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Abstract. In the current paper, we consider a stochastic parabolic equation which actu-
ally serves as a mathematical model describing the operation of an electrostatic actuated
micro-electro-mechanical system (MEMS). We first present the derivation of the mathe-
matical model. Then after establishing the local well-posedeness of the problem we in-
vestigate under which circumstances a finite-time quenching for this SPDE, corresponding
to the mechanical phenomenon of touching down, occurs. For that purpose the Kaplan’s
eigenfunction method adapted in the context of SPDES is employed.

1. Introduction

In the current work we consider the following stochastic semilinear parabolic problem

ut = ∆u+
λ

(1− u)2
+ σ(u) ∂tW (x, t), in QT := Ω× (0, T ), T > 0, (1.1)

u = 0, on ΓT := ∂Ω× (0, T ), (1.2)

u(x, 0) = ξ(x), x ∈ Ω, (1.3)

where Ω is a bounded subset of RN , N = 1, 2, 3, with smooth boundary and λ is a positive
parameter. Here ∂tW (x, t) denotes by convention the formal (time) derivative of the Wiener
random process W (x, t) in a complete probability space (B,Ft,P) with filtration (Ft)t∈[0,T ]

which is defined more rigorously in the Section 3. Then σ(u) ∂tW is a multiplicative noise
and σ(u) is actually the magnitude of the noise term and its growth will be identified later.
Furthermore, the initial data ξ : B × Ω → R

+ are considered to be almost surely (a.s.)
positive. Then the solution u = u(x, t;ω) of (1.1)-(1.3), for any ω ∈ B, is a stochastic
process and the investigation of its basic properties is the main purpose of the current
work.

In case σ(u) ≡ 0 then problem (1.1)-(1.3) is reduced to its deterministic counterpart

ut = ∆u+
λ

(1− u)2
, in QT , (1.4)

u = 0 on ΓT , (1.5)

0 ≤ u(x, 0) = ξ(x) < 1, x ∈ Ω. (1.6)

Actually (1.4)-(1.6) and its non-local variations have attracted the attention of many re-
searchers [6, 7, 10, 9, 11, 13, 16, 17], since this kind of equations can model the operation
of some (idealized) electrostatic actuated micro-electro-mechanical systems (MEMS) which
have a wide variety of applications.

Date: August 26, 2016.
1991 Mathematics Subject Classification. Primary 60H15, 35B44 ; Secondary 34B10 , 35B50, 35B51.
Key words and phrases. Electrostatic MEMS, touchdown, quenching, stochastic semilinear partial dif-

ferential equations.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/74504106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 NIKOS I. KAVALLARIS

The associated stationary problem to (1.4)-(1.6) is

∆w +
λ

(1− w)2
= 0, in Ω, (1.7)

w = 0 on ∂Ω, (1.8)

and we define

λ∗ := sup{λ > 0 : problem (1.7)-(1.8) has classical solution corresponding to λ},

where 0 < λ∗ <∞ for any d = 1, 2, 3, see [6, 8, 14].
Regarding the dynamics of (1.4)-(1.6), whenever 0 < λ < λ∗ and for “small enough”

initial data ξ then the solution u of (1.4)-(1.6) converges to a steady-state solution, [6, 9, 16].
On the other hand, either for initial data ξ(x) “close enough” to 1 and 0 < λ < λ∗, or for
any initial data 0 < ξ(x) < 1 and λ > λ∗ then a finite-time quenching occurs, i.e. there
exists Tq < ∞ such that ‖u(·, t)‖∞ → 1 as t → Tq. Finally, when there is a weak steady-
state w∗ with ||w∗||∞ = 1 at λ∗ then a infinite-time quenching takes place. Obviously,
quenching yields a singular behaviour of the equation (1.4) since its reaction term becomes
unbounded close to the quenching time Tq, but it is also linked with a possible destruction
of the MEMS device, [21]. The destruction might be a consequence of the touching down
of an elastic electrode towards its opposite rigid one within the MEMS device, see Figure
1 below. One of the aims of the current work is to investigate whether there is an impact
of the noise term on the occurrence of finite-time quenching.

The structure of the paper is as follows. In Section 2 a brief derivation of the mathemat-
ical model (1.1)-(1.3) is presented. In section 3 we provide the preliminary mathematical
tools will need throughout the manuscript. Section 4 is devoted to the establishment of the
local well-posedeness of problem (1.1)-(1.3). Finally Section 5 investigates the finite-time
quenching for the solution u of (1.1)-(1.3).

2. The Mathematical Model

The motivation for studying problem (1.1)-(1.3) is its association with the operation of
some electrostatic actuated MEMS. The term “MEMS” more precisely refers to precision
devices which combine mechanical processes with electrical circuits. In particular, elec-
trostatic actuation is a popular application of MEMS. MEMS devices range in size from
millimetres down to microns, and involve precision mechanical components that can be
constructed using semiconductor manufacturing technologies. Various electrostatic actu-
ated MEMS have been developed and used in a wide variety of devices applied as sensors
and have fluid-mechanical, optical, radio frequency (RF), data-storage, and biotechnol-
ogy applications. Examples of microdevices of this kind include microphones, temperature
sensors, RF switches, resonators, accelerometers, micromirrors, micropumps, microvalves,
data-storage devices etc., [20, 21].

The key part of such a electrostatic actuated MEMS device usually includes an elastic
plate (or membrane) suspended above a rigid ground one. Typically the elastic plate is
held fixed at two ends while the other two edges remain free to move, see Figure 1. Once
a potential difference V is applied between the elastic membrane and the rigid ground
plate, the membrane starts deflecting towards it. Consider now the situation when the
width d of the gap, between the membrane and the bottom plate, is small compared to the
device length L, then the deformation of the elastic membrane u, after proper scaling, can
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Figure 1. Sketch of the capacitive control circuit (controlled-voltage opera-
tion).

described by the dimensionless equation

ut = ∆u+
λ g(x, t)

(1− u)2
, x ∈ Ω, t > 0, (2.1)

see [19, 20]. The function g(x, t) describes the varying dielectric properties of the membrane
and for some elastic materials can be taken to be constant; for simplicity we assume here
that g(x, t) ≡ 1.

Furthermore, the parameter λ in (2.1) equals to

λ =
V 2L2ε0
2T ℓ2

,

and actually tunes the whole process. Here T stands for the tension of the elastic membrane,
while ℓ is the characteristic width of the gap between the membrane and the fixed ground
plate (electrode), and ε0 is the permittivity of free space. It has been experimentally
observed, see [21], that there is a significant uncertainty regarding the values of V and T . In
particular, V fluctuates around an average value V0, hence this implies that λ = λ0+α η(x, t)
where α > 0 is a coefficient measuring the intensity of the noise term η(x, t). The coefficient
α might depend on the deformation u as well, whereas the noise η(x, t) could be taken to
be a space-time white noise i.e. η(x, t) = ∂tW (x, t), where W (x, t) is a Wiener process.
Therefore (2.1) is finally transformed to (1.1).

Since, the two edges of the membrane are kept fixed then Dirichlet boundary conditions
of the form (1.2) are imposed together initial conditions u(x, 0) = ξ(x).

The mathematical model (1.1)-(1.3) as a stochastic perturbation of (1.4)-(1.6), captures
possible destructions due to the environment of the MEMS system and hence, under some
circumstances, is more realistic. To the best of our knowledge this problem has not been
considered before in the literature of SPDEs, despite its mathematical importance. Indeed,
its mathematical interest arises from the presence of singular term f(u) = 1/(1−u)2 which
leads to the occurrence of the mathematical phenomenon of finite-time quenching closely
associated with the mechanical phenomenon of touching down. Therefore, it is reasonable
for someone to investigate whether (1.1)-(1.3) can predict the occurrence of finite-time
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quenching as it happens with the deterministic problem (1.4)-(1.6). The main purpose of
the current paper is to provide a response to this question. We affirmatively answer this
question in Section 5.

3. Preliminaries

In this section we introduce the main mathematical concepts we will need throughout
the text. In the following, C,K will denote positive constants whose values might change
from line to line.

A Q-Wiener process {W (·, t) : t ≥ 0} is defined as a H-valued process, where Q ∈ L(H)
is non-negative definite and symmetric and has an orthonormal basis χj(x) ∈ H, j =
1, 2, 3, . . . of eigenfunctions with corresponding eigenvalues γj ≥ 0, j = 1, 2, 3, . . . such that
Tr(Q) =

∑∞

j=1 γj < ∞. (i.e., Q is of trace class). It is well-known, see [18], that W (·, t) is
a Q-Wiener process if and only if

W (x, t) =

∞∑

j=1

γ
1/2
j χj(x)βj(t), almost surely (a.s.) , (3.1)

where βj(t) are independent and identically distributed Ft-Brownian motions and the series
converges in L2(B, H). We point out that the eigenfunctions {χj(x)}

∞
j=1 may be different

from the eigenfunctions {φj(x)}
∞
j=1 of the elliptic operator A = −∆ : D(A) = H2(Ω) ∩

H1
0 (Ω) ⊂ H → H, which is self-adjoint, positive definite with compact inverse. Note that

the trace class operator Q is also a Hilbert -Schmidt operator.
For each Hilbert-Schmidt operator Q on H = L2(Ω), there exists a kernel q(x, y) such

that, [2, 18]

(Qu)(x) :=

∫

Ω

q(x, y)u(y) dy, for any x ∈ Ω, u ∈ H,

and

‖Q‖HS(H,H) = ‖q‖L2(Ω×Ω).

The kernel q(x, y) is also called the covariance function of the Q-Wiener process W (·, t)
and ‖ · ‖HS denotes the Hilbert-Schmidt norm.

Let U0 =:
{
Q1/2u : u ∈ H

}
then we define L2

0 to be the set of linear operators J : H → H
equipped with the norm

‖J ‖2
L2

0

:=

(
∞∑

j=1

‖JQ1/2χj‖2

)
= ‖JQ1/2‖2HS(H,H) <∞.

Furthermore we denote by L2(B, H) the space of all random variables X : B → H equipped
with the norm

‖X(ω)‖L2(B,H) := E
[
‖X(ω)‖2H

]1/2
<∞, for any ω ∈ B,

known also as the space of the mean-square integrable random variables, where E stands
for the expectation in the probability space (B,Ft,P).

We note that for the above Wiener process there holds,

E [W ] = 0. (3.2)

It is easily seen that f : H → H, defined as f(u) = 1
(1−u)2

, satisfies a local Lipschitz

condition, i.e. for any 0 < ρ < 1 and u1, u2 ∈ Bρ := {u ∈ L∞(Ω) : ‖u‖∞ < ρ} there exists
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Cρ > 0 such that

‖f(u1)− f(u2)‖H ≤ Cρ‖u1 − u2‖H . (3.3)

An immediate consequence of (3.3) is the following growth condition

‖f(u))‖H ≤ Cρ (1 + ‖u‖H) for any u ∈ Bρ. (3.4)

Now, we assume that there exists a Lipschitz continuous function b : R → R such that

σ : H → L2
0 with (σ(u)ψ) (x) := b(u(x))ψ(x) for any u, ψ ∈ H,

then σ satisfies a local Lipschitz condition and a linear growth condition as well ([18, Lemma
10.24]), in particular for any 0 < ρ < 1 there exists Kρ > 0 such that for any u1, u2, u ∈ Bρ,

‖σ(u1)− σ(u2)‖L2

0
≤ Kρ‖u1 − u2‖H and ‖σ(u)‖L2

0
≤ Kρ (1 + ‖u‖H) . (3.5)

4. Local Existence

Problem (1.1)-(1.3) can be considered as an Itô equation in the Hilbert space H and is
rewritten by suppressing the dependence on space as

dut = [−Aut + λ f(ut)] dt+ σ(ut) dWt, 0 < t < T, (4.1)

u0 = ξ, (4.2)

where ut = u(·, t) can be interpreted as a predictable H−valued stochastic process recalling
that A = −∆ : D(A) = H2(Ω) ∩H1

0 (Ω) ⊂ H → H . Moreover, −A is the generator of an
analytic semigroup E(t) = e−tA on H.

We now introduce the following notions of solutions (4.1)-(4.2) will be used throughout
the current manuscript, see also [3, 5, 18].

Definition 4.1. A predictable H-valued stochastic process {ut : t ∈ [0, T ]} is called a strong
solution of (4.1)-(4.2) if ut ∈ D(A) for any t ∈ [0, T ], with P

[
supt∈[0,T ] ||ut||∞ < 1

]
= 1,

and

ut = ξ +

∫ t

0

[
− Aus + λ f(us)

]
ds+

∫ t

0

σ(us) dWs, P− a.s. , (4.3)

where the last integral in (4.3) is a stochastic integral which is well defined, see Theorem
2.4 in [2].

Definition 4.2. A predictable H-valued stochastic process {ut : t ∈ [0, T ]} such that
P
[
supt∈[0,T ] ||ut||∞ < 1

]
= 1 is called a weak solution of (4.1)-(4.2) if for any v ∈ D(A), t ∈

[0, T ],

(ut, v) = (ξ, v) +

∫ t

0

[
− (us, Av) + (λ f(us), v)

]
ds+

∫ t

0

(
σ(us) dWs, v

)
, P− a.s. (4.4)

where (·, ·) stands for the inner product into H.

Definition 4.3. A predictable H-valued stochastic process {ut : t ∈ [0, T ]} such that
P
[
supt∈[0,T ] ||ut||∞ < 1

]
= 1 is called a mild solution of (4.1)-(4.2) if for any t ∈ [0, T ],

there holds

ut = E(t)ξ+λ

∫ t

0

E(t−s)f(us) ds+

∫ t

0

E(t−s)σ(us) dWs, P−a.s. and x-a.e. in Ω. (4.5)
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Now the weak (variational) solution is equivalent to the mild solution under the assump-
tion of the local Lipschitz continuity of f, see [12]. The positivity of solution of (1.1)-(1.3)
(or equivalently of (4.1)-(4.2)) follows easily from comparison arguments (see e.g. [1] or
[4]).

Theorem 4.4. (Local Existence & Uniqueness ) Suppose that σ satisfies (3.5). Fix 0 <
r0 < 1 and consider initial data ξ ∈ L2(B,D(A)) such that ‖ξ‖L2(B,D(A)) < r0, then there
exists T = T (r0) > 0 such that problem (4.1)-(4.2) admits a unique mild solution ut in
[0, T ].

Furthermore, there exists CT > 0 such that

sup
0≤t≤T

‖ut‖L2(B,D(A)) ≤ CT

(
1 + ‖ξ‖L2(B,D(A))

)
. (4.6)

Proof. Denote by ST the Banach space of H−valued predictable processes {ut : t ∈ [0, T ]}
equipped with the norm

‖ut‖ST
:= sup

0≤t≤T
‖ut‖L2(B,H).

Now for any 0 < r0 < ρ < 1 set

Sρ,T :=

{
ut ∈ ST : ‖ut‖Sρ,T

:= sup
0≤t≤T

‖ut‖L2(B,D(A)) ≤ ρ < 1

}
.

For any ut ∈ Sρ,T we define

M(ut) := E(t) ξ + λ

∫ t

0

E(t− s)f(us) ds+

∫ t

0

E(t− s) σ(us) dWs. (4.7)

Our purpose is to employ Banach’s fixed point theorem to prove existence and uniqueness
of the equation M(ut) = ut in Sρ,T .

Step 1: We first show that M maps Sρ,T into itself. We note that M(ut) is a H−valued
predictable process since ξ is F0−measurable and the stochastic integral is a predictable
process. Therefore it suffices to prove that ‖M(ut)‖Sρ,T

< ρ.
We first note that

‖E(t) ξ‖S1,T
≤ ‖ξ‖

Sρ,T
< r0, (4.8)

by our hypothesis.
Note that if ut ∈ Sρ,T then by virtue of Sobolev’s inequality we can find ρ0 small enough

such that

E [‖ut‖∞] ≤ ρ0 < 1 (4.9)

and hence (3.4) and (3.5) are satisfied.
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Next by using the growth condition (3.4) we also have

∥∥∥∥
∫ t

0

E(t− s)f(us) ds

∥∥∥∥
Sρ,T

≤

∫ t

0

‖E(t− s)f(us)‖Sρ,T
ds

≤

∫ t

0

‖f(us)‖Sρ,T
ds

≤

∫ t

0

Cρ0

(
1 + ‖us‖Sρ,T

)
ds

≤ Cρ0T

(
1 + sup

0≤s≤T
‖us‖Sρ,T

)

≤ 2Cρ0 T, (4.10)

for any 0 < t < T.
Furthermore by virtue of Itô’s isometry (see page 322 in [18]) and (3.5) we have for any

0 < t < T
∥∥∥∥
∫ t

0

E(t− s) σ(us) dWs

∥∥∥∥
2

Sρ,T

=

∫ t

0

E

[
‖E(t− s) σ(us)‖

2
L2

0

]
ds

≤ K2
ρ0

∫ t

0

‖E(t− s)‖2L(H) ds

(
1 + sup

0≤s≤t
‖us‖Sρ,T

)2

,

where L(H) is the set of all linear operators from H into H.
Using a well known semigroup estimate, see for example page 480 in [18],

∫ T

0

‖E(t)‖2L(H) dt ≤ K2T, (4.11)

where K is a positive constant, we finally derive
∥∥∥∥
∫ t

0

E(t− s) σ(us) dWs

∥∥∥∥
S1,T

≤ 2K1T
1/2, 0 < t < T, (4.12)

for some K1 > 0.
Combining now (4.8)-(4.12) we obtain that

‖M(ut)‖Sρ,T
< r0 + 2λ Cρ0T + 2K1T

1/2

≤ r0 + 2
(
λCρ0T +K1T

1/2
)

≤ ρ,

by choosing T small enough, say smaller than some T1 = T1(λ, ρ, r0), such that

2
(
λCρ0T +K1T

1/2
)
< ρ− r0, for any 0 < T < T1.

Step 2: We now show that the operator M is a contraction, i.e. there is a positive
constant 0 < γ < 1 such that

‖M(ut)−M(vt)‖Sρ,T
≤ γ‖ut − vt‖Sρ,T

.
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In fact, we have

M(ut)−M(vt) =λ

∫ t

0

E(t− s)
(
f(us)− f(vs)

)
ds

+

∫ t

0

E(t− s)
(
σ(us)− σ(vs)

)
dWs.

Then by virtue of (3.3) and (3.5) and using Itô’s isometry together with (4.11) we derive

‖M(ut)−M(vt)‖
2
Sρ,T

≤ 4 λ2
∫ t

0

C2
ρ0
‖us − vs‖

2
Sρ,T

ds+ 2C T‖ut − vt‖
2
Sρ,T

for ρ0 small enough and C > 0 and finally

‖M(ut)−M(vt)‖
2
Sρ,T

≤
(
4λ2C2

ρ0
+ 2C

)
T‖ut − vt‖

2
Sρ,T

,

which implies that M is a contraction on Sρ,T if

T < T2 :=
1(

4λ2C2
ρ0 + 2C

) .

Therefore by choosing T0 = min{T1, T2} we obtain by Banach’s fixed point theorem that
M has a unique fixed point in Sρ,T for 0 < T < T0 and thus (4.1)-(4.2) admits a unique
mild solution in [0, T0].

Finally, bound (4.6) is immediately derived by a direct application of Gronwall’s inequal-
ity. �

Remark 4.5. Now according to the comments after Definition 4.3 the solution obtained
by Theorem 4.4 is a weak solution which due to (4.9) satisfies P

[
supt∈[0,T ] ||ut||∞ < 1

]
= 1,

and hence it is a local in time strong solution, see also [3, 5]. Furthermore, it is obvious by
the proof of Theorem 4.4 the solution can be extended in time as long as ‖ut‖Sρ,T

< 1 and
only ceases to exist once ‖ut‖Sρ,T

= 1, see next section.

5. Finite-Time Quenching

In this section we prove that the local-in-time solution of (1.1)-(1.3), under some circum-
stances, cannot be extended as a global-in-time solution and hence finite-time quenching
takes place. To this end we employ a widely utilized classical technique of Kaplan ([15]),
which essentially relies on testing (4.4) by positive Dirichlet eigenfunctions of the Laplacian.
Before proceeding further to the proof of finite-time quenching we definite in the context
of stochastic processes.

Definition 5.1. We say that the (strong) solution to the problem (1.1)-(1.3) quenches in

finite time if P[Tq < ∞] = 1 where Tq is the quenching time defined as Tq = inf{t > 0 :
||u(·, t)||D(A) = 1}.

Remark 5.2. Note that by virtue of Sobolev’s inequality the violation of the inequality
||u(·, t)||D(A) < 1 for d = 1, 2, 3 may occur if there exists T > 0 such that ||u(·, T )||∞ = 1.

Therefore in the current work we also use the following alternative definition which is
more convenient for our approach.

Definition 5.3. The solution u of problem (1.1)-(1.3) quenches in finite time if there
exists 0 ≤ Tq <∞ such that

lim sup
t→Tq

E
[
||u(·, t)||∞

]
= 1.
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Our first quenching result is valid when the parameter λ is large enough.

Theorem 5.4. Suppose that ξ ∈ L2(B;H) with E [‖ξ‖∞] < 1 then the solution u of (1.1)-
(1.3) quenches in finite time for sufficiently large values of the parameter λ.

Proof. Let (λ1, φ1(x)) be the first eigenpair of the operator A = −∆, i.e. φ1 satisfies

Aφ1 = λ1φ1, x ∈ Ω

φ1 = 0, x ∈ ∂Ω.

Since it is well known that φ1 has a constant sign on Ω we can take φ1 ≥ 0 on Ω and
normalized such that ∫

Ω

φ1 dx = 1. (5.1)

Now putting v = φ1 into the weak formulation (4.4) we have

û(t) : =

∫

Ω

ut φ1 dx

=

∫

Ω

ξ φ1 dx−

∫ t

0

∫

Ω

usAφ1 dx ds

+λ

∫ t

0

∫

Ω

f(us)φ1 dx ds+

∫ t

0

∫

Ω

σ(us)φ1 dx dWs

=

∫

Ω

ξ φ1 dx− λ1

∫ t

0

∫

Ω

us φ1 dx ds

+λ

∫ t

0

∫

Ω

f(us)φ1 dx ds+

∫ t

0

∫

Ω

σ(us)φ1 dx dWs. (5.2)

Now taking the expectation over (5.2) we derive

E[û(t)] = E

[∫

Ω

ξ φ1 dx

]
− λ1E

[∫ t

0

∫

Ω

u φ1 dx ds

]

+λE

[∫ t

0

∫

Ω

f(us)φ1 dx ds

]

+E

[∫ t

0

∫

Ω

σ(u)φ1 dx dWs

]
. (5.3)

Note that

E

[∫ t

0

∫

Ω

σ(u)φ1(x) dx dWs

]
= 0,

due to the fact that W (x, t) is a Wiener process, see also (3.2).
We define Ψ(t) := E [û(t)] then by virtue of (5.1)

Ψ(t) ≤ E

[
||ut||∞

∫

Ω

φ1 dx

]
= E [||ut||∞] . (5.4)

By interchanging the order of expectation and integration, by virtue of Fubini’s theorerm,
we deduce for t ≥ 0,

Ψ(t) = Ψ0 − λ1

∫ t

0

Ψ(s) ds+ λE

[∫ t

0

∫

Ω

f(us)φ1 dx ds

]
,
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where

Ψ0 = E [(ξ, φ1)] = E

[∫

Ω

ξ φ1 dx

]
,

or equivalently the differential form,

dΨ

dt
= −λ1Ψ(t) + λE

[∫

Ω

f(us)φ1 dx

]
, t > 0, Ψ(0) = Ψ0. (5.5)

Now by virtue of Jensen’s inequality , since f(u) is a convex function, we deduce

E

[∫

Ω

f(us)φ1 dx

]
≥ E

[
f

(∫

Ω

ut φ1 dx

)]

= E [f(û(t))]

≥ f (Ψ(t)) . (5.6)

Combining (5.5) with (5.6),

dΨ(t)

dt
≥ −λ1Ψ(t) + λf (Ψ(t)) , t > 0, Ψ(0) = Ψ0. (5.7)

Now we compare Ψ(t) with the solution H(t) of the following initial value problem

dH(t)

dt
= −λ1H(t) + λf (H(t)) , t > 0, H(0) = Ψ0 (5.8)

to derive that Ψ(t) ≥ H(t) on their domain of existence.
Solving analytically (5.8) and putting H = 1 as an upper limit of integration then the

quenching time for T̂ for H is given by

T̂ =

∫ 1

Ψ0

1

(λf(τ)− λ1τ)
dτ (5.9)

and is finite if the improper integral in (5.9) converges.

Recalling that f(u) = 1/(1− u)2 it can be easily seen that T̂ is finite provided that

λ > λ̂ :=
4λ1
27

.

Finally (5.4) implies that the quenching time Tq of (1.1)-(1.3) must be also finite. In

particular, for any λ > λ̂ there holds

Tq ≤ T̂ =

∫ 1

Ψ0

1

(λf(τ)− λ1τ)
dτ.

This completes the proof of the Theorem. �

Finite-time quenching occurs for “large enough” initial data which are close enough to 1
as well. Indeed the following result is valid.

Theorem 5.5. Suppose that ξ ∈ L2(Ω;H) with E [‖ξ‖∞] < 1 and

Ψ(0) = Ψ0 := E

(∫

Ω

ξ φ1 dx

)
> ζ, (5.10)

where ζ = ζ(λ) is the largest root of the equation

g(τ) := λ f(τ)− λ1τ = 0.

Then the solution u of (1.1)-(1.3) quenches in finite time.
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Proof. Following the same steps as in the proof of Theorem 5.4 we obtain that Ψ(t) =

E

[ ∫
Ω
u φ1 dx

]
satisfies the differential inequality

dΨ(t)

dt
≥ −λ1Ψ(t) + λf (Ψ(t)) = g(Ψ(t)), t > 0, Ψ(0) = Ψ0.

Let 0 < ζ = ζ(λ) < 1 be the largest root of the equation g(τ) = 0 then g(τ) > 0 for any
τ > ζ ; otherwise if ζ = 0 then g(τ) > 0 for any 0 < τ < 1.

Then by choosing Ψ0 > ζ we deduce

t ≤

∫ Ψ(t)

Ψ0

dτ

g(τ)
≤

∫ 1

Ψ0

dτ

g(τ)
:= T ∗ <∞.

But the above relation guarantees that Ψ(t) approaches 1 in finite time T ∗ <∞. Therefore
by virtue of (5.4) we derive that the solution of (1.1)-(1.3) quenches in finite time Tq ≤
T ∗. �
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70th birthday”.



12 NIKOS I. KAVALLARIS

[18] G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computational Stochastic

PDEs, Cambridge University Press, Cambridge, UK, 2014.
[19] J.A. Pelesko & A.A. Triolo, Nonlocal problems in MEMS device control, J. Eng. Math. 41 (2001)

345–366.
[20] J.A. Pelesko & D.H. Bernstein, Modeling MEMS and NEMS, Chapman Hall and CRC Press,

2002.
[21] M. Younis, MEMS Linear and Nonlinear Statics and Dynamics, Springer, New York, 2011.

Department of Mathematics, University of Chester, Thornton Science Park, Pool Lane,

Ince, Chester CH2 4NU, UK

E-mail address : n.kavallaris@chester.ac.uk


