗Y,n), then the first order remainders (38), (39), (40), (41), (42) and (43) all
vanish. Moreover, the linear term in (18) is given by D∗(Q̄Y,0, QZ,0, g0), which implies

asymptotic efficiency. Suppose on the other hand that QZ 6= QZ,0 but E∗Z( ˆ̄Q∗Y,n) =

EQZ,0
( ˆ̄Q∗Y,n). Then the term (42) vanishes and condition (21) ensures asymptotic

linearity of the first order remainder (38), which implies (22). If QZ 6= QZ,0 and

E∗Z( ˆ̄Q∗Y,n) 6= EQZ,0
( ˆ̄Q∗Y,n), then (21) and (27) ensure that the first order remainders (38)

and (42) are both asymptotically linear, which implies (28). An analogous argument
shows that conditions (23) and (29) on remainders (39) and (41) imply (30) in the
case Q̄∗Y 6= Q̄Y,0. Lastly, if g 6= g0, then conditions (31) and (32) ensure asymptotic
linearity of the first order remainders (40) and (43). This implies (33).

Appendix B

In this section, we describe an alternative targeted estimator for the natural direct
effect by targeting on the conditional outcome expectation and the mediator den-
sity. The key difference between the estimator proposed in the main section and the
estimator in this appendix lies in that the former defines a loss function and para-
metric working submodel for the mediated mean outcome difference EQZ

(Q̄Y |W, 0),
whereas the latter defines a loss function and parametric working submodel for the
conditional mediator density QZ and then estimates the mediated mean outcome
difference plugging in the targeted mediator density and the targeted Q̄Y .

The loss function LY for QY remains the same as in the main section. That is,
we consider the loglikelihood loss when Y is binary or bounded in the unit interval,
or the squared error loss otherwise. Consequently, the parametric submodels for QY

remain the same as in the main section.
We make the assumption that the mediator Z is discrete with K + 1 levels,

i.e. Z ∈ {0, 1, . . . , K}. Let the variable Zk denote the indicator I(Z = k), and
QZk

≡ P (Zk|Z0, . . . , Zk−1,W,A), for k = 0, . . . , K − 1. Then, Z has a binary

representation Z = (Zk : k = 0, . . . , K − 1), and QZ =
∏K−1

k=0 QZk
. For notational
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convenience, we will sometimes write QZk
(1|W,A) for the conditional probability

P (Zk = 1|Z0, . . . , Zk−1,W,A), and Zk−1 for the vector (Z0, . . . , Zk−1).
Define for QZ the loglikelihood loss function

LZ(QZ) =
K−1∑
k=0

Zk logQZk
(1|W,A) + (1− Zk) logQZk

(0|W,A).

We wish to find a logistic parameter working submodel QZ(ε) satisfying

d

dε
LZ (QZ(ε) |ε=0= DZ(QZ , g, Q̄Y ). (44)

For that purpose, we first decompose DZ orthogonally as DZ =
∑K−1

k=0 DZk
, where

DZk
=
I(A = 0)

g(0|W )

{
E (DZ |Zk = 1,Zk−1,W,A)− E (DZ |Zk = 0,Zk−1,W,A)

}(
Zk −QZk

(1|W,A)
)
.

A parametric submodel for QZ =
∏K−1

k=0 QZk
may defined in terms of each component:

logitQZk
(g, Q̄Y )(ε)(1|W,A) = logitQZk

(1|W,A) + εCZk
(g, Q̄Y )(W,A),

where

CZk
(g, Q̄Y )(W,A) =

I(Zk−1 = 0, A = 0)

g(0|W )

{
E
(
Q̄Y (W,Z)|Zk = 1,Zk−1,W,A

)
− E

(
Q̄Y (W,Z)|Zk = 0,Zk−1,W,A

)}
= I(Zk−1 = 0)

I(A = 0)

g(0|W )

{
Q̄Y (W,k)−

∑
l>k

Q̄Y (W, l)


l−1∏

m=k+1

QZm (0|W,A)

QZl
(1|W,A)

}
.

This way, the working submodel QZ(g, Q̄Y )(ε) =
∏K−1

k=0 QZk
(g, Q̄Y )(ε) satisfies (44).

Given initial estimators of Q̄Y,0, QZ,0, and g0, a targeted MLE estimator for ˆ̄Q∗Y for

QY,0 is constructed as in (8). Using this updated ˆ̄Q∗Y , the optimal ε for the submodel
of QZ is given by

ε̂∗ = arg min
ε
PnLZ

(
Q̂Z(ĝ, ˆ̄Q∗Y )(ε)

)
,

and the targeted estimator of the mediator density is given by Q̂Z(ĝ, ˆ̄Q∗Y )(ε̂∗), we
denote this by Q̂∗Z for convenience. Finally, the targeted MLE estimator of ψ0 is the
substitution estimator plugging in these two updated components:

ψ̂∗ =
1

n

n∑
i=1

{
ˆ̄Q∗Y (Wi, 1, Zi)− ˆ̄Q∗Y (Wi, 0, Zi)

}
Q̂∗Z(Z = Zi|Wi, A = 0).

It follows from (6) that PnD
∗
Y ( ˆ̄Q∗Y , Q̂Z , ĝ) = 0, and it follows from (44) that

PnD
∗
Z

(
ˆ̄Q∗Y , Q̂

∗
Z , ĝ
)

= 0. Moreover, the empirical distribution Q̂W of W solves the

score equation PnD
∗
W ( ˆ̄Q∗Y , Q̂

∗
Z , Q̂W ) = 0. Therefore the resulting targeted estimator

also solves the efficient score equation.
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