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ABSTRACT 

The microstructure of ZK40, ZK40 with 2 wt.% of Nd and Gd (ZK40-2Nd and ZK40-

2Gd, respectively) were investigated with optical, scanning and transmission electron 

microscopy, X-ray diffraction and Scanning Kelvin Probe Force Microscopy. The 

mechanical properties and the corrosion behaviour were correlated with the 

microstructure. The 2 wt.% Gd addition enhanced the ductility, while the Nd addition 

resulted in deterioration in mechanical properties. The corrosion behaviour was also 

enhanced with the addition of Gd.  
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Introduction 

Mg alloys offer a high potential for use as lightweight structural materials in the 

automotive and aerospace industry. However, satisfactory mechanical properties are not 

enough to promote a magnesium alloy for commercial applications where corrosion 

resistance also plays an important role. In fact, Mg alloys usually have relatively low 

corrosion resistance, which is one of the main obstacles that impede the use of 

magnesium alloys [1]. 

Several approaches have been developed with the aim of enhancing the corrosion 

resistance of the Mg alloy involving the addition of alloying elements. The AZ Mg alloys 

have been extensively studied, such as AZ31 due to mainly its promising applications in 

forming, or AZ91 for high pressure die casting [2]. The influence of the RE elements on 

the mechanical properties [3] and corrosion behaviour [4,5] of Mg-Al alloy system has 

also been investigated. In the AZ system the second phases can act as a galvanic cathode 

and accelerate the corrosion rate of the matrix if the volume fraction of the second phases 

is small [6,7]. On the other hand, if there is a larger amount of second phase that it forms 

as a continuous network it may act as an anodic barrier to inhibit the overall corrosion of 

the alloy.  

In the case of Mg-Zn alloys, the effect of addition of rare earth on the corrosion 

behaviour has yet not been fully understood [8]. Among these investigations, the as cast 

ZE41 (Mg-Zn-RE alloy) is in the focus of most of the studies. Compared with the AZ 

alloys, the eutectic phases in ZE41 are reported to not play the role of corrosion barrier 

retarding the progress of the corrosion [9]. For ZE41 immersed in 1 N NaCl, Zhao et al. 

[9] showed that the corrosion initiated as localised corrosion. It started at some sites on 



the surface and expanded over the surface forming a thick layer of corrosion products. 

Neil et al. [10] reported that segregation of Zr in the α-Mg matrix played a distinct role 

on the early stages of corrosion in the ZE41. However, among the investigated Mg alloy 

systems, Mg-Zn-Zr (ZK) alloys are one of the higher strength cast alloys available 

commercially [11]. The small addition of rare earth (RE) elements to the ZK alloys can 

alter the microstructure and therefore can modify the mechanical properties and give 

satisfactory corrosion resistance. It is reported that the addition of rare earth (RE) 

elements and alkaline metals to Mg alloys improves the corrosion resistance [4,5]. The 

addition of RE [12] enhanced the castability and elevated temperature strength [13]. The 

RE additions are grain refiners, attributed mainly to the constitutional supercooling [14], 

which can lead to improved ductility at room temperature [15,16].  

However, the role of individual rare earth elements on the mechanical behaviour and 

corrosion resistance of ZK series alloys has not been fully investigated. The aim of the 

present work is to study the influence of Gd and Nd additions on the microstructure, 

mechanical properties and corrosion behaviour. 

  



1. Experimental Procedure 

2.1. Materials 

Pure Mg, Zn, Nd and master alloys Mg 4 wt.% Gd and Mg-33 wt.%Zr (Zirmax®) were 

used to prepare the alloys. Mg was molten in an electric resistance furnace under 

protective atmosphere of Ar with 2 vol.% SF6 and held at 750 °C where alloying 

additions were added to the melt and stirred for 10 min. The melt was poured into a 

preheated thin walled steel mould, held at 660 °C for 15 min before immersing into water 

at a rate of 10 mm.s-1 until the top of the melt was in line with the cooling water. This 

indirect chill casting procedure was performed in order to provide a homogeneous 

microstructure. Zr and Gd were measured with Bruker S5 X-ray fluorescence 

spectrometer. Zn, Nd, Fe, Cu and Ni were measured with a Spectrolab spark analyser. 

2.2. Differential Thermal Analysis (DTA) 

Specimens for Differential Thermal Analysis (DTA) were prepared by placing 

approximately 30-45 mg of the alloys in Metttler Toledo crucible in an Ar atmosphere. 

The analysis were performed using a Parkin Elmer DTA machine at a heating and 

cooling rate of 10 K/min in the temperature range from 300 to 700 °C. Three heating and 

cooling cycles were used for each alloy to ensure repeatability of the measurement. 

2.3. Specimen preparation and characterisation 

For metallographic characterisation, specimens were ground through successive grades of 

silicon carbide abrasive papers from P500 to P2500, followed by polishing with a 3 µm 

diamond suspension and finally in OPS with 1 µm diamond suspension. The specimens 

analysed by optical microscopy (OM) were etched with an acetic picric acid solution [17] 



to reveal the constituents of the alloys. The analyses were performed using a reflected 

light microscope Leica DMI 5000. Grain size was determined according to the ASTM 

E112-12 standard using the linear intercepts method. Polished samples were examined 

with scanning electron microscopy (SEM) using a Zeiss FEG-SEM Ultra 55, a Inspect 

F50 and a Tescan Vega3 SEM using BSE and SE modes. The SEMs were equipped with 

Energy dispersive X-ray (EDX) spectrometer. EDX spectra profiles were obtained across 

the grains to determine the distribution of elements. Savitzky-Golay [18] smooth filter 

was applied using Origin with 20 points of window to fit a 4-degree polynomial. 

Phase characterization of the as-cast specimens was conducted with synchrotron radiation 

diffraction (SRD) using the facilities of P07 beamline of Petra III, DESY (Deutsches 

Elektronen-Synchrotron). A monochromatic beam with energy of 100 keV (=0.0124 

nm) and with a cross-section of 1.0 mm x 1.0 mm was used. Diffraction patterns were 

recorded with a PerkinElmer 1622 flat panel detector with a pixel size of (200 m)2, 

which was placed at a sample-to-detector distance of 1535 mm from the specimen 

(calibrated with a LaB6 standard powder sample). The Pearson crystallographic database 

was used to obtain the information of possible phases and CaRIne crystallographic 

software was used to simulate the theoretical diffraction patterns for various phases. 

The samples for transmission electron microscopy (TEM) were prepared by cutting 0.5 

mm slices with Struers Isomat precision saw followed by thinning to 150 µm in thickness 

using 500 grit SiC paper.  Then 3 mm diameter discs were punched using a disc punch 

and electropolished using a Fischione twin jet electropolisher at -45 °C with a voltage of 

50 V in solution of 1.5 vol.% perchloric acid in ethanol to perforation. TEM analysis was 

conducted with a FEI CM 200 transmission electron microscope operating at 200 kV 



equipped with an Oxford EDAX Energy dispersive X-ray spectrometer (EDX) and 

quantitative composition measured using standardless thin film technique. 

Scanning Kelvin Probe Force Microscopy (SKPFM) working in tapping mode was 

performed using a Nanoscope IIIa MultiMode microscope. Surface potential maps were 

obtained using a silicon tip with a platinum coating of 20 nm thickness. The topographic 

and surface potential images were obtained simultaneously and the tip to sample distance 

was kept constant at 100 nm. The tested samples were metallographically prepared and 

polished to a 0.25 µm diamond suspension finish. All measurements were performed at 

room temperature and the relativity humidity was in the range of 40-65%. SEM/EDS 

analyses were performed in the SKPFM-examined regions to identify the second phases. 

2.4. Mechanical testing 

Cylindrical compression specimens with  10 mm diameter and 15 mm length and tensile 

specimen with diameter of 6 mm were manufactured according to DIN 50125 (ISO 6892-

1) from the as cast ingots. Both tests were performed in a Zwick Z050 mechanical testing 

machine with a strain rate of 0.001 mm/min at room temperature and five samples were 

tested per alloy. 

2.5. Electrochemical measurements 

Electrochemical tests were conducted in a stirred aqueous 0.5 wt.% NaCl solution at 22 ± 

0.5 °C using a Gill AC computer-controlled potentiostat. A typical three-electrode cell 

with the specimen as the working electrode (0.5 cm2 exposed area), a saturated Ag/AgCl 

electrode as the reference electrode, and a platinum mesh as a counter electrode was used.  

Electrochemical impedance spectroscopy (EIS) measurements were performed for 

immersion times ranging from 1h to 1 day at room temperature. The frequency range was 



from 0.01 Hz to 30 kHz and the amplitude of the sinusoidal potential signal was 10 mV 

with respect to the OCP. The impedance spectra were analysed using ZView® software. 

The errors for the individual parameters of the equivalent electrical circuits (such as CPE 

and R) were <5% and with values of the goodness of fit of the simulated spectra 

corresponded to χ2<0.01. 

2.6. Hydrogen evolution measurements 

Details of the procedure, design and the relationship between the volume of hydrogen 

evolution and the mass loss of the specimen can be found elsewhere [19,20]. Hydrogen 

evolution measurements were performed in 0.5 wt.% NaCl naturally-aerated solution for 

up to 14 days for ZK40 and ZK40-2Gd alloys and up to 7 days for ZK40-2Nd. After the 

corrosion tests, specimens were characterized with SEM in order to investigate the 

morphology and composition of the corrosion products. 

2.7. Initial steps of corrosion 

Immersion tests were performed for 4 h, 8 h and 24 h in 0.5 wt.% NaCl naturally-aerated 

solution in order to investigate the initiation of corrosion process. The final sample 

surface was prepared with OPS polishing to ensure that the sample preparation did not 

contribute to the corrosion process. Finally, the corroded surface was investigated with 

SEM after the removal of the corrosion products by pickling in a solution containing 

200 g/L CrO3 at room temperature for 5-10 min following the ASTM standard G1-90, 

Designation C5.2. 

  



3. Results and Discussion 

3.1. Microstructure 

The actual compositions of the alloys are given in Table 1. The optical (a-c) and scanning 

electron microscopy (d-f) for ZK40 (a,d), ZK40-2Gd (b,e) and ZK40-2Nd (c,f) are shown 

in Figure 1. Relatively uniform microstructures were observed for each alloy. ZK40-2Nd 

exhibits the most pronounced dendritic microstructure, and has a more uniform 

microstructure compared with other two alloys. The ZK40 had an average grain size of 

37.4±2.1 µm, the ZK40-2Gd of 46.1±9.1 µm and the ZK40-2Nd had an average grain 

size of 67.1±5.4 µm. 

The SEM micrographs illustrate the area fraction of intermetallic particles, with ZK40, 

ZK40-2Gd and ZK40-2Nd alloys contained 1.60.5%, 5.71.0% and 7.30.6% 

intermetallic particles, respectively. Additionally, in the ZK40 alloy segregation of Zn 

towards the grain boundary is observed as illustrated by brighter regions along the grain 

boundary in Figure 1(d). ZK40-2Gd (Figure 2(b)) has higher concentration of Zr within 

the grain. No significant chemical segregation was observed in the ZK40-2Nd alloy 

(Figure 2(c)). The Gd and Nd distribute along the grain boundaries in the modified alloys. 

In the ZK40 alloy, discrete particles of intermetallic phase are observed randomly at 

triple points and grain boundaries, illustrated by the insert in Figure 1(d). The ZK40-2Gd 

and ZK40-2Nd alloys contains a semi-continuous distribution of intermetallic particles 

along the grain boundaries. Therefore, the as-cast microstructure of the ZK40 alloy was 

modified with Gd and Nd. The RE containing alloys contained a semi-continuous 

network of intermetallic particles reinforcing the grain boundary, Figure 1. Similar 

microstructure was reported for the ZE41 alloy [9,10]. 



The EDX spectra shows the segregation of elements in the alloys investigated, Figure 2. 

Zn segregates and a concentration was observed near the grain boundary for the ZK40 

and ZK40-2Gd alloys. The inverse segregation of Zr is observed for the ZK40-2Gd, 

while only minor Zr segregation was observed in Nd containing alloy. The RE (Gd and 

Nd) elements do not seem to segregate within the grain. 

The SRD line profiles from all investigated alloys show that they consisted of α-Mg and 

intermetallic phases, Figure 3(a,c,e). The intermetallic phase was alloy dependent and the 

ZK40 alloy contained MgZn2 phase. The ZK40-2Gd contained (Mg,Zn)3Gd2 

intermetallic phase, in addition to α-Mg. . Liu et al. [27] reported the presence of the 

(Mg,Zn)3Gd2 for a Mg-4.58Zn-2Gd-0.18Zr alloy. Due to the large number of peaks 

observed in the SRD line profile of the ZK40-2Nd alloy, the intermetallic particles were 

analysed with TEM to confirm the intermetallic phases, Figure 4. The composition of the 

phase was 71.8±7.2 at% Mg 20.3±5.2 at% Zn and 7.9±2.0 at.% Nd, Figure 4(b); and the 

crystal structure could be indexed according the C centred orthorhombic phase, Figure 4 

(c-e) (lattice parameters a = 0.97 nm, b = 1.12 nm and c = 0.95 nm) reported by Huang et 

al. [21]. Only this phase was detected in the ZK40-2Nd alloy and it is addressed as 

Mg75Zn20Nd5.  

All three DTA curves show an exothermic peak, during cooling from 700 °C, at 636-638 

°C attributed to the formation of α-Mg, Figure 3(b,d,f). In addition, a single peak was 

observed at 337.7 °C for ZK40 during cooling and the intermetallic phase formation was 

observed at 496.4 °C for the ZK40-2Gd. This indicated that ZK40-2Gd contained an 

intermetallic phase different from ZK40. In case of ZK40-2Nd two exothermic peaks 

were measured, at 487.8 and 466.3 °C. Based on the TEM and the SRD results only one 



intermetallic phase was observed in the microstructure, denoted as Mg75Zn20Nd5, [21]. 

This suggests a possible transformation of the intermetallic phase during cooling. A 

conclusive evaluation of this is beyond the scope of this publication and this will be 

investigated in a later publication. 

The potential differences between constituents of the different materials were 

investigated using SKPFM [22]. Surface potential maps and potential profiles are shown 

in Figure 5 for the ZK40 (Figure 5(a)), ZK40-2Gd (Figure 5(b)) and ZK40-2Nd (Figure 

5(c)). Figure 6 illustrates the surface potential maps, potential profiles and chemical 

composition for the impurities particles found in the ZK40-2Gd alloy (Figure 6(a)) and 

for the ZK40-2Nd alloy (Figure 6(b)). Mg-Zn-Zr-Fe impurities are cathodic with respect 

to the α-Mg matrix (430±50 mV for the ZK40-2Gd alloy and 140±30 mV for the ZK40-

2Nd alloy), suggesting the formation of micro-galvanic couples. The intermetallic phases 

present in the studied alloys were also cathodic with respect to the α-Mg matrix. For the 

ZK40, ZK40-2Gd and ZK40-2Nd alloys the potential difference between the 

intermetallic phases and the α-Mg matrix was 50±20 mV, 170±20 mV and 35±10 mV, 

respectively. 

3.2. Room temperature tensile and compression properties 

The tensile and compression curves of the investigated alloys are shown in Figure 7 with 

pertinent points summarised in Table 2. The ZK40-2Gd has the largest elongation to 

failure. The tensile tests show improved yield strength and the maximum tensile strength 

for the Gd modified alloy. The strong bonding between the intermetallic phase and the 

matrix can be a reason for the enhanced strength of ZK40-2Gd alloy. This effect was 

reported by Yu et al. [16] for a high strain-rate rolled Mg-5.5Zn-0.6Zr-xGd (x=0.2, 0.5 



and 0.8 wt.%). The yield strength and maximum tensile strength were significantly 

reduced by the Nd addition. There was no significant difference between compressive 

and tensile yield strengths of all three alloys. The maximum compressive strength and 

compression to failure did not show significant deviations from each alloy. However, the 

ultimate tensile stress (UTS) of ZK40-2Nd is significant smaller than other two alloys 

and did not show similar amount of work hardening. The elongation to failure was also 

significantly lower for ZK40-2Nd. 

3.3. Corrosion Behaviour 

Based on the corrosion results, findings reveal that the corrosion resistance in NaCl 

aqueous solution of ZK40 alloy increases with the addition of Gd and decreases with the 

incorporation of Nd. 

Figure 8 shows the hydrogen evolution  volume up to 7 days (for ZK40-2Nd) and 14 days 

(for ZK40-2Gd and ZK40) of immersion in 0.5 wt.%. NaCl. The ZK40-2Nd alloy shows 

a considerably higher hydrogen evolution volume compared with the ZK40 and ZK40-

2Gd alloys. After one day, the hydrogen evolution volume of ZK40-2Nd was 1.07±0.15 

ml/cm2, whereas ZK40 alloy had produced only 0.23±0.01 ml/cm2 and the ZK40-2Gd 

alloy had produced 0.10±0.01 ml/cm2 of H2. Therefore, the amount of H2 produced by 

ZK40-2Nd was 5 times higher compared to the ZK40 and approximately 10 times higher 

than ZK40-2Gd. In the case of ZK40-2Nd alloy, the hydrogen release was very fast so 

that the test was interrupted after 7 days. For all immersion times, the alloy ZK40-2Gd 

showed the lowest hydrogen evolution values indicating the enhanced corrosion 

behaviour.  



Hydrogen evolution results show a different tendency for short and long immersion 

times. At the initial stage of corrosion, an incubation period with a low rate of hydrogen 

evolution is observed followed by a period of acceleration in hydrogen evolution after 

approximately 10 h for the ZK40-2Nd alloy, 25 h for the ZK40 and 50 h for the ZK40-

2Gd alloy. After approximately 150 h for the ZK40-2Gd and 175 h for the ZK40 alloy 

the hydrogen evolution volume reached an apparent constant increase rate, indicated by 

the linearity of curves of these alloys. The ZK40-2Nd alloy did not show such behaviour 

in the range investigated. These differences might be related with the corrosion layer 

formed on the surface of the different alloys [28]. After immersion in an aqueous 

solution, the film of MgO that formed in air will transform into a film consisting mainly 

of Mg(OH)2. The volume expansion from MgO to Mg(OH)2 is attributed as the main 

disruption of the surface film [29] and could explain the porous microstructure of the 

Mg(OH)2 layer in the surface film. The initial incubation period observed during 

hydrogen evolution attributes to the breakdown of the MgO surface film originating 

cracks on the corrosion film [28]. However, once the film starts breaking down and 

corrosion is initiated in a specific area (localised corrosion), repairing of the corrosion 

film is relatively difficult. Although the dissolved Mg2+ can react with OH- and deposit 

Mg(OH)2 on the Mg surface, the loosely deposited Mg(OH)2 film does not necessarily 

cover the cracks. Simultaneously, the hydrogen bubbles generated in the corroding areas 

can cause localised disruptions to the deposited Mg(OH)2 preventing the corroding areas 

from being fully covered by the Mg(OH)2. The accelerated period of hydrogen evolution 

is attributed to the intensive localised corrosion activity. Finally, due to the increase of 

the pH (intrinsically related to the redox reactions of Mg, which produce OH- as one of 



the products), and taking into account that the magnesium corrosion products are stable at 

high pH [30], the corrosion front stabilise, leading to a nearly linear hydrogen volume 

increase. 

EIS is an effective method to characterize metal corrosion behaviour [23,24]. Figure 9 

shows Nyquist and Bode diagrams of the EIS experimental data for the alloys after 24 h 

of immersion in 0.5 wt.% NaCl solution. The Nyquist diagrams show a capacitive loop at 

high and intermediate frequencies (HF and MF), which can be attributed to the 

electrochemical activities in the interface metal/electrolyte (charge transfer resistance and 

double layer capacitance). The inductive response observed at low frequencies, is mainly 

related to the instability of the system and to simplify was not included in the fitting.  

Based on that, a Randles equivalent circuit [25] was used to fit the EIS experimental data 

(insert Figure 9(d) in the example of the fitting of the experimental data for ZK40 alloy). 

The circuit shows the uncompensated solution resistance (Rel), the time constant related 

to the corrosion process that can be described by the double layer capacitance on the 

electrolyte/metal interface (Constant Phase Element - CPEdl) and the charge transfer 

resistance (Rct). Constant Phase Element (CPE) was used instead of capacitances in order 

to account the non-ideal behavior of the system [26]. The corresponding electrochemical 

parameters are presented in Table 3.  

Rel values were comparable for all the alloys and were in the range between 85 and 100 

Ω.cm2. The diameter of the capacitive loop observed in the Nyquist diagram (Figure 9(a)) 

of the ZK40-2Gd alloy reaches Z’ values around 1100 Ω.cm2, which is higher than that of 

the ZK40 alloy (700 Ω.cm2), and significantly higher than the ZK40-2Nd alloy (400 

Ω.cm2), indicating a higher corrosion resistance of the ZK40-2Gd alloy. 



CPE-T values of the dielectric layer of ZK40-2Nd (220.0 F.cm-2) after 24 hours 

immersion are approximately 2.5 times higher than those of the ZK40 alloy (75.1 F.cm-

2) and the ZK40-2Gd alloy (65.6 F.cm-2). This is associated with the greater active area 

in ZK40-2Nd alloy exposed to the electrolyte. CPE-n value is the highest for the ZK40-

2Gd alloy and the smallest for the ZK40-2Nd alloy, suggesting that there is an increase in 

the heterogeneity of the surface due to the corrosion process in the ZK40-2Nd alloy. The 

calculated CPE-T values increased with time for all investigated alloys. 

Higher values of the charge transfer resistance (485.5 Ω.cm2) for the ZK40-2Gd alloy, 

after 24 h of immersion, compared to ZK40 alloy (412.3 Ω.cm2) and ZK40-2Nd alloy 

(133.3 Ω.cm2 ) reveals its enhanced corrosion resistance. The Rct decreased for all alloys 

with the immersion time, due to the propagation of the corrosion process as was reported 

by Arrabal et al. [31]. 

Figure 10 shows the plan view of the corroded specimens, after the removal of the 

corrosion products, for immersion times of 4 h (Figure 10(a,b,c)), 8 h (Figure 10(d,e,f)) 

and 24 h (Figure 10(g,h,i)) in 0.5 wt.% NaCl solution. In all the cases, localised corrosion 

is observed characterised by micro “craters” in the -Mg matrix, with about 1 µm of 

diameter. In the particular case of ZK40-2Nd alloy, localised corrosion along the 

intermetallic particles was also observed (insert of Figure 10(c,f)). This alloy shows the 

most severe corrosion attack after 24h of immersion (Figure 10(i)).  

Mainly two factors can be discussed in terms of corrosion behaviour: 

(i) Micro-galvanic effect between the α-Mg matrix and second phases and between 

the α-Mg matrix and the impurities: In general, this topic has been studied 

extensively and almost all the intermetallic phases in Mg alloys are more noble 



compared to the -Mg matrix, as reported for AZ alloys [32,33,34], ZE41 

[35,36], Mg-xGd-3Y-O.4Zr (x= 6, 8, 10, 12%) [37], Mg-10Gd-3Y-0.4Zr [38], 

Mg-Zn-RE [39], Mg-6Zn-1Y-0.6Zr [40], Mg-Zn-Mn-Si-Ca [41,42], Mg-8Li [43] 

and Mg-RE (0.5-5% La, 0.5-5% Ce, 0.5-4% Nd) [44]. The SKPFM analysis 

(Figure 5 and 6) indicates that for the ZK40-2Gd and ZK40-2Nd the impurities 

has a higher Volta potential surface potential compared with the matrix, and it is 

significantly higher than the potential difference between the intermetallic 

compounds and the matrix. However, the initial steps of corrosion  (up to 24 h of 

immersion) (Figure 10) does not show strong evidence of micro-galvanic effect 

due to these impurities. Thus, the impurities can act as initiation points of 

corrosion but did not play an important role on the development of corrosion 

within the α-Mg matrix. Regarding the corrosion mechanism, for the ZK40 and 

ZK40-2Gd alloys, the corrosion started within the grain, as illustrated by the 

“craters”, Figure 10(b). Additionally, “micro craters” of ~1 µm diameter are 

observed in the middle of the grain for all alloys, but not close to the grain 

boundaries in the case of the ZK40-2Gd which is in concordance with other work 

[10]. The different corrosion morphology of the alloys might be related to the 

presence of second phases but also to the  chemical segregation of the different 

alloying elements in the α-Mg matrix. In the case of  ZK40 and ZK40-2Gd,  the 

higher concentration of Zn near the grain boundary enhanced the corrosion 

resistance of this area for the ZK40 and ZK40-2Gd. The segregation of Zn is 

higher for the ZK40 compared with the ZK40-2Gd. The presence of high amount 

of Zr in the centre of the grain for the ZK40-2Gd did not seem to enhance to 



corrosion resistance of the α-Mg matrix. In the particular case of ZK40-2Nd alloy, 

localised corrosion along the intermetallic compounds also play a role (Figure 

10(c,f,i)) on the corrosion mechanism. This effect was not observed for the ZK40 

or the ZK40-2Gd. This result is unexpected as the SKPFM results for ZK40-2Nd 

alloy show that the Volta potential difference between the α-Mg matrix and the 

intermetallic compound was not large. The SKPFM measures the surface 

potential difference. It is expected that the highest the potential difference 

between the two surfaces results in a higher microgalvanic couple. The presence 

of microgalvanic couples can lead to microgalvanic corrosion. For the ZK40-2Nd, 

the localised corrosion of the α-Mg matrix along the intermetallic phase suggests 

that not only the nobility of the intermetallic phase played an important role 

during immersion in 0.5 wt.% NaCl but other mechanisms of corrosion also 

contributes to the corrosion process. The chemical segregation for the ZK40-2Nd 

alloy was nearly absence. For the ZK40 and ZK40-2Gd alloys the grain boundary 

could act as cathodic areas related to the α-Mg matrix, prevent the grain 

boundaries to corrode. The absence of this effect for the ZK40-2Nd alloy could 

have enhanced the corrosion of the α-Mg matrix along the intermetallic 

compound; 

(ii) The barrier effect of second phases: As reported for AZ series magnesium alloys [45,46], 

the barrier effect due to the presence of a semi continuous network of intermetallic 

particles along the grain boundaries can prevent the advance corrosion front into the α-

Mg matrix. However, the intermetallic particles along the grain boundary in ZE41 alloy 

did not behave as a barrier for the advance of corrosion [9]. Similar features were found 

in this work for the ZK40-2Nd alloy, without an important contribution of the second 



phase acting as a barrier. For the ZK40-2Gd the absence of localised corrosion along the 

grain boundary might have promoted the “barrier effect” of the semi continuous of 

(Mg,Zn)3Gd2 intermetallic compound. 

  



4. Conclusions 

The addition of Gd and Nd modified the as-cast microstructure of the ZK40 alloy. There 

is no significant change in the yield and ultimate strengths with addition of Gd to ZK40 

but elongation until fracture in tension increased with Gd addition. The corrosion 

resistance measured by impedance and hydrogen evolution was slightly enhanced for the 

ZK40-2Gd and very poor corrosion resistance was exhibited for the ZK40-2Nd. A 

complex series of localised corrosion at various microstructures features can explain the 

different corrosion behaviour:  

(1) Mg-Zn-Zr-Al-Fe impurities did not play an important role on corrosion;  

(2) The morphology of localised corrosion of the different alloys is associated to the 

presence of secondary phases and the chemical segregation for the different alloying 

elements in the α-Mg matrix;  

(3) Severe localised corrosion along the intermetallic particles along the grain boundaries 

was observed for the ZK40-2Nd alloy. The corrosion front propagated faster for this 

alloy. 

The enhanced mechanical and corrosion properties observed in ZK40-2Gd alloy make 

the Mg-Zn-Zr-Gd an interesting magnesium alloy with for further development with a 

view for structural applications. 

  



5. Acknowledgements 

The authors acknowledge the Deutsches Elektronen-Synchrotron (DESY) for the provision of 

facilities within the framework of proposal I-20130434. RHB acknowledges University of Sao 

Paulo for granting the fellowship ´Bolsa Empreendedorismo´. MM acknowledges the Alexander 

von Humboldt foundation for the provision of financial support in the form of post-doctoral 

fellowship.  

  



Table 1: Analysed chemical compositions. 

Alloys Zn %wt Zr %wt Gd %wt Nd %wt Fe (ppm) Cu (ppm) Ni (ppm) 

ZK40 5.00 0.53 - - 11.3 14.1 12.8 

ZK40-2Gd 4.50 0.55 1.70 - 6.9 29.2 <30 

ZK40-2Nd 4.70 0.55 - 2.46 11 14.8 28.2 

 

  



Table 2: Mechanical properties at room temperature: compression and tensile values for the 

ZK40 alloy, ZK40-2Gd alloy and ZK40-2Nd alloy. 

 Tensile properties Compression properties 

 

Yield 

Stress 

(MPa) 

Maximum 

Stress 

(MPa) 

Elongation 

at Failure 

Yield 

Stress 

(MPa) 

Maximum 

Stress 

(MPa) 

Elongation 

at Failure 

ZK40 101.8±6.7 225.1±15.2 12.8±4.6 106.8±3.0 365.2±3.6 20.6±1.3 

ZK40-2Gd 99.8±6.1 227.9±6.5 17.9±1.9 107.3±2.7 360.9±3.8 20.2±1.5 

ZK40-2Nd 99.3±2.7 147.5±10.3 3.9±1.0 109.3±2.4 351.3±2.3 22.3±2.1 

 

  



Table 3: Simulated parameters of the Electrochemical impedance spectroscopy (EIS) data 

of the investigated ZK40, ZK40-2Gd and ZK40-2Nd alloys after 24 hours. 

Time (h) Rel (Ω) Rct (Ω.cm2) CPE-T (F.cm-2) CPE-P 

ZK40 

1 84.7±0.5 702.9±6.7 23.1±0.7 0.880±0.005 

3 84.9±0.5 581.2±5.7 31.1±1.0 0.892±0.005 

6 87.3±0.6 525.0±6.1 39.3±1.6 0.893±0.007 

10 86.4±0.5 494.6±5.3 45.1±1.6 0.909±0.006 

16 86.4±0.4 452.0±4.6 64.5±2.1 0.877±0.007 

24 85.8±0.4 412.3±4.8 75.1±2.7 0.876±0.006 

ZK40-2Gd 

1 84.7±0.9 1131.0±16.5 19.9±1.0 0.868±0.008 

3 87.1±0.5 677.5±6.8 24.5±0.8 0.904±0.006 

6 87.4±0.5 627.2±6.7 35.2±1.2 0.905±0.006 

10 89.3±0.5 594.3±6.0 43.8±1.4 0.906±0.006 

16 89.4±0.6 458.7±6.7 45.2±2.1 0.927±0.009 

24 88.1±0.4 485.5±5.2 65.6±3.4 0.892±0.006 

ZK40-2Nd 

1 94.8±1.0 413.2±7.7 41.6±3.3 0.831±0.013 

3 97.3±0.5 213.8±2.6 45.0±2.6 0.901±0.010 

6 96.6±0.5 165.4±2.2 75.1±4.9 0.889±0.012 

10 97.7±0.5 152.8±1.9 117.0±7.0 0.860±0.011 

16 100.0±0.5 150.9±2.3 164.0±10.6 0.840±0.013 



24 100.1±0.5 133.3±2.4 220.0±15.7 0.824±0.014 

 

 

  



Figure 1:  (a-c) Optical micrographs and (d-f) SEM micrographs typical of as-cast (a, d) 

ZK40; (b, e) ZK40-2Gd; (c, f) ZK40-2Nd alloys. 

 

 

 

Figure 2: EDX spectra line profiles for the: a) ZK40; b) ZK40-2Gd; c) ZK40-2Nd across 

a typical grain. 

 

 

Figure 3: (a) XRD linescan profiles for the ZK40-2Gd and ZK40-2Nd alloys in the as-

cast condition; (b) DTA cooling curves for the ZK40, ZK40-2Gd and ZK40-2Nd alloys. 

 

 

Figure 4: TEM analyses for the ZK40-2Nd alloy: a) the bright field image of the 

intermetallic phase; b) EDS line profile for the intermetallic phase; c,d,e) Diffraction 

patterns for the (001), (101) and (110) zones axis, respectively. 

 

 

 

Figure 5: Surface potential maps and potential profiles for (a,b) KZ40, (c,d) KZ40-2Gd 

and (e,f) KZ40-2Nd alloys. 

 

 

 



Figure 6: Surface potential maps, composition and potential profiles in regions containing 

impurities for (a,b,c) KZ40-2Gd and (d,e,fe) KZ40-2Nd.  

 

 

 

 

Figure 7: Typical tensile (a) and compressive (b) nominal stress-strain curves for the 

ZK40, ZK40-2Gd and ZK40-2Nd alloys. 

 

 

 

Figure 8: Hydrogen evolution in 0.5 wt.% NaCl solution for the ZK40 alloy, ZK40-2Gd 

alloy and ZK40-2Nd alloy. 

 

Figure 9: Nyquist diagrams obtained by EIS in 0.5 wt.% NaCl solution after (a) 1 h; (b) 

24 h; (c) Bode plots obtained by EIS in 0.5 wt.% NaCl solution after 24 h; d) Measured 

and calculated Nyquist diagrams for the ZK40 alloy from EIS in 0.5 wt.% NaCl solution 

after 24 h as well as the equivalent circuit for EIS analysis. 

 

 

Figure 10: First steps corrosion SE pictures after 4 h (a,d,g), 8h (b,e,h) and 24 h (c,f,i) in 

0.5 wt.% NaCl for the ZK40 alloy (a,b,c), ZK40-2Gd (d,e,f) and ZK40-2Nd alloy (g,h,i). 
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