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Abstract

This paper looked at how to obtain quantitative information about the behaviour of Predator-Prey
models using analytical methods, we look at how to solve the Lotka-Volterra model analytically,
analysed the stability and behaviour of the critical points of a bounded Lotka-Volterra model and the
Holling-Tanner model and how to look for Hopf bifurcation and limit cycles in the Holling-Tanner
model. We have also compared a variety of numerical methods used to solve the predator-prey
models. It has also used these results to validate our findings from our analytical analysis.
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Chapter 1

Introduction

1 Population dynamics

Population dynamics is a field of science that studies both long and short term changes to a species
population. It has important implications to conservatism as well as resource management. The
Predator-prey models which we will be considering throughout this paper can be adapted to be
applied to a wide array of topics, Volterra for example developed the Lotka-Volterra predator-prey
system whilst studying chemical reactions. We will first discuss single species models to introduce
the basic concepts of population dynamics before moving on to systems of species. Single species
models are unrealistic outside of laboratory conditions as real life scenarios will include interactions
between multiple different species.

Discrete vs Continuous time

Population growth can be described by either using a discrete time model or a continuous time one.

• Continuous time models use a differential equation to model a continuing overlap of genera-
tions. The most basic continuous model gives the growth of a population as the number of
births proportional to the current population minus the number of deaths. Let N(t) denote
a population this basic model is given by

dN

dt
= bN −mN, (1.1)

where b and m denote the rate of birth and mortality rate, respectively.
We can integrate the differential equation (1.1) to get

N(t) = N0e
(b−m)t, (1.2)

where N(0) = N0 is the initial population.
Equation (1.2) is known as the Malthusian model. By analysing the Malthusian model we can
see that if m > b then the population will become extinct, but if b > m then the population
will grow exponentially.. This unrestricted exponentially growth is of course unrealistic so to
counteract it a carrying capacity is often added to the model. A carrying capacity is a term
which restricts the potential growth of a population. The carrying capacity represents the
maximum sustainable population of a species. It is possible for a population to exceed the
carrying capacity possibly by migration, but due to a lack of resources the population will
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decrease towards the carrying capacity. Verhulst’s model developed in 1836 introduced a self-
limiting process, where the population is reduced by a term proportional to the population.
The Verhulst model is given by

dN

dt
= rN

(
1− N

K

)
, (1.3)

where r is a parameter relating to the growth rate and K is the carrying capacity. This model
is also known as the logistic growth model; the rate of growth decreases as t increases, until N
reaches the carrying capacity K at which point the rate of growth becomes 0. We can show
this by solving (1.3) analytically. Indeed the equation (1.3) can be rewritten as

dN

dt
− rN = −rN

2

K
,

from which we get
1

N2

dN

dt
− r

N
= − r

K
. (1.4)

By introducing the variable z given by

z =
1

N
,

we have that
dz

dt
=
−1

N2

dN

dt
.

Thus (1.4) becomes

−dz
dt
− r

z
= − r

K
,

or
dz

dt
+
r

z
=

r

K
.

We can solve the last equation by using the integrating factor method, let the integrating
factor be given by

e
∫
rdt = ert. (1.5)

By using (1.5) we obtain

ert
dz

dt
+
r

z
ert =

r

K
ert,

i.e.,
d

dt

(
ertz

)
=

r

K
ert.

By integrating both sides of the equation we obtain

ertz =
1

K
ert + C,

hence

z(t) =
1

K
+ Ce−rt.

We can now change the variable back to N(t) to get

1

N
=

1

K
+ Ce−rt =

1 + CKe−rt

K
,

6



so

N =
K

1 + CKe−rt
(1.6)

By applying the initial condition N(0) = N0 we have that

C =
K −N0

N0K
.

We can substitute this into our solution (1.6) to obtain the solution of the Verhulst model as

N(t) =
KN0

N0 + (K −N0)e−rt
(1.7)

We can see that lim
t→∞

N(t) = K.

• Discrete time models measure the population of a species per generation. It measures pop-
ulation in steps, the population of each subsequent generation is based on the population of
the previous one. A generic discrete model is

Nt+1 = NtF (Nt).

There are many arguments in favour for each type of model. As data in real life is collected
at points this makes it easier to obtain a discrete model by fitting it to the collected data.
However for discrete time models the population at a specific time step can only be found if
the population of previous time steps is known, where with continuous time the population
at a specific time can easily be calculated. This makes continuous time models more suitable
for mathematical analysis. A continuous time model can be seen as a discrete model with an
infinitely small time step. Because of this it is possible to convert a continuous model into a
discrete one using the process called discretisation. The type of models we will be discussing
throughout at are all continuous with respect to time.

1.1 Interacting Populations

When we consider the population dynamics of more than one species we must take into account
how the two species interact with each other. Types of interacting populations include:

• If each population inhibits the other we have a competitive interaction. It can be inter-specific
if the competition is between different species, or intra-specific if the competition is between
the same species. Competition can be caused by a limited supply of a resource required
by both species, territory disputes or if the actions of one species has a negative impact on
another. If we have two species a competitive relationship can be denoted by [−,−] where −
denotes a negative effect on the other species.

• If the two species interact but has neither a positive or negative effect on the other population
we have neutralism, this can be denoted by [0, 0] where 0 denotes no effect.

• If one population lives of the waste products of the first, but does not directly affect the
population of the first species, we have a scavenging relationship. This is denoted by [+, 0],
where + denotes a positive impact.
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• If the two populations have a mutually beneficial relationship we have symbiosis. This can be
denoted by [+,+]

• If the second species consumes the first as sustenance we have a predator-prey relationship,
this can be denoted by [+,−]. It is this kind of relationship that we will be focusing on.

In this section we shall briefly discuss several different models for two interacting species with the
focus entirely on systems which are classified as predator-prey models. The interaction between two
or more species is classed as a predator-prey situation if the growth rate of one species is negative
as the other is positive.

• Lotka-Volterra model:
We shall start with the simplest of the predator-prey models, which is known as the Lotka-
Volterra model. It was independently developed by Volterra in 1926 [19] and by Lotka in
1925 [13]. Volterra formulated the method as a means to explain oscillatory population levels
of types of fish being caught in the Adriatic sea. Whereas Lotka derived the same system of
ordinary differential equations by studying a hypothetical chemical reaction, which he claimed
could exhibit periodic behaviour in the concentration levels of the chemicals. For this system
we shall denote the population of the prey species by N(t) and that of the predator species
by P (t). The Lotka-Volterra system is defined as

dN

dt
= N(a− bP ),

dP

dt
= P (cN − d).

(1.8)

Here a,b,c and d are all arbitrary positive constants that describe the following interactions
between the two species:

– a is the per-capita birth rate of the prey species.

– b is the mortality rate per-capita of the prey species due to predation.

– c s the per-capita reproduction rate for each prey captured.

– d is the per-capita mortality of the predator species.

When we construct the Lotka-Volterra model we are required to make the following assump-
tions:

1. In the absence of predation (P = 0) the prey population will grow unboundedly in the
manner described by the Malthusian model (1.1) with the death rate parameter m = 0.
We can prove this assumption by considering our system (1.8) when P = 0. In such a
scenario we will be left with the single equation

dN

dt
= aN. (1.9)

We can then integrate (1.9) to get

N(t) = Ceat, (1.10)
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where C is an arbitrary constant.
If we denote our initial population as N(0) = N0 we can solve the equation (1.10) at t = 0
to obtain C = N0 thus by substituting this value into (1.10) we obtain the Malthusian
model (1.1).

2. In the absence of prey (N = 0) the population of the predator species will show expo-
nential decay, this is the −dP term in predation equation of system (1.8).

3. The number of encounters between the two populations is proportional to their product.
Each encounter will negatively effect the growth of the prey population and positively
effect the population of the predator species. These effects are represented by the term
−bPN in the prey equation and by cNP in the predator equation of system (1.8).

As system (1.8) is such a simple model it makes it useful as a starting point from which more
realistic models can be developed. It is also useful for representing a generic model for two
interacting species. However, to achieve this simplicity we had to make the above assumptions.
These assumptions make the model unrealistic when considering real life biological factors.
For example the assumption that the prey species will grow exponentially in the absence of
predation. This is unrealistic as there will be other limits to the growth of the population,
such as the availability of the resources needed for their own sustenance. Another unrealistic
assumption is that the predators are able to consume an infinite quantity of prey. This model
also does not factor for any environmental complexity. A further disadvantage of the Lotka
Volterra model is that it has a centre system, this means that the solutions of the equation
will orbit around the singular point, this makes the system structurally unstable as any small
perturbations can result in a drastic change of orbit. Centre systems, singular points and
stability will be discussed in greater detail in later chapters.
The other models discussed throughout this paper all use the Lotka-Volterra model as their
basis, however they have been modified to display more realistic behaviour.

• The Lotka-Volterra model with bounded prey population:
One of the key issues of the Lotka-Volterra model is that in the absence of predation the prey
population will experience exponential growth. To prevent this we can modify the system
by introducing some form of the logistic term −N2 to the prey population equation; this
will introduce the factor of interspecies competition for available resources thereby creating
a maximum carrying capacity for the prey population. One such example of a new bounded
system of equations is:

dN

dt
= aN

(
1− N

K
− b P

K

)
,

dP

dt
= P (cN − d),

(1.11)

where K is a positive constant relating to the carry capacity of the prey population.

This system makes the following assumptions:

– In the absence of predation (P = 0) the prey population will have logistic growth similar
to that of the Verhulst model (1.3), and will grow towards a carrying capacity dependent
on the value of K.
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– The rate of predation is proportional to the encounter rate between the two populations.

– The birth rate for the predators is proportional to the number of encounters between the
two species.

This alteration has the further effect of eliminating the centre of the Lotka-Volterra sytem,
which made that model structurally unstable, it also causes the population oscillations to
decay.

• The Leslie and Gower model
The Leslie-Gower model is a variation of the bounded Lotka-Volterra model. It is described
by the following system

dN

dt
= aN

(
1− N

K

)
− (mN)P,

dP

dt
= P

(
c− dP

N

)
,

(1.12)

where m is the maximum rate of predation. The predator system now takes into account the
relative sizes of the two species. The larger the term P/N becomes, the less prey is available
to each predator, therefore limiting the availability of the predator’s resources. The term mP
from the prey equation is known as a Holling type 1 functional response.

Definition 1.1 (Holling Functional Responses) Holling derived three types of increas-
ingly complex functional responses, which are often incorporated into a large variety of predator-
prey systems.

– Type 1: This is the most basic form of the functional responses it takes the form

mN.

It is derived from the assumption that the probability of a predator encountering prey is
dependent on the prey density.

– Type 2: This type functional response adds a parameter relating to the efficiency of the
predators ability to process food it takes the form of

mN

A+N
, (1.13)

where A represents a constant proportional to the efficiency of the predation.

– Type 3: This type of functional response now incorporates the learning process of the
predator population. It postulates that at higher predator populations there will be a
greater probability of previous encounters between the two species, thus leading to more
efficient predation, it is defined as

mNk

A+Nk

for some k > 1.

Although we defined three types of Holling functional responses above, we will only be con-
sidering models with the first two types.
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• The Gause Model
The Gause model is a generalisation of the Lotka-Volterra model. The system suggested by
Gause (1934) [8] introduces a new term p(N) into the Lotka Volterra system

dN

dt
= aN − Pp(N),

dP

dt
= P (cp(N)− d),

where the term p(N) represents the rate of predation per predator. It is generally assumed
that p(0) = 0 and that p′(N) > 0 for all N > 0.
We can generalise the Gause model by introducing a density-dependent prey growth in the
absence of predation.

dN

dt
= Ng(N)− Pp(N),

dP

dt
= P (h(N)− d).

(1.14)

Now instead of the constants a,b and c, the system has three generalised terms g(N), p(N)
and h(N) dependent on the density of the prey population. These terms can be replaced to
suit the needs of the model (for more detail see [6]).

• The Rosenzweig-McArthur model
The Rosenzweig-McArthur model [15] takes the generalised Gause model (1.14) and sets the
generalised terms as

p(N) =
mN

A+N
,

g(N) = r
(

1− N

K

)
,

h(N) =
mN

A+N
,

where A,K and m are positive constants.
As we can see from (1.13), h(N) is the Holling type 2 functional response. We can substitute
these terms into our generalised Gause model to obtain

dN

dt
= aN

(
1− N

K

)
− mN

A+N
P,

dP

dt
= P

( mN

A+N
− d
)
.

(1.15)

• The Holling-Tanner model:
The Holling-Tanner model was suggested by Tanner [18] and it is similar to the Rosenzweig
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and McArthur model (1.15). More precisely, the prey equation remains the same but the
predator equation is modified to:

dP

dt
= cP

(
1− dP

N

)
.

Here the carrying capacity is proportional to the prey population. The most important feature
of this model is that it now includes interspecies competition for prey amongst the predators.
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Chapter 2

Analysing Quantitative Behaviour of
Predator-Prey Models

As the predator-prey models introduced in the previous chapter are non-linear, it is often the
case that they are unsolvable analytically. In this section we will solve the Lotka-Volterra model
analytically as it is one of the few cases of a non-linear system which we can obtain a solution.
We will consider how we can use analytically methods to extract information about the qualitative
behavior of more complicated systems. For this we will be focusing exclusively on the bounded
Lotka-Volterra and the Holling and Tanner models. Firstly, we will introduce the concepts of the
methods we will be apply to our models.

1 Phase Plane Analysis:

Many natural phenomena can be described by the following system of ordinary differential equations

dx

dt
= f(x, y),

dy

dt
= g(x, y).

(2.1)

This is known as an autonomous system as the independent variable t does not appear explicitly.
In order to see how the solutions of this system behave it is often necessary to perform phase plane
analysis.

Phase Planes and Phase Portraits of a System of Equations:

It is much easier to determine the quantitative behaviour, of the system if we have a form of visual
representation of the phase plane.

Definition 1.1 (Phase Planes) A phase plane is a two dimensional plane on which we can con-
struct a phase portrait (see below for definition) of the characteristics of a system of differential
equations with two state variables (a variable which describes the mathematical state of a dynamical
system i.e. a set of relationships amongst two or more measurable quantities). The axes of the
phase plane are defined by these two state variables.
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We assume throughout that our functions are continuously differentiable in some region D. Then
the xy-plane will represent the phase plane. The quantitative behaviour of the system is derived
from its trajectories.

Definition 1.2 (Trajectories) A trajectory is the path that the solution to the system follows,
and they are given by the solutions to

dy

dx
=
y′

x′
=
f(x, y)

g(x, y)
. (2.2)

Once we know the trajectories of the system, we can use them to construct a phase portrait to give
us the visual representation of the quantitative behaviour of it.

Definition 1.3 (Phase Portraits) A phase portrait is the visual representation of the character-
istics shown on the phase plane, namely they show the trajectories of the dynamical system.

In the case where the equation (2.2) is analytically solvable, then its solution can be written implic-
itly as H(x, y) = C. The phase portrait is constructing by plotting the curves of one state variable
against the other for various initial conditions (x0, y0). If the initial condition is a critical point,
then there is no trajectory and the point is denoted by a dot.

Definition 1.4 (Critical Points) Critical points (sometimes known as singular points,equilibrium
points or steady states) are points where the trajectory of the equation is stationary, therefore they
are the points at which the first order differential equations of the system are equal to zero. To
denote the coordinates of a critical point we use (x∗, y∗)

For our system (2.1) the critical points occur when

dx

dt
=
dy

dt
= 0

A critical point may be one of three forms:

1. Maximum: A maximum is an extremum of a function that represents the largest value of a
function over a neighbourhood. If the value of the point is the greatest value of the function
over the whole domain, then it is said to be a global maximum. If the value of the function is
the maximum relative to its surrounding values but not necessarily the greatest value of the
function over the whole domain, it is said to be a local maximum.

2. Minimum: A minimum represents the opposite end of the extremum, it is the smallest value
of a function. Like the maximum it can be either a global minimum or a local minimum,
depending on whether it is the smallest value over the whole domain of the function or just
relative to its surrounding points.

3. Saddle Point: A saddle point is a stationary point which is not an extrema of the function.
In other words the value of the differential calculated at a small perturbation to either side of
the critical point will have the same sign.

To determine which of these forms a critical point takes further analysis is required. To conduct
further analysis we will need to construct the Hessian matrix of the system (2.1) and evaluate it
at the critical point. The Hessian matrix is comprised of the second order partial derivatives of the
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system. To simplify the following analysis of the matrix we will call the elements a, b and c as seen
below. (

∂2H/∂x2 ∂2H/∂x∂y
∂2H/∂y∂x ∂2H/∂y2

)
=

(
a b
b c

)
.

To determine the form of the critical point we can calculate the determinant (det) of the matrix.

det = ac− b2

1. If det>0 and a>0, then the Hessian matrix is positive definite and the critical point is a
minimum.

2. If det>0 and a<0, then the Hessian matrix is negative definite and the critical point is a
maximum.

3. If det<0, then the critical point is a saddle point.

4. If det = 0, then the test is inconclusive and the critical point could be either of the three
forms.

The sketch of the critical points and the trajectory curves show the qualitative behaviour of the
solutions of a system.

Stability Analysis of non-linear systems-linearisation

We consider the system (2.1) around the critical point (x∗, y∗). In order to study the stability of the
critical point (x∗, y∗), we linearise the system (2.1) around it. For this purpose we consider small
perturbations δx and δy around the critical point and denote the point x = x∗+δx and y = y∗+δy.
By using a Taylor expansion about this point we have,

f(x, y) ≈ f(x∗, y∗) + fx(x
∗, y∗)δx+ fy(x

∗, y∗)δy.

Since f(x∗, y∗) is a critical point, f(x∗, y∗) = 0. Therefore

f(x, y) ≈ fx(x
∗, y∗)δx+ fy(x

∗, y∗)δy.

Repeating the process for g(x, y), we can see that we have a linear system of equations defined by
dx

dt

dy

dt



∂f

∂x
(x∗, y∗)

∂f

∂y
(x∗, y∗)

∂g

∂x
(x∗, y∗)

∂g

∂y
(x∗, y∗)


(
δx
δy

)
= J

(
δx
δy

)
,

where J is the Jacobian matrix at our critical point. When the above linear system has two
independent eigenvectors v1 and v2 the solutions have the form of(

δx
δy

)
= c1v1e

λ1t + c2v2e
λ2t,

where c1,2 are arbitrary constants, λ1,2 are the eigenvalues of J and v1,2 are the corresponding
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eigenvectors.
To calculate the eigenvectors of J we solve the equation

det|J − λI| =

∣∣∣∣∣∣∣∣∣
∂f

∂x
(x∗, y∗)− λ ∂f

∂y
(x∗, y∗)

∂g

∂x
(x∗, y∗)

∂g

∂y
(x∗, y∗)− λ

∣∣∣∣∣∣∣∣∣ = 0.

Case 1:

• If λ1 and λ2 are real, distinct and have the same sign the critical point is called a node
singularity and the trajectories travel in the same direction along v1 and v2. If the eigenvalues
are less than zero then it is a stable node and the trajectories head in the direction of the
equilibrium point. If the eigenvalues are positive it is an unstable node and the trajectories
head in the direction away from the equilibrium point.

Figure 2.1: Example of a stable node (eigenvectors are in red).

• If the eigenvalues are real and distinct but have different signs then it is a saddle point
singularity. The trajectories travel in different directions along v1 and v2. This kind of
singularity is always unstable except for strictly along the eigenvector corresponding to the
negative eigenvalue.
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Figure 2.2: Example of a saddle point.

Case 2:

• Suppose that the eigenvalues are complex, namely λ1, λ2 = α ± iβ with α 6= 0and β > 0. In
this case the singularity is called a spiral singularity. If α<0 the critical point is stable and
the trajectories will converge towards it with a spiral motion. If α>0 the trajectories will
spiral away from the critical point.

Figure 2.3: Example of a stable spiral.

• In the case when the eigenvalues are purely imaginary, the critical point is called a centre
singularity and the solutions orbit the equilibrium point in a closed phase trajectory. These
are not said to be stable in the usual sense as a small perturbation may knock the solution
from its current orbit on to a new orbit, but they can be said to be neutrally stable.
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Figure 2.4: Example of a centre.

Case 3:

• If λ1 = λ2 = λ then there are two possible scenarios.

1. There are two independent eigenvectors and the solution are of the form(
x
y

)
= c1v1e

λt + c2v2e
λt.

Here every trajectory travels in a straight line through the critical point. This is known
as either a star node or a proper node. Star nodes are stable if the eigenvalue is a negative
value and unstable if it is a positive one.

Figure 2.5: Example of a unstable star node.

2. The other case is if the solutions contain the term teλt, and the eigenvalue only has a
single eigenvector along which the solutions tend to the critical point. This is known as
an improper node (it is also sometimes known as node type II). Similarly its stability is
dependent on the sign of the eigenvalue.
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Figure 2.6: Example of a stable improper node.

Stability of Critical points

For equation (2.2), we can see that there will be a unique curve which passes through any point
(x(t), y(t)), as

dy

dx
(x(t), y(t)) =

f(x(t), y(t))

g(x(t), y(t)
,

except for when (x(t), y(t))=(x∗, y∗) at which the equation blows up or becomes degenerate.

The stability of the solution alludes to how the solution behaves if we make a small perturba-
tion to the initial condition. In basic terms a solution is said to be stable if a small perturbation to
the initial condition leads to a small change to the solution, and unstable if the small perturbation
results in a large change in the solution.

• If a solution which starts near an critical point stays forever near that point it is said to be
Lyapunov stable.

• If the trajectories converge towards the critical point as t→∞, it is said to be asymptotically
stable or attracting.

• If the solution is Lyapunov stable but not asymptotically stable it is said to be neutrally stable.

• A point which is not stable is called unstable. In this case the trajectories diverge from the
critical point.

An important concept to consider when looking at stability is whether it is locally stable or whether
the stability is global. Local stability is when we consider the stability with any small deviation
from the critical point, whereas with global stability we consider the entire the region. A system is
said to be globally asymptotically stable if for every trajectory (x(t), y(t)) converges towards (x∗, y∗)
as t → ∞. A system is said to be locally asymptotically stable near or at (x∗, y∗) if there exists a
constant δ such that

||(x(0), y(0))− (x∗, y∗)|| ≤ δ ⇒ (x(t), y(t))→ (x∗, y∗) as t→∞

During this studu we will consider two ways of proving global stability, we will apply both of these
methods to the Holling and Tanner model.
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• Lyapunov’s Second Method Isolated points
In the previous paragraph we discussed the stability of locally linear systems. However,
no conclusion can be made in case that the critical point is center. In this paragraph we
will explore another approach, the so-called Lyapunov’s second method. We can determine
global asymptotic stability of our system (2.1) without having to calculate the trajectories by
considering a positive definite C1 function V (x, y). Where V (x, y) is defined in an open region
D of an isolated critical point (x∗, y∗) of the system this is known as the Lyapunov function
for said system.

Definition 1.5 (Isolated Critical Point) A critical point is said to be isolated if it is the
only critical point in some small neighbourhood of the point.

Definition 1.6 (Positive (Negative) Definition and Semi-Definition) Let V (x, y) be de-
fined on some domain D containing the critical point (x∗, y∗). Then V (x, y) is called positive
definite on D if V (0, 0) = 0 and V (x, y) > 0 for all other points in D. Similarly it is said
to be negative definite on D if V (0, 0) = 0 and V (x, y) < 0 for all other points in D. If the
inequalities ¿ and ¡ are replaced by ≤ and ≥,then V is said to be positive semi-definite and
negative semi-definite , respectively.

Let the gradient of V (x, y) be given by

∇V (x, y) =
[∂V (x, y)

∂x
,
∂V (x, y)

∂y

]
,

then the time derivative V̇ (x, y) can be written as

V̇ (x, y) =
∂V (x, y)

∂x
f(x, y) +

∂V (x, y)

∂y
g(x, y).

We can use the Lyapunov function and its time derivative to analyse the stability of the
system (2.1) with the following two theorems defined by Boyce and DiPrima [1].

Theorem 1.1 Suppose that an autonomous system (2.1) has an isolated critical point (x∗, y∗).
If there exists a positive definite C1 function V for which the time derivative V̇ is positive
definite on some domain D containing (x∗, y∗), then (x∗, y∗) is an asymptotically stable. If V̇
is negative semidefinite then the (x∗, y∗) is a stable critical point.

Theorem 1.2 Let (x∗, y∗) be an isolated critical point of the autonomous system (2.1). Let
V be a function that is continuous and has continuous first partial derivatives. Suppose that
V (x∗, y∗) = 0 and that in every neighborhood of (x∗, y∗) there is at least one point at which
V is positive (negative). If there exists a domain D containing (x∗, y∗) such that the time
derivative V̇ (x, y) is positive definite (negative definite) on D, then (x∗, y∗) is an unstable
critical point.

By the first theorem we can see that if V̇ (x, y) < 0 for all (x, y) in D of the critical point
of the system then V (x, y) is called a global Lyapunov function and the system is globally
asymptotically stable. This is known as LaSalle’s invariance principle [?., LA]

• Dulac Criterion The Dulac criterion can be used to rule out the existence of a limit cycle
in the region of a plane D.
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Definition 1.7 (Limit Cycles) A Limit Cycle is a closed orbit in the phase plane that at-
tracts trajectories. If all trajectories that start near the closed orbit converge towards the orbit
then the limit cycle is asymptotically stable. If the trajectories spiral away from the closed
orbit it is said to be unstable.

Lemma 1.3 Let D be a simply connected region of the phase plane, i.e. every closed loop
within D can be shrunk to a point without leaving D. If there exists a continuously differen-
tiable function known as the Dulac function H(x, y) such that the total differential

d

dx
[H(x, y)f(x, y)] +

d

dy
[H(x, y)g(x, y)] (2.3)

has the same sign (6= 0) anywhere in a simply connected region of the plane, then the system
has no periodic solutions entirely within the region.

Definition 1.8 (Boundness) A function is said to be bounded if there exists some real con-
stant M such that |f(x)| ≤M .

Note that this is an important concept since in an unbounded system like the Lotka Volterra
model (1.8) the prey population will grow without limits in the absence of predation. This is
an obviously unrealistic representation as the population will be limited by other factors, such
as lack of territory, or limits to its nutrient supply. Also boundness is an important concept
when it comes to analysing the Lyapunov function (see below).

Proof This can be proved by using Green’s theorem which states that if we have simple
closed curve C and a region D bounded by C and two functions k(x, y) and l(x, y) on an open
region containing D then the relationship between the line integral around C and the double
integral over D is ∮

C

(k(x, y)dx+ l(x, y)dy) =

∫ ∫
D

(dk
∂x
− dl

∂y

)
dxdy. (2.4)

From our Dulac criterion we know that∫ ∫
D

( d
dx

[H(x, y)f(x, y)] +
d

dy
[H(x, y)g(x, y)]

)
dxdy 6= 0.

So without loss of generality let H(x, y) be such that∫ ∫
D

( d
dx

[H(x, y)f(x, y)] +
d

dy
[H(x, y)g(x, y)]

)
dxdy > 0.

By applying Green’s theorem (2.4) we get

0 <

∫ ∫
D

( d
dx

[H(x, y)f(x, y)] +
d

dy
[H(x, y)g(x, y)]

)
dxdy

=

∫ ∫
D

( d
dx

[H(x, y)f(x, y)]− d

dy
[−H(x, y)g(x, y)]

)
dxdy

=

∮
C

(−H(x, y)g(x, y)dx+H(x, y)f(x, y)dy)
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=

∮
C

H(x, y)(−g(x, y)dx+ f(x, y)dy). (2.5)

If we rearrange our system (2.1) we get that

dx = f(x, y)dt,

dy = g(x, y)dt.

Substituting these values into (2.5) we obtain that

0 <

∮
C

H(x, y)(−f(x, y)g(x, y)dt+ f(x, y)g(x, y)dt) = 0,

which is a contradiction, therefore we can conclude that there are no closed orbits in C. �

We can use this result to prove global asymptotic stability by using Poincaré-Bendixson’s
theorem [1].

Theorem 1.4 ( Poincaré-Bendixson) Let the functions f and g from our system (2.1) have
continuous first order partial derivatives in a domain D of the xy−plane. Let D1 bounded sub-
domain in D, and let R be the region that consists of D1 and its boundary. Suppose that the critical
points of system (2.1) do not lie in R. If there exists a constant t0 such that x = σ(t), y = ψ(t)
is a solution of the system (2.1) that exists and stays in R for all t ≥ t0, then x = σ(t), y = ψ(t)
is either: a closed trajectory (periodic solutions) or spirals. In either case, the system (2.1) has a
periodic solution in R

Therefore by the Poincaré-Bendixson theorem if we can prove that no limit cycles exist in the region
and if the system is bounded. Then any orbit in the region tends to the critical point as t → ∞
giving us globally stability.

Both of these methods suffer from the same problem which is the difficulty of finding a suitable
function, so for the purposes of this paper we will use functions defined by Hsu et. al. [11].
When we analyse the Holling-Tanner model we will be looking for Hopf Bifurcation.

Definition 1.9 (Hopf Bifurcation) Hopf Bifurcation occurs when a critical point changes stabil-
ity. It can take one of two forms, it can either be supercritical where the limit cycles generated are
stable or sub-critical when they are unstable. A Hopf bifurcation occurs when the three following
conditions are met:

• f(x, y) = 0,

• g(x, y) = 0,

• df

dx
(x, y) +

dg

dy
(x, y) = 0.

Notice that Hopf bifurcation only occurs at critical points and where the trace of the Jacobian
matrix Tr(J) = 0.

22



2 Solving the Lotka-Volterra model:

To solve the Lotka-Volterra model we must first simplify the parameters. To do this we non-
dimensionalise the system through a change of variables. If we introduce the terms:

u =
N

c1
, v =

P

c2
, τ =

t

c3
.

We can differentiate then obtain the differential equations

dN

dt
= c1

du

dt
= c1

du

dτ

dτ

dt
=
c1
c3

du

dτ
,

dP

dt
= c2

dv

dt
= c2

dv

dτ

dτ

dt
=
c2
c3

du

dτ
.

(2.6)

We can substitute (2.6) into the Lotka-Volterra system (1.8) to obtain:

c1
c3

du

dτ
= a(c1u)− b(c1u)(c2v),

c2
c3

dv

dτ
= c(c1u)(c2v)− d(c2v).

Rearranging these equations we get:

du

dτ
= (c3a)u− (c2c3b)uv,

dv

dτ
= (c1c3c)vu− (dc3)v.

The last equation may be simplified by selecting c1 = d/c, c2 = a/b, c3 = 1/a. We also introduce a
new coefficient α = d/a which gives the ratio between the increasing and decreasing factors of the
predator and the prey. By introducing the new variables u, v and τ defined as

u(τ) =
cN(t)

d
, v(τ) =

bP (t)

a
, τ = at, α =

d

a
,

the system (2.6) can be rewritten as follows

du

dτ
= u(1− v),

dv

dτ
= αv(u− 1),

(2.7)

which is a system which contains only one parameter.
By eliminating τ we obtain the trajectory equation in the u,v phase plane:

dv

du
= α

v(u− 1)

u(1− v)
. (2.8)
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As (2.8) is a separable first order equation we can integrate it exactly. We first rearrange the
equation to get:

(1− v)

v
dv = α

(u− 1)

u
du.

By integrating both sides of this equation we get

ln v − v = αu− α lnu+ C.

Thus, the equation (2.8) has the solutions H(u, v) = C, where H(u, v) is given by

H(u, v) = αu+ v − ln |uαv|. (2.9)

Now we can find the critical points of equation (2.9) by differentiating H with respect to u and v
and by calculating

∂H

∂u
=
∂H

∂v
= 0.

From this we get

∂H

∂u
= α− α

u
= 0,

∂H

∂v
= 1− 1

v
= 0.

(2.10)

We can see from (2.10) that the system has a critical point at v = u = 1. We can determine the
nature of this critical point by analysing the Hessian matrix.

∂2H

∂u2
∂2H

∂u∂v

∂2H

∂v∂u

∂2H

∂v2

 =

(
α/u2 0

0 1/v2

)
.

The determinate D of this matrix is
D =

α

u2v2
.

We can see that α = d/a > 0 as d and a are both positive constants, this also makes D > 0. So the
matrix is positive definite and the critical point is a local minimum. We can see by substituting the
values of u and v at the critical point into the equation for H that Hmin = H(1, 1) = 1 + α. From
equation (2.9) we can see that H = C which is a constant, so for values of H>Hmin the solutions
orbit in a closed trajectory as seen in figure 2.8. These trajectories form a collection of periodic
orbits i.e an orbit which repeats itself in time. This means that u and v will have periodic solutions
in τ , as is illustrated below by figure 2.7. The value of H is determined by the initial conditions
u(0) and v(0) which also determines the phase trajectory.
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Figure 2.7: Example of periodic solutions for the Lotka-Volterra system with a = 0.4, b = 0.013,
c = 0.3 and d = 00.15, with u(0) = 50 and v(0) = 100.

Figure 2.8: Example of the phase plane trajectory for the system with a = 0.4, b = 0.013, c = 0.3
and d = 0.015. u(0) = 100 and v(0) = 50, therefore H = 75.85445834.

These closed orbits are a major flaw of the Lotka-Volterra system, as they result in a system
with solutions that are not structurally stable. This means any small perturbation will move the
solution onto another trajectory resulting in vastly different solutions. These are called conservative
systems and they are of limited use when it comes to modeling real populations.
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Determining the stability of the critical points

We consider our non-dimensionlied system

du

dτ
= u(1− v),

dv

dτ
= αv(u− 1).

It can be easily seen that this system has critical points at (u∗, v∗) = (0, 0) and (u∗, v∗) = 1. We
first consider the critical point (u∗, v∗) = (0, 0) and let x and y be small perturbations about (0, 0),
we get that u = x and v = y. Now we substitute these new terms into our system we get

d(u∗ + x)

dτ
= x(1− y),

d(v∗ + y)

dτ
= αy(x− 1).

We then expand the right hand side of the above equations using Taylor expansions and by keeping
only the linear terms to get (

dx/dτ
dy/dτ

)
≈
(

1 0
0 −α

)(
x
y

)
= J

(
x
y

)
.

We can determine the type of the steady state by calculating the eigenvalues of the matrix J .
We have

det |J − λI| =
∣∣∣∣1− λ 0

0 −α− λ

∣∣∣∣ = 0.

From this we can easily see that J has eigenvalues at λ1 = 1 and λ2 = −α. The solution of
this system is given by (

x(τ)
y(τ)

)
= jeτ + ke−ατ ,

where j and k are two independent eigenvectors, corresponding to λ1 and λ2, respectively.
As shown in the previous chapter, since λ1>0 and λ2<0 the critical point (0,0) is a saddle point. This
is because there are different directions along the eigenvectors, therefore the solution approaches
the origin along one eigenvector and moves away from it along the other. Being a saddle point this
means it is unstable, we can see this as λ1 > 0 resulting in x(τ) and y(τ) growing exponentially.

Now we consider the other critical point (u∗, v∗) = (1, 1). Working in an analogous way we in-
troduce u = 1 + x and v = 1 + y. We then substitute these terms into our system to get:

d(u∗ + x)

dτ
= (x+ 1)(1− y − 1) = −y(x+ 1),

d(v∗ + y)

dτ
= α(y + 1)(x+ 1− 1) = αx(y + 1).
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Using the same process as above we obtain the system:(
dx/dτ
dy/dτ

)
≈
(

0 −1
α 0

)(
x
y

)
= J

(
x
y

)
.

We can now calculate the eigenvalues of J :

det |J − λI| =
∣∣∣∣−λ −1
α −λ

∣∣∣∣ = 0,

i.e.
λ2 + α = 0,

from which we obtain that λ1,2 = ±i
√
α. As the eigenvalues are purely imaginary the critical point

is a centre singularity. The solution to this system is given by:(
x(τ)
y(τ)

)
= lei

√
ατ + me−i

√
ατ ,

where l and m are eigenvectors, corresponding to λ1 and λ2, respectively.
Therefore around the critical point the solutions are periodic with a period of τ = 2π/

√
α. If we

then dimensionalise this we get the period T = 2π(a/d)1/2. This means that the period is propor-
tional to the square root of the ratio of the linear growth rate of the prey to the death rate of the
predators. This results are shown by [14]

3 Analytical solution of other predator prey models

Now that we have the basics of analytically solving predator-prey models we can start to look at
solving the more complicated realistic systems.

3.1 Analytically solving the bounded Lotka-Volterra system

We will start by looking at the Lotka-Volterra with a bounded prey population (see system (1.11))

dN

dt
= aN

(
1− N

K
− b P

K

)
,

dP

dt
= P (cN − d).

We first non-dimensionalise the system, by setting

N = c1u, P = c2v, τ = c3t.

Therefore our system becomes

c1c3
du

dτ
= ac1u

(
1− c1u

K
− bc2v

K

)
,

c2c3
dv

dτ
= c2v(cc1u− d).
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Dividing both sides of the first and second equation by c1c3 and c2c3 respectively, we get

du

dτ
=

a

c3
u
(

1− c1u

K
− bc2v

K

)
,

dv

dτ
=

v

c3
(cc1u− d).

We can simplify the above system by choosing the parameters c1, c2 and c3 as follows

c1 = K, c2 =
K

b
, c3 = a.

This gives us the three dimensionless variables

u =
N

K
, v =

bP

K
, τ = at.

Thereby we arrive at the following system of equations

du

dτ
= u(1− u− v)

dv

dτ
= v
(cK
a
u− d

a

)
By setting

δ =
d

a
, β =

cK

a
,

the system can be written as follows

du

dτ
= u(1− u− v),

dv

dτ
= v(βu− δ).

(2.11)

We will next find the critical points of system (2.11), which are the solutions of the homogeneous
system

0 = u(1− u− v),

0 = v(βu− δ).

The first equation is satisfied when either u = 0, or 1 − u − v = 0. If u = 0, then the second

equation gives v = 0. If u = 1−v, the second equation gives v = 1− β
δ

, then from the first equation

it follows that u = βδ. The other option is when v = 0, then u = 1. Thus, our system has three
possible critical points.

(u∗, v∗) = (0, 0), (u∗, v∗) = (1, 0), (u∗, v∗) =
( δ
β
, 1− δ

β

)
.
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Since our critical points corresponds to populations we assume that u∗ > 0 and v∗ > 0. Thus, the

critical point (u∗, v∗) =
( δ
β
, 1 − δ

β

)
is in the first quadrant if δ ≤ β. For our system we get the

Jacobian matrix

J(u, v) =

(
1− 2u− v −u

βv βu− δ

)
.

We first consider the case of (u∗, v∗) = (0, 0). We have that

J(0, 0) =

(
1 0
0 −δ

)
,

with eigenvalues λ1 = 1 and λ2 = −δ. Since λ1 > 0 and λ2 < 0 this critical point is a saddle
point. Now for the critical point (u∗, v∗) = (1, 0) the corresponding Jacobian matrix is given by

J(1, 0) =

(
−1 −1
0 β − δ

)
.

The eigenvalues of this matrix are λ1 = −1 and λ2 = β − δ, therefore the behavior of the crit-
ical point depends on the values of the constants β and δ. As stated before for the critical point

(u∗, v∗) =
( δ
β
, 1− δ

β

)
to exist we need β ≥ δ, otherwise the v value will be negative. Therefore, if

we have three critical points then λ1 < 0 and λ2 > 0 and the singular point is a saddle point. If

(u∗, v∗) =
( δ
β
, 1− δ

β

)
is not biologically possible then both eigenvalues will be negative and it will

be a stable node.

We consider the case β ≥ δ, then the Jacobian matrix for the critical point (u∗, v∗) =
( δ
β
, 1− δ

β

)
is

J
( δ
β
, 1− δ

β

)
=


1− 2δ

β
−
(

1− δ

β

)
− δ
β

β
(

1− δ

β

)
−δ +

βδ

β

 =

 − δβ − δ
β

β − δ 0

 .

The eigenvalues of this matrix are the solutions of the following equation.

det(J
( δ
β
, 1− δ

β

)
− λI) =

∣∣∣∣∣∣∣∣
− δ
β
− λ − δ

β

β − δ −λ

∣∣∣∣∣∣∣∣ = λ2 +
δ

β
λ+

δ

β
(β − δ) = 0.

(2.12)
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Therefore, by using the quadratic formula we obtain

λ1 =

− δ
β

+

√( δ
β

)2
− 4

δ

β
(β − δ)

2
,

λ2 =

− δ
β
−
√( δ

β

)2
− 4

δ

β
(β − δ)

2
.

Another way of looking at this is to consider the quadratic formula as

λ1,2 =
Tr(J)±

√
(Tr(J))2 − 4(det(J))

2
,

Where Tr(J) is the trace of our matrix (2.12) and det(J) is its determinant. Note that Tr(J) =
−δ
β

< 0 and det(J) =
δ

β
(β − δ) > 0. This gives us two possible scenarios: if 4(det(J)) > Tr(J)2,

then the eigenvalues are complex and as α = Tr(J) < 0 the critical point is a stable spiral. If this
is not the case then both eigenvalues will be negative and it will be a stable node.

3.2 Analysis of Holling Tanner model

We consider the system of equations suggested by Holling-Tanner, which is defined as

dN

dt
= aN

(
1− N

K

)
− mN

A+N
P,

dP

dt
= cP

(
1− dP

N

)
..

(2.13)

We now non-dimensionalise our system. We let

N = Ku, P =
aKv

m
, τ = at,

and then substitute the new variables into the system (2.13) to get

aK
du

dτ
= aKu

(
1− Ku

K

)
− mKu

A+Ku

aKv

m
,

a2K

m

dv

dτ
=
acK

m
v
(

1− adKv

mKu

)
.

We can simplify these equations to get

du

dτ
= u(1− u)− Kuv

(A+Ku)
,

dv

dτ
= v
(c
r
− cdv

mu

)
.
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We then introduce the parameters

r1 =
c

a
, b1 =

cd

m
, a1 =

A

K
.

to obtain the non-dimensionalised system

du

dτ
= u(1− u)− u

a1 + u
v,

dv

dτ
= v
(
r1 − b1

v

u

)
.

(2.14)

We can generalise this non-dimensionalised system by writing it in the form

du

dτ
= uf(u)− g(u)v,

dv

dτ
= v
(
r1 − b1

v

u

)
.

(2.15)

Now, by using different functions for f(u) and g(u) we can obtain non-dimensionalised systems for
the class of predator-prey system. If f(u) = 1−u and g(u) = u then we get the non-dimensionalised
form for the Leslie-Gower model (1.12). For the Holling-Tanner model we set f(u) = 1 − u and

g(u) =
u

a1 + u
. In general if f(u) = 1−u then we can set g(u) as any of the Holling type functional

responses to create a plausible model. We can use this to obtain some general analysis for any of
the models with a Holling type functional response. We can see that for such models the following
conditions are satisfied

• f(1) = 0 and f ′(u) < 0 for all u > 0.

• g(0) = 0 and g′(u) > 0 for all u > 0.

Note that (u∗, v∗) = (1, 0) is a critical point for Holling systems. To find the non-trivial critical
(u∗, v∗) points for our generalized system we can equate (2.15) to 0, namely

0 = u∗f(u∗)− g(u∗)v∗,

0 = v∗
(
r1 − b1

v∗

u∗

)
.

By assuming u∗, v∗ > 0 we conclude that the critical point satisfies

v∗ =
u∗f(u∗)

g(u∗)
=
r1
b1
u∗, (2.16)

from which we obtain that f(u∗) =
r1
b1
g(u∗). As f(1) = 0 with f ′(u) < 0 and g(0) = 0 with

g′(u) > 0, this implies that if we plot the graph of g(u) and
r1
b1
p(u) then we obtain an intersection

u∗ satisfying 0 < u∗ < 1. We can use these results to show that our class of predator-prey models
with a Holling function type response are positive and bounded. The Jacobian matrix at the point
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(u∗, v∗) is given by

J(u∗, v∗) =

f(u∗)− u∗f ′(u∗)− g′(u∗)v∗ −g(u∗)

b1

(v∗
u∗

)2
r1 −

2b1v
∗

u∗

 .

By introducing the prey isocline derived from (2.16) h(u) =
uf(u)

g(u)
, and by using the relation

v∗ =
r1
b1
u∗, we can rewrite our Jacobian matrix as

J(u∗, v∗) =


u∗f ′(u∗) + f(u∗)− u∗f(u∗)g′(u∗)

g(u)
−g(u∗)

b1

(r21u∗
b21u
∗

)
r1 − 2b1(

r1u
∗

b1u∗
)


Since

h′(u) =
g(u)(uf ′(u) + f(u))− uf(u)g′(u)

(g(u))2
,

we can rewrite this as

J(u∗, v∗) =

g(u∗)h′(u∗) −g(u∗)
r21
b1

−r1

 . (2.17)

There eigenvalues of the Jacobian matrix can be found by solving the equation

0 =

g(u∗)h′(u∗)− λ −g(u∗)
r21
b1

−r1 − λ

 = λ2 + λ(r1 − g(u∗)h′(u∗)) + r1g(u∗)
(r1
b1
− h′(u∗)

)
.

By assuming that

r1 − g(u∗)h′(u∗) > 0, (2.18)

and

r1
b1
− h′(u∗) > 0. (2.19)

The eigenvalues are complex with a negative real part and therefore the singular point is a stable

spiral if (r1− g(u∗)(u∗))2− 4r1g(u∗)
(r1
b1
− h′(u∗)

)
> 0 we will have a stable spiral. In the situation

where (2.18) and (2.19) are satisfied but (r1 − g(u∗)(u∗))2 − 4r1g(u∗)
(r1
b1
− h′(u∗)

)
< 0 both of the

eigenvalues are negative. We can thus conclude that the singular point is a stable node. We can
see that the conditions (2.18) and (2.19) are satisfied if the prey isocline is non increasing at the
critical point. Therefore, if h′(u∗) ≤ 0 then the critical point is locally asymptotically stable.

3.3 Global Stability

We can look for global stability by using a Lyapunov function.
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Proposition 3.1 If the prey isocline is non-increasing fur u ∈ [0, 1], then the critical point (u∗, v∗)
is globally asymptotically stable.

Proof Let V be the Lyapunov function defined by

V (u, v) =

∫ u

u∗

ε− u∗

εg(ε)
dε+ c

∫ v

v∗

ν − v∗

ν
dν, (2.20)

where c > 0 is to be determined.
Apply the fundamental theorem of calculus to get

∇V =
(u− u∗
ug(u)

, c
v − v∗

v

)
.

Since v∗ =
r1
b1
u∗, we can rewrite system (2.15) as

du

dτ
= uf(u)− g(u)(v + v∗ − v∗),

dv

dτ
= v
(b1v∗
u∗
− b1v

u

)
= vb1

(uv∗ − u∗v
uu∗

)
= vb1

(v∗(u− u∗)− u∗(v − v∗)
uu∗

)
.

(2.21)

Using ∇V and the system (2.21) we obtain the time derivative of V computed along the solution
of our system as

V̇ =
u− u∗

u

(uf(u)

g(u)
− v∗

)
− (u− u∗)(v − v∗)

u
+ cb1(v − v∗)

(v∗(u− u∗)− u∗(v − v∗)
uu∗

)
.

Now by letting c =
u∗

b1v∗
we obtain

V̇ =
u− u∗

u

(uf(u)

g(u)
− v∗

)
− (u− u∗)(v − v∗)

u
+ cb1(v − v∗)

(v∗(u− u∗)− u∗(v − v∗)
uu∗

)

=
u− u∗

u

(uf(u)

g(u)
− v∗

)
− (u− u∗)(v − v∗)

u
+
b1(v − v∗)u∗

b1v∗

(v∗(u− u∗)− u∗(v − v∗)
uu∗

)

=
u− u∗

u

(uf(u)

g(u)
− v∗

)
− (u− u∗)(v − v∗)

u
+

(v − v∗)
v∗

(v∗(u− u∗)− u∗(v − v∗)
u

)

=
u− u∗

u

(uf(u)

g(u)
− v∗

)
− (u− u∗)(v − v∗)

u
+

(u− u∗)(v − v∗)
u

− (v − v∗)2u∗

b1uv∗

=
u− u∗

u

(uf(u)

g(u)
− v∗

)
− cb1

(v − v∗)2

u

If the condition

(u− u∗)
(uf(u)

g(u)
− v∗

)
< 0, (2.22)
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is satisfied for 0 < u < 1 and u 6= u∗, then we have

V̇ =
u− u∗

u

(uf(u)

g(u)
− v∗

)
− cb1

(v − v∗)2

u
< 0.

Hence V̇ is negative definite which proves that the system is globally stable. �

3.4 Stability of Holling-Tanner Model

Calculating the Critical Points

We can analyse the critical points by looking at our non-dimensionalised Holling-Tanner system
(2.14). In this form you can see that as u appears in the denominator it cannot be equal to 0.
Therefore we have two possible critical points. One is the trivial solution (u∗, v∗) = (1, 0) and
the other is the non-trivial solution. Indeed, the critical points are the solution of the system
du

dτ
=
dv

dτ
= 0. From

dv

dτ
= 0, we get

0 = v
(
r1 − b1

v

u

)
= r1 − b1

v

u
,

therefore

u =
b1
r1
v.

Now in view of the last equation,
du

dτ
= 0 gives

0 = u(1− u)− r1u
2

b1(a1 + u)
.

Since u 6= 0 we can divide both sides of the equation by u to obtain

(1− u) =
r1u

b1(a1 + u)
.

This can be rewritten as

(1− u)(a1 + u)− r1
b1
u = 0,

from which we can obtain the quadratic equation

u2 + (a1 +
r1
b1
− 1)u− a1 = 0.

We can thus conclude that the non-trivial critical point (u∗, v∗) satisfies
u2 + (a1 +

r1
b1
− 1)u− a1 = 0,

u =
b1
r1
v.

(2.23)
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Analysing the Stability of the Critical Points

First we will study the stability of the trivial critical point (u∗, v∗) = (1, 0). The Jacobian matrix
at the point (u∗, v∗) is given by

J(u∗, v∗) =


1− 2u∗ − v∗

a1 + u∗
+

u∗v∗

(a1 + u∗)2
−u∗

a1 + u∗

b1(v
∗)2

(u∗)2
r1 −

2b1(v
2)∗

(u2)∗

 .

Therefore,

J(1, 0) =

−1
−1

a1 + 1

0 r1

 .

The eigenvalues of this matrix are λ1 = −1 and λ2 = r1, as we have a negative eigenvalue and
a positive one, we can conclude that the trivial solution is a saddle point.
We can now use (2.18) and (2.19) to check the local asymptotic stability of the Holling-Tanner
model. In this case we have

g(u) =
u

a1 + u
, f(u) = (1− u).

This gives us the prey isocline

h(u) = v∗ =
uf(u)

g(u)
=
u(1− u)(a1 + u)

u
= (1− u)(a1 + u),

which we differentiate to get
h′(u) = −2u− a1 + 1.

If we substitute h′(u) into (2.19) we obtain that

0 <
r1
b1
− ((1− a1)− 2u∗) =

v∗

u∗
− ((1− a1)− 2u∗).

Since v∗ = h(u∗) this can be rewritten as

(1− u∗)(a1 + u∗)

u∗
− ((1− a1)− 2u∗) =

1

u∗
[(1− u∗)(a1 + u∗)− u∗((1− a1)− 2u∗)

=
1

u∗
(a1 + u∗ + u∗a1 − (u∗)2 − u∗ − a1u∗ + 2(u∗)2)) =

1

u∗
((u∗)2 + a1) = R(u∗) > 0.

We can see that as by definition a1 > 0 and u∗ > 0 then R(u∗) will always be satisfied. Similarly,
by substituting g(u) and h′(u) into condition (2.18) we get the second condition for local stability

0 < r1 −
u∗(−2u∗ + (1− a1))

a1 + u∗
=
r1(a1 + u∗) + 2(u∗)2 − (1− a1)u∗

a1 + u∗
, (2.24)

i.e,

0 < 2(u∗)2 + (a1 + r1 − 1)u∗ + a1r1 = Q(u∗). (2.25)
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Since R(u) > 0 for all u > 0 we can see that our critical point is locally asymptotically stable if
Q(u∗) > 0. A sufficient condition for the last inequality to be satisfied is

a1 + r1 ≥ 1. (2.26)

In the situation when a1 + r1 < 1 we can prove that Q(u) > 0 for all u if we can show that the
discriminant is negative, as in that scenario the equation will have no real roots. We will require
for

a1 + r1 < 1 and (1− a1 − r1)2 − 8a1r1 ≤ 0, (2.27)

for our condition to be satisfied. For our critical point to be unstable we require that

a1 + r1 < 1 and (1− a1 − r1)2 − 8a1r1 > 0.

We can factorize Q(u) to get
Q(u) = 2(u− α1)(u− α2),

where

α1 =
1

4

[
1− a1 − r1 −

√
(1− a1 − r1)2 − 8a1r1

]
,

α2 =
1

4

[
1− a1 − r1 +

√
(1− a1 − r1)2 − 8a1r1

]
,

0 < α1 < α2 < 1.

(2.28)

From here we can rewrite our stability conditions (2.26) and (2.27) to get that Q(u) > 0 if

0 < u∗ < α1,

or
α2 < u∗ < 1,

then the critical point is stable. Therefore for our critical point to be unstable we require that

α1 < u∗ < α2.

If we now take the condition for global stability (2.22) when we apply the terms for the Holling-
Tanner model we get

(u− u∗)((1− u)(u+ a1)− v∗) < 0.

As you can see that this condition is dependent on the prey isocline for the Holling-Tanner model
h(u)(1− u)(u+ a1). As

dh

du
= −2u− a+ 1,

this is monotone decreasing provided a ≥ 1, hence in this case the critical point is globally asymp-
totically stable.
It is difficult to obtain any more information for non-trivial solutions as we have three parameters.
However we can look for certain types of behaviours.
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3.5 Hopf Bifurcation in Holling Tanner model

For our Holling Tanner model to have Hopf Bifurcation we need the trace of the Jacobian matrix
linearised around the steady state to be equal to zero. If we take the Jacobian matrix (2.17), and
substitute in our values for the Holling Tanner model we get

J(u∗, v∗) =


(−2u∗ − a1 + 1)u∗

a1 + u∗
−u∗

a1 + u∗

r21
b1

−r1


Therefore, if Tr(J) = 0, then

0 =
(−2u− a1 + 1)u

u+ a1
− r1,

r1 =
(−2u− a1 + 1)u

u+ a1
.

We can see that Hopf bifurcation is dependent on the growth rate parameter r1.
We can rearrange this to get

0 =
(2u+ a1 − 1)u

u+ a1
+ r1 = 2u2 + a1u− u+ r1a1 + r1u = 2u2 + (a1 + r1 − 1)u+ r1a1,

then by applying the quadratic formula we get obtain the values for u where Hopf bifurcation occurs

u =
1

4

(
1− a1 − r1 ±

√
(a1 + r1 − 1)2 − 8a1r1

)
.

We can see from here that if the determinant

(a1 + r1 − 1)2 − 8a1r1 > 0

we get two bifurcation points, but if the determinant is negative then there exists no points of
bifurcation. Therefore to get Hopf bifurcation we require that

0 < (1−a1−r1)2−8a1r1 = a2 +2ar1−2a1 +r21−2r1 +1−8a1r1 = r21 +(−6a1−2)r1 +(a21−2a1 +1).

So by applying the quadratic formula and considering only the positive result we get

r1 < 1 + 3a1 − 2
√

2a1 + 2a21.

Therefore Hopf bifurcation can only occur in the region defined by

0 < r1 < 1 + 3a1 − 2
√

2a1 + 2a21,

0 < a1 < 1.
(2.29)

This region is illustrated by the blue shaded area shown below 2.9, this result was also shown by
Braza (2003) [2].
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Figure 2.9: Region where Hopf bifurcation can occur. Inside the blue region we get two bifurcation
points, outside it we get none.

Limit cycles

To look for Limit cycles in our Holling Tanner system we can transform our model into a Liénard
system. Liénard systems are a class of differential equations which can be used to show the existence
of stable limit cycles. Let G and F be defined by

G(u) =

∫ u

0

g(ε)dε,

F (u) =

∫ u

0

f(ε)dε,
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then the Liénard system is described as

du

dt
= v − F (u),

dv

dt
= −g(u).

Then, the non-dimensionalised Holling-Tanner model we can be transformed into a Liénard system
by rewriting it as

du

dτ
= f0(u)− f1(u)v,

dv

dτ
= g0(u) + g1(u)v + g2(u)v2,

(2.30)

where

f0(u) = u(1− u), f1(u) =
u

a1 + u
, g0(u) = 0, g1(u) = r1, g2(u) = −b1

u
. (2.31)

Systems of the form (2.30) can be transformed into a Liénard system (see [20]) However, A.Gasull
et.al [7] use the following lemma of Zegeling and Kooij [21], to transform the system into a simplified
Liénard system.

Lemma 3.2 Let f0(u), f1(u), g0(u), g1(u), g2(u) be a continuously differentiable function on the open
interval (s1, s2) with s1 < 0 < s2 and f1(0) 6= 0. Let v = ψ(u) be a given orbit of the system (2.30)
where ψ(0) 6= 0. Then the system can be transformed into the equivalent Liénard system:

dx

dt
= φv −

∫ u

0

f̄(τ)dτ,

dy

dt
= −ḡ(u),

(2.32)

where

ḡ(u) = [f1(u)(g1(u)ψ(u) + f1(u)ψ′(u)) + g2(u)f0(u)]/f 2
1 (u)ω(u),

f̄(u) = [f ′0(u)f1(u)− f ′1(u)f0(u)− f 2
1 (u)ψ′(u) + g2(u)f0(u)− f1(u)g2(u)ψ(u)]/f 2

1 (u)ω(u),

φ(u) = ev + γ, γ = [−f0(0) + f1(0)ψ(0)]/f1(0)ω(0),

(2.33)

where ω(u) satisfies
ω′(u)

ω(u)
= −g2(u)

f1(u)
.
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See [21] for proof. Therefore, if we know a solution to v = ψ(u) of our system (2.30) then we can
use this simplified Liénard system. We have seen for the (2.15) that v ≡ 0 is a solution we can
apply the transformation from (2.32)

v = ω(u)ez,
dt

dτ
= − 1

f1(u)ω(u)
,

as ω(u) satisfies
ω′(u)

ω(u)
= −g2(u)

f1(u)
,

when we substitute in the relevant terms from (2.31) we get

ω′(u)

ω(u)
=
b1(a1 + u)

u2
.

Therefore

ω(u) = exp
(∫ b1a1

u2
du+

∫
b1
u
du
)

= exp
(−b1a1

u
+ r1 lnu

)
= exp

(−b1a1
u

)
exp(lnur1),

so

ω(u) = ub1exp
(
− a1b1

u

)
.

By substituting (2.31) into (2.33) we get:

φ(v) = ez,

f̄(u) =
(u− 2u2

a1 + u
− a1u(1− u)

(a1 + u)2
−
( u

a1 + u

)2
.0− b1

u
u(1− u)

)
/
( u

r1 + u

)2
ub exp

(−a1b1
u

)

=
(u− 2u2

a1 + u
− a1u(1− u)

(a1 + u)2
− b1(1− u)

)
/
( u

a1 + u

)2
ub1 exp

(−a1b1
u

)

= f(u)u−2−b1exp
(a1b1

u

)
,

where
f(u) = (1− a1)u2 − 2u3 − b1(1− u)(a1 + u)2.

Moreover, we have

ḡ(u) =
( ur1
a1 + u

+1 b1(1− u)
)
/
( u

a1 + u

)2
ub1 exp

(−a1b1
u

)

= g(u)u−2−b1 exp
(a1b1

u

)
,

where

g(u) = (r1u− b1(1− u)(a1 + u))(a1 + u).
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We now map our equilibrium point (u∗, v∗) from model (2.14) onto the equilibrium point for the
system (2.32), where z∗ satisfies

v∗ = w(u∗)ez
∗
.

The stability is determined by the sign of −f̄(u∗) which is equivalent to the sign of −f(u∗). If we
rearrange g(u∗) = 0 to solve b1 we get

0 = r1u
∗ − b1(1− u∗)(a1 + u∗),

hence

b =
r1u
∗

(1− u∗)(a1 + u∗)
.

We can substitute this into f(u) to get:

f(u∗) = (1− a1)u∗2− 2u∗3 − r1(1− u∗)(a1 + u∗)2

(1− u∗)(a1 + u∗)

= u∗((1− a1)u∗ − 2u∗2 − r1(a1 + u∗))

= u∗(−2u∗2 + (1− a1 − r1)u∗ − a1r1) = −u∗Q(u∗),

which defines the function

Q(u) = 2u2 + (a1 + r1 − 1)u+ a1r1 (2.34)

As you can see this is the same as the function (2.25) we derived when looking at the local stability
of the critical points. Therefore if Q(u) ≥ 0, then as the solution to our system is positive and
bounded we can prove that there exists no limit cycles in the region by looking at the Dulac criterion.
If we take the Dulac function defined by Hsu et. al. [10]

H(u, v) =

(
u

(a1 + u)

)−1
v−2.

We can take

d(fH)

du
=

d

du

[(
(a1 + u)u− uv

(a1+u)

)
uv2

]
=

1− a1 − 2u

v2
,

d(gH)

dv
=

d

dv

[(
(a1 + u)

(
r1 − b1v

u

)
uv

]
= −r1(a1 + u)

uv2
.

Hence
d(fH)

du
+
d(gH)

dv
= − r1

uv2
− (b1 − a1 + 1− 2u)

v2
=
H(u, v)

a1 + u
(−Q(u)),

therefore if Q(u) ≥ 0 then there will be no non-trivial periodic solutions and the equilibrium will
be globally asymptotically stable in the first quadrant. So if r1 ≥ 1 our system will not have limit
cycles.
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To look for limit cycles then, we require Q(u) to have two positive roots 0 < α1 < α2 < 1 as was
shown by (2.28). By rearranging the inequality from (3.4) we obtain

0 < (1−a1−r1)2−8a1r1 = a2 +2ar1−2a1 +r21−2r1 +1−8a1r1 = r21 +(−6a1−2)r1 +(a21−2a1 +1).

As we can see this is the same condition required for Hopf bifurcation, and our limit cycles can only
occur within the same region illustrated by the blue shaded area shown by figure 2.9. This result
is to be expected as the limit cycle is generated by the Hopf bifurcation.
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Chapter 3

Numerical analysis

Since it is not possible to solve many of the versions of the Lotka Volterra model analytically, it is
necessary to use numerical schemes to approximate solutions to the problem. In this section we will
dfirst introduce several numerical methods for first order differential equations. Then, we will apply
those methods to the Predator-Prey models discussed in the previous chapter. In addition, the
numerical results will be compared with the analytical results proved previously. We will also use
numerical method ode45 routine of MATLAB to investigate if the Holling-Tanner model displays
the type of behaviour predicted for certain parameters.

1 Basics of numerical analysis

One-step and multi-step methods

There are two types of numerical analysis one-step methods and multi-step ones. One step methods
express each iteration only in the terms of the previous one in other words yi+1 is expressed in terms
of yi all other past information is disregarded. Whereas multi-step methods retain the information
from previous steps. Some methods such as the Runge Kutta method (see below for details) take
an intermediate step by evaluating the function between yi+1 and yi but then disregard previous
information before calculating the next iteration.

Error analysis

To determine the accuracy of the results obtained by the approximations it is important to perform
an error analysis. The global truncation error is defined as

ei = |y(xi)− yi|,

where y(xi) is the analytical solution and yi is the approximated solution.
The global error gives us the difference between the approximated solution and the analytical one.
The local truncation error Ti gives us a measure of the error caused by one iteration. It is shown
by Süli [17] to be calculated by the following equation

Tn =
y(xn+i)− y(xi)

h
− Φ(xi, y(xi); i),

where Φ(xi, y(xi); i) is a continuous function of its variables.
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Order of accuracy

The order of accuracy tells us how quickly the approximate solution converges to the exact solution
as the step size tends towards 0. A numerical method is said to have an order of accuracy of p where
p is the largest positive integer such that there exists for any sufficiently smooth curve a constants
C and h0 such that

|Ti| ≤ Chp for 0 < h < h0

where h is the step size, Ti is the truncation error.

Experimental Order of Convergence

We will also look at the experimental order of convergence (EOC) defined as follows: for a given
finite sequence of successive experiments i which correspond to time-steps hi, the EOC of the
corresponding sequences of errors is defined by

E.O.C = log2

∣∣y(xi)− y(xi/2)
∣∣∣∣y(xi/2)− y(xi/4)
∣∣ . (3.1)

This method was developed by Olaf Runborg [16] and it is useful in the situation where it is not
possible to calculate exact solutions. The E.O.C is the numerical measure of the rate of convergence
as hn → 0, it is equal to the order of accuracy of the method. For the purposes of this paper we
will be using the second method (3.1), and we will be using the the value of Ni calculated at the
end point.

2 Numerical Methods

In this section we will look at the different methods of numerical analysis. Here we will only focus
on explicit and semi-implicit methods.

Explicit Euler method

The explicit Euler method is a
ti = ih, i = 0, 1, 2, ..., N

Now for each subsequent iteration the Euler equation is the simplest numerical scheme to ap-
proximate solutions of first order ODEs. Before we proceed with the description of the numerical
methods, we need some notation. For N ∈ N let 0 = t0 < t1 < · · · < tN = T be a partition of [[0, T ].
and denote by hn the step-size hn := tn− tn−1. If the partition is uniform, then hn = h = T/N and

yi+1 = yi + hf(ti, yi).

There are several issues with the basic Euler method, as each approximation of i is based on the
previous approximation it can lead to the approximate solution diverging away from the exact
solution for large values of i.
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Symplectic Euler method

The symplectic Euler method is a semi-implicit modification of the Euler method (see [10]), it is
applied by treating one variable as implicit and the other as explicit. Therefore if we have a system
defined as

dx

dt
= a(x, y),

dy

dt
= b(x, y),

then the symplectic Euler method can be written as either

xi+1 = xi + ha(xi, yi+1),

yi+1 = yi + hb(xi, yi+1),

or as

xi+1 = xi + ha(xi+1, yi),

yi+1 = yi + hb(xi+1, yi).
(3.2)

Runge-Kutta Methods

Runge-Kutta methods aim to improve the accuracy of the approximation by re-evaluating the
function at points between the iterations of (xi, y(xi)) and (xi+1, y(xi+1))

4th Order Runge-Kutta method

The 4th order Runge-Kutta method is one of the most often used variations of the Runge-Kutta
methods: 

k1 = f(xi, yi),

k2 = f(xi +
1

2
h, yi +

1

2
hk1),

k3 = f(xi +
1

2
h, yi +

1

2
hk2),

k4 = f(xi + h, yi + hk3).

yi+1 = yi =
1

6
h(k1 + 2k2 + 2k3 + k4),

As the name suggest this method has an order of accuracy of 4, making it much more accurate
than the basic Euler method, but due to the increased amount of calculations it has a greater
computational cost.
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Ode45

Ode45 is a matlab code which applies a modified mix between a 4th and 5th order Runge Kutta
method

Definition 2.1 (Butcher Tableau) A mnemonic device giving the coefficients (aij), weights (bi)
and nodes (ci) for a particular Runge Kutta method. If we have s number of stages it takes the form
shown below.

0
c1 a21
c2 a31 a32
...

...
cs as1 as2 . . . as,s−1

b1 . . . bs

For ode45 we obtain the Butcher tableau shown below.

0
1/5 1/5
3/10 3/40 9/40
4/5 44/44 -56/15 32/9
8/9 19372/6561 -25360/2187 64448/6561 -212/729
1 9017/3168 -355/33 * 46732/5247 49/176 -5103/18656
1 35/384 0 500/1113 125/192 -2187/6784 11/84

35/384 0 500/1113 125/192 -2187/6784 11/84 0
5179/576000 0 7571/16695 393/640 -92097//339200 187/2100 1/40

A particularly useful feature of ode45 is its use of adaptivity which sets the step size depending
on the rate of change of the equation, the smaller the rate of change is the larger the step size is,
this helps to maximize the efficiency of the method and to minimize the computational cost.

Differential Transformation Method

The differential transformation method (DTM) is a semi-numerical analytical method which ap-
proximates solutions using polynomials. We consider the initial value problem for the system of
ODEs

x′1(t) = f1(t, x1, x2, . . . , xi),

x′2(t) = f2(t, x1, x2, . . . , xi),

...

x′i(t) = fi(t, x1, x2, . . . , xi),

(3.3)

which subjects to the initial conditions

xi(t0) = ci, i = 1, 2, ...., n.
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If we have the interval [t0, T ] over which we find the solution to our initial value problem then when
we apply the differential transformation method the Kth-order solution can be expressed by the
finite series

xi(t) =
K∑
k=0

Xi(k)(t− t0)k, t ∈ [t0, T ], i = 1, 2, ..., n,

where

Xi(k) =
1

k!

[
dkXi(t)

dtk

]
t=t0

, , i = 1, 2, ..., n.

To implement the DTM we first apply the differential transform which will give us a recurrence
relation, we then apply the inverse transformation to the solution of the recurrence relation will
give us our solution. To help with the process of transforming the function we consult a table of
operations.
Original function x(t) Transformed function X(k)
x(t) = u(t)± v(t) X(k) = U(k)± (V (k)
x(t) = cu(t) X(k) = cU(k)

x(t) = u(t)v(t) X(k) =
∑k

k1=0 V (k1)U(k − k1)

f(t) =
du(t)

dt
X(k) = (k + 1)U(k + 1)

x(t) =
dnu(t)

dtn
x(k) = (k + 1)(k + 2)...(k + n)U(k + n)

x(t) =
∫ t
t0
u(x)dx X(k) =

U(k − 1)

k
, k ≥ 1,

x(t) = tn X(k) = δ(k − n) =

{
1 k = n

0 k 6= n

x(t) = exp(λt) X(k) =
λk

k!

By using these operators we have the recurrence relation

(k + 1)Xi(k + 1) = Fi(k,X1, X2, ..., Xn), Xi(0) = ci, i = 1, 2, ...n,

where Fi(k,X1, X2, ..., Xn) is the differential transform of the function fi(t, x1, x2, ..., xn), for i =
1, 2, ...n.
The DTM is a useful tool for solving ordinary and partial differential equations as well as integrals.
It provides the solution as a convergent series with easily computable components. However, there
are disadvantages, the series solution given does not show the real behaviour of the problem it
only approximates the solution over a small region, over a larger region it has a slow rate of
convergence or may actually diverge. However a multi-step DTM which improves the accuracy and
accelerates the convergence of the series solution over a large region. To apply the multi-step DTM
we divide our interval [t0, T ] into M sub-intervals [tm−1, tm], m = 1, 2, ...M with equal length step
size h = (T − t0)/M by using the nodes tm = t0 +mh. We first apply the DTM to our initial value
problem (3.3) over the interval [t0, t1] to obtain the approximate solution

xi,1(t) =
K∑
k=0

Xi,1(k)(t− t0)k, t ∈ [t0, t1], (3.4)

with the initial conditions xi(t0) = ci. When m ≥ 2 at each sub-interval we will use the initial
condition xi,m(tm−1) = xi,m−1(tm−1) and again apply the DTM to our initial value problem (3.3),
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over the interval [tm−1, tm], this process is repeated to generate a sequence of approximate solutions
xi,m(t), m = 1, ...,M, i = 1, ..., n for the solutions of xi(t)

xi,m(t) =
K∑
k=0

Xi,m(k)(t− t0)k, t ∈ [tm−1, tm].

This gives us the following solution

xi(t) =


xi,1, [t0, t1],

xi,2, [t1, t2],
...

xi,M , [tM−1, tM ],

where i = 1, 2, ..., n.
This method of applying the multi-step DTM was shown by El-Zahar [4].

Application of DTM to the Lotka Volterra model

We apply the relevant transformations from our table to both sides of our basic Lotka Volterra
equation

dN

dt
= N(t)(a− bP (t)) = aN(t)− bP (t)N(t),

dP

dt
= P (t)(cN(t)− d) = −dP (t) + cN(t)P (t),

(3.5)

with the initial conditions N(0) = cN and P (0) = cP . We obtain the system

(k + 1)Ṅ(k + 1) = aṄ(k)− b
k∑

k1=0

Ṅ(k1)Ṗ (k − k1),

(k + 1)Ṗ (k + 1) = −dṖ (k) + c

k∑
k1=0

Ṅ(k1)Ṗ (k − k1),

(3.6)

which can be rearranged to

Ṅ(k + 1) =
1

k + 1
(aṄ(k)− b

k∑
k1=0

Ṅ(k1)Ṗ (k − k1)),

Ṗ (k + 1) =
1

k + 1
(−dṖ (k) + c

k∑
k1=0

Ṅ(k1)Ṗ (k − k1)),

(3.7)

where Ṗ (k) and Ṅ(k) are the transforms of P (t) and N(t) respectively. With the initial conditions
of Ṅ(0) = cN and Ṗ = cP . The series solution for our system is then given by:

N(t) =
∑J

j=0 Ṅ(j)tj,

P (t) =
∑J

j=0 Ṗ (j)tj.
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If we expand this result over the multi-step DTM we get:

N(t) =



∑J
j=0 Ṅ1(j)t

j, t ∈ [0, t1]

∑J
j=0 Ṅ2(j)(t− t1)j, t ∈ [t1, t2]

...

∑J
j=0 ṄM(j)(t− tM−1)j, t ∈ [tM−1, tM ]

(3.8)

P (t) =



∑J
j=0 Ṗ1(j)t

j, t ∈ [0, t1]

∑J
j=0 Ṗ2(j)(t− t1)j, t ∈ [t1, t2]

...

∑J
j=0 ṖM(j)(t− tM−1)j, t ∈ [tM−1, tM ]

(3.9)

where for all i = 1, 2, ....M Ṅi(j) and Ṗi(j) satisfy the below recurrence relations ,
Ṅi(k + 1) =

1

k + 1
(aṄi(k)− b

∑k
l=0 Ṅi(l)Ṗi(k − l)),

Ṗi(k + 1) =
1

k + 1
(−dṖi(k) + c

∑k
l=0 Ṅi(l)Ṗi(k − l)),

(3.10)

such that Ṅi(0) = Ṅi−1(0) and Ṗi(0) − Ṗi−1(0). By using the initial points Ṅ0 = cN and Ṗ0 = cP
and the recurrence relations we can obtain the multi step solution.

Application of DTM to the Lotka Volterra model with a bounded prey equation

If we apply the DTM to the Lotka Volterra model with a bounded prey equation (1.11) we get

Ṅ(k + 1) =
1

k + 1
(aṄ(k)− a

K

k∑
k1=0

Ṅ(k1)Ṅ(k − k1)−
ab

K

k∑
k1=0

Ṅ(k1)Ṗ (k − k1)),

Ṗ (k + 1) =
1

k + 1
(−dṖ (k) + c

k∑
k1=0

Ṅ(k1)Ṗ (k − k1)),

(3.11)
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We can expand this to a multi-step method in the same way as before,

N(t) =



∑J
j=0 Ṅ1(j)t

j, t ∈ [0, t1]

∑J
j=0 Ṅ2(j)(t− t1)j, t ∈ [t1, t2]

...

∑J
j=0 ṄM(j)(t− tM−1)j, t ∈ [tM−1, tM ]

(3.12)

P (t) =



∑J
j=0 Ṗ1(j)t

j, t ∈ [0, t1]

∑J
j=0 Ṗ2(j)(t− t1)j, t ∈ [t1, t2]

...

∑J
j=0 ṖM(j)(t− tM−1)j, t ∈ [tM−1, tM ]

(3.13)

where for all i = 1, 2, ....M Ṅi(j) and Ṗi(j) satisfy the below recurrence relations ,
Ṅ(k + 1) =

1

k + 1
(aṄ(k)− a

K

∑k
k1=0 Ṅ(k1)Ṅ(k − k1)−

ab

K

∑k
k1=0 Ṅ(k1)Ṗ (k − k1)),

Ṗ (k + 1) =
1

k + 1
(−dṖ (k) + c

∑k
k1=0 Ṅ(k1)Ṗ (k − k1)),

(3.14)

Application of DTM to the Holling-Tanner model

To apply DTM to the Holling tanner model we will use the work of Gökdogan and Merdan [9]
as a basis, he applied the method to a modified Holling-Tanner model which altered the type two
functional response to ratio dependent one. To transform our model we are required to introduce
a new transformation. If

f ′(t) =
g(x(t), y(t))

ax(t) + by(t) + c
, (3.15)

then,

F (t+ 1) =
[
G(X(k), Y (k))− a

k∑
l=1

(k − k1 + 1)X(k1)F (k − k1 + 1)

−b
k∑

k1=1

(k − k1 + 1)Y (k1)F (k − k1 + 1)
]
/(aX(0) + bY (0) + c)(k + 1).

(3.16)

To simplify matters we will use our non-dimensionalised Holling Tanner model (2.14), which we will
need to rewrite in the form of (3.15).

du

dτ
=

(1− a)u2 + au− u3 − uv
a+ u

, (3.17)
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dv

dτ
=
r1uv − bv2

u
. (3.18)

If we first look at (3.17) we can see that G(u, v) = −au2 + au − u3 + u2 − uv so by applying our
transform (3.16) and the other relevant transforms from our table we get,

U(k + 1) =
[
U(k) + (1− a)

k∑
k1=0

U(k1)U(k − k1)−
k∑

k2=0

k∑
k1=0

U(k1)U(k2 − k1)U(k − k2)

−
k∑

k1=0

U(k1)V (k − k1)−
k∑

k1=1

(k − k1 + 1)U(k1)U(k − k1 + 1)
]
/(U(0) + a)(k + 1).

If we do the same thing for our predator model (3.18) where G(u, v) = r1uv − bv2 we get

V (k + 1) =
r1
∑k

k1=0 U(k1)V (k − k1)− b
∑k

k1=0 V (k)V (k − k1)−
∑k

k1=1 U(k1)V (k − k1 + 1)

U(0)(k + 1)

Like before we can expand this result over the multi-step DTM we get:

u(t) =



∑J
j=0 U1(j)t

j, t ∈ [0, t1]

∑J
j=0 U2(j)(t− t1)j, t ∈ [t1, t2]

...

∑J
j=0 UM(j)(t− tM−1)j, t ∈ [tM−1, tM ]

(3.19)

v(t) =



∑J
j=0 V1(j)t

j, t ∈ [0, t1]

∑J
j=0 V2(j)(t− t1)j, t ∈ [t1, t2]

...

∑J
j=0 VM(j)(t− tM−1)j, t ∈ [tM−1, tM ]

(3.20)

where for all i = 1, 2, ....M Ui(j) and Vi(j) satisfy the below recurrence relations ,

U(k + 1) =
[
U(k) + (1− a)

k∑
k1=0

U(k1)U(k − k1)−
k∑

k2=0

k∑
k1=0

U(k1)U(k2 − k1)U(k − k2)

−
k∑

k1=0

U(k1)V (k − k1)−
k∑

k1=1

(k − k1 + 1)U(k1)U(k − k1 + 1)
]
/(U(0) + a)(k + 1).

V (k + 1) =
r1
∑k

k1=0 U(k1)V (k − k1)− b
∑k

k1=0 V (k)V (k − k1)−
∑k

k1=1 U(k1)V (k − k1 + 1)

U(0)(k + 1)
(3.21)
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such that Ui(0) = Ui−1(0) and Vi(0)− Vi−1(0). By using the initial points U0 = cu and V0 = cv and
the recurrence relations we can obtain the multi step solution.

3 Application of numerical methods to the Lotka-Volterra

model

In this section we will be applying several numerical methods to the Lotka-Volterra system (1.8).
We will be using the initial conditions of u0 = 2 and v0 = 2 and the parameters used by Hairer et.
al. [10] a = b = c = 1 and d = 2 throughout, giving us a system

dN

dt
= N(1− P ),

dP

dt
= P (N − 2).

(3.22)

As we know the parameters we don’t need to non-dimensionalise our system for analysis. Our
system has critical points when

0 = N(1− P ),

0 = P (N − 2),

therefore we have a non-trivial critical point at (N∗, P ∗) = (2, 1). We can analyse this critical point
by looking at the Jacobian matrix

J =

(
1− P −N
P N − 2

)
,

and calculating the eigenvalues at (N∗, P ∗) = (2, 1),

det|J(2, 1)− λI| =
(
−λ −2
1 −λ

)
= 0,

therefore
λ2 + 2 = 0.

This gives us the eigenvalues λ1,2 = ±
√

2 therefore as expected from our analysis of the non-
dimensionalised Lotka Volterra model we get a centre singularity. WThe trajectory equation for
the system is given by

dP

dN
=
P (N − 2)

N(1− P )
.

We can separate the variables and integrate to obtain the solution

H = N + P − ln|N2P |,

where H is defined by the initial conditions. As our initial conditions are u0 = 2 and v0 = 2 we get
H = 1.920558458.
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Application of Explicit Euler method to the Lotka-Volterra model

We apply the explicit Euler method to our Lotka-Volterra model (3.22) using

N(ti+1) = N(ti) + hN(ti)(1− P (ti)),

P (ti+1) = P (ti) + hP (ti)(N(ti)− 2).

We implemented Explicit Euler in Matlab using the initial conditions u0 = 2 and v0 = 2. In 3.1,
we can see the approximate solution given by Euler method for h = 0.05 and over a period of time
of t = 30 and the exact solution.

Figure 3.1: Phase plane for system (3.22) when applying the Euler method with h = 0.05 and initial
conditions u0 = 2 and v0 = 2
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Figure 3.2: Oscillations in population sizes of N and P

As you can see from figure (3.2) when we apply the Euler method our solutions lack the closed
trajectory which is expected from our analytically analysis and it diverges away from the singular
point, giving us the increasing oscillations shown by figure 3.1 instead of consistent ones expected.
We can reduce the amount of divergence by using smaller step sizes. We can calculate the E.O.C
evaluated at the last time step t = 30 to obtain the results shown in table 3.1. The results show
that it converges to one, which is expected as the explicit Euler method is a first order method.

Table 3.1: E.O.C for explicit Euler method
Ni Step Size E.O.C
1.70317240694349 0.0002 1.004524
1.7074507731644 0.0001 1.002272
1.70958325942551 0.00005 1.001139
1.71064782445216 0.000025 1.00057
1.71117968695766 0.0000125 1.000285
1.71144551314872 0.00000625 1.000143
1.7115783999715 0.000003125
1.711644837 0.0000015625
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Application of the Symplectic Euler method

If we apply the Sympletic Euler method 3.2 where N(t) is implicit and P (t) is explicit we obtain
the system

N(ti+1) = N(ti) + h[N(ti+1)(1− P (ti))],

P (ti+1) = P (ti) + h[P (ti)(N(ti+1)− 2)].

In order to implement this system we need to rearrange N(ti+1) so

N(ti+1)− hN(ti+1)(1− P (ti)) = N(ti),

P (ti+1) = P (ti) + h[P (ti)(N(ti+1)− 2)],

therefore we get the system

N(ti+1) =
N(ti)

1− h(1− P (ti))
,

P (ti+1) = P (ti) + h[P (ti)(N(ti+1)− 2)].

Implementing this using matlab with the same step size as before we get

Figure 3.3: Phase plane for system (3.22) when applying the Symplectic Euler method with h = 0.05
and initial conditions u0 = 2 and v0 = 2
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Figure 3.4: Oscillations in population sizes of N and P

From figure 3.3 we can see that the approximate solution calculated using the symplectic Euler
method has a closed trajectory as expected from our analysis. Note that the closed trajectory of
the approximate solution is very close to the one that the exact solution has. Figure 3.4 shows the
population sizes repeating over time. By calculating the corresponding EOC at the last time step
t = 30 we can see that the Symplectic Euler method is first order accurate, see table 3.2.

Table 3.2: E.O.C for sympletic Euler method
Ni Step Size E.O.C
2.2214678936924 0.2 1.444259406
1.91548874804142 0.1 1.226282
1.80304730129942 0.05 1.11375
1.75498786555181 0.025 1.057052
1.73278001443471 0.0125 1.028578
1.72210662751385 0.00625 1.014303
1.71687460626475 0.003125 1.007155
1.714284403 0.0015625 1.003579
1.712995709 0.00078125
1.712352958 0.000390625
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Application of 4th order Runge Kutta method to the Lotka-Volterra
model

If we implement the 4th order Runge Kutta method using matlab we obtain

Figure 3.5: Phase plane for system (3.22) when applying the 4th order Runge Kutta method with
h = 0.05 and initial conditions u0 = 2 and v0 = 2
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Figure 3.6: Oscillations in population sizes of N and P

Table 3.3: E.O.C for Runge Kutta
Ni Step Size E.O.C
1.71077297600439 0.2 3.588111
1.71163431095166 0.1 3.844004
1.71170593239339 0.05 3.930672
1.71171091989022 0.025 3.967187
1.7117112469541 0.0125 3.984011
1.7117112678659 0.00625 3.991586
1.7117112691874 0.003125
1.7117112692705 0.0015625

From figure 3.5 we can see that we have the expected closed trajectory, and figure 3.6 shows the
population sizes repeating over time. When we calculate the E.O.C we can see that it converges to
4 as is expected for a fourth order method.

3.1 Comparison of results

Looking at our previous results we have used the E.O.C to validate that our matlab models are
functioning correctly as they all converge to the expected outcomes. Out of the three methods the
explicit Euler gives the least accurate approximations and we had to start from a much smaller
step size as matlab could not calculate a solution for step sizes as large as 0.2. Both the Runge
Kutta and the Sympletic Euler method displayed the expected behaviour of a continuous trajectory,
but comparison of the results show that the Runge Kutta converges at a more rapid rate than the
symplectic Euler, this is to be expected as it of a higher order of accuracy.
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4 Proof of analytical results for Holling-Tanner model

In this section we will apply ode45 to our Holling-Tanner model with various parameters to quantify
the expected quanative behaviour shown in the previous chapter. We first consider a Holling-Tanner
model with a time interval of 200, initial values of u(0) = 0.7, v(0) = 0.6 and parameters a = 0.3,
r1 = 0.1 and b = 0.05 we obtain the below phase portrait.

Figure 3.7: System (2.14) with a = 0.3, r1 = 0.1, b = 0.05

We can see that we obtain a stable limit cycle around the non-trivial singular point (u∗, v∗) =
(0.2, 0.4). The existence of a limit cycle is the expected result as our parameters a and r1 lie within
the region shown by 2.9 i.e 0 < a < 1 and 0 < r1 < 1 + 3a − 2

√
2a+ 2a2. If we consider the

stability conditions from (2.27) that a+ r1 = 0.4 < 1 and (1−a− r1)2−8ar1 ≤ 0 therefore this sta-
bility is expected. We can see from 3.8 that the populations oscillate between two stable limit cycles.
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Figure 3.8: Stable limit cycles of system (2.14) with a = 0.3, r1 = 0.1, b = 0.05

It doesn’t matter what the initial conditions are the results will also spiral towards the limit
cycle even if the initial conditions lie within the limit cycles, this is illustrated below with initial
conditions of u0 = 0.25 and v0 = 0.43.

60



Figure 3.9: Stable limit cycles of system (2.14) with a = 0.3, r1 = 0.1, b = 0.05 with u0 = 0.25 and
v0 = 0.43

In another example if we keep our initial conditions but change our parameters to those used in
an example by Gasull et. al [7] which are a = 0.2, r1 = 0.2 and b = 0.0682 and our time interval
to 2000. Here the r parameter lies outside the region required for limit cycles and by considering
the stability conditions from (2.28) we can see that for our parameters α1 = 0.1 0 < u∗ < α1

therefore we expect our solution to be asymptotically stable and that it will cycle towards the non-
negative non-trivial singular point. (u∗, v∗) = (0.0899872, 0.2638920821). These expected results
are supported by the numerical analysis as is shown below.
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Figure 3.10: System (2.14)
with a = 0.2, r1 = 0.2, b = 0.0682

Figure 3.11: Close up of singular point of system (2.14) with a = 0.2, r1 = 0.2, b = 0.0682
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Figure 3.12: Plot showing populations converging towards singular point with a = 0.2, r1 = 0.2,
b = 0.0682
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Throughout this paper we have demonstrated the difficulty of obtaining an exact analytical
solution to predator-prey models. However this does not mean that it is impossible to obtain
useful information from such models. We can still use analytical methods to determine quantitative
behaviour which can determine long term trends in population. We can also use several numerical
methods to obtain satisfactory approximations to our models.

Population dynamics is a vast topic and this dissertation focused on only a small facet of it.
If we were to continue research in this subject in the future we would like to look at some of the
other models mentioned in the types of predator-prey section, particularly a model including the
more advanced Holling type 3 functional response. We can by using the terms f(u) = 1 − u and

g(u) =
muk

A+ uk
modify system (2.15) to a model incorporating a Holling type 3 response as shown

below

du

dτ
= u(1− u)− mukv

A+ uk
,

dv

dτ
= v
(
r1 − b1

v

u

)
.

There are a multitude of concepts related to predator-prey models which have yet to be mentioned.
Two areas of particular interest to us is the concept of incorporating a prey refuge, an area where
the prey where safe from predation. An example of a model modified to incorporate a refuge is
proposed by F.Chen et. al. [3]: who modifying the Leslie-Gower model (1.12) by introducing the
prey refuge rN , where r ∈ [0, 1) is a constant. This leaves (1 − r)N of the prey available to the
predator. Therefore our system (1.12) becomes

dN

dt
= aN

(
1− N

K

)
− (m(1− r)N)P,

dP

dt
= P

(
c− d P

(1− r)N

)
,

The other concept of interest to us is when we have a system with more than two populations.
Such models will allow us to examine a wide range of scenarios. A couple of examples of these
scenarios include a system where one species is hunted by two independent predator populations.
Another scenario is when we introduce a more complex food chain where one prey species and it’s
predator are both prey for an alpha predator. An example for a system with three populations
proposed by Erica Chauvet et al [5] is given by

dx

dt
= ax− bxy,

dy

dt
= −cy + dxy − eyz,

dz

dt
= −fz + gyz,
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where a, b, c, d, e, f, g > 0.
Here a, b, c, d represent the same parameters as they did in our two populations systems and:

• e represents the effect of predation of species z on species y.

• f represents the death rate of species z in the absence of prey.

• g represents the birth rate for species z.

This system models the scenario where the predator from our Lotka Volterra model is preyed on
by an alpha predator. Where the alpha predator has no interactions with the prey on the bottom
of the food chain.

Numerical methods is another area we could more throughly research. Through our investigation
we only analysed our Lotka-Volterra model by implementing four different methods, the explicit
Euler, the symplectic Euler and 4th order Runge Kutta. Their are numerous different methods we
could apply, of particular interest is implementing the differential transformation method (DTM)
and the multistep DTM mentioned in the previous chapter.
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Appendices
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1 Matlab code

Code for graph of the region for Hopf bifurcation and limit cycles

1 a = 0 : 0 . 0 1 : 1 ;
2 r1 =1+3.∗a−2.∗ s q r t ( 2 .∗ a+2.∗a .∗ a ) ;
3

4 p lo t ( a , r1 )
5 area (a , r1 )
6

7 x l a b e l ( ’ a 1 ’ ) ;
8 y l a b e l ( ’ r 1 ’ ) ;

Code for the phase plane for Limit cycles:

1 −
2 %ente r parameters , i n t i a l c o n d i t i o n s and s i z e o f time i n t e r v a l
3 a=input ( ’ ente r parameter a : ’ ) ;
4 r1=input ( ’ ente r parameter r1 : ’ ) ;
5 b=input ( ’ ente r parameter b : ’ ) ;
6 u0=input ( ’ ente r i n i t i a l prey populat ion : ’ ) ;
7 v0=input ( ’ ente r i n i t i a l predator populat ion : ’ ) ;
8 endtime=input ( ’ ente r s i z e o f time i n t e r v a l : ’ ) ;
9

10

11 sys = @( t , x ) [ x (1 ) ∗(1−x (1 ) )−x (1 ) ∗x (2 ) /( a+x (1) ) ; x (2 ) ∗( r1−b∗x (2 ) /x (1 ) ) ] ;
12 opt ions = odeset ( ’ RelTol ’ , 1e−4, ’ NonNegative ’ , [ 1 2 ] ) ;
13 [ t , u]=ode45 ( sys , [ 0 endtime ] , [ u0 v0 ] , opt i ons ) ;
14 p lo t ( t , u )
15 a x i s ( [ 0 1000 0 1 0 ] )
16 x l a b e l ( ’u ( t ) ’ )
17 y l a b e l ( ’ v ( t ) ’ )
18 hold o f f

Code for ode45 phase plane and example of stable cycles:

1 c l e a r ;
2 to = 0 ;
3 t f = 200 ;
4 uo = [100 5 0 ] ;
5 [ t u ] = ode45 ( ’ lv2 ’ , [ to t f ] , uo ) ;
6 p lo t (u ( : , 1 ) ,u ( : , 2 ) )
7 y l a b e l ( ’ v ( t ) ’ )
8 x l a b e l ( ’u ( t ) ’ )

1 f unc t i on lv2 =ypr f ( t , u )
2 l v2 (1 ) = .4∗u (1) − . 013∗u (1) ∗u (2) ;
3 l v2 (2 ) = −.3∗u (2) +.015∗u (1) ∗u (2) ;
4 l v2 = [ lv2 (1 ) lv2 (2 ) ] ’ ;

Code for Euler equation:
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1 t = [ 0 : . 0 0 0 2 : 3 0 ] ;
2 x=ze ro s ( s i z e ( t ) ) ;
3 y=ze ro s ( s i z e ( t ) ) ;
4 x (1 ) =2;
5 y (1 ) =2;
6 xp = @( t , x , y ) x − x∗y ;
7 yp = @( t , x , y ) −2∗y + x∗y ;
8 f o r k=1: l ength ( t )−1
9 x ( k+1) = x ( k ) + xp ( t ( k ) , x ( k ) , y ( k ) ) ∗( t ( k+1)−t ( k ) ) ;

10 y ( k+1) = y ( k ) + yp ( t ( k ) , x ( k ) , y ( k ) ) ∗( t ( k+1)−t ( k ) ) ;
11 end
12 fh=@(N,P) (N+P−l og (Nˆ2∗P) −1.920558458)
13 q=e z p l o t ( fh ) ;
14 s e t (q , ’ c o l o r ’ , [ 1 0 0 ] ) ;
15 hold on
16 p lo t (x , y )
17 y l a b e l ( ’P( t ) ’ )
18 x l a b e l ( ’N( t ) ’ )
19 l egend ( ’ Actual ’ , ’ Symplect ic ’ ) ;
20 a x i s ( [ 1 , 3 . 5 , 0 . 4 , 2 . 1 ] )
21

22

23 df=length ( x ) ;
24 l 99=x ( df )

Code for Sympletitic Euler equation:

1 format long
2 t = [ 0 : . 0 5 : 3 0 ] ;
3 x=ze ro s ( s i z e ( t ) ) ;
4 y=ze ro s ( s i z e ( t ) ) ;
5 x (1 ) =2;
6 y (1 ) =2;
7 f o r k=1: l ength ( t )−1
8 x ( k+1) = x ( k ) /(1−( t ( k+1)−t ( k ) )∗(1−y ( k ) ) ) ;
9 y ( k+1) = y ( k )+(y ( k ) ∗(x ( k+1)−2) ) ∗( t ( k+1)−t ( k ) ) ;

10 end
11

12 fh=@(N,P) (N+P−l og (Nˆ2∗P) −1.920558458)
13 q=e z p l o t ( fh , [ 0 , 3 0 ] ) ;
14 s e t (q , ’ c o l o r ’ , [ 1 0 0 ] ) ;
15 hold on
16 p lo t (x , y )
17 y l a b e l ( ’P( t ) ’ )
18 x l a b e l ( ’N( t ) ’ )
19 l egend ( ’ Actual ’ , ’ Symplect ic ’ ) ;
20 a x i s ( [ 1 , 3 . 5 , 0 . 4 , 2 . 1 ] )
21
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22 df=length ( x ) ;
23 l 99=x ( df )

Code for Runge Kutta method:

1

2

3

4 f unc t i on rk4 systems (a , b , N, i n t i a l )
5 i n t i a l =[2 2 ] ;
6 b=30;
7 a=0;
8 m = s i z e ( i n t i a l , 1 ) ;
9 i f m == 1

10 i n t i a l = i n t i a l ’ ;
11 end
12 h = 0 . 0 5 ; %the step s i z e
13 N=(b−a ) /h
14 t (1 ) = a ;
15 g ( : , 1 ) = i n t i a l ; %i n i t i a l c o n d i t i o n s
16

17 f o r i = 1 :N
18 k1 = h∗ f ( t ( i ) , g ( : , i ) ) ;
19 k2 = h∗ f ( t ( i )+h/2 , g ( : , i ) +0.5∗k1 ) ;
20 k3 = h∗ f ( t ( i )+h/2 , g ( : , i ) +0.5∗k2 ) ;
21 k4 = h∗ f ( t ( i )+h , g ( : , i )+k3 ) ;
22 g ( : , i +1) = g ( : , i ) + ( k1 + 2∗k2 + 2∗k3 + k4 ) /6 ;
23 t ( i +1) = t ( i ) + h ;
24 end
25 hold on
26 fh=@(N,P) (N+P−l og (Nˆ2∗P) −1.920558458) ;
27 q=e z p l o t ( fh ) ;
28 s e t (q , ’ c o l o r ’ , [ 1 0 0 ] )
29 hold on
30 a x i s ( [ 1 , 3 . 5 , 0 . 4 , 2 . 1 ] )
31 p lo t ( g ( 1 , : ) , g ( 2 , : ) )
32 x l a b e l ( ’N( t ) ’ )
33 y l a b e l ( ’P( t ) ’ )
34 l egend ( ’ Actual ’ , ’ Runge Kutta ’ ) ;
35

36 df=length ( g ( 1 , : ) ) ;
37 l 99=g (1 , df )
38 f p r i n t f (1 , ’ l 99 = %.20 f \n ’ , l 99 )
39 f unc t i on lv =f ( t , g )
40 l v (1 ) =g (1)−g (1 ) ∗g (2 ) ;
41 l v (2 ) = g (1) ∗g (2 )−2∗g (2 ) ;
42

43 l v = [ lv (1 ) lv (2 ) ] ’ ;
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Code for quantifying Holling-Tanner model:

1 −
2 %ente r parameters , i n t i a l c o n d i t i o n s and s i z e o f time i n t e r v a l
3 a=input ( ’ ente r parameter a : ’ ) ;
4 r1=input ( ’ ente r parameter r1 : ’ ) ;
5 b=input ( ’ ente r parameter b : ’ ) ;
6 u0=input ( ’ ente r i n i t i a l prey populat ion : ’ ) ;
7 v0=input ( ’ ente r i n i t i a l predator populat ion : ’ ) ;
8 endtime=input ( ’ ente r s i z e o f time i n t e r v a l : ’ ) ;
9

10

11 sys = @( t , x ) [ x (1 ) ∗(1−x (1 ) )−x (1 ) ∗x (2 ) /( a+x (1) ) ; x (2 ) ∗( r1−b∗x (2 ) /x (1 ) ) ] ;
12 opt ions = odeset ( ’ RelTol ’ , 1e−4, ’ NonNegative ’ , [ 1 2 ] ) ;
13 [ t , u]=ode45 ( sys , [ 0 endtime ] , [ u0 v0 ] , opt i ons ) ;
14 p lo t ( t , u )
15 a x i s ( [ 0 1000 0 1 0 ] )
16 x l a b e l ( ’u ( t ) ’ )
17 y l a b e l ( ’ v ( t ) ’ )
18 hold o f f
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