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I. Introduction 

OUNDARY layer separation control by the action of Synthetic Jets has been widely studied for more than a 

decade; its success as an active flow control device has been extensively reported by several authors1,2,3,4,5,6. 

The parameters that modify the behavior of Synthetic Jets include the cavity shape, the diameter of the exit, and the 

frequency and amplitude of the excitation, while the formation and evolution of Synthetic Jets strongly depend on 

the Strouhal and Reynolds numbers7. It is also known that good flow control performance is achieved at relatively 

high oscillation frequencies6. 

 In 2004, several institutions around the world worked with NASA to study the capability of Reynolds-averaged 

Navier-Stokes (RANS) simulations using three validation cases with Synthetic Jets. Rumsey8, who compiled the 

results, reported that although some details of the velocity field close to the jet exit were not captured by the 

numerical analyses, the general trend was reproduced with reasonably good accuracy compared with experiments. 

Four years later, the outcomes of this international work were published including some new results obtained after 

the workshop9. One of the main conclusions was that the Spalart-Almaras (S-A) and k-ω Shear-Stress-Transport 

(SST) models captured reasonably well many features of interest.  

 In one of the three validation cases used for the workshop, the effect of a Synthetic Jet was modeled over a wall-

mounted hump at 65% of the chord. This case, known as “NASA 2D Hump”, has been used for many further 

validation studies, e.g. Gan et al10, who investigated a simple suction state, Greenblatt11, who performed a number of 

experimental analyses, and Rumsey12, who addressed the oscillatory flow behavior and compiled the work presented 

in the workshop8. The NASA 2D Hump has been found to be useful for validation of numerical analyses of 
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Synthetic Jets because of its geometrical simplicity and well-documented range of results. Many different 

configurations of Synthetic Jets have been studied in the past. Also, new types of jet flow actuators have recently 

been developed to achieve oscillatory or sweeping jet blowing13,14; however, these new actuators require net mass 

flow and are therefore different from common Synthetic Jets.  

 In the present work, we numerically test an alternative novel active flow control concept, called Bi-Directional 

Synthetic Jet (BDSJ), using RANS simulations of flow over the NASA 2D Hump model. The term Bi-Directional 

expresses that the intake direction of the jet is different from the outflow direction, so the Coandă effect can be 

induced by ejecting the flow close to parallel to the surface, while the intake can still efficiently entrains the flow 

upstream to keep the boundary layer attached. A sketch of the Bi-Directional Synthetic Jet is presented in Fig. 1. 

The effects of the Bi-Directional Synthetic Jet are simulated numerically by prescribing the profile and direction of 

oscillatory flow at the jet exit boundary. The actual device, details of which will be investigated in future studies, 

may involve a rapidly oscillating magnetic membrane and an internal tube connecting two jet holes to entrain air 

into one hole and eject it from the other hole, changing the inflow and outflow directions of the jet. In the present 

study, however, we consider only one jet hole for simplicity. 

 

II. Numerical Model 

1. Computational domain 

 The geometry of the hump emulates the upper surface of a 20% thick Glauert-Goldschmied airfoil. The 

computational domain mimics the test section of the experiments15, where the body was mounted between two glass 

endplates, and both leading and trailing edges matched smoothly the wind tunnel splitter-plate. The dimensions of 

the computational test section are 382 mm high and 3,531 mm long. The model leading-edge is placed at 4.61 chord 

lengths (1935mm) from the inlet, and the length of the hump is 420 mm, which has a 1.8 mm jet slot at 65 % of the 

 
 

Fig. 1 Conceptual drawing of a Bi-Directional Synthetic Jet. 
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chord. The 2-D computational domain, together with the final mesh employed in this study, is shown in Fig. 2. The 

details of a grid convergence study will be described later in section II.5. 

 

 

 

2. Flow solver and parameters  

The flow solver used in this study, ANSYS FLUENT v14, employs a control volume method to discretize the 

incompressible Reynolds-averaged Navier-Stokes (RANS) equations with second order accuracy into a series of 

algebraic equations that are numerically solved. The SIMPLE algorithm is used for pressure-velocity coupling for 

steady state calculations, while the PISO algorithm is used for transient calculations16 with a second-order fully 

implicit scheme for the time integration.  

The working fluid is air with a viscosity of 1.84x10-5 kg/ms and a density of 1.185 kg/m3, giving a Reynolds 

Number (based on the hump chord length) of approximately one million.  The reference pressure is set at 101,325 Pa 

at the outlet of the domain. For all analyses presented in this paper, unless explicitly stated, the inlet velocity is ܷஶ = 

34.6 m/s (Mach 0.1), normal to the boundary, the turbulent intensity at the inlet is 5% and the turbulent length scale 

1 mm. Zero streamwise-gradient conditions are given at the outlet. The no-slip conditions are employed at the top 

and bottom walls (including the hump surface). Each computation is initiated with a uniform velocity	ሺݑ, ሻݒ ൌ

ሺܷஶ, 0ሻ	given to the entire computational domain. 

 
 

a) Entire domain 
 

     
b) Over the hump     c) Around the jet exit. 

 
Fig. 2 Discretized computational domain 
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3. Turbulence model selection 

 Although it is known that RANS turbulence models cannot predict quantitatively correctly the reattachment 

point downstream of the hump, they still tend to give qualitatively correct solutions that are sufficient for 

comparative studies. To find a trend in parametric studies, RANS simulations are still the most appropriate approach 

as large eddy simulations (LES) and detached eddy simulations (DES) would require prohibitive computational 

resources to solve a large number of cases, even though there are recent efforts on using wall-modeled LES to 

overcome such difficulties17. A summary of earlier studies using RANS turbulence models for this type of flow is 

given in Table 1. 

 

Table 1  Turbulence models used by different authors. 

 

 
In the present study, the Spalart-Allmaras, the Realizable k-ε, and k-ω SST turbulence models are used as they 

have shown to be reasonably reliable for this type of flow. 

 

4. Modeling of the Synthetic Jet 

The Synthetic Jet is modeled by manipulating the velocity boundary conditions across the jet exit (located at 

x/c=0.65), similarly to the study by Viken et al.20 Eleven different angles are considered for the inflow/outflow 

directions of the jet, as described in Fig. 3. It has been reported that different cavity shapes do not affect significantly 

the flow characteristics at the jet exit26; therefore the actual cavity is not modeled in this study. 

                                                           
§ Explicit Algebraic Stress Model in k-ω form. 
** Renormalization Group Model in k-ε form. 

Studied by Model used Synthetic Jet over a 
Krishnan et al.(p.145) 18 S-A & SST 2D&3D/Hump 
Morgan et al. (p.151)18 Realizable k-ε 2D&3D/Hump 

Karthikeyan et al. (p.163)18 S-A 2D&3D/Hump 
Rumsey 19 S-A, SST, & EASM-kω§ 2D/Hump 

Katam et al. (p.175)18 SST 2D/Hump 
Viken. et al. 20 S-A 2D/Hump 

Balakumar (p.201)18 SST 2D/Hump 
Laouedj et al 21 SST 3D/Flat Plate 
Lyons et al.22  S-A 3D/Hump 
Kim et al.23 SST 3D/Flat Plate 
He et al.24 k-ε, SST, S-A 2D/Hump 

Bettini & Cravero25 RNG k-ε** 2D/Hump 
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The jet velocity (in the prescribed inflow/outflow directions) has a parabolic profile across the jet slot and 

fluctuates in time, defined as 

௝ܸ௘௧ሺߦ, ሻݐ ൌ ௝ܸሺߦሻ ∙ sin߱(1)            ݐ 

where ߦ is the distance (across the jet slot) from the upstream end of the jet slot, ௝ܸሺߦሻ is a parabolic profile defined 

later in Section II.6, ω is the frequency (100 Hz), and t is the time. The horizontal (x) and vertical (y) components of 

the velocity, considering the prescribed jet direction, are specified through a User Defined Function (UDF) in 

FLUENT. These velocity components across the jet exit are monitored throughout the simulation to assure that the 

jet direction and mass flow rate are as intended. For transient analyses, the time-step size is set at 5x10-5 seconds 

(200 time-steps per jet oscillation cycle); this time-step size was found to be sufficiently small, i.e. the solution did 

not change with further reducing the time-step size. 

For all simulations with a Synthetic Jet, we employ the following three steps: 

1. Run a steady-state simulation for 15,000 iterations, which are sufficient for the scaled residual for continuity 

to decrease to 10-6. 

2. Switch the simulation to the transient mode and run it for 6,000 time-steps (30 jet-oscillation periods) with 

20 iterations per time-step to obtain statistically converged solutions. 

 
Fig. 3 Nomenclature for the inflow/outflow directions of the jet (note that 

the figure has been rotated 18° to match the angle over the hump). 
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3. Run the simulation for another 2,000 time-steps (10 jet-oscillation periods) for taking time statistics, 

resulting in a total of 8,000 time-steps for each simulation (corresponding to about 33 flow-through times based 

on the hump chord). 

 

5. Grid convergence 

To achieve grid convergence, grids of different sizes were created and compared until the predictions of 

separation and reattachment points converged. The final two-dimensional mesh comprises 0.62 million elements, 

with the first 20 layers from the wall stretching at a growing rate of 1.1. The size of the smallest elements close to 

the hump surface is 0.03 mm. Also, within 2 mm from the jet exit, there are two spherical zones with refined mesh 

elements of 0.02mm. (0.011 of the jet slot width; see Fig. 2). Table 2 shows the data obtained from three different 

grids with increasing the amount of elements in the vicinity of the wall, therefore reducing the y+ value. 

 

Table 2  Summary of grid convergence study (without jet actuation). 

 
Number of 
Elements 

Average
y+ 

Separation  
 x/c 

Reattachment  
x/c  

Experiment - 0.665 1.11 

150,000 4.07 0.657 1.254 

620,000 0.82 0.655 1.232 

1,500,000 0.36 0.655 1.230 

 

According to Karthikeyan et al18, for this type of RANS simulation, the solutions are fairly grid independent when 

the wall normal spacing is less than 2.5 wall units; moreover, grid refinement in the separated region does not 

improve the predictions. As can be seen from Table 2, once the y+ reaches a value close to one, very little changes 

are observed with further grid refinement. We use the mesh with 0.62 million elements for the rest of the study. 

 

6. Effect of jet exit velocity profile 

To confirm the effect of the velocity profile specified at the jet exit, we performed a set of preliminary 

simulations (for the BDSJ 165-15 configuration, i.e. inflow and outflow angles are 165° and 15°) with the S-A 

model, changing the profile from a top hat to a fully parabolic one. The profile is defined as: 

௝ܸሺߦሻ ൌ ௝ܸ,௠௔௫ ൬1 െ ቀక
஽
െ 0.5ቁ

ଶ
ܵ൰            (2) 
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where ௝ܸ,௠௔௫ is the maximum jet velocity at the middle of the jet slot, D is the diameter (width) of the jet exit, and S 

is a non-dimensional shape factor that defines the shape of the parabolic profile. Note that the value of ௝ܸ,௠௔௫ 

depends on S to keep the mass flow rate constant. The results are summarized in Table 3. The separation and 

reattachment points were estimated from the location of the local minimum values of the mean friction coefficient 

over the hump/wall. 

 

Table 3  Summary of preliminary simulations with different jet profiles (BDSJ 165-15 configuration). 

      Separation Reattachment Bubble length  
Difference in 
bubble length 

Case S Vj,max/U∞ x/c x/c xb/c 
(CaseX - Case1) 

/Case1 
1 0.0 0.86 0.7175 1.227 0.5095 0.00% 

2 0.2 0.88 0.7175 1.228 0.5102 0.14% 

3 0.6 0.91 0.7175 1.228 0.5104 0.18% 

4 1.0 0.96 0.7175 1.229 0.5116 0.41% 

5 2.0 1.03 0.7175 1.231 0.5133 0.74% 

6 3.0 1.13 0.7175 1.230 0.5123 0.56% 

7 4.0 1.29 0.7175 1.231 0.5132 0.73% 

 

 

Fig. 4 shows the velocity profiles across the jet exit for Cases 2, 4 and 7. As can be seen from Table 3, the effects of 

different jet profiles on the separation bubble size are insignificant. Hence we use the jet velocity profile of Case 4 

(S = 1 and Vj,max/U∞ = 0.96) for the rest of the study. 

 

Fig. 4 Velocity profile at the jet exit for Cases 2, 4 and 7. 
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III. Model Validation  

Fig. 5 shows distributions of pressure coefficient Cp over the hump with no flow control. Although a number of 

CFD results were compared with experiments in the 2004 workshop, only the 2D S-A results from Karthikeyan18 are 

shown in this figure as a reference. The reference CFD results, the experiments (PIV measurements27) and the 

current CFD results with the S-A model agree well at  x/c < 0.65 while at x/c > 0.65 the results indicate some minor 

discrepancies. Also, a comparison of streamwise velocity at x/c = 0.8 is presented in Fig. 6, again showing a good 

agreement. 

      

 

Table 4  Separation and reattachment locations (classical Synthetic Jet configuration). 

Study Author 
Separation 

x/c 
Reattachment 

x/c 
Bubble length 

xb/c 

Experiment D. Greenblatt et al.27 0.680 0.980 0.300 

DES Saric et al.28 0.662 1.110 0.448 

LES Saric et al.28 0.671 1.050 0.379 

RANS (average) Rumsey et al.19, 29 0.670 1.220 0.550 

k-ω SST 

Present study 

0.713 1.345 0.632 

S-A 0.736 1.270 0.534 

Realizable k-ε 0.691 1.180 0.489 

 
 

Table 4 provides comparisons of the separation and reattachment locations for the classical Synthetic Jet case. 

These results indicate that the current CFD procedure can be used to predict the behavior of this type of flow 

 
Fig. 5 Comparison of Cp over the hump with no flow 

control. 
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Fig. 6 Comparison of streamwise velocity at x/c = 0.8 
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qualitatively correctly; hence, similar procedures can be used to assess the qualitative performance of the novel 

Synthetic Jets configurations as well. It should be borne in mind that our objective is to assess the trend of the 

influence of different jet configurations and not the exact locations of the separation and reattachment. 

IV. Results and discussion 

We performed a number of simulations, covering various combinations of inflow/outflow jet angles, with the three 

different turbulence models. Also, we employ three different approaches regarding the jet exit conditions in order to 

fully understand the characteristics of the Bi-Directional Synthetic Jet in comparison with the classical Synthetic Jet. 

These three approaches are: (i) Unfixed mass flow rate, i.e. keeping the same area (width) of the jet slot and the 

same amplitude of the velocity as the classical Synthetic Jet case; (ii) Unfixed velocity, i.e. keeping the same area 

(width) of the jet slot and the same mass flow rate as the classical Synthetic Jet case; and (iii) Unfixed jet area, i.e. 

keeping the same amplitude of the velocity and the same mass flow rate as the classical Synthetic Jet case. Note that 

it is impossible to fix these three parameters (mass flow rate, velocity and jet slot width) all together when we 

change the jet flow direction in this CFD study (since the jet exit boundary is always aligned with the hump surface, 

i.e. the jet flow direction is perpendicular to the jet exit boundary only when the jet flow direction is at 90° in Fig. 

3). For the “unfixed jet area” case, the middle point of the jet slot is fixed while changing the jet flow direction and 

the slot width, to make a fair comparison. 

Fig. 7 shows comparisons of the separation bubble length between the most representative cases of the BDSJ 

with inlet-outlet jet directions of 165°-15°, 150°-30°, 135°-45°, 120°-60°, 105°-75°, and the classical Synthetic Jet 

case (90°-90°), for the three different approaches. The results for the three different turbulence models are all plotted 

for comparison, together with their average results. As can be seen from the figure, for all three different 

approaches, the general trend is that the BDSJ performs better than the classical Synthetic Jet, i.e. the separation 

bubble length reduces as we increase the difference between the inflow and outflow angles. The performance 

increase is most significant for the “unfixed velocity” case, where the amplitude of the jet velocity fluctuation 

increases as the inflow/outflow jet angles are changed (inclined) from 90° (since the jet slot size and mass flow rate 

are fixed). It should be noted, however, that a higher jet velocity may result in a higher friction loss within the 

internal part of the Synthetic Jet and hence a higher power required to operate the device. 
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a) b) 

 

  
c) 

Fig. 7 Comparison of the separation bubble length for most representative BDSJ cases: (a) Unfixed mass flow rate; (b) 
Unfixed velocity; (c) Unfixed jet area. 

 

Fig. 8 shows comparisons of the contours of the time-averaged streamwise velocity over the hump for the cases 

with the classical Synthetic Jet and the BDSJ. These contours illustrate the effect of the different Synthetic Jet 

conditions on the size of the separation bubble not only in the streamwise but also in the wall-normal directions. 
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V. Conclusions 

In this study, we performed a set of 2D unsteady RANS simulations to examine potential benefits of changing 

the inflow and outflow directions of a Synthetic Jet, called the Bi-Directional Synthetic Jet (BDSJ). The simulations 

were performed for the so-called "NASA 2D Hump" configuration to assess the performance of the BDSJ compared 

to the classical Synthetic Jet. Three different turbulence models were employed to obtain general trends of the 

performance of the BDSJ. We also considered three different approaches regarding the jet exit conditions, namely 

the “unfixed mass flow rate”, “unfixed velocity” and “unfixed jet area” cases, to make a meaningful comparison 

with the classical Synthetic Jet. 

One of the key findings from this study is that the performance of a Synthetic Jet could improve significantly if 

the inflow (suction) and outflow (ejection) directions of the jet are optimized separately. The simulation results 

suggest that the performance of the BDSJ increases as we increase the difference between the inflow and outflow 

angles of the jet. The results also show that there is little influence of the different parabolic velocity profiles 

specified at the jet exit on the separation bubble size. All three turbulence models employed (S-A, SST and 

realizable k-ε) predict similar general trends. However, the results depend on the type of jet exit conditions 

   
a) Synthetic Jet - k-ε b) Synthetic Jet - S-A c) Synthetic Jet - SST 

 

   
d) BDSJ-165-15 - k-ε (Unfixed Area) e) BDSJ-165-15 - S-A (Unfixed Area) f) BDSJ-165-15-SST (Unfixed Area) 

 

   
g) BDSJ-165-15 - k-ε (Unfixed velocity) h) BDSJ-165-15 - S-A (Unfixed velocity) i) BDSJ-165-15 - SST (Unfixed 

velocity) 

 
Fig. 8 Mean streamwise velocity contours above the hump. 

U [m/s] 
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employed; the jet performance improves most significantly when the jet mass flow rate and the slot width are fixed 

(and hence the jet velocity is unfixed) while changing the inflow/outflow directions of the jet. 

It should be emphasized that the aim of the present study was to make an initial qualitative prediction of the 

performance of a hypothetical BDSJ device, on a widely used reference case (NASA 2D hump). This is a concept 

exploration study and we have not physically produced this device yet. Although it seems natural that the optimal 

outflow angle predicted is close to the direction tangential to the hump surface, further investigations using higher 

fidelity simulations, such as large-eddy and/or detached-eddy simulations, are required to fully understand the 

detailed flow mechanisms. It should also be noted that the optimal jet configuration may depend on the shape of the 

aerodynamic body and other flow parameters, such as the Reynolds number, freestream turbulence and the 

frequency and magnitude of the jet excitation. 
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