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ABSTRACT

The  aim  of  this  study  was  to  examine  the  reproducibility  of  the  internal  load  and

performance-based responses to repeated bouts of a three-round amateur boxing simulation

protocol (BOXFIT). Twenty-eight amateur boxers completed two familiarisation trials before

performing two complete trials of the BOXFIT, separated by 4-7 days. To characterise the

internal load, mean (HRmean) and peak (HRpeak) heart rate, breath-by-breath oxygen uptake (

V́ O2), aerobic energy expenditure (EEaer), excess carbon dioxide production (CO2excess) and

ratings of perceived exertion (RPE) were recorded throughout each round and blood lactate

determined post-BOXFIT. Additionally, an indication of the performance-based demands of

the BOXFIT was provided by a measure of acceleration of the punches thrown in each round.

Analysis revealed there were no significant differences (P > 0.05) between repeated trials in

any round for all dependent measures. The typical error (coefficient variation %) for all but

one marker of internal load (CO2excess) was 1.2 – 16.5% and reflected a consistency that was

sufficient for the detection of moderate changes in variables owing to an intervention. The

reproducibility of the punch accelerations was high (CV% range = 2.1 – 2.7%). In general,

these findings suggest that the internal load and performance-based efforts recorded during

the BOXFIT are reproducible and thereby offers practitioners a method by which meaningful

changes impacting on performance could be identified.

KEY WORDS: Combat sports, physiological response, reliability.
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INTRODUCTION

Attempting  to  circumvent  the  limitations  of  laboratory  and  field-based  assessments  of

physical  and  physiological  aptitude,  researchers  have  sought  to  develop  sport-specific

simulations of competitive sports performance (10,12,14,24,29,38,44,45). Their use seeks to

satisfy  the  requirement  for  specificity  during  training  and testing  (34)  and  increases  the

ecological  validity  of  performer  assessment  by  replicating  the  internal  (physiological

responses)  and  external  (physical  movements)  loads  of  competition  (14,45).  However,

attempting to replicate  both the physiological  and physical  demands in sports typified by

dynamic, intermittent exercise patterns, alongside the execution of frequent technical skills,

with adequate reproducibility, is challenging (45).

In principle, simulations are realised following a detailed initial identification of the typical

movement  demands  (including  the  type,  intensity,  duration,  distance  and  frequency  of

movements;  14)  of  a  sport  (43)  via  appropriate  time-motion  techniques  (video or  global

positioning systems). Thereafter, such simulations have been employed to regulate exercise

intensity  whilst  permitting  invasive  and  sensitive  measurements  that  facilitate  the

identification of meaningful changes in performance (24). In this way, they can be used as

part of an athlete’s conditioning, offering a replication of the demands of competition (29). In

amateur  boxing,  there  have  been  two  attempts  (12,39)  to  simulate  the  competitive

environment. However, these simulations did not adequately replicate the external demands

of competition. That is, the attempts to quantify the locomotive movement patterns lacked

thoroughness,  and  the  offensive  and  defensive  actions  included  were  atypical  of  those

encountered in competitive performance. Moreover, it appears the internal loads generated by

the simulations were invalid,  being lower than those recorded in studies documenting the

physiological  responses  to  sparring  and actual  boxing bouts  (19,32,40).  Accordingly,  the
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‘boxing conditioning and fitness test’ (BOXFIT) (42) was developed in the first instance as

an externally valid replication of amateur boxing contests, eliciting physiological responses

(internal  load)  shown to be the  most  valid  recorded to  date.  These  encouraging findings

support its potential as an appropriate protocol for the scrutiny of boxers’ conditioning and

the impact of intervention-based changes.

Notwithstanding the importance of the validity of measurement tools such as sport simulation

protocols, it is necessary initially to establish the consistency with which they can generate

the movements and internal loads over repeated trials. Such information provides an estimate

of  their  ability  to  monitor  worthwhile  changes  (5)  following  purposeful  interventions.

Therefore,  the  aim  of  the  study  was  to  quantify  the  trial-to-trial  reproducibility  of  the

BOXFIT’s key movements and the internal and performance-based responses they elicit.

METHODS

Experimental Approach to the Problem

A test-retest  design  was  used  to  establish  the  reproducibility  of  the  movements  and  the

internal loads and performance-based responses to the BOXFIT simulation. Boxers attended

three  sessions  (over  a  maximum  of  10  days)  in  which  they  performed  boxing-specific

assessments.  Specifically,  participants underwent familiarisation trials  which involved two

complete  attempts  of the simulation  protocol  separated by 60 minutes,  the first  of which

employed shadow boxing exercise, and the second included all its elements (i.e. punching

handheld coaching pads). The boxers returned 72 hours later to perform the first of two actual

test simulations, and then 4 – 7 days later for the repeat trial. 
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Subjects

Twenty-eight amateur boxers (4 novice, 12 intermediate and 12 open class) (mean ± SD; age

22.4 ± 3.5 years, body mass 67.7 ± 10.1 kg, stature 171 ± 9 cm, years of experience 6 ± 2

years,  previous  contests  15 ± 8;  predicted  V́ O2max  = 57 ± 5 ml·kg-1·min-1)  volunteered  to

participate  in  the  study.  Boxers  were  informed  of  the  procedures  and  potential  risks  of

participation,  and  subsequently  provided  written  informed  consent.  Institutional  ethical

approval for the experimental procedures was granted by the Faculty of Applied Sciences

Ethics Committee. 

Procedures

Throughout both trials the boxers wore a portable gas analyser (mass = 450 g; Cosmed, K4b2,

Italy) and a heart rate monitor (Polar, Electro Oy, Kempele, Finland). In addition, they wore

fabric hand-wrapping (450 cm length, 5 cm width; Adidas, Germany) and boxing gloves (284

g;  Adidas,  Germany)  as  required  during  actual  competition.  Following  a  15-minute  self-

selected warm-up consisting of shadow boxing, jogging and punch bag exercise, the boxers

performed  the  simulation  protocol  (see  overview  below)  in  a  boxing  ring  (6.1  m2)

(temperature = 19.0 ± 3.4 °C; humidity = 41.3 ± 8.5 %). The analysed simulation comprised

three rounds of three minutes’ duration, interspersed with a one minute rest between rounds

(50 s seated, 10 s standing). This structure mirrors that of non-novice amateur boxing bouts.

Movements  during  the  simulation  were  recorded  using  a  digital  camera  (Canon MV700,

Japan) positioned adjacent the boxing ring, and the data files were subsequently uploaded to
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Dartfish TeamPro (Version 4.0, Switzerland) where the lead researcher identified deviations

from the set protocol and coded them as either a  missed action (i.e. the boxer completely

failed to perform the required action) or an  incorrect action (i.e. the boxer performed the

wrong movement).  Moreover,  whether  missed or  incorrect,  a  note  was made  identifying

whether the action was an offensive, defensive or motion-related error, and thereby enabled

an assessment of the adherence to the commands of the BOXFIT.

Amateur boxing simulation protocol (BOXFIT). The external demands of the simulation

protocol  coincide with the mean contest  demands of amateur  boxing (41).  Consequently,

during each minute boxers covered 35.9 m using boxing-specific movements, performed 26

punches (consisting of 15 individual attacks) against handheld coaching pads and simulated

12 defences. For specific details of the movements and their chronological order, the reader is

referred to Thomson (42). As the underpinning data of the simulation revealed no differences

in the minute-by-minute technical and ambulatory demands of contests involving two- and

three-minute  rounds,  the  application  of  a  standardised  demand  applicable  to  novice  (c.f.

regional), intermediate (c.f. inter-regional) and open class boxers (c.f. national standard) was

justified. All movement routines were therefore repeated over one-minute cycles, three times

per round, and controlled via instructive audio commands. 

Internal load and performance-based measurements. Breath-by-breath gaseous exchange

measurements  of  oxygen  uptake  (V́ O2),  carbon  dioxide  production  (V́ CO2),  respiratory

exchange ratio (RER) and minute ventilation (V́ E) were recorded throughout the simulation

using a portable gas analyser (Cosmed K4b2,  Italy) and subsequently averaged over five-
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second periods. Based upon previous research (10), ventilatory data was used to calculate

aerobic energy expenditure (EEaer; expressed in kcal∙min-1) using: 

EEaer = 3.941 x V́O2 + 1.106 x V́ CO2

An oxygen equivalent of 3.941 was used while the non-protein respiratory quotient (npRQ)

was < 1. However, in the event npRQ became > 1, an oxygen equivalent of 5.04 kcal∙min-1

was used and assumed all energy was derived from carbohydrate. An estimate of anaerobic

glycolysis was also obtained by calculating excess CO2 production (CO2excess) (10) as follows:

CO2excess = V́ CO2– (0.817 x V́O2)

where 0.817 represented the resting RER (20). 

Peak and mean heart rates were recorded using a 1 Hz frequency monitor (Polar, Electro,

Finland) throughout. Established as the optimum time post-exercise to record peak lactate

following boxing-specific exercise (12), capillary blood samples were collected one minute

post-performance from the ear lobe and analysed for blood lactate using a portable analyser

(Lactate Pro, Kyoto, Japan). Immediately following each round of simulated boxing, session

ratings of perceived exertion (sRPE) were recorded using the category ratio scale (CR-10)

(17).

To provide an estimate of the performance-based responses of the boxers, the punches were

delivered to coaching pads held by a qualified boxing coach (Level 2, ‘full’ Amateur Boxing

Association  of  England  with  over  five  years  of  coaching  experience)  equipped  at  the

posterior  aspect  of  each  wrist  with  wireless  three-dimensional  accelerometers  (Herman
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Digital Trainer, USA). These devices quantified the acceleration delivered to the targets each

round in units expressed as ‘g’ values with the sum of both monitors recorded.

Statistical analyses  

The participants’ ability to follow the commands of the BOXFIT under test-retest conditions,

was assessed via the statistical  approach advocated by Cooper, Hughes, O’Donoghue and

Nevill  (9).  Focussing  upon  punching  (‘offensive’),  simulated  defences  (‘defence’)  and

boxing-specific ambulation (‘locomotion’) individually, the frequency of the desired action

was quantified for each 10-second period of a performance. A median sign test was computed

to  assess  the  null  hypothesis  of  no  significant  systematic  bias  between  the  test-retest

frequency  counts  of  each  action  (P  ≤  0.05).  Subsequently,  the  observed  proportion  of

agreement (PA) was calculated using the sum of agreeing 10-second periods expressed as a

proportion  of  the  total  number  of  time  periods  (a  9-minute  simulation  =  54  periods).

Additionally,  the PA was calculated when a reference value of ± 1 frequency count was

applied to reflect a permissible margin of error. This value was selected given the need to

replicate the commands of the BOXFIT as closely as possible as wider margins would likely

affect  the  accuracy  of  the  internal  load  and  performance-based  responses.  Approximate

confidence intervals (CI) were then calculated for these proportions of agreement (upper 95%

CI = PA + (1.96 x SE(PA)); lower 95% CI = PA - (1.96 6 SE(PA)); where ‘SE’ represented

the standard error (9,43). 
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For subsequent analyses, descriptive statistics (mean ± SD) were calculated for all dependent

variables and the normality of their distributions was checked using the Shapiro-Wilk test. A

2 x 3 (trial x round number) repeated measures factorial ANOVA was employed to assess the

variability  of  the  internal  load  and  performance-based  measures  due  to  the  independent

variables.  Equality  of  variance  and  covariance  was  assessed  using  Mauchly’s  test  of

sphericity. Where a significant (P < 0.05) Mauchly’s test was identified, corrections to the

degrees of freedom were made accordingly (35). Post-hoc Bonferroni-adjusted  t-tests were

employed  to  identify  pairwise  differences  where  appropriate.  The typical  error  (TE)  was

calculated to provide an indication of the within-subject variability in the dependent variables

between trials. Expressed as CV%, the TE was also related to the smallest worthwhile change

(SWC%) using 0.2 x pooled standard deviation (25). Moderate (MWC%), large (LWC%) and

very  large  (VLWC%)  changes  were  calculated  as  0.6,  1.2  and  2.0  x  pooled  standard

deviation, respectively. These were converted to percentages to facilitate a comparison of the

CV% with potential changes in performance. Alpha was set at P ≤ 0.05 throughout. All data

analyses were performed using either Microsoft  Excel  (Version 2010, Redmond, WA) or

SPSS (Version 17.0; Chicago, IL).

RESULTS

There was strong agreement on a test-retest basis for the actions performed by the boxers

during the simulation, with agreement being > 97% for offensive, defensive and locomotive

actions  (Table 1).  For defensive actions,  perfect  agreement  was not  established owing to

occasional incorrect movements being performed at the allotted time, though no action during

the BOXFIT was missed altogether.

***Table 1 placed about here*** 
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The reproducibility  of the internal load of BOXFIT performance is presented in Table 2.

Generally, the round of interest did not modify the consistency of the measurements, with

most variables yielding variability smaller than the calculated moderate changes in responses.

Between trials, no significant main effects or interactions were observed (P  > 0.05) in the

cardiovascular  responses  (HRmean and  HRpeak)  to  BOXFIT performance  across  any round.

Moreover,  the  CV%  was  1.2  to  2.5%  and  thus  sufficiently  low  enough  to  permit

identification of MWC% in all rounds. There were also no systematic differences (P > 0.05)

between test-retest trials in any round for all ventilation-related measurements (V́ O2mean, EEaer

and CO2excess). However, the consistency of the measurements of V́ O2mean (CV% range = 6.2 –

13%) and EEaer  (CV% range 8.9 – 16.5%) were notably better than those of CO2excess,  which

evidenced the poorest reproducibility (CV% ≈ 30% across rounds). Importantly, the stability

of V́ O2mean and EEaer  was sufficient to detect small or medium changes, whereas CO2excess was

consistent enough to detect only large changes in performance. 

Mean values for sRPE indicated no systematic bias between trials (P > 0.05) and the CV%

resided between 2.3 – 6.5%. Notably, better consistency was seen in rounds two and three

compared to round one and was sufficiently low to identify SWC% (whereas the response

during round one was less  than MWC%). Mean post-simulation  Blac values  did not  vary

significantly between trials, and the CV% for the measure was 12%; again smaller than the

associated MWC%.

  ***Table 2 placed about here*** 
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Between trials, no significant main effects or interactions were observed (P  > 0.05) in the

punch  accelerations  produced  during  BOXFIT  performance.  The  CV%  for  punch

accelerations (Table 3) ranged between 2.1 – 2.7% and although it was not lower than the

SWC% at any point, during rounds one and three it was lower than moderate changes, and

during round two it was lower than the LWC%. 

  ***Table 3 placed about here*** 

DISCUSSION

The present study sought to examine whether an amateur boxing-specific simulation protocol

is  capable  of  generating  reproducible  movements,  internal  loads  and  performance-based

responses such that it could detect ecologically valid intervention-based changes in a boxer’s

physiology  and  performance.  The  results  warrant  a  largely  favourable  interpretation

insomuch  that  the  majority  of  movements  and  measures  were  replicated  with  sufficient

consistency  that  would  enable  the  detection  of  moderate  (or  even  small)  changes  in

performance across all rounds. These findings represent a considerable advance from what

has been published so far. In particular, previous studies attempting to induce boxing-specific

physiological demands have not assessed the reproducibility of any component (i.e. internal

physiological response or external demands) and doubt exists about the representativeness of

their data. 

Indeed,  the protocol  of  Davis,  Wittekind and Beneke (12),  which included 2.5 times  the

number  of  typical  defences,  revealed  a  significant  difference  in  the  number  of  offensive

actions performed between rounds two and three even though they were meant to be identical
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(13).  Moreover,  that  the  protocol  they  used  demonstrated  an  increase  in  physiological

responses across rounds suggests a low internal  consistency. Given the regulated external

demand  dictated  by  BOXFIT,  it  is  perhaps  not  surprising  that  the  reproducibility  of  the

actions performed within it was seen to be high, with perfect test-retest agreement achieved

for  the  offensive  and  ambulatory  actions,  and  near  perfect  agreement  for  the  defensive

movements. Thus, when the boxers are fully familiarised, the BOXFIT offers a means by

which  the  external  demand  can  be  controlled,  facilitating  the  assessment  of  various

physiological and performance-based measures.

Throughout  the three rounds,  a  consistent  pattern  emerged where the reproducibility  was

sufficient to enable the detection of at least moderate changes in performance. HRmean, HRpeak

and punch acceleration presented good consistencies with CV% < 2.5%, whilst measures of

V́ O2, EEaer, Blac and sRPE ranged between 2.3 – 16%. Previous research employing mean

and peak heart rate as measures of physiological strain during sports simulation protocols

have reported similar CV% or lower (i.e. < 2%) (44,45). Likewise, those for sRPE and Blac

scores are similar to those reported previously (44). Employing such statistics support the

BOXFIT’s efficacy given the large variations often evident in sports (or bout) performances

(22). 

To provide realistic analytical goals, previous research appraising the impact of interventions

(e.g. training, hypo-hydration or energy restriction) upon cardiovascular, glycolytic responses

and  the  development  of  power  during  exercise  was  consulted.  Moreover,  the  approach

whereby  the  CV%  of  a  measurement  (referred  to  as  ‘noise’)  is  related  to  a  desirable

systematic change (considered the ‘signal’) (5,8,25) was utilised to confirm the consistency
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of the measurements. That is, analytical goals were dependent upon the consistency of the

BOXFIT measurements in relation to the expected percentage changes owing to interventions

(8) and the expected change (%) must exceed the BOXFIT CV% to therefore support its

reproducibility. As an example, boxers frequently undergo rapid weight loss (31,40) and it is

plausible they might experience reductions in blood volume, and hence stroke volume for a

given exercise intensity, resulting in a concomitant elevation in heart rates during aerobic

exercise of ≈ 5 - 9% following 2.89 - 4% dehydration (21,23). The current between-trial CV

% for mean and peak heart  rates  (2.4 and 2.0%) suggest  the BOXFIT could be used to

identify dehydration-related increases in cardiovascular demand, given the expected change

in heart rate exceeds 2.4%. Likewise, dehydration is known to increase sRPE (1) and it would

seem likely that the worst-case variability reported herein (6.5%) is lower than the typical

increases  (>10%;  11,21)  in  perceived  exertion  following  dehydration  of  3% body  mass.

Consequently, boxers engaged in weight loss practices could employ the BOXFIT to identify

undesirable increases in heart rate (i.e. those > 2%) and perceived exertion (i.e. those > 6.5%)

that  imply  they  ought  to  taper  their  training  and  consider  a  fluid  replacement  plan

incorporating electrolytes and carbohydrate intake (2). It might also be that a forthcoming

contest is cancelled, or at least postponed, allowing the boxer to rehydrate before undergoing

a more gradual approach to weight loss (30). 

Furthermore, as decrements of 15% in an athlete’s ability to produce (peak) powerful upper-

body movements are associated with 3% hypohydration (28), power in punching could be

considered a function of force and velocity (7) and the recorded punch accelerations within

the BOXFIT are influenced by the ability of a boxer to produce force (i.e. acceleration =

force/mass)  and  velocity  (i.e.  acceleration  =  (change  in  velocity)/time),  the  expected

decrements  of  15%  could  plausibly  transfer  to  the  punching  performance  during  the
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simulation. Thus, given a sensitivity of < 6.5% and expected changes of 15%, the BOXFIT

could also be used to identify power-related declines in boxing-specific movements owing to

hypo-hydration.

A meta-analysis appraising the change in  ´V O2max owing to high-intensity interval training

reported  increases  of  ≈  6  -  9  ml·kg-1·min-1 (3).  The  consistency  of  the  ´V O2  and  EEaer

responses during the BOXFIT resulted in CV% of 7.5% and 8.9%, respectively. Assuming

increases in ´V O2max are also reflected at the intensities associated with BOXFIT performance

(≈ 42 ml·kg-1·min-1) owing to an enhanced efficiency (increased arterio-venous difference and

haemoglobin content) (27), a ≈ 6 - 9 ml·kg-1·min-1 increase would exceed the ‘noise’ of the

measurement (i.e. 7.5% of 42 ml·kg-1·min-1  = 3.15 ml·kg-1·min-1). Still, the proposed change

of ≈ 6 - 9 ml·kg-1·min-1 in  ´V O2max might not be consistent with those expected in amateur

boxers given such a finding was based upon recreationally active participants (defined as ´V O

2max < 55 ml·kg-1·min-1) (3). Nonetheless, knowing the sensitivity of the measurement (3.15

ml·kg-1·min-1) within the BOXFIT, it could remain a useful measurement for amateur boxers

given the extent  of  training-induced improvements  in  ´V O2max recorded in  elite  and well-

trained distance  runners  (>5%) who possess maximal  values  (61-71 ml·kg-1·min-1)  higher

than the current sample of boxers (57 ± 5 ml·kg-1·min-1). Following a period of high-intensity

interval training the BOXFIT could therefore be used to identify genuine changes in markers

of boxing-specific aerobic fitness. 

Previous research employing the K4b2  gas analyser on a test-retest basis, particularly in an

applied environment, is scarce, but the findings presented herein do not compare favourably

to laboratory-based assessments of respiratory gas analysis (37). That is, during a 1,000 m

upper-body ergometry assessment, 95% ratio limits of agreement for V́ O2 data revealed test-
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retest variability of 9%. Employing the CV% statistic, the variability of the  V́ O2  recorded

herein was 6 - 13% and estimates of EEaer demonstrated lower consistency still. Such findings

must cast doubt on all the previous findings of the energetic demands of combat simulations

that have not reported the test-retest consistency of  V́ O2  values produced. Indeed, research

suggests  the  accuracy  and  consistency  of  the  K4b2  is  compromised  at  higher  intensities

(15,26). The acyclic,  short duration, high-intensity nature of the BOXFIT and its reliance

upon  upper-body  exercise  might  explain  the  degree  of  variability  owing  to  a  weaker

locomotor-respiratory  coupling  during  such  exercise  (4,37)  and  greater  variability  in  the

oxygen kinetics (15). Nonetheless, that the K4b2  gas analyser was able to detect moderate,

and on occasion small, changes in V́ O2  and EEaer  suggests these measurements could remain

practically useful when monitoring boxing-specific fitness. Finally, as the measure of CO2excess

demonstrated poor reproducibility  (CV% ≈ 30%), its  usefulness in this  context  has to be

questioned. Whilst it is known that such a measure has considerable inter-individual variance

(18,36), no prior reports of its reproducibility have been published. The use of an estimated

npRQ likely reduced the consistency of the measure as resting npRQ is also known to vary

considerably between athletes (20), owing to factors such as nutrition and training status (6).

Future research could focus on re-evaluating the consistency of CO2excess responses to high

intensity  exercise  when npRQ has  been quantified  pre-exercise,  enabling  an  appraisal  of

within-subject variability.

Post-performance decrements in blood lactate of 11 - 26% compared to control trials have

been associated with low (insufficient)  carbohydrate intake,  and by inference low muscle

glycogen stores (33,38). With a blood lactate CV% of 12% post-BOXFIT, it is possible such

a measure is reproducible enough to allow the identification of a boxer experiencing low
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muscle glycogen, and hence an over-reliance on aerobic pathways of energy provision. As

this  situation  would  yield  a  lowered  sustainable  exercise  capacity  and  premature  fatigue

during a bout (16), identifying its occurrence pre-competition appears pertinent. 

PRACTICAL APPLICATIONS

The BOXFIT described in this  study permits  the collection of a  number of physical  and

physiological measurements that could be used to identify the preparedness of boxers, derive

training  intensities  and  monitor  intervention-based  changes  in  physiology  or  punching

performance. Though the BOXFIT has been used to previously to determine the importance

of a well-developed aerobic and anaerobic ability (42), the reported reproducibility further

supports the application of the BOXFIT in the applied amateur  boxing context.  Not only

would it enhance the specificity of assessment,  but, knowing the sensitivity of the test,  it

appears justified that the BOXFIT be used to monitor  the conditioning status (fitness) of

boxers and determine the impact of certain body mass manipulation strategies (i.e.  hypo-

hydration and/or glycogen depletion) upon them given the prevalence and dangers of this

practice (31).
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Table 1. Summarised reproducibility of the total actions performed during the BOXFIT 

simulation.

Performanc
e 
indicator

Median
(sign test)

PA
(%)

95% CI (%) PA ± 1
(%)

95% CI (%)

Offence P = 1.00 100 100 to 100 100 100 to 100
Defence P = 1.00 97 92 to 100 100 100 to 100
Locomotive P = 1.00 100 100 to 100 100 100 to 100

P = exact p-value; PA = proportion of agreement; PA ± 1 = proportion of agreement where 
reference value resided within a single frequency count; CI = confidence interval.
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Table 2. Reproducibility of internal load during the BOXFIT protocol (by round).

Round Trial 1
(mean ± SD)

Trial 2
(mean ± SD)

CV%

HRmean (b·min-1) 1 165 ± 11 162 ± 11 2.4 ↓MWC

2 172 ± 10 172 ± 11 1.8 ↓MWC

3 175 ± 10 175 ± 9 1.2 ↓MWC

HRpeak (b·min-1) 1 178 ± 13 178 ± 12 2.0 ↓MWC

2 187 ± 8 184 ± 13 2.5 ↓MWC

3 189 ± 11 188 ± 10 1.5 ↓MWC

V́ O2mean (ml·kg-1) 1 126.2 ± 16.2 122.2 ± 16.4 7.5 ↓MWC

2 131.0 ± 17.7 126.1 ± 15.0 6.2 ↓MWC

3 122.0 ± 22.8 126.1 ± 15.2 13.0 ↓MWC

EEaer (kcal·min-1) 1 30.7 ± 16.8 30.9 ± 16.5 8.9 ↓SWC

2 33.23 ± 17.9 30.20 ± 17.1 13.3 ↓MWC

3 32.1 ± 19.0 32.1 ± 16.5 16.5 ↓MWC

CO2excess (ml·min-1) 1 498.2 ± 203.4 539.1 ± 281.3 30.1 ↓LWC

2 584.4 ± 220.3 672.5 ± 242.8 30.2 ↓LWC

3 625.2 ± 218.4 686.3 ± 237.6 29.5 ↓LWC

sRPE (AU) 1 5.8 ± 1.4 5.8 ± 1.5 6.5 ↓MWC

2 6.8 ± 1.1 6.9 ± 1.1 2.7 ↓SWC

3 8.1 ± 1.1 8.2 ± 1.1 2.3 ↓SWC

Blood lactate (mmol·l-1) Post 4.6 ± 1.3 4.7 ± 1.2 12.0 ↓MWC

CV% smaller than associated small (↓SWC), moderate (↓MWC) and large (↓LWC) change in 
performance.
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Table 3. Reproducibility of punch accelerations by round.

Punch acceleration (g)
Round one Round two Round three

Trial 1 (mean ± SD) 2697.3 ± 134.3 2768.1 ± 107.7 2782.0 ± 100.1

Trial 2 (mean ± SD) 2678.7 ± 106.2 2731.2 ± 96.3 2763.3 ± 125.4

CV% 2.1 ↓MWC 2.7 ↓LWC 2.1 ↓MWC

CV% smaller than associated moderate (↓MWC) and large (↓LWC) change in performance.


