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Abstract. We establish the existence of locally positive weak solutions to the homogeneous Dirichlet
problem for

ut = u∆u + u

∫
Ω

|∇u|2

in bounded domains Ω ⊂ Rn which arises in game theory. We prove that solutions converge to 0 if
the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In
particular, it is shown that in this case the blow-up set coincides with Ω, i.e. the finite-time blow-up
is global.
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1. Introduction

In a bounded domain Ω ⊂ RN , N ≥ 1, we consider nonnegative solutions to the quasilinear degenerate
and non-local parabolic problem

ut = u∆u+ u

∫
Ω
|∇u|2, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

which arises in a game theoretical description of replicator dynamics in the case of a Bomze-type
infinite dimensional setting [8] by pursuing a modeling procedure introduced in [23, 24, 38] and which
actually assumes steep payoff-kernels of Gaussian type. For completeness in this direction we include
a concise derivation of the particular parabolic equation in (1.1) in the Appendix A.

Strongly degenerate diffusion meets non-local gradient sources. From a mathematical
perspective, the evolution in (1.1) is governed by two characteristic mechanisms, each of which already
gives rise to considerable challenges on its own. Firstly, diffusion in (1.1) is strongly degenerate at
small densities in the sense that near points where u = 0 typical diffusive effects are substantially
inhibited. Indeed, already in the unforced counterpart of (1.1) with general power-type degeneracy,
as given by

ut = up∆u (1.2)

with p > 0, it is known that the particular value p = 1, corresponding to the choice in (1.1), marks
a borderline between somewhat mild degeneracies and strongly degenerate diffusion: In the case
when p < 1, namely, (1.2) allows for a transformation into the porous medium equation vt = ∆vm
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with m := 1
1−p > 1, thus meaning that in this case unique global continuous weak solutions to the

associated Dirichlet problem exist for all reasonably regular nonnegative initial data ([3]), and that
these eventually become positive and smooth, and hence classical, inside Ω ([6]). If p ≥ 1, then
nonnegative global weak solutions can still be constructed for any nonnegative continuous initial data,
but they need no longer be continuous ([5]) nor uniquely determined by the initial data ([33]), and
moreover their spatial support will not increase with time ([7, 33, 57]).
Even in the case when one resorts to continuous initial data which are strictly positive throughout Ω,
in which in fact unique classical solutions exist for any p > 0, the value p = 1 corresponds to a critical
strength of degeneracy. In particular, for p < 1, after an appropriate waiting time, all solutions will
enter the cone K := {ϕ : Ω → R | ϕ(x) ≥ cdist(x, ∂Ω) for all x ∈ Ω and some c > 0} ([6]), which
reflects a diffusion-driven effect generalizing the Hopf boundary point property in non-degenerate
diffusion processes. On the other hand, in the case p ≥ 1, solutions to (1.2) emanating from initial
data which are suitably small near ∂Ω will never enter K ([56]).

Now in (1.1), this degenerate diffusion process interacts with a spatially non-local source which is such
that unlike in large bodies of the literature on related non-local parabolic equations ([41]), even basic
questions concerning local solvability appear to be far from trivial: Indeed, in light of an expected loss
of appropriate solution regularity due to strongly degenerate diffusion, even for smooth initial data it
seems a priori unclear whether solutions can be constructed which allow for a meaningful definition of
the Dirichlet integral

∫
Ω|∇u|

2 for positive times. This is in stark contrast to most non-local parabolic
problems previously studied, in which either diffusion is non-degenerate and hence such first-order
expressions are controllable by L∞ bounds for solutions at least for small times, such as e.g. in the
semilinear problem

ut = ∆u+ um
(∫

Ω
|∇u|2 dx

)r
studied for m ≥ 1, r > 0 in ([47]), or the non-local terms involve only zero-order expressions which
thus in a natural manner also in cases of degeneracies as in (1.2) allow for local theories based on
extensibility criteria in L∞(Ω) only (see [10, 45] and also the book [41]).

Main results. Previous mathematical studies on the PDE in (1.1) have concentrated on analyzing
self-similar solutions only. In [23], the authors constructed self-similar solutions in the case Ω = R, and
in [38] the same could be achieved in the multi-dimensional case Ω = RN with N ≥ 2. More recently,
the authors in [39] investigated the existence of self-similar solutions in the one-dimensional case in
a closely related problem in which the Laplacian is perturbed by a time-dependent term containing
the first derivative as well; all these self-similar solutions are shown to be regular and to approach
Dirac-type distributions as t↘ 0+. An analogous study in higher dimensions is provided in [40].

The goals of the present work consist in developing a fundamental theory of local solvability for
(1.1), and in providing a first step toward an understanding of the qualitative solution behaviour. In
order to formulate our results, let us concretize the specific setting within which (1.1) will be studied
by requiring that throughout the sequel, Ω denotes a bounded domain in RN , N ≥ 1, with smooth
boundary, and by introducing the solution concept that we shall pursue as follows.

Definition 1.1. Let T ∈ (0,∞]. By a weak solution of (1.1) in Ω × (0, T ) we mean a nonnegative
function

u ∈ L∞loc(Ω̄× [0, T )) ∩ L2
loc([0, T );W 1,2

0 (Ω)) with ut ∈ L2
loc(Ω̄× [0, T )),
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which satisfies

−
∫ T

0

∫
Ω
uϕt dxdt+

∫ T

0

∫
Ω
∇u · ∇(uϕ) dxdt =

∫
Ω
u0ϕ(·, 0) dx+

∫ T

0

(∫
Ω
uϕdx

)
·
(∫

Ω
|∇u|2 dx

)
dt (1.3)

for all ϕ ∈ C∞0 (Ω× [0, T )).
A weak solution u of (1.1) in Ω× (0, T ) will be called locally positive if 1

u ∈ L
∞
loc(Ω× [0, T ]).

Remark 1.2. Since u ∈ L2
loc([0, T );W 1,2

0 (Ω)) and ut ∈ L2
loc(Ω̄×[0, T )) imply that u ∈ C0([0, T );L2(Ω)),

(1.3) is equivalent to requiring that u(·, 0) = u0, and that∫ T

0

∫
Ω
utϕdx dt+

∫ T

0

∫
Ω
∇u · ∇(uϕ) dx dt =

∫ T

0

(∫
Ω
uϕdx

)
·
(∫

Ω
|∇u|2 dx

)
dt (1.4)

holds for any ϕ ∈ C∞0 (Ω× (0, T )).

In order to construct such locally positive weak solutions, we shall assume that the initial data satisfy

(H1) u0 ∈ L∞(Ω) ∩W 1,2
0 (Ω) and

(H2) u0 ≥ 0 and 1
u0
∈ L∞loc(Ω) as well as

(H3) there exists L > 0 such that ‖u0‖Φ,∞ ≤ L.

Here and below, for a measurable function v : Ω→ R we have set

‖v‖Φ,∞ := ess sup
x∈Ω

∣∣∣ v
Φ

∣∣∣ ,
where Φ ∈ C2(Ω) denotes the solution to

−∆Φ = 1 in Ω, Φ|∂Ω = 0. (1.5)

Note that according to the Hopf boundary point lemma, requiring ‖u0‖Φ,∞ to be finite is an equivalent
way to ask for the possibility of estimating u0 by a multiple of the function measuring the distance of
a point to ∂Ω.

In this framework, the first of our main results indeed asserts local existence of locally positive weak
solutions, along with a favorable extensibility criterion only involving the norm of the solution in
L∞(Ω).

Theorem 1.3. Let u0 satisfy (H1)-(H3). Then there exist Tmax ∈ (0,∞] and a locally positive weak
solution u to (1.1) in Ω× (0, Tmax) which satisfies

either Tmax =∞ or lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) =∞, (1.6)

and which is such that for each smoothly bounded subdomain Ω′ ⊂⊂ Ω there exists CΩ′ > 0 with∫
Ω
|∇u(·, t)|2 ≤

∫
Ω
|∇u0|2 · exp

[
1

2CΩ′

(
sup
τ∈(0,t)

∫
Ω
u(·, τ)

)(∫
Ω′
φ lnu(·, t)−

∫
Ω′
φ lnu0 +

∫ t

0

∫
Ω′
u

)]
,(1.7)

where φ denotes the solution to −∆φ = 1 in Ω′, φ|∂Ω′ = 0, as well as

‖u(·, t)‖Φ,∞ ≤ max

{
‖u0‖Φ,∞ , sup

τ∈(0,t)

∫
Ω
|∇u(x, τ)|2 dx

}
. (1.8)

for a.e. t ∈ (0, Tmax).
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Remark 1.4. We here have to leave open the question of uniqueness of solutions. In view of prece-
dent non-uniqueness results for weak solutions of ut = u∆u even with merely local ingredients ([33]),
however, we do not expect the uniqueness property to hold in the considered generalized solution frame-
work. The reader can find a uniqueness proof for positive classical solutions to the latter equation in
[53]. Since we do not know if the solutions provided by Theorem 1.3 are classical, the argument used
there apparently cannot be carried over to the present situation.

We emphasize that the extensibility criterion (1.6) particularly excludes any gradient blow-up phenom-
enon in the sense of finite-time blow-up of ∇u despite boundedness of u itself. Indeed, the occurrence
of unbounded gradients of bounded solutions appears to be a characteristic qualitative implication of
various types of interplay between diffusion, possibly degenerate, and gradient-dependent nonlineari-
ties ([2, 4, 31, 50]).

A natural next topic appears to consist in deriving conditions on the initial data which ensure that
the solutions found above either exist for all times, or blow up in finite time. Here in view of the
essentially cubic character of the production term in (1.1) it is not surprising that this may dominate
the smoothing effect of the merely quadratic-type diffusion term when the initial data are suitably
large in an adequate sense; precedent works indicate that indeed such intuitive considerations are
appropriate in related non-degenerate and degenerate parabolic equations with local reaction terms
([41, 43, 49, 54] ).
As a remarkable feature of the precise structure of this interplay in (1.1), we shall see that actually
a complete classification of all initial data in this respect is possible, exclusively involving the size
of the total initial mass m :=

∫
Ωu0 as the decisive quantity: In fact, the second of our main results

identifies the value m = 1 to be critical with regard to global solvability, and moreover gives some
basic information on the asymptotic behaviour of solutions.

Theorem 1.5. Let u0 satisfy (H1)-(H3), and let u and Tmax denote the corresponding locally positive
weak solution of (1.1), as well as its maximal time of existence, provided by Theorem 1.3.
(i) If

∫
Ωu0 < 1, then Tmax =∞ and∫

Ω
u(x, t) dx→ 0 as t→∞.

(ii) Suppose that
∫

Ωu0 = 1. Then Tmax =∞ and∫
Ω
u(x, t) dx = 1 for all t > 0.

(iii) In the case
∫

Ωu0 dx > 1, we have Tmax <∞ and

lim sup
t↗Tmax

∫
Ω
u(x, t) dx =∞.

Remark 1.6. The statement (ii) of Theorem 1.5 says that if the initial data u0 is a probability measure
then we have conservation of probability in time. This is actually a desired feature of the replicator
dynamics model described by (1.1), since u(·, t) stands for a probability distribution of the state of
some population of players, see also Appendix A.

In the situation of Theorem 1.5 (iii) when finite-time blow-up occurs, understanding the solution
behaviour near the respective blow-up time necessarily requires to describe the set of all points where
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the solution becomes unbounded. Accordingly, we shall next be concerned with the blow-up set

B =
{
x ∈ Ω

∣∣∣ there exists a sequence (xk, tk)k∈N ⊂ Ω× (0, Tmax) such that

xk → x, tk → Tmax and u(xk, tk)→∞ as k →∞
}

of exploding solutions. In numerous related equations, involving either linear or degenerate diffusion,
blow-up driven by local superlinear production terms is known to occur in thin spatial sets only which
in radial settings typically reduce to single points ([14, 17, 43]). Only few exceptional situations
detected in the literature lead to regional or even global blow-up, thus referring to cases in which
|B| > 0 or even B = Ω (cf. [15, 16, 27, 49, 55], for instance). In cases of sources which at least
partially consist of non-local terms, blow-up in sets of positive measure may occur if the relative
size of a possibly contained local contribution at large densities is predominant, as compared to the
strength of the respective diffusion term ([12, 30, 32, 46, 48, 52]).

Our main result in this direction will reveal that any of our non-global solutions in fact blow up globally
in space, thus indicating a certain balance in the competition of diffusion and non-local production in
(1.1):

Theorem 1.7. Suppose that
∫

Ωu0 dx > 1, and let u denote the locally positive weak solution of (1.1)

from Theorem 1.3. Then u blows up globally in the sense that its blow-up set satisfies B = Ω.

The outline of the paper is as follows. In Section 2 we introduce an approximate sequence of non-
degenerate problems and derive some estimates for their solutions uε. Here one key step toward the
existence proof will consist in deriving the associated approximate variant of (2.35) (Lemma 2.6), wich
will rely on an energy type argument combined with an analysis of the functional

∫
Ω′φ lnuε(·, t) for

Ω′ ⊂⊂ Ω, t > 0 and appropriate φ. Another important observation, based on an integral estimate
involving certain singular weights (cf. Lemma 2.5 and in particular (2.31)), will reveal that the
functions ∇uε enjoy a favorable strong compactness property with respect to spatio-temporal L2-
norms (cf. (2.44)), rather than merely the respective weak precompactness feature obtained from
corresponding boundedness results. In Section 3 we study an ODE problem associated with the
evolution of the total mass of the solution, and in dependence on whether this total mass initially is
equal, less or greater than 1, we prove global existence and conservation of the total mass, convergence
to zero total mass and finite-time blow-up, respectively. Further, in Section 4 we concentrate on the
latter case and examine the corresponding blow-up set of the solution, and we actually prove that any
such blow-up occurs globally in space. Finally, Appendix A (Section 5) is devoted to the motivation and
derivation of the mathematical model using an evolution game dynamics approach, while Appendix
B (Section 6) deals with a more detailed proof of Lemma 2.1.

2. Weak solutions: existence and approximation

Following an approach well-established in the context of degenerate parabolic equations, we aim at
constructing a solution u to (1.1) as the limit of solutions to certain regularized problems. For
this purpose, let us fix a sequence (εj)j∈N ⊂ (0, 1) such that εj ↘ 0 as j → ∞, and a sequence
(u0ε)ε=εj ⊂ C3(Ω̄) with the properties

u0ε ≥ ε in Ω, u0ε = ε on ∂Ω, ∆u0ε = −
∫

Ω
|∇u0ε|2 on ∂Ω for all ε ∈ (εj)j∈N (2.1)
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and

lim sup
ε=εj↘0

‖u0ε − ε‖Φ,∞ ≤ L, (2.2)

with L > max
{∫

Ω|∇u0|2, ‖u0‖Φ,∞
}

, cf. (H3), as well as

for any compact set K ⊂ Ω there is CK > 0 such that lim inf
ε↘0

inf
K
u0ε ≥ CK , (2.3)

and such that moreover

u0ε → u0 in W 1,2(Ω) as ε = εj ↘ 0 (2.4)

and ∫
u0ε =

∫
u0 for all ε ∈ (εj)j∈N. (2.5)

A necessary first observation is that such an approximation actually is possible.

Lemma 2.1. Let u0 satisfy (H1)-(H3). Then there is a sequence (u0ε)ε∈(εj)j∈N ⊂ C3(Ω̄) having the

properties (2.1)-(2.5).

Proof. Here we restrict ourselves to giving an outline, and for a slightly more detailed version of the
proof refer the reader to the appendix. By modification of the usual mollification procedure (cf. [59,
Section I 3]) commonly employed to obtain (2.4) it is possible to obtain the other properties as well.
More precisely, we set

u0ε = ε+ C(1− ρ)Φ + ρ(ϕ+ αϑ),

where ϕ ∈ C∞0 (Ω) is a mollified version of u0 (after “locally shifting u0 towards the interior of the
domain”), ρ ∈ C∞0 (Ω), 0 ≤ ρ ≤ 1, such that the supports of ∇ρ and ϕ are disjoint, 0 ≤ ϑ ∈ C∞0 with∫

Ωϑ = 1 (in order to adjust (2.5)), Φ is the solution to −∆Φ = 1 in Ω, Φ = 0 on ∂Ω (for achieving the
third property in (2.1)), and C and α are appropriately adjusted constants, depending on ε as well as
several different integrals containing the functions Φ, ρ, ϑ, their gradients, and u0. �

For ε ∈ (εj)j∈N, we consider the regularized problem
uεt = uε∆uε + uε · ρε

( ∫
Ω|∇uε|

2
)
, x ∈ Ω, t > 0,

uε(x, t) = ε, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

(2.6)

where

ρε(z) := min
{
z,

1

ε

}
for z ≥ 0.

Lemma 2.2. For all sufficiently small ε ∈ (εj)j∈N, problem (2.6) has a unique classical global-in-time

solution uε ∈ C2,1(Ω× [0,∞)).

Proof. To prove the uniqueness statement for all ε, we assume that both u1 and u2 are classical
solutions of (2.6) from the indicated class in Ω × (0, T ) for some T > 0. Then w := u1 − u2 satisfies
w = 0 on ∂Ω and at t = 0, and

wt = u1∆w + ∆u2 · w + ρε

(∫
Ω
|∇u2|2

)
· w + u1 ·

[
ρε

(∫
Ω
|∇u1|2

)
− ρε

(∫
Ω
|∇u2|2

)]
(2.7)
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for t ∈ (0, T ). Now given T ′ ∈ (0, T ), we can find a constant M > 0 such that u1, |∇u1|, u2 and
|∇u2| are bounded above by M in Ω × (0, T ′), since u1, u2 are classical solutions. Thus, by Hölder’s

inequality and the pointwise estimate
∣∣∣|∇u1| − |∇u2|

∣∣∣ ≤ |∇(u1 − u2)|, we obtain∣∣∣∣ρε(∫
Ω
|∇u1|2

)
− ρε

(∫
Ω
|∇u2|2

)∣∣∣∣ ≤‖ρε′‖L∞((0,∞)) ·
∣∣∣ ∫

Ω

(
|∇u1|2 − |∇u2|2

)∣∣∣
≤
∫

Ω

∣∣∣|∇u1| − |∇u2|
∣∣∣ · (|∇u1|+ |∇u2|

)
≤2M

∫
Ω
|∇w|

≤2M |Ω|
1
2 ·
(∫

Ω
|∇w|2

) 1
2

(2.8)

for all t ∈ (0, T ′), because ‖ρε′‖L∞((0,∞)) ≤ 1. Upon multiplying (2.7) by w and integrating over Ω, we
see that for t ∈ (0, T ′)

1

2

d

dt

∫
Ω
w2 =

∫
Ω
u1∆ww +

∫
Ω
w2∆u2 +

∫
Ω
w2ρε

(∫
Ω
|∇u2|2

)
(2.9)

+

∫
Ω
wu1

[
ρε

(∫
Ω
|∇u1|2

)
− ρε

(∫
Ω
|∇u2|2

)]
≤ −

∫
Ω
u1|∇w|2 −

∫
Ω
∇u1∇ww − 2

∫
Ω
w∇w∇u2

+

∫
Ω
w2ρε

(∫
Ω
|∇u2|2

)
+

∫
Ω
|w|u1

∣∣∣∣ρε(∫
Ω
|∇u1|2

)
− ρε

(∫
Ω
|∇u2|2

)∣∣∣∣ .
Together with Young’s inequality, (2.8) and the facts that u1 ≥ ε (which, thanks to the actual non-
degeneracy of problem (2.6) for positive ε, is an immediate consequence of the maximum principle)
and ρε(s) ≤ 1

ε for all s > 0, this entails

1

2

d

dt

∫
Ω
w2 ≤ −ε

∫
Ω
|∇w|2 +

ε

4

∫
Ω
|∇w|2 +

1

ε

∫
Ω
w2|∇u1|2 +

ε

2

∫
Ω
|∇w|2 +

8

ε

∫
Ω
w2|∇u2|2

+
1

ε

∫
Ω
w2 + 2M |Ω|

1
2

(∫
Ω
|∇w|2

) 1
2
∫

Ω
|w|u1

for t ∈ (0, T ′). The choice of M now ensures that

1

2

d

dt

∫
Ω
w2 ≤− ε

4

∫
Ω
|∇w|2 +

M2

ε

∫
Ω
w2 +

8M2

ε

∫
Ω
w2 +

1

ε

∫
Ω
w2

+ 2M |Ω|
1
2

(∫
Ω
|∇w|2

) 1
2
(∫

Ω
|w|2

∫
Ω
u2

1

) 1
2

≤− ε

4

∫
Ω
|∇w|2 +

9M2 + 1

ε

∫
Ω
w2 +

ε

4

∫
Ω
|∇w|2 +

4M4|Ω|2

ε

∫
Ω
|w|2 (2.10)

for t ∈ (0, T ′), so that (2.10) finally turns into

1

2

d

dt

∫
Ω
w2 ≤

(9M2 + 1

ε
+

4M4|Ω|2

ε

)
·
∫

Ω
w2
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for all t ∈ (0, T ′).
Integrating this ODI yields that w ≡ 0 in Ω× (0, T ′) and hence also in Ω× (0, T ), because T ′ < T was
arbitrary.

It remains to be shown that for all T > 0, (2.6) is classically solvable in Ω × (0, T ) provided ε is
sufficiently small. To this end, fix T > 0 and let ε ∈ (εj)j∈N be so small that

∫
Ω|∇u0ε|2 < 1

ε , which
is possible due to (2.4). By [28, Thm. V.1.1], there are K1 > 0 and θ > 0 such that any classical
solution w to the problem

wt = w∆w + c(x, t) in Ω× [0, T ], w|∂Ω = ε, w(·, 0) = u0ε

with c ∈ L∞(Ω × (0, T )) fulfilling 0 ≤ c ≤ 1
ε ‖u0ε‖L∞(Ω) e

T
ε which in addition obeys the estimate

ε ≤ w ≤ ‖u0ε‖∞ e
T
ε satisfies

‖w‖
Cθ,

θ
2 (Ω×[0,T ])

≤ K1. (2.11)

Fix δ > 0. Corresponding to θ,K1 and δ, there is K2 such that any solution w to

wt = a(x, t)∆w + b(x, t) in Ω× [0, T ], w|∂Ω = ε, w(·, 0) = u0ε

for some a ∈ Cθ,
θ
2 (Ω × [0, T ]) having the properties a(x, t) = ε for (x, t) ∈ ∂Ω × [0, T ], ε ≤ a ≤

‖u0ε‖L∞ e
T
ε , ‖a‖

Cθ,
θ
2 (Ω×[0,T ])

≤ K1 and continuous b with b(x, 0) = b0 ∈ R, ‖b‖∞ ≤
K1
ε , by an

application of [13, Thm. 7.4] to w − u0ε − tb0 fulfils

‖w‖
C1+δ, δ2 (Ω×[0,T ])

≤ K2. (2.12)

With this in mind, in the space X = C1+ δ
2
, δ
4 (Ω× [0, T ]) we consider the set

S :=
{
v ∈ X

∣∣∣ v ≥ ε in Ω× (0, T ), v(·, 0) = u0ε and ‖v‖
C1+δ, δ2 (Ω×[0,T ])

≤ K2

}
,

which is evidently closed, bounded, convex, and compact in X. For each v ∈ S, the definition of ρε
implies that

f(t) := ρε

(∫
Ω
|∇v(·, t)|2

)
, t ∈ [0, T ], (2.13)

defines a nonnegative δ
2 -Hölder continuous function f on [0, T ]. The choices of f , S and ε show that

f(0) =
∫

Ω|∇u0ε|2 and thus (2.1) ensures that the compatibility condition of first order is satisfied.
Therefore, the quasilinear, actually non-degenerate parabolic problem

uεt = uε∆uε + f(t)uε, x ∈ Ω, t > 0,

uε(x, t) = ε, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

(2.14)

possesses a classical solution uε ∈ C2,1(Ω× [0, T ]) by [28, Thm V.6.1], which, by comparison, satisfies

ε ≤ uε ≤ ‖u0ε‖L∞(Ω) · e
T
ε in Ω× (0, T ), (2.15)

because u(x, t) := ε and u(x, t) := ‖u0ε‖L∞(Ω) · e
t
ε are easily seen to define a sub- and a supersolution

of (2.14), respectively.
We now introduce a mapping F : S → X by setting Fv := uε, where uε solves (2.14) with (2.13).

Then defining c(x, t) := uε(x, t)f(t), x ∈ Ω, t ∈ [0, T ], this function satisfies ‖c‖∞ ≤
1
ε ‖u0ε‖∞ e

T
ε and

accordingly, as stated in (2.11) above, ‖Fv‖
Cθ,

θ
2
≤ K1 for any v ∈ S.
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Using a(x, t) := (Fv)(x, t) and b(x, t) := (Fv)(x, t) · f(t), we see that, again, the above considerations
are applicable and ‖Fv‖

C1+δ, δ2 (Ω×[0,T ])
≤ K2 for any v ∈ S by (2.12). In particular, we observe that

FS ⊂ S.
Furthermore invoking [28, IV.5.2], we can conclude the existence of k > 0 and K3 > 0 such that

‖Fv‖
C2+δ,1+ δ

2 (Ω×[0,T ])
≤ k

(
‖Fv · f‖

Cδ,
δ
2 (Ω×[0,T ])

+ ‖u0ε‖C2+δ(Ω×[0,T ]) + ε

)
≤ K3 (2.16)

for all v ∈ S. To see that F is continuous, we suppose that (vk)k∈N ⊂ S and v ∈ S are such that
vk → v in X. Then fk(t) := ρε

( ∫
Ω|∇vk(·, t)|

2
)

satisfies

fk → f in C0([0, T ]) (2.17)

as k → ∞, with f as given by (2.13). By (2.16) and the theorem of Arzelà-Ascoli, (Fvk)k∈N is
relatively compact in C2,1(Ω× [0, T ]), and if ki →∞ is any sequence such that uki := Fvki converges
in C2,1(Ω× [0, T ]) to some w as i→∞, then in

∂tuki = uki∆uki + fki(t)uki , x ∈ Ω, t ∈ (0, T ),

we may let ki → ∞ and use (2.17) to obtain that w is a classical solution of (2.14). Since classical
solutions of (2.14) are unique due to the comparison principle, we must have w = Fv. We thereby
derive that the whole sequence (Fvk)k∈N converges to Fv and hence conclude that F is continuous.
Therefore the Schauder fixed point theorem asserts the existence of at least one uε ∈ S for which
uε = Fuε holds. Since such a fixed point obviously solves (2.6), the proof is complete. �

The basis of both our existence proof and our boundedness result is formed by the next two lemmata
which provide useful a priori estimates for uε in terms of certain presupposed bounds. The first lemma
essentially derives a uniform pointwise bound for uε from a space-time integral estimate for |∇uε|2.

Lemma 2.3. For all M > 0 and B > 0 there exists C(M,B) > 0 with the following property: If

u0ε ≤M in Ω and

∫ T

0

∫
Ω
|∇uε|2 ≤ B (2.18)

holds for some ε ∈ (εj)j∈N and T ∈ (0,∞] then we have

uε ≤ C(M,B) in Ω× [0, T ). (2.19)

Proof. Our plan is to use a separated function of the form

u(x, t) := z(t) · (M + Φ(x)), x ∈ Ω̄, t ∈ [0, T ), (2.20)

as a comparison function, where M is as in the hypothesis of the lemma, Φ ∈ C2(Ω̄) is the solution of
(1.5), and z denotes the solution of

z′ = −z2 +
(
f(t) + 1

)
· θ, t ∈ (0, T ), z(0) = 1, (2.21)

with f(t) :=
∫

Ω|∇uε(·, t)|
2. In fact, it follows from (2.21) that ζ := 1

z is a solution of ζ ′ = 1−(f(t)+1)ζ,
ζ(0) = 1, and hence given by

ζ(t) = e−
∫ t
0 f(s)ds−t +

∫ t

0
e−

∫ t
s f(σ)dσ−(t−s)ds, t ∈ [0, T ).

We claim that

1 ≤ z(t) ≤ eB+1 for all t ∈ (0, T ). (2.22)
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To see this, we note that if t ∈ (0, T ) satisfies t < 1, then (2.18) implies

ζ(t) ≥ e−
∫ t
0 f(s)ds−t ≥ e−B−t ≥ e−B−1,

whereas if t ∈ [1, T ) then again (2.18) shows

ζ(t) ≥
∫ t

t−1
e−

∫ t
s f(σ)dσ−(t−s)ds ≥

∫ t

t−1
e−B−(t−s)ds

≥
∫ t

t−1
e−B−1ds = e−B−1.

This yields the right inequality in (2.22), while the left immediately results from an ODE comparison
of z with z(t) ≡ 1, because z′ + z2 − (f(t) + 1)z = −f(t) ≤ 0. Consequently, since Φ ≥ 0 in Ω, the
function u defined by (2.20) satisfies

u(x, 0) = M + Φ(x) ≥M ≥ uε(x, 0) for all x ∈ Ω

due to (2.18), and on the lateral boundary we have

u(x, t) = z(t) ·M ≥M ≥ ε for all x ∈ ∂Ω and t ∈ (0, T ).

Moreover,

ut − u∆u− f(t) · u = z′ · (M + Φ) + z2 · (M + Φ)− f(t) · θ · (M + Φ)

= z · (M + Φ)

≥ 0 for all x ∈ Ω and t ∈ (0, T ),

whence the comparison principle ensures that uε ≤ u in Ω× (0, T ). In view of (2.22), this entails that

uε(x, t) ≤ eB+1 ·
(
M + ‖Φ‖L∞(Ω)

)
for all x ∈ Ω and t ∈ (0, t),

so that (2.19) is valid upon an obvious choice of C = C(M,B). �

Next, the fact that solutions of (2.6) cannot blow up immediately can be turned into a quantitative
local-in-time boundedness estimate in terms of the norm of the initial data in L∞(Ω) ∩ W 1,2(Ω).
Moreover, our technique at the same time yields an estimate involving integrals of uεt and ∇uε, as
long as uε is appropriately bounded.

Lemma 2.4. i) For all M > 0 there exist T1(M) > 0 and C1(M) > 0 such that if

u0ε ≤M in Ω and

∫
Ω
|∇u0ε|2 ≤M (2.23)

hold for some ε ∈ (εj)j∈N, then

uε ≤ C1(M) in Ω× [0, T1(M)). (2.24)

ii) For each M > 0 and T > 0 there exist T2(M) ∈ (0, T ] and C2(M) > 0 such that whenever
ε ∈ (εj)j∈N is such that

uε ≤M in Ω× (0, T ) and

∫
Ω
|∇u0ε|2 ≤M (2.25)

are satisfied, then ∫ T2(M)

0

∫
Ω

u2
εt

uε
+ sup
t∈(0,T2(M))

∫
Ω
|∇uε(·, t)|2 ≤ C2(M). (2.26)
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Proof. i) We multiply (2.6) by uεt
uε

and integrate by parts, use that uεt = 0 on ∂Ω, and apply Hölder’s
together with Young’s inequality to see that∫

Ω

u2
εt

uε
+

1

2

d

dt

∫
Ω
|∇uε|2 =

(∫
Ω
uεt

)
· ρε
(∫

Ω
|∇uε|2

)
≤

(∫
Ω

u2
εt

uε

) 1
2
(∫

Ω
uε

) 1
2
∫

Ω
|∇uε|2

≤ 1

2

∫
Ω

u2
εt

uε
+

1

2

(∫
Ω
uε

)(∫
Ω
|∇uε|2

)2

(2.27)

for all t > 0, because ρε(ξ) ≤ ξ for all ξ ≥ 0. Hence,∫
Ω

u2
εt

uε
+
d

dt

∫
Ω
|∇uε|2 ≤

(∫
Ω
uε

)(∫
Ω
|∇uε|2

)2

. (2.28)

Using the Poincaré inequality, we obtain∫
Ω
uε(·, t) ≤ c1 ·

((∫
Ω
|∇uε(·, t)|2

) 1
2

+ 1

)
with a positive constant c1 independent of ε ∈ (εj)j∈N ∈ (0, 1) and t > 0. Therefore, (2.28) yields∫

Ω

u2
εt

uε
+
d

dt

∫
Ω
|∇uε|2 ≤ c1 ·

((∫
Ω
|∇uε|2

) 1
2

+ 1

)(∫
Ω
|∇uε|2

)2

, (2.29)

which in particular implies that z(t) :=
∫

Ω|∇uε(·, t)|
2 satisfies

z′(t) ≤ c(
√
z + 1)z2 for all t > 0, and z(0) ≤M.

Hence, if we let ζ denote the local-in-time solution of{
ζ ′(t) = c(

√
ζ + 1)ζ2, t > 0,

ζ(0) = M,

with maximal existence time Tζ > 0, then due to (2.23) and an ODE comparison we have z ≤ ζ in

(0, Tζ). Defining T1(M) := 1
2Tζ , for instance, we obtain from this that

∫
Ω|∇uε(·, t)|

2 ≤ ζ(T1(M)) for
all t ∈ [0, T1(M)), whereupon (2.24) now results from Lemma 2.3.
ii) If the first inequality in (2.25) holds then (2.28) entails that z as defined above even satisfies the
nonlinear ODI

z′(t) ≤M |Ω|z2 for all t > 0,

whence we have
∫

Ω|∇uε(·, t)|
2 ≤ 1

M−1−M |Ω|t for all t ∈ (0, T2) with T2 := min{T, 1/(M2|Ω|)}, by

the second inequality in (2.25). Inserting this into (2.29) again and integrating over (0, T2) proves
(2.26). �

When constructing the solution u of (1.1) as the limit of solutions uε of (2.6), it will be comparatively
easy to obtain the approximation property ∇uε → ∇u in the sense of L2

loc(Ω × [0, T ))-convergence.
For handling the non-local term in the equation, however, it seems appropriate to make sure that also∫

Ω|∇uε|
2 →

∫
Ω|∇u|

2 in L1
loc([0, T )).
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In order to achieve the latter we exclude certain boundary concentration phenomena of ∇uε in the
following sense.

Lemma 2.5. For any T > 0, C > 0, M > 0 and δ > 0, there is K = K(M,C, T, δ) ⊂⊂ Ω and η > 0
such that whenever ε ∈ (εj)j∈N is such that ε < η and

sup
t∈[0,T ]

∫
Ω
|∇uε(t)|2 ≤ C and uε ≤M, (2.30)

we have ∫ T

0

∫
Ω\K
|∇uε|2 < δ.

Proof. For q ∈ (0, 1), we multiply (2.6) by uq−1
ε and integrate by parts to obtain

1

q

d

dt

∫
Ω
uqε =

∫
∂Ω
uqε∂νuε −

∫
Ω
quq−1

ε |∇uε|2 +

∫
Ω
uqε ρε

(∫
Ω
|∇uε|2

)
,

where we can use ∂νuε ≤ 0 on ∂Ω and integrate with respect to time to derive

q

∫ T

0

∫
Ω
uq−1
ε |∇uε|2 ≤ −

1

q

∫
Ω
uqε(T ) +

1

q

∫
Ω
uq0ε +

∫ T

0

(∫
Ω
uqε

∫
Ω
|∇uε|2

)
=: C(T ) (2.31)

for all ε > 0 satisfying (2.30), which gives control on |∇uε|2 whereever uε is small – which is the
case near the boundary, as we ensure next: In order to lay the groundwork for the corresponding
comparison argument, note that by (2.30),

uεt = uε∆uε + uερε

(∫
Ω
|∇uε|2

)
≤ uε∆uε + Cuε, uε|∂Ω = ε, uε(0) = u0ε.

Fix η > 0 such that (2η)1−qC(T )
q < δ. Let Φ solve (1.5). Choose A > C such that AΦ + η > u0ε for all

0 < ε < η, which is possible due to condition (2.2). Then u := AΦ + η satisfies

ut = 0 ≥ −(AΦ + η)A+ (AΦ + η)C = uA∆Φ + Cu = u∆u+ Cu. (2.32)

As long as ε < η, also u|∂Ω ≥ uε|∂Ω holds and furthermore

u(0) ≥ u0ε.

Therefore, by the comparison principle, we obtain u ≥ uε.
Now choose K ⊂⊂ Ω in such a way that

AΦ ≤ η in Ω \K.
This entails uε ≤ u = AΦ + η ≤ 2η in Ω \K. Then∫ T

0

∫
Ω\K
|∇uε|2 =

∫ T

0

∫
Ω\K

uq−1
ε |∇uε|2u1−q

ε

≤ (2η)1−q
∫ T

0

∫
Ω\K

uq−1
ε |∇uε|2

≤ (2η)1−q
∫ T

0

∫
Ω
uq−1
ε |∇uε|2 ≤

(2η)1−qC(T )

q
,

by virtue of (2.31). �
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We are now ready to prove that the uε in fact approach a weak solution of (1.1) that is locally positive
in the sense of Definition 1.1. Before we do so, however, we prepare the following estimate for uε that
will be useful in proving assertions about the blow-up behaviour of u.

Lemma 2.6. Let Ω′ ⊂⊂ Ω be a domain with smooth boundary. Assume also that φ denotes the
solution to −∆φ = 1 in Ω′, φ|∂Ω′ = 0. Then there exists CΩ′ > 0 such that for each ε ∈ (εj)j∈N and
any t > 0 the solution uε of (2.6) satisfies∫

Ω
|∇uε(·, t)|2 ≤∫

Ω
|∇u0ε|2 exp

[
1

2CΩ′

(
sup
τ∈(0,t)

∫
Ω
uε(τ)

)(∫
Ω′
φ lnuε(·, t)−

∫
Ω′
φ lnu0ε +

∫ t

0

∫
Ω′
uε

)]
. (2.33)

Proof. As uεt = 0 on ∂Ω, similarly to (2.27), multiplying (2.6) by uεt
uε

and integrating over Ω yields∫
Ω

u2
εt

uε
=

∫
Ω
uεt∆uε +

∫
Ω
uεtρε

(∫
Ω
|∇uε|2

)
= −1

2

d

dt

∫
Ω
|∇uε|2 +

∫
Ω
uεtρε

(∫
Ω
|∇uε|2

)
.

After rearranging, by Hölder’s and Young’s inequalities and the definition of ρε this entails

d

dt

∫
Ω
|∇uε|2 ≤ −2

∫
Ω

u2
εt

uε
+ 2

(∫
Ω

(
uεt√
uε

)2
) 1

2 (∫
Ω

√
uε

2

) 1
2

 ρε(∫
Ω
|∇uε|2

)

≤ −2

∫
Ω

u2
εt

uε
+ 2

∫
Ω

u2
εt

uε
+

1

2

∫
Ω
uερε

(∫
Ω
|∇uε|2

)2

≤ 1

2

∫
Ω
uερε

(∫
Ω
|∇uε|2

)∫
Ω
|∇uε|2 on (0,∞).

This looks like a quadratic differential inequality for z(t) :=
∫

Ω|∇uε|
2 and at first does not seem helpful

for obtaining an estimate for this quantity. Therefore we shall split the respective quadratic term and
apply Gronwall’s lemma to z′(t) ≤ g(t)z(t), where

g(t) =
1

2

∫
Ω
uε(t)ρε

(∫
Ω
|∇uε(t)|2

)
,

which leads to

z(t) ≤ z(0) exp

∫ t

0
g(τ)dτ for all t > 0. (2.34)

In this situation, however, we are left with a term
∫ t

0 ρε
(∫

Ω|∇uε|
2
)

in the exponent and we prepare an
estimate for this in the following way: With φ as specified in the hypothesis, we let CΩ′ =

∫
Ω′ φ > 0.

Multiplication of (2.6) by φ
uε

and integrating over Ω′ then gives

d

dt

∫
Ω′

lnuεφ =

∫
Ω′

∆uεφ+

∫
Ω′
φρε

(∫
Ω
|∇uε|2

)
=

∫
Ω′
uε∆φ+

∫
∂Ω′

∂νuεφ−
∫
∂Ω′

uε∂νφ+ CΩ′ρε

(∫
Ω
|∇uε|2

)
on (0,∞).
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Taking into account the definition of φ and its consequence ∂νφ|∂Ω′ ≤ 0 = φ|∂Ω′ , we infer that

d

dt

∫
Ω′
φ lnuε ≥ −

∫
Ω′
uε + CΩ′ρε

(∫
Ω
|∇uε|2

)
on (0,∞).

Therefore ∫ t

0
ρε

(∫
Ω
|∇uε|2

)
≤ 1

CΩ′

[∫ t

0

∫
Ω′
uε +

∫
Ω′
φ lnuε(t)−

∫
Ω′
φ lnu0ε

]
for any t > 0, and we can conclude from (2.34) that∫

Ω
|∇uε(t)|2 ≤

∫
Ω
|∇u0ε|2 exp

[
1

2CΩ′
sup
τ∈(0,t)

∫
Ω
u(τ)

(∫ t

0

∫
Ω′
uε +

∫
Ω′
φ lnuε(t)−

∫
Ω′
φ lnu0ε

)]
for all t > 0. �

Another useful piece of information is that a condition like (H3) remains satisfied for any t > 0.

Lemma 2.7. Let T > 0, M > 0 and ε ∈ (εj)j∈N be such that ‖u0ε − ε‖Φ,∞ <∞. Then any solution

uε of (2.6) which satisfies ∫
Ω
|∇uε(t)|2 ≤M for any t ∈ [0, T ]

already fulfils

‖uε − ε‖Φ,∞ ≤ max
{
M, ‖u0ε − ε‖Φ,∞

}
.

Proof. Let C = max{M, ‖u0ε − ε‖Φ,∞} and consider u := CΦ + ε with Φ as in (1.5). Then ut = 0 ≥
(M−C)(CΦ+ε) = u∆u+Mu, whereas uεt = uε∆uε+uερε

(∫
Ω|∇uε|

2
)
≤ uε∆uε+Muε. Additionally

u|∂Ω = ε = uε|∂Ω and u(x, 0) − ε = CΦ(x) ≥ Φ(x) ‖u0ε − ε‖Φ,∞ ≥ u0ε(x) − ε and therefore the

comparison principle [53] asserts that uε ≤ u and hence implies the claim. �

With this information at hand, we can proceed to the proof of convergence of the uε to a solution of
(1.1) that still satisfies an inequality like (2.33).

Lemma 2.8. Suppose that u0 satisfies (H1)-(H3). Then there exists T > 0 depending on bounds on
‖u0‖L∞(Ω) and ‖∇u0‖L2(Ω) and a locally positive weak solution u of (1.1) in Ω× (0, T ). This solution

can be obtained as the a.e. pointwise limit of a subsequence of the solutions uε of (2.6) as ε = εj ↘ 0,
and for any smoothly bounded subdomain Ω′ ⊂⊂ Ω there is CΩ′ > 0 such that∫

Ω
|∇u(·, t)|2

≤
∫

Ω
|∇u0|2 exp

[
1

2CΩ′

(
sup
τ∈(0,t)

∫
Ω
u(τ)

)(∫
Ω′
φ lnu(·, t)−

∫
Ω′
φ lnu0 +

∫ t

0

∫
Ω′
u

)]
(2.35)

as well as

‖u(t)‖Φ,∞ ≤ max

{
‖u0‖Φ,∞ , ess sup

τ∈(0,t)

∫
Ω
|∇u(τ)|2

}
(2.36)

for a.e. t ∈ (0, T ).
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Proof. We set M1 := max{‖u0‖L∞(Ω) + 1,
∫

Ω|∇u0|2 + 1
}

and let T1 = T1(M1) and c1 = C1(M1) be as

in Lemma 2.4 i). Then this lemma states that uε ≤ c1 in Ω× (0, T1) for all ε ∈ (εj)j∈N. Accordingly,
corresponding to M2 = max{c1,

∫
Ω|∇u0|2 + 1}, Lemma 2.4 ii) provides T = T2(M2) ∈ (0, T1) and

c2 = C2(M2) > 0 such that ∫ T

0

∫
Ω

u2
εt

uε
+ sup
t∈(0,T )

∫
Ω
|∇uε(·, t)|2 ≤ c2 (2.37)

for all ε ∈ (εj)j∈N, which by uε ≤ c1 can be turned into a uniform bound on ‖uεt‖L2(Ω×(0,T ), from

which it follows by means of the fundamental theorem of calculus that after possibly enlarging c2, we
also have

‖uε‖
C

1
2 ([0,T ];L2(Ω))

≤ c2 (2.38)

for such ε.
In order to prove a uniform estimate for uε from below, locally in space, we follow a standard compar-
ison procedure: Given a compact set K ⊂ Ω, we pick any smoothly bounded domain Ω′ ⊂⊂ Ω such
that K ⊂⊂ Ω′ and let φ ∈ C2(Ω̄′) solve −∆φ = 1 in Ω′ with φ|∂Ω′ = 0. Then the lower estimate in
(2.3) guarantees that writing c3(K) := 1

2‖φ‖L∞(Ω′)
lim infε↘0 infK u0ε we can find ε0(K) > 0 such that

whenever ε ∈ (εj)j∈N satisfies ε < ε0(K), we have

u0ε(x) ≥ 1

2
lim inf
ε↘0

inf
K
u0ε ≥ c3(K)φ(x) for all x ∈ Ω′. (2.39)

Letting z(t) := c3(K)
1+c3(K)t , t ≥ 0, denote the solution of z′ = −z2 with z(0) = c3(K), we thus find that

u(x, t) := z(t)φ(x) satisfies u ≤ uε on the parabolic boundary of Ω′ × (0,∞). Since

ut − u∆u = z′φ+ z2φ = 0 in Ω′ × (0,∞)

and

uεt − uε∆uε = uε · ρε
(∫

Ω
|∇uε|2

)
≥ 0 in Ω× (0,∞),

we conclude from the comparison principle (see [53] for an adequate version) that u ≤ uε and thus, in
particular, that for each T ′ > 0 there exists a suitably small c4(K,T ′) > 0 such that

uε ≥ c4(K,T ′) in K × (0, T ′) (2.40)

holds for all ε ∈ (εj)j∈N satisfying ε < ε0(K). By positivity of each individual uε, one can readily
verify that upon suitably diminishing c4(K,T ′), (2.40) trivially extends so as to actually be valid for
all ε ∈ (εj)j∈N. Now the estimate uε ≤ c1, (2.37), (2.38) and (2.40) along with standard compactness
arguments allow us to extract a subsequence (εjk)k∈N of (εj)j∈N and a function u : Ω × [0, T ] → R
such that

uε → u in C0([0, T );L2(Ω)) and a.e. in Ω× (0, T ), (2.41)

∇uε ⇀ ∇u in L2
loc(Ω̄× [0, T )) and (2.42)

uεt ⇀ ut in L2(Ω× (0, T )) (2.43)

as ε = εjk ↘ 0. From (2.41), the inequality uε ≤ c1 and (2.40), we know that u ≤ c1 a.e. in Ω× (0, T )
and u ≥ c4(K,T ) a.e. in K × (0, T ) whenever K ⊂⊂ Ω. Moreover, since uε− ε vanishes on ∂Ω, (2.42)

implies that u ∈ L2((0, T );W 1,2
0 (Ω)), so that u fulfills all regularity and positivity properties required

for a locally positive weak solution in Ω× (0, T ) in the sense of Definition 1.1.
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In order to verify that u is a weak solution of (1.1) it thus remains to check (1.4). To prepare this, we
claim that in addition to (2.42), we also have the strong convergence properties

∇uε → ∇u in L2
loc(Ω× [0, T ]) and a.e. in Ω× (0, T ) (2.44)

as well as ∫
Ω
|∇uε(x, ·)|2dx→

∫
Ω
|∇u(x, ·)|2dx in L1((0, T )) (2.45)

as ε = εjk ↘ 0. To see (2.44), we let K ⊂⊂ Ω be given and fix a nonnegative ψ ∈ C∞0 (Ω) such that
ψ ≡ 1 in K. Then∫ T

0

∫
K
|∇uε −∇u|2 ≤

∫ T

0

∫
Ω
|∇uε −∇u|2ψ

=

∫ T

0

∫
Ω
∇(uε − u) · ∇uε · ψ −

∫ T

0

∫
Ω
∇u · ∇(uε − u) · ψ

=: I1(ε)− I2(ε) for all ε ∈ (εj)j∈N, (2.46)

where I2(ε)→ 0 as ε = εjk ↘ 0 by (2.42). Using the equation for uε, however, after an integration by
parts we find that

I1(ε) = −
∫ T

0

∫
Ω
(uε − u)∆uε · ψ −

∫ T

0

∫
Ω
(uε − u)∇uε · ∇ψ

= −
∫ T

0

∫
Ω
(uε − u) · uεt

uε
· ψ +

∫ T

0

∫
Ω
(uε − u) · ρε

(∫
Ω
|∇uε|2

)
· ψ

−
∫ T

0

∫
Ω
(uε − u)∇uε · ∇ψ

=: I11(ε) + I12(ε) + I13(ε) for all ε ∈ (εj)j∈N.

Due to (2.41) and (2.42), we have I13(ε)→ 0, and (2.41) together with (2.37) and Hölder’s inequality
imply that

|I12(ε)| ≤
(∫ T

0

∫
Ω
(uε − u)2

) 1
2 ·
[ ∫ T

0

(∫
Ω
|∇uε|2

)2] 1
2 · ‖ψ‖L2(Ω) → 0

as ε = εjk ↘ 0, where we again have used the fact that ρε(z) ≤ z for any z ≥ 0 and all ε ∈ (εj)j∈N.
We now use Hölder’s inequality and the local lower estimate (2.40), which in conjunction with (2.37)
yields

|I11(ε)| ≤
(∫ T

0

∫
Ω

u2
εt

uε

) 1
2 ·
(∫ T

0

∫
Ω

(uε − u)2

uε
· ψ2

) 1
2

≤ c
1
2
2 ·

‖ψ‖L∞(Ω)

(c4(suppψ, T ))
1
2

·
(∫ T

0

∫
Ω
(uε − u)2

) 1
2 → 0

as ε = εjk ↘ 0, by (2.41). Altogether, we obtain that I1(ε)→ 0 and hence, by (2.46), that ∇uε → ∇u
in L2(K × (0, T )) as ε = εjk ↘ 0 for arbitrary K ⊂⊂ Ω.
Having thus proved (2.44), with the aid of Lemma 2.5 we obtain (2.45) as a straightforward conse-
quence:
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Given δ > 0, we let K = K(c1, c2, T,
δ
4) and η > 0 be the set and the constant provided by Lemma

2.5, and employ the convergence asserted by (2.42) to choose k0 ∈ N such that for all k, l > k0 we

have
∫ T

0

∫
K ||∇uεk |

2 − |∇uεl |2| ≤ δ
2 . Then for all k, l > k0,∫ T

0

∣∣∣∣∫
Ω
|∇uεk |

2 −
∫

Ω
|∇uεl |

2

∣∣∣∣ ≤ ∫ T

0

∫
K

∣∣|∇uεk |2 − |∇uεl |2∣∣+

∫ T

0

∫
Ω\K
|∇uεk |

2

+

∫ T

0

∫
Ω\K
|∇uεl |

2

≤ δ

2
+
δ

4
+
δ

4

and thanks to the completeness of L2((0, T )) we obtain (2.45). We can now proceed to verify that
(1.4) holds for all ϕ ∈ C∞0 (Ω × (0, T )). To this end, we multiply (2.6) by ϕ ∈ C∞0 (Ω × (0, T )) and
integrate to obtain∫ T

0

∫
Ω
uεtϕ+

∫ T

0

∫
Ω
|∇uε|2ϕ+

∫ T

0

∫
Ω
uε∇uε · ∇ϕ =

∫ T

0

∫
Ω
uε · ρε

(∫
Ω
|∇uε|2

)
· ϕ.

Here, as ε = εjk ↘ 0 we have ∫ T

0

∫
Ω
uεtϕ→

∫ T

0

∫
Ω
utϕ

by (2.43), whereas (2.44) and (2.41) allow us to conclude that∫ T

0

∫
Ω
|∇uε|2ϕ→

∫ T

0

∫
Ω
|∇u|2ϕ

and ∫ T

0

∫
Ω
uε∇uε · ∇ϕ→

∫ T

0

∫
Ω
u∇u · ∇ϕ,

because ϕ vanishes near ∂Ω and near t = T . Finally,∫ T

0

∫
Ω
uε · ρε

(∫
Ω
|∇uε|2

)
· ϕ→

∫ T

0

∫
Ω
u
(∫

Ω
|∇u|2

)
· ϕ

because of (2.41), (2.45) and the fact that ρε(z) → z for all z ≥ 0 as ε ↘ 0. We thereby see that
(1.4) holds and thus infer that u in fact is a weak solution of (1.1) in Ω× (0, T ). The inequality (2.35)
results from Lemma 2.6 and the convergence statements. The estimate (2.36) results from Lemma
2.7: By (2.37) and (2.2) we have the necessary bounds on gradient and initial value, independent of
ε ∈ (εj)j∈N. Furthermore, for any t ∈ [0, T ] we can find a subsequence (εjk)k∈N of (εj)j∈N such that

uεjk (t)− εjk
Φ

⇀∗
u(t)

Φ
in L∞(Ω)

and finally the same bound as in Lemma 2.7 holds for u(t) because

‖u(t)‖Φ,∞ =

∥∥∥∥u(t)

Φ

∥∥∥∥
∞
≤ lim inf

ε=εjk↘0

∥∥∥∥uε(t)− εΦ

∥∥∥∥
∞

≤ lim inf
ε=εjk↘0

max

{
sup

0<τ<t

∫
Ω
|∇uε(τ)|2, ‖u0ε − ε‖Φ,∞

}
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≤ lim inf
ε=εjk↘0

max

{
sup

0<τ<t

∫
Ω
|∇uε(τ)|2, ‖u0‖Φ,∞ + ε

}
≤max

{
ess sup
0<τ<t

∫
Ω
|∇u(τ)|2, ‖u0‖Φ,∞

}
,

where for the last inequality we relied on the pointwise a.e. convergence of
∫

Ω|∇uε|
2 in (0, T ), due to

(2.45) valid along a subsequence. �

We are now in the position to prove Theorem 1.3, which asserts the existence of a locally positive
weak solution and Tmax ∈ (0,∞] such that the solution blows up at Tmax or exists globally.

Proof of Theorem 1.3. According to the statement of Lemma 2.8 there exists T > 0 such that (1.1)
possesses a locally positive weak solution u on Ω × (0, T ) which satisfies (1.7) and (1.8) for a.e.
t ∈ (0, T ). Hence, the set

S :=

{
T̃ > 0

∣∣∣∣there exists a locally positive solution u to (1.1) on Ω× (0, T̃ )

satisfying (1.7) and (1.8) for a.e. t ∈ (0, T̃ )

}
is not empty and

Tmax = supS ∈ (0,∞]

is well-defined. Assume that Tmax <∞ and lim supt↗Tmax ‖u(·, t)‖L∞(Ω) <∞.

This implies the existence of a constant M > 0 such that u ≤ M and hence, due to (1.7), also that
there is C > 0 with

∫
Ω|∇u|

2 ≤ C on [0, Tmax). Lemma 2.8 provides T > 0 such that for any initial

data u0 satisfying u0 ≤M ,
∫

Ω|∇u0|2 ≤ C, a locally positive weak solution existing on Ω× (0, T ) can
be constructed.
Choose t0 ∈ (Tmax− T

2 , Tmax) such that u(x, t0) ≤M and
∫

Ω|∇u(x, t0)|2 ≤ C and such that u satisfies
(1.7) and (1.8) at t = t0.
Let v denote the corresponding solution with initial value u(·, t0) and define

û(x, t) =

{
u(x, t), x ∈ Ω, t < t0

v(x, t− t0), x ∈ Ω, t ∈ (t0, t0 + T ).

Then û is a solution of (1.1), and (1.7) and (1.8) obviously hold for a.e. t ∈ (0, t0), whereas for
t ∈ (t0, t0 + T ) we have∫

Ω
|∇û(·, t)|2

≤
∫

Ω
|∇u(t0)|2×

× exp

[
1

2CΩ′

(
sup

τ∈(t0,t)

∫
Ω
û(·, τ)

)(∫
Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu(·, t0) +

∫ t

t0

∫
Ω′
û

)]

≤
∫

Ω
|∇u0|2 exp

[
1

2CΩ′

(
sup

τ∈(0,t0)

∫
Ω
u(·, τ)

)(∫
Ω′
φ lnu(·, t0)−

∫
Ω′
φ lnu0 +

∫ t0

0

∫
Ω′
u

)]
×
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× exp

[
1

2CΩ′

(
sup

τ∈(t0,t)

∫
Ω
û(·, τ)

)(∫
Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu(·, t0) +

∫ t

t0

∫
Ω′
û

)]

≤
∫

Ω
|∇u0|2 exp

[
1

2CΩ′

(
sup
τ∈(0,t)

∫
Ω
û(·, τ)

)
·

·
(∫

Ω′
φ lnu(·, t0)−

∫
Ω′
φ lnu0 +

∫ t0

0

∫
Ω′
u+

∫
Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu(·, t0) +

∫ t

t0

∫
Ω′
û
)]

=

∫
Ω
|∇u0|2 exp

[
1

2CΩ′

(
sup
τ∈(0,t)

∫
Ω
û(·, τ)

)(∫
Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu0 +

∫ t

0

∫
Ω′
u

)]
.

Also, for a.e. t ∈ (0, t0 + T ),

‖û(·, t)‖Φ,∞ ≤ max
{
‖u(·, t0)‖Φ,∞ , supτ∈(t0,t)

∫
Ω|∇û(·, τ)|2

}
≤ max

{
max

{
‖u0‖Φ,∞ , supτ∈(0,t0)

∫
Ω|∇u(·, τ)|2

}
, supτ∈(t0,t)

∫
Ω|∇û(·, τ)|2

}
≤ max

{
‖u0‖Φ,∞ , supτ∈(0,t)

∫
Ω|∇û(·, τ)|2

}
.

Thus û is defined on (0, Tmax + T
2 ), contradicting the definition of Tmax. �

As a direct consequence of (1.8) we obtain that finite-time gradient blow-up cannot occur. More
precisely, we have the following.

Corollary 2.9. Let u and Tmax be as given by Theorem 1.3.
If lim supt↗Tmax ‖u(·, t)‖L∞(Ω) =∞, then also

lim sup
t↗Tmax

∫
Ω
|∇u(x, t)|2dx =∞.

Combining now Corollary 2.9 with the estimate (1.7), we can conclude that if finite-time L∞−blow-up
occurs, then also L1−blow-up takes place at the same finite time.

Corollary 2.10. Let u and Tmax be as given by Theorem 1.3.
If lim supt↗Tmax ‖u(·, t)‖L∞(Ω) =∞, then also

lim sup
t↗Tmax

∫
Ω
u(x, t)dx =∞.

3. Total mass. Proof of Theorem 1.5

Let u be a solution of (1.1) on [0, T ]. Consider its mass

y(t) =

∫
Ω
u(x, t) dx, t ∈ [0, T ), (3.47)

and note that (3.47) defines a continuous function on [0, T ]. Indeed, we have the following.

Lemma 3.1. For any weak solution u of (1.1) on [0, T ], (3.47) defines an absolutely continuous
function y : [0, T ]→ R that satisfies

y′(t) = (y(t)− 1)

∫
Ω
|∇u(x, t)|2 dx (3.48)
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for almost every t ∈ (0, T ).

Proof. We will show that whenever 0 < s < t < T ,

y(t)− y(s) =

∫ t

s

(
(y(τ)− 1)

∫
Ω
|∇u(x, τ)|2 dx

)
dτ, (3.49)

where absolute continuity follows from the representation as integral and the assertion about the
derivative is a direct consequence of division by t− s and passing to the limit s→ t.
Let 0 < s < t < T and 0 < δ < min {s, T − t}. Define the function χ : R→ R by setting:

χ(τ) =



0, τ < s− δ,
1 + τ−s

δ , s− δ ≤ τ < s,

1, s ≤ τ < t,

1− τ−t
δ , t ≤ τ < t+ δ,

0, τ ≥ t+ δ.

Then, according to standard approximation arguments, ϕ(x, t) := χ(t) defines an admissible test
function for (1.3) and we obtain

−1

δ

∫ s

s−δ

∫
Ω
u+

1

δ

∫ t+δ

t

∫
Ω
u+

∫ t+δ

s−δ

∫
Ω
|∇u|2ϕ =

∫ t+δ

s−δ

(∫
Ω
uϕ
)
·
(∫

Ω
|∇u|2

)
.

Since u ∈ Cloc([0, T ), L2(Ω)), we have

1

δ

∫ t+δ

t

∫
Ω
u→ y(t) and

1

δ

∫ s

s−δ

∫
Ω
u→ y(s)

as δ ↘ 0.
Also by Lebesgue’s dominated convergence theorem,∫ t+δ

s−δ

∫
Ω
|∇u|2ϕ→

∫ t

s

∫
Ω
|∇u|2

and ∫ t+δ

s−δ

(∫
Ω
uϕ
)
·
(∫

Ω
|∇u|2

)
→
∫ t

s

(∫
Ω
u
)
·
(∫

Ω
|∇u|2

)
as δ ↘ 0. Hence, (3.49) holds. �

This lemma is the main ingredient in the following proof of Theorem 1.5:

Proof of Theorem 1.5. (i) In the case of subcritical initial mass Lemma 3.1 shows that y as defined
in (3.47) is decreasing, which by Corollary 2.10 entails global existence, and from the nonnegativity
of y we derive that y(t)→ c as t→∞ for some c ≥ 0. Note that Poincaré’s and Hölder’s inequalities
imply that for some CP > 0 we have∫

Ω
|∇u|2 dx ≥ 1

CP

∫
Ω
u2 dx ≥ 1

CP |Ω|

(∫
Ω
u dx

)2

=
1

CP |Ω|
y2 on (0,∞),

and hence Lemma 3.1, due to the negativity of y(t)− 1, entails that

y′(t) ≤ (y(t)− 1)
1

CP |Ω|
y2(t) ≤ −1− y(0)

CP |Ω|
y2(t) ≤ −1− y(0)

CP |Ω|
c2
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for almost every t > 0. This would lead to a contradiction to the nonnegativity of y(t) if c were
positive, whence actually c = 0.

(ii) If
∫

Ωu0 = 1, then Lemma 3.1 implies that

y(t)− 1 =

∫ t

0

[
(y(s)− 1)

∫
Ω
|∇u(x, s)|2 dx

]
ds,

and by virtue of Gronwall’s lemma we conclude y(t) − 1 ≡ 0 throughout the time interval on which
the solution exists, which combined with Corollary 2.10 also implies global existence.

(iii) In the case when the total mass is supercritical initially, Lemma 3.1 entails that y is nondecreasing,
and again Poincaré’s and Hölder’s inequalities imply that

y′(t) ≥ y(0)− 1

CP |Ω|
y2(t) for a.e. t ∈ [0, Tmax)

with some CP > 0. Now let z denote the solution to

z′(t) =
y(0)− 1

CP |Ω|
z(t)2, z(0) = z0,

for some 1 < z0 < y(0), defined up to its maximal existence time T0 > 0. Then T := Tmax < T0,
because y ≥ z, and the assertion follows by Theorem 1.3 in combination with Corollary 2.10. �

4. Global blow-up. Proof of Theorem 1.7

We proceed to prove that blow-up of our solutions always occurs globally, as stated in Theorem 1.7.

Proof of Theorem 1.7. Assume to the contrary that the closed set B is strictly contained in Ω. Then
there exists a smoothly bounded subdomain Ω′ ⊂ Ω \B such that u is bounded in Ω′× (0, Tmax). Let
φ be a solution to −∆φ = 1 in Ω′, φ = 0 on ∂Ω′.
Consider T ′ < Tmax. Due to the local positivity of u we have φ

u ∈ L
∞(Ω × (0, T ′)) and ∇φ

u = ∇φ
u −

φ
u2∇u ∈ L2(Ω′×(0, T ′)) and hence φ

u ∈ L
2((0, T ′),W 1,2

0 (Ω′))∩L∞(Ω×(0, T ′)) ⊂ L2((0, T ′),W 1,2
0 (Ω))∩

L∞(Ω× (0, T ′)). Therefore, it can readily be verified by approximation arguments that it is possible

to use ϕ = φ
u as a test function in (1.4), which then leads to∫ t

0

∫
Ω′

ut
u
φ dx ds+

∫ t

0

∫
Ω′
∇u · ∇φdx ds =

∫ t

0

(∫
Ω′
φdx

)
·
(∫

Ω
|∇u|2 dx

)
ds

for any t ∈ (0, Tmax). Hence, with CΩ′ :=
∫

Ω′φ and because of ∂νφ
∣∣
∂Ω′
≤ 0,∫

Ω′
φ lnu(t) dx−

∫
Ω′
φ lnu0 dx−

∫ t

0

∫
Ω′
u ·∆φdx ds ≥ CΩ′

∫ t

0

∫
Ω
|∇u|2 dx ds,

that is ∫ t

0

∫
Ω′
u dx ds+

∫
Ω′
φ lnu(t) dx−

∫
Ω′
φ lnu0 dx ≥ CΩ′h(t), (4.1)

where h(t) :=
∫ t

0

∫
Ω|∇u(x, s)|2 dx ds and where – due to the choice of Ω′ – the left hand side is bounded

from above.
On the other hand, from Lemma 3.1 we know that

y′(t)

y(t)− 1
=

∫
Ω
|∇u|2 dx



22 NIKOS I. KAVALLARIS, JOHANNES LANKEIT, AND MICHAEL WINKLER

for y(t) =
∫

Ωu(x, t) dx. Therefore

h(t) =

∫ t

0

∫
Ω
|∇u|2 dx ds =

∫ t

0

y′(τ)

y(τ)− 1
ds = ln(y(t)− 1)− ln(y(0)− 1) = ln

∫
Ωu(x, t) dx− 1∫

Ωu0 dx− 1

and, by Theorem 1.5 (iii), lim supt↗Tmax h(t) = ∞, contradicting the boundedness of the left hand
side of (4.1). �

We have seen that the question of global existence versus blow-up of solutions to (1.1) is intimately
connected with the size of the initial data. If

∫
Ωu0 > 1, the solution blows up globally; if

∫
Ωu0 < 1, we

have proven convergence towards 0. The missing case of solutions emanating from initial data with
unit mass must exhibit a behaviour different from either, as Theorem 1.5 (ii) shows. For a study of
these solutions, which are actually very important for the described replicator dynamics model, we
refer the reader to the forthcoming article [29].

5. Appendix A: Modelling background

Evolutionary game dynamics is a major part of modern game theory. It was appropriately fostered
by evolutionary biologists such as W. D. Hamilton and J. Maynard Smith (see [11] for a collection of
survey papers and [44] for a popularized account) and it actually brought a conceptual revolution to
the game theory analogous with the one of population dynamics in biology. The resulting population-
based approach has also found many applications in non-biological fields like economics or learning
theory and introduces a significant enrichment of classical game theory which focuses on the concept
of a rational individual.
The main subject of evolutionary game dynamics is to explain how a population of players update
their strategies in the course of a game according to the strategies’ success. This contrasts with
classical noncooperative game theory that analyzes how rational players will behave through static
solution concepts such as the Nash Equilibrium (NE) (i.e., a strategy choice for each player whereby
no individual has a unilateral incentive to change his or her behaviour).
As Hofbauer and Sigmund [20] pointed out, strategies with high pay-off will spread within the pop-
ulation through learning, imitation or inheriting processes or even by infection. The pay-offs depend
on the actions of the co-players, i.e. the frequencies in which the various strategies appear, and since
these frequencies change according to the pay-offs, a feedback loop appears. The dynamics of this
feedback loop will determine the long time progress of the game and its investigation is exactly the
course of evolutionary game theory.
According to the extensive survey paper [20] there is a variety of different dynamics in evolutionary
game theory: replicator dynamics, imitation dynamics, best response dynamics, Brown-von Neumann-
Nash dynamics e.t.c.. However, the dynamics most widely used and studied in the literature on
evolutionary game theory are the replicator dynamics which were introduced in [51] and baptised in
[42]. Such kind of dynamics illustrates the idea that in a dynamic process of evolution a strategy
should increase in frequency if it is a successful strategy in the sense that individuals playing this
strategy obtain a higher than average payoff.
Let us consider a game with m discrete pure strategies, forming the strategy space S = {1, 2, ...,m},
and corresponding frequencies pi(t), i = 1, 2, ...,m, for any t ≥ 0. (Alternatively S could be consid-
ered as the set of different states (genetic programmes) of a biological population). The frequency
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(probability) vector p(t) = (p1(t), p2(t), ..., pm(t))T belongs to the invariant simplex

S(m) =

{
y = (y1, y2, ..., ym)T ∈ Rm : yi ≥ 0, i = 1, 2, ...,m and

m∑
i=1

yi = 1

}
.

The game is actually determined by the pay-off matrix A = (aij), which is a real m ×m symmetric
matrix. Pay-off means expected gain, and if an individual plays strategy i against another individual
following strategy j, then the pay-off to i is defined to be aij while the pay-off to j is aji. For symmetric
games matrix A is considered to be symmetric. (In the case of a biological population pay-off represents
fitness, or reproductive success.)
Then the expected pay-off for an individual playing strategy i can be expressed as

(A · p(t))i =

m∑
j=1

aijpj(t),

whereas the average pay-off over the whole population is given by

(p(t)T ·A · p(t)) =
m∑
i=1

m∑
j=1

aijpi(t)pj(t).

Consider that our game is symmetric with infinitely many players (or that the biological population
is infinitely big and its generations blend continuously to each other) then we obtain that pi(t) evolve
as differentiable functions. Note that the rate of increase of the per capita rate of growth ṗi/pi of
strategy (type) i is a measure of its evolutionary success; here ṗi stands for the time derivative of pi.
A reasonable assumption, which is also in agreement with the basic tenet of Darwinism, is that the
per capita rate of growth (i.e. the logarithmic derivative) ṗi/pi is given by the difference between the
pay-off for strategy (type) i and the average pay-off. This yields the the replicator dynamical system,

dpi
dt

=

 m∑
j=1

aijpj(t)−
m∑
i=1

m∑
j=1

aijpi(t)pj(t)

 pi(t), i = 1, 2, ...,m, t > 0. (5.1)

The dynamical system (5.1) actually describes the mechanism that individuals tend to switch to
strategies that are doing well, or that individuals bear offspring who tend to use the same strategies
as their parents, and the fitter the individual, the more numerous his offspring.
Most of the work on replicator dynamics has focused on games that have a finite strategy space,
thus leading to a dynamical system for the frequencies of the population which is finite dimensional.
However, interesting applications arise either in biology or economics where the strategy space is not
finite or, even, not discrete, see [8, 35, 36, 37]. In case the strategy space S is discrete but consists of
an infinite number of strategies, e.g. S = Z, then the replicator dynamics describing the evolution of
the infinite dimensional vector p(t) = (..., p1(t), p2(t), ...) is described by the following

dpi
dt

=

∑
j∈Z

aijpj(t)−
∑
j∈Z

∑
i∈Z

aijpi(t)pj(t)

 pi(t), t > 0,

which is a infinite dynamical system with pi(t) ≥ 0 for i ∈ Z and ||p(t)||`1(Z) = 1 for any t > 0.
In the current paper we are concentrating on games whose pure strategies belong to a continuum. For
instance, this could be the aspiration level of a player or the size of an investment in economics or it
might arise in situations where the pure strategies correspond to geographical points as in economic



24 NIKOS I. KAVALLARIS, JOHANNES LANKEIT, AND MICHAEL WINKLER

geography, [26]. On the other hand, in biology such strategies correspond to some continuously varying
trait such as the sex ratio in a litter or the virulence of an infection, [20]. There are different ways of
modelling the evolutionary dynamics in this case, however in the current work we adapt the approach
introduced in [8]. In that case the strategy set Ω is an arbitrary, not necessarily bounded, Borel set
of RN , N ≥ 2, hence strategies can be identified by x ∈ Ω. For the case of symmetric two-player
games, the pay-off can be given by a Borel measurable function f : Ω × Ω → R, where f(x, y) is the
pay-off for player 1 when she follows strategy x and player 2 plays strategy y. A population is now
characterized by its state, a probability measure P in the measure space (Ω,A ) where A is the Borel
algebra of subsets of Ω. The average (mean) pay-off of a sub-population in state P against the overall
population in state Q is given by the form

E(P,Q) :=

∫
Ω

∫
Ω
f(x, y)Q(dy)P(dx).

Then, the success (or lack of success) of a strategy x followed by population Q is provided by the
difference

σ(x,Q) :=

∫
Ω
f(x, y)Q(dy)−

∫
Ω

∫
Ω
f(x, y)Q(dy)Q(dx) = E(δx,Q)− E(Q,Q),

where δx is the unit mass concentrated on the strategy x.
The evolution in time of the population state Q(t) is given by the replicator dynamics equation

dQ

dt
(A) =

∫
A
σ(x,Q(t))Q(t)(dx), t > 0, Q(0) = P, (5.2)

for any A ∈ A , where the time derivative should be understood with respect to the variational norm
of a subspace of the linear span M of A . The well-posedeness of (5.2) as well as relating stability
issues were investigated in [36, 37] under the assumption that the pay-off function f(x, y) is bounded.
The abstract form of equation (5.2) does not actually allow us to obtain insight on the form of its
solutions and thus a better understanding of the evolutionary dynamics of the corresponding game.
In order to have a better overview of the evolutionary game, following the approach in [23, 24], we
restrict our attention to measures Q(t) which, for each t > 0, are absolutely continuous with respect
to the Lebesgue measure, with probability density u(x, t). Then the replicator dynamics equation (5.2)
can be reduced to the following integro-differential equation

∂u

∂t
=

(∫
Ω
f(x, y)u(y, t) dy −

∫
Ω

∫
Ω
f(z, y)u(y, t)u(z, t)dy dz

)
u(x, t), t > 0, x ∈ Ω, (5.3)

taking also into account that the probability density u satisfies∫
Ω

∫
Ω
u(y, t)u(z, t) dy dz = 1, (5.4)

hence we can skip the denominator from the average pay-off term into (5.3).
There are applications both in biology as well as in computer science where the pay-off kernel has the
form f(x, y) = G(x−y) with G being a steep function of Gaussian type, see [18, 19, 22, 34]. This case,
in general, models games where the pay-off is measured as the distance from some reference strategy
and finally under some proper scaling leads to∫

Ω
f(x, y)u(y, t) dy ≈ ∆u(x, t), (5.5)
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(see also [25]) which by virtue of (5.2) yields

∂u

∂t
≈
(

∆u−
∫

Ω
u∆u dx

)
u, (5.6)

Another alternative towards getting pay-offs of this type is to consider a game with a discrete strategy
space and take the appropriate scaling limit. In that case a Taylor expansion and a proper scaling
gives a similar approximation to (5.5), see also [23, 24].
Therefore in case Ω is a bounded and smooth domain of RN , it is easily seen that via integration
by parts the non-local integro-differential dynamics equation (5.3) is approximated by the degenerate
non-local parabolic equation

∂u

∂t
= u

(
∆u+

∫
Ω
|∇u|2 dx

)
, x ∈ Ω, t > 0. (5.7)

The non-local equation (5.7) is associated with initial data

u(x, 0) = u0(x), x ∈ Ω, (5.8)

which in the relevant case satisfy ∫
Ω
u0(x) dx = 1, (5.9)

and homogeneous Dirichlet boundary conditions

u(x, t) = 0, x ∈ ∂Ω, t > 0, (5.10)

when the agents avoid to play the strategies locating on the boundary of the strategy space since
they are supposed to be too risky, or the individuals of the biological population do not interact when
they are close to the spatial boundary where probably the “food” is less. We remark that when on
the boundary of the strategy space individuals do not really distinguish between nearby strategies
and hence populate them equally, then the non-local equation (5.7) should rather be complemented
homogeneous Neumann boundary conditions not explicitly considered here, see [24].
Our analysis will inter alia reveal that initial unit-mass is preserved and guarantees that∫

Ω
u(x, t) dx = 1, (5.11)

see also Theorem 1.5 (ii), which in this case provides an a-posteriori justification for (5.4).

6. Appendix B: A convenient approximation of the initial data

In the article, we have kept the proof of Lemma 2.1 very short. Here we give a more detailed version,
which still suppresses some of the more involved technical calculations:

Proof. Choose γ > 0 and a domain Uϑ ⊂ Ω such that dist(Uϑ, ∂Ω) > γ. Let ϑ ∈ C∞0 (Uϑ) with ϑ ≥ 0
and

∫
Ωϑ = 1. Let ε > 0 and let ϕ ∈ C∞0 (Ω) be such that ‖ϕ− u0‖W 1,2(Ω) < ε and ‖ϕ‖Φ,∞ ≤ C+ ζ(ε),

where ζ : [0,∞)→ [0,∞) is a function satisfying limε→0 ζ(ε) = 0. In order to see that this is possible,
recall how smooth approximations ϕ of W 1,2(Ω)-functions u0 are usually constructed ([59, I 3]): With
the aid of a partition of unity {αi}, the function is written as sum, where the single summands are
supported in small patches only and those close to the boundary are shifted towards the interior by
application of shift operators si; finally the function is smoothened by convolution with a standard
mollifier jε.
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We observe that the same procedure applied to Φ does not violate the inequality ‖u0‖Φ,∞ ≤ C, i.e.
u0 ≤ CΦ, too much, that is

C
∑

jε ? (αisi(Φ)) ≤ C
∑

αiΦ + ζΦ = CΦ + ζΦ,

holds for some ζ with limε↘0 ζ(ε) = 0. (The calculations showing this use the fact that mollification of
smooth functions converge in C1, that Φ grows towards the interior, and the Mean Value Theorem.)
Hence the fact that mollification preserves pointwise estimates that hold everywhere shows that also
ϕ satisfies ϕ(x) ≤ CΦ(x).
Let K be a compact subset of Ω such that |Ω \K| < ε and dist(∂Ω,K) < ε. Let ρ ∈ C∞0 (Ω) such that

ρ = 1 on K̂ ∪ suppϕ and |∇ρ(x)| < 2
dist(K̂,∂Ω)

and 0 ≤ ρ ≤ 1. Denoting

A = A(ε) =

∫
Ω

Φ2|∇ρ|2 +

∫
Ω
(1− ρ)2|∇Φ|2 +

∫
Ω
|∇ϑ|2

(∫
Ω
(1− ρ)Φ

)2

B = B(ε) =− 1− 2

∫
Ω
(1− ρ)Φ

∫
Ω
∇ϕ∇ϑ− 2

∫
Ω
(1− ρ)Φ

∫
Ω
(u0 − ϕ)

∫
Ω
|∇ϑ|2 + 2ε|Ω|

∫
Ω
(1− ρ)Φ

∫
Ω
|∇ϑ|2

Γ = Γ(ε) =

∫
Ω
|∇ϕ|2 + 2

∫
Ω
(u0 − ϕ)

∫
Ω
∇ϕ∇ϑ− 2ε|Ω|

∫
Ω
∇ϕ∇ϑ− 2ε|Ω|

∫
Ω
(u0 − ϕ)

∫
Ω
|∇ϑ|2

+

(∫
Ω
(u0 − ϕ)

)2 ∫
Ω
|∇ϑ|2 + ε2|Ω|2

∫
Ω
|∇ϑ|2,

we let C = C(ε) = − 2Γ
B−
√
B2−4AΓ

. Then C solves

AC2 +BC + Γ = 0. (6.1)

As Φ and ∇Φ are bounded, 1 − ρ is supported on a small set with measure smaller than ε, and
Φ|∇ρ| ≤ 2D2, where Φ(x) ≤ D2dist(x, ∂Ω), most integrals from the definition of A,B,Γ can be
estimated, yielding A→ 0, B → −1, Γ→

∫
Ω|∇u0|2 as ε→ 0. Therefore,

C = − 2Γ

B −
√
B2 − 4AΓ

→ −
2
∫

Ω|∇u0|2

−1−
√

1− 0
=

∫
Ω
|∇u0|2 > 0,

as ε→ 0, and in particular, lim sup(C −L) ≤ 0. Furthermore, for sufficiently small ε, we have C > 0.
We also observe that

α =

∫
Ω
(u0 − ϕ)− ε|Ω| − C

∫
Ω
(1− ρ)Φ→ 0,

as ε→ 0. If ε is small enough, therefore, |α| <
1
2
essinf{x;dist(x,∂Ω)>

γ
2 }
u0

supϑ and hence

|αϑ| ≤ 1
2 inf{x∈Ω,dist(x,∂Ω)> γ

2} ϕ on Ω (as suppϑ ⊂ suppϕ). Therefore,

ϕ(x) + αϑ(x) ≥ 1

2
inf

{x∈Ω;dist(x,∂Ω)> d
2}
ϕ =: CK (6.2)

for x ∈ K and
ϕ+ αϑ ≥ 0 (6.3)

on Ω, because ϕ ≥ 0 and αϑ 6= 0 only on Uϑ, where (6.2) guarantees (6.2) already. We also have

ϕ+ αϑ ≤(L+
ε

2
)Φ + αϑ ≤ (L+

ε

2
)Φ + ϑ

∫
Ω
|u0 − ϕ|

≤(L+ ζ(ε))Φ
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with some ζ fulfilling limε↘0 ζ(ε) = 0. Finally, define

u0ε = ε+ C(1− ρ)Φ + ρ(ϕ+ αϑ). (6.4)

Estimate (6.3), the positivity of C and of Φ in Ω together with (6.4) entail u0ε ≥ ε. Accordingly (2.1)
holds, for we clearly obtain u0ε = ε, and ∆u0ε = −C = −

∫
Ω|∇u0ε|2 on ∂Ω, because∫

Ω
|∇u0ε|2 =

∫
Ω
|∇(ε+ C(1− ρ)Φ + ρ(ϕ+ αϑ)|2 = AC2 + (B + 1)C + Γ = C

by (6.1). Furthermore,∫
Ω
u0ε =

∫
Ω
ε+

∫
Ω
C(1− ρ)Φ +

∫
Ω
ρϕ+ α

∫
Ω
ρϑ =

∫
Ω
u0

that is (2.5). The smoothness assertion follows from the smoothness of ϕ (as mollification) and Φ and
that of ρ, ϑ ∈ C∞0 (Ω). By definition of u0ε,

‖u0ε − ε‖Φ,∞ = ‖CΦ(1− ρ) + ρ(ϕ+ αϑ)‖Φ,∞ .
In every point x ∈ Ω, u0ε − ε is a convex combination of CΦ and ϕ + αϑ, which both satisfy the
estimate “≤ (L+ ζ(ε))Φ”. Therefore (2.2) holds. Furthermore,

‖u0ε − u0‖W 1,2(Ω) = ‖ε+ CΦ(1− ρ) + ρ(ϕ+ αϑ)− u0‖W 1,2(Ω)

≤ε
√
|Ω|+ C ‖∇Φ(1− ρ)‖L2(Ω) + C ‖Φ∇ρ‖L2(Ω) + C ‖Φ(1− ρ)‖L2(Ω)

≤ε
√
|Ω|+ C sup |∇Φ|

√
ε+ 2CD2

√
ε+ C sup Φ

√
ε+ ε+ ε+ α ‖ϑ‖W 1,2(Ω) → 0

as ε ↘ 0, where we have, once again, used that ‖Φ∇ρ‖L2(Ω) ≤ 2D2
√
ε, as well as ‖u0‖W 1,2(Ω\K) < ε

and ‖u0 − ϕ‖W 1,2(Ω) < ε. In total, we obtain (2.4). Finally, given K ⊂⊂ Ω, the estimate in (2.3) holds

for 0 < ε < dist(K, ∂Ω) and with the choice of CK as in (6.2). �
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