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STATE SPACE APPROACH WITH FEM FOR THE DETERMINATION OF STRUCTURAL 

BEHAVIOUR OF COMPOSITE PLATES 

Abstract  

In this paper, state space approach (SSA) and finite element method (FEM) are used for the determination of 

structural behaviour of simply supported orthotropic composite plates under different types of loading. The 

numerical results from a finite element model developed in ABAQUS are checked with those obtained by 

using SSA. The effect of the plate thickness on displacements and stresses is described quantitatively. It is 

found that the neutral plane (N.P.) of the plate, identified according to the values of the in-plane stresses 

through the thickness direction, is shifted away from the middle plane. Further investigation shows that the 

position of the N.P. is loading-dependant. 

Keywords: State space approach, Finite element method, Composite plate, Neutral plane. 

1. Introduction 

The increasing demand on the structures made of the composite materials in various high performance 

applications led to the development of new methods that are suitable for the analysis and study of the structural 

and mechanical behaviour of the structures (Ye et al., 2004). 

According to Reddy (2004) and Ghugal and Shimpi (2002), there are many approaches that were used for the 

analysis of the composite plates including classical plate theory (CPT) and various 2D shear deformation plate 

theories. The CPT was proposed by Kirchhoff (Kirchhoff, 1850). Kirchhoff plate hypothesis is a generalisation 

of the plane section assumption in the beam theory. Since CPT has several assumptions such as neglecting the 

normal strain through the thickness direction of a plate, together with the application of inconsistent plane stress 

constitutive relations under plane strain assumption, the precision of the theory reduces considerably as the 

increase of the plate thickness (Pagano 1987, Reddy 2004 and Han 2014). As the transverse normal stresses  

affect damage progression in characteristic failure modes like delamination (Rolfes et al., 1998) it is playing a 

very important role for the behaviour of composite plates. Such 2D method like CPT, however, has neglected 

this very important factor. 

In order to overcome the limitations of the CPT, several modified 2D plate theories were proposed by different 

researchers in 1940’s to 1950’s. For example, to analyse two-dimensional plate structures, Reissner (1945) 

assumed shear stress distribution through the thickness of the plate in 1945. Reissner’s theory takes into account 

the shear deformation and the transverse normal stresses. It is considered as a stress based shear deformable plate 

theory. In 1951, Mindlin proposed a displacement field through the plate thickness to account for the effect of 

shear deformation. Mindlin’s (displacement-based) and Reissner’s theories are today classified as the first order 

shear deformation theory (FSDT) as they actually lead a linear variation of the displacements through the plate 

thickness (Rashed, 2000). The most important feature of the plate theories with shear deformation is that they 

can be used to analyse both thin and mid-thick plates. The FSDT extends some kinematics assumptions in the 

CPT by assuming constant transverse shear strains through the thickness direction. It hence follows that the 

transverse shear stress will also be constant. To minimize the structural response difference caused by the real 

stress distribution and the assumed constant shear distribution, it has had to introduce the shear correction 

factors. Such factors are often sought resulting from the linear interpolation of the displacement field in the 
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thickness direction of the plate (Kreja, 2011) and they depend on the geometry of the plate, loading and 

boundary conditions (Reddy, 2004). Obviously, the accuracy of the results mainly depends on the shear 

correction factor (Han, 2014).  

To avoid such indeterminacy and in order to analyse and calculate the transverse stresses accurately, researchers 

have further considered other complicated theories, such as the higher-order shear deformation theories (HSDT) 

(Reddy 2004, Thai and Choi 2013 and Han 2014). Mathematically, second-and higher-order plate theories are 

based on the same assumptions as the CPT and FSDT except that HSDT considers higher order polynomials in 

the Fourier expansion of the displacement components through the thickness of the plate. In 1980, Levinson 

proposed a third-order shear deformation theory for an isotropic plate of uniform thickness, and he found there 

was no need to use the shear correction factor in his theory. Besides that, this theory has been seen to provide a 

better approximation to the results obtained from FSDT and can give more accurate interlaminar stress 

distribution. However, higher order stress resultants are difficult to understand physically and require much more 

computational effort (Reddy, 2004). Moreover, the HSDT does not guarantee the interlaminar continuity 

(Carrera, 1996). 

Although the researches in 2D higher order shear theories (can be treated as a kind of quasi-3D) provide a good 

predication of some global responses in thin- and mid-thickness plates and an initial understanding of the 

behaviour of the plates, these theories still provide a rough estimation for the interlaminar stresses through the 

thickness of a plate and the accuracy of the results decreases as the thickness of plate increases.  

To overcome the limitations of various 2D and /or quasi-3D solutions for plates, the 3D solutions that take into 

account the constitutive equations, the kinematic equations, and the stress equilibrium equations in 3D linear 

elasticity are prevailed. 3D solutions can detail the global and local responses of plates with accurate prediction 

on the structural behaviour (Han, 2014). Obviously, the accurate prediction for the behaviour of the composite 

material should be based on 3D rather than 2D approaches (Ye et al., 2004).  

One of the 3D plate theories is initiated by (Pagano, 1987). Pagano studied on the plane strain problem of the 

isotropic and orthotropic laminates under cylindrical bending. As he did not include the normal transverse stress 

in the equilibrium equation, his solution was still considered as a quasi-3D. However, Pagano did compare his 

result with that from CPT. He found the CPT solution for stresses and displacements converged to the quasi-3D 

solution as span to depth ratio increased. It is easy to understand such a phenomenon because the laminates are 

getting thinner and thinner. What we introduce here the 3D plate theory is called state space approach (SSA) 

(Wu et al., 2015). It provides accurate three-dimensional solutions that guarantee continuous transverse stress 

distributions across the thickness of the plates. Also, the boundary conditions and the continuity at the interfaces 

are satisfied. Besides that, the state space method can give a full range of structural behaviour exactly for various 

thicknesses from thin to very thick plates (Sheng and Ye, 2003). 

The SSA considers all displacement and transverse stress components as the primary state variables 

simultaneously. The boundary conditions on the top and the bottom surfaces are directly related to them. Initially 

the approach originated from Vlasov (1957) state variable equation for the solution of the 3D elasticity by using 

the method of initial functions. Later, it was considered by Bahar (1975) as state space setting for homogeneous 

and isotropic plates. As one of pioneering researchers in 3D elastic theory, Wu (1987) introduced SSA to a 3D 

thick plate analysis. Fan and Ye (1990) presented an exact solution based on the state space method for statics 

and dynamics of orthotropic thick plates with simply supported edges. All fundamental equations of three-
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dimensional elasticity can be exactly satisfied and the nine elastic constants for orthotropic materials can be 

considered. Besides that the approach extended by Fan and Ye can be applied to the buckling of a thick 

orthotropic plate. Likewise, Wu and Wardenier (1998) achieved an exact 3D elasticity solution for simply 

supported thick, orthotropic and rectangular plates subjected to arbitrary loading. In fact, they obtained a sixth-

order differential equation governing the transverse displacement for the first time in comparison with the fourth-

order differential equation that is used in CPT. Recently; the approach has been extended to the exact analysis of 

piezoelectric thick laminates in the application of Micro-Electro-Mechanical-System (MEMS). 

In this paper, as a novel application of the SSA, the determination of the location of the neutral plane (N.P.) of 

composite plate will be identified. The N.P. of the plates has a very important role that affects the design of any 

structure, typical examples including the layout of the reinforced rebar in reinforced concrete slabs and insertion 

of non-exterminable (non-deformable) sensors in control devices and system. Shifted away of the N.P. from the 

middle plane could lead unexpected or earlier structural failure for symmetric structural design. Although the 

importance of the N.P. has been well recognised, the researchers, however, were having different definitions of 

the N.P. according to their understanding and their experimental work.  

In 1773, Coulomb argued that the summation of the longitudinal tensions across any section should be equal to 

zero if it was only acted by a system of transverse forces. Todhunter (1887) agreed with Coulomb opinion and he 

considered that the location of the neutral axis was determined along the axis or middle line of the beam. Riccati 

(1782) supposed the whole beam was under varying degree of tension, so the neutral plane located in the 

extreme layer on the concave side. Barlow (1817) assumed that the summation of the moments of the tension 

fibres above the neutral points of any section was equal to the summation of the moments from the compressed 

fibres, although he agreed with Coulomb opinion according to his experimental work in (1837). Anderson (1872) 

said the position of the neutral plane depended on the nature of the material and he defined this plane at or near 

the centre of the depth of the beam. Adam (1926) suggested that the neutral axis starting in the centre of the 

beam, moved to the edge of the weaker material as the stress increased. Also, he noticed that if the extreme fibre 

stresses in the beam could be determined, then the corresponding elongation and shortening which produced by 

direct stress could be obtained. From the elongation and shortening under a given stress state, the curvature 

under the loading and the position of neutral axis can be determined. 

All of the researchers mentioned above have defined the neutral plane on the basis of linear behaviour of the 

stresses, strains, or even displacements. Different definitions for the N.P. have not led too much chaos in 

structural engineering. However, it will demonstrate in this paper that in-plane stresses distribution through the 

thickness direction in practice can be non-linear. The definition of the N.P. must be specified clearly. The 

authors in this paper will identify the location of the N.P. when the in-plane stresses are equal to zero following 

Adam’s point of view. In the following investigation of this paper, the space state method, as a powerful 3D 

analytical approach, is adopted based on the literature review above. The neutral plane of the plate, identified 

according to the values of the in-plane stresses through the thickness direction, is plotted since the determination 

of the position of such a plane has been emphasized in a lot of engineering designs and applications.  

In addition to that, the effect of the plate thickness on displacements and stresses is described quantitatively. To 

present the advantages of the 3D analytical approach for various parameter analyses, two case studies with a 

finite element analysis as a numerical comparison will be carried out. These analytical results can be further used 

to assess the accuracy of the finite element analysis. 
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C44 = G23 C55 = G31 

C66 = G12    

Q = 1- v
12

v
21 - v23

v
32 - v31

v
13 - 2v

12
v

23
v

31
 

vij

Ei

 = 
vji

Ej

											(	i	,	j	=	1, 2, 3)    

 

Where E1, E2 and E3 are the Young’s moduli of the plate among the material coordinates. The subscripts 1, 2 and 

3 indicate fibre direction, transverse and perpendicular to the plate respectively. G12, G23 and G13 are shear 

moduli with respect to 1-2, 2-3 and 1-3 planes respectively. v12, v23 and v13 are the Poisson’s ratios 

correspondingly. 

From equation (2), all stress components can be expressed explicitly: 

σx	=	C11

∂u

∂x
	+	C12

∂v

∂y
	+	C13

∂w

∂z
 

σy	=	C12

∂u

∂x
	+	C22

∂v

∂y
	+	C23

∂w

∂z
 

σz	=	C13

∂u

∂x
	+	C23

∂v

∂y
	+	C33

∂w

∂z
 

τyz	=	C44	( ∂v

∂z
	+	 ∂w

∂y
) 

τxz	=	C55	( ∂u

∂z
	+	 ∂w

∂x
) 

τxy	=	C66	( ∂u

∂y
	+	 ∂v

∂x
) 

(5) 

Three displacements in x-y-z directions, labelled with u, v and w, respectively, and the transverse stresses σz, τxz 

and τyz, are solved with respect to the z coordinate directly from the equations (1), (3) and (5),  

∂u

∂z
	�	 τxz

C55

	-	 ∂w

∂x
	 

∂v

∂z
	�	 τyz

C44

	-	 ∂w

∂y
	 

∂w

∂z
	�	 σz

C33

	-	 C13

C33

∂u

∂x
	-	 C23

C33

∂v

∂y
 

∂σz	
∂z

	= -
∂τxz	
∂x

	 -	 ∂τyz

∂y
	 

∂τxz

∂z
 = -

∂σx 

∂x
	- ∂τxy 

∂y
 = [-(C11 - 

C13
2

C33

) ∂
2

∂x
2
	-	C66

∂
2

∂y
2
]u	-	[(C12	-	 C13C23

C33

)	+	C66] ∂
2
v

∂x∂y
	-	 C13

C33

∂σz	
∂x

	 
∂τyz

∂z
	=	- ∂τxy	

∂x
	- ∂σy	

∂y
= -	[(C12	-	C13C23

C33

)	+	C66] ∂
2
u

∂x∂y
	+	[-	C66

∂
2

∂x
2
	-	(C22	-	C23

2

C33

) ∂
2

∂y
2
]v		-	 C23

C33

∂σz	
∂y

	 

(6) 
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Denoting 

C1 = -
C12

C33

 C2 = C11	-	 C12
2

C33

 

(7) 

C3 = C12	- C13C23

C33

 C4 = C22	-	 C23
2

C33

 

C5 = -
C23

C33

 C6 = C66 

C7 = 
1

C33

 C8 = 
1

C55

 

C9 = 
1

C44

    

 

and rearranging equation (6) leads to a matrix form as: 

∂	
∂z

{F} � �G]{F} (8) 

 

Herein, {F} = �u v σz τxz τyz w]
T
 is called the state vector of the plate and [G] is named as the system state matrix 

�G] � 	

	

















� 0 0 0 C8 0 -

∂

∂x

0 0 0 0 C9 -
∂

∂y

0 0 0 -
∂

∂x
-

∂

∂y
0

-C2

∂2

∂x
2

-C6

∂2

∂y
2

-(C3+C6)
∂2

∂x∂y
C1

∂

∂x
0 0 0

-(C3+C6)
∂

2

∂x∂y
-C6

∂
2

∂x
2

-C4

∂
2

∂y
2

C5

∂

∂y
0 0 0

C1

∂

∂x
C5

∂

∂y
C7 0 0 0 �


















�

 (9) 

Once the state vector containing the three displacements and the transverse stresses �σz ,	τxz,	τyz] has been found, 

the three in-plane stresses in the x-y plane can be calculated from equation (5) as following:  

�σx

σy

τxy

� �
	






�C2

∂

∂x
C3

∂

∂y
-C1 0 0 0

C3

∂

∂x
C4

∂

∂y
-C5 0 0 0

C6

∂

∂y
C6

∂

∂x
0 0 0 0�







�

��
��
��
� u

v

σz

τxz

τyz

w��
��
��
�
	

(10) 

To consider a rectangular plate with the boundary conditions for the four sides of the simply supported plate 

(Figure 1), the following boundary condition should be satisfied: 

σx = v = w = 0           (at x = 0, a) 

σy = u = w = 0           (at y = 0, b) 
(11) 
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In order to satisfy the boundary conditions specified in equation (11), the following six state variables of the state 

vector can be expressed by: 

u (x,y,z) = �� Umn(z) cos(mπx a⁄ ) sin(nπy b⁄ )
n=1m=1

 

(12) 

v (x,y,z) = �� Vmn(z) sin(mπx a⁄ ) cos(nπy b⁄ )
n=1m=1

 

w (x,y,z) = �� Wmn(z) sin(mπx a⁄ ) sin(nπy b⁄ )
n=1m=1

 

τxz (x,y,z) = �� Xmn(z) cos(mπx a⁄ ) sin(nπy b⁄ )
n=1m=1

 

τyz (x,y,z) = �� Ymn(z) sin(mπx a⁄ ) cos(nπy b⁄ )
n=1m=1

 

σz (x,y,z) = �� Zmn(z) sin(mπx a⁄ ) sin(nπy b⁄ )
n=1m=1

 

 

Let ζ	= mπx a⁄  and �	= nπy b⁄  where m and n are the number of looping of the analytical solution in the x and y 

directions respectively and substituting equation (12) into equation (8) yields for each combination of m and n 

∂	
∂z

{Fmn (z)} � �Gmn]{Fmn (z)} (13) 

 

Herein, {Fmn(z)} = �Umn(z) Vmn(z) Zmn(z) Xmn(z) Ymn(z)	Wmn(z)]
T
 is the state vector of the plate with the number of 

looping m-n
th

 and the system matrix is  

 

�Gmn] � 	
	








�

0 0 0 C8 0 -ζ

0 0 0 0 C9 -�
0 0 0 ζ � 0

C2ζ 
2
+C6�2

(C3+C6)ζ� C1ζ 0 0 0

(C3+C6)ζ� C6ζ
2
+C4�2

C5� 0 0 0

-C1ζ -C5� C7 0 0 0 �








�
 (14) 

 

2.2. Solution of the equation 

By solving the differential equation (13) based on classical solution method of a linear differential equation 

(Stroud, 2013), the solution can be found as: 

{Fmn (z)} � �Dmn(z)]{Fmn (0)} (15) 

where [Dmn(z)] = exp {[Gmn]z},  and when z = h,   {Fmn (h)} � �Dmn(h)]{Fmn (0)} (16) 
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   {Fmn (0)}	and	{Fmn (h)} are the values of the state variables on top (z=0) and bottom (z=h) surfaces. They can be 

determined uniquely on the basis of the load conditions on the top and bottom surfaces of the plate. For example, 

if the plate is subjected to an arbitrarily distributed external transverse pressure q(x,y) on the top surface only,   

the state vectors on the top and bottom surfaces of the plate can be expanded into Fourier series as shown in 

equations (17) and (18),  respectively: 

{Fmn(0)� �
���
��
���
� Umn(0)

Vmn(0)

4

ab
�� q(x,y) sin(mπx a⁄ ) sin(nπy b⁄ )dxdy

b

0

a

0

0

0

Wmn(0) ���
��
���
�

 (17) 

and {Fmn(h)�T � �Umn(h)  Vmn(h)  0  0  0  Wmn(h)]   (18) 

 

Further formulation simplification can be used if q(x,y)=q is a constant, and 

 

4

ab
� � q(x,y) sin(mπx a⁄ ) sin(nπy b⁄ )b

0

a

0
dxdy =  0    			(m,	n	=	2,	4,	6,…..)

-16q

mnπ2   (m,	n	=	1,	3,	5,…..)
   (19) 

 

Substituting equations (17) and (18) into (16), it is easy to get all displacement components on the top and the 

bottom surfaces of the plate, that is, Umn(0),	Vmn(0), Wmn(0)	and	Umn(h), Vmn(h),	Wmn(h). 

After finding all the displacements and the transverse stresses, the in-plane stresses can be found by using the 

following equation: 

�σx

σy

τxy

� � !-C2ζ -C3� -C1 0 0 0

-C3ζ -C4� -C5 0 0 0

C6� C6ζ 0 0 0 0

"
��
��
��
� u

v

σz

τxz

τyz

w��
��
��
�

 (20) 

 

 

3. Analysis and Results 

Two case studies are analysed by using the SSA and FEM for the determination of structural behaviour of 

simply supported orthotropic composite plates under two types of loading. For the first case, the loading is an 

anti-symmetrical half-single sine distributed out-of-plane and in the second case, the load is uniformly 

distributed. The numerical results from a finite element model developed in ABAQUS, for comparison, are 

provided with those obtained by using SSA with different parametric studies. 

3.1. Case 1 

In this case, the geometry of the composite plate is a = b and h/a = 0.2, 0.3 and 0.5. Where a is the length of the 

plate along x-axis, b is the width of the plate along y-axis and h is the thickness of the plate along z-axis as 

shown in Figure 1. 
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The set of elastic material parameters used are given as per (Wu, 1987): 

E1 = 10 E2 = 10 E3, G12 = G13 = 0.6 E3, G23 = 0.5 E3, v12 = v13 = v23 = 0.25. 

The plate is simply-supported for all sides and the loading is an anti-symmetrical half single sine distributed out- 

of- plane load 	q
2

sin #πx

a
$ sin #πy

b
$. Hence, Zmn(z) at the top (z = 0) and the bottom (z = h) surfaces of the plate are  

equal to -q/2 and q/2 ,  respectively. 

 In the next section, the numerical results are given by using ABAQUS and the results are compared with those 

from the SSA analytical solution in order to illustrate the precision of these methods. 

3.2. Parametric Studies 

For comparison purpose and illustratation of the advantages of the SSA, numerical precision in FEM should be 

as accurate as possible. In order to determine an accurate FEM model, different element types and mesh sizes are 

considered firstly. It can demonstrate the power of the SSA without any ambiguity and provides a clear 

quantitative profile of ‘to what extent, the stress analysis results from an FEM model can be treated as acceptable 

and what kind of element type and element size are more appropriate if a precision of FEM simulation is 

acceptable’. Then, the effect of thickness to width ratios of the plate on the analytical results can be presented 

and discussed systematically. 

− Element type 

According to Table I, four different solid elements have been studied; Reduced integrated 3D 8-node linear brick 

element (C3D8R), Fully integrated 3D 8-node linear brick element (C3D8), Reduced integrated 3D 20-node 

linear brick element (C3D20R) and Fully integrated 3D 20-node linear brick element (C3D20) (ABAQUS, 

2013). The results have been compared with the SSA for in- and out- of-plane displacements and stresses. The 

solid element was used in this paper instead of the shell element because the solid element can show all the 

displacements and the stresses through the thickness of the plate.  

In Table I, the negative relative errors mean the FEM gives larger value than the SSA and this leads to 

overestimated results. The elements with 8-node (C3D8R and C3D8) overestimate the displacement results (u, v 

and w) at the same time they give less value for the stresses (σx, σy and σz). On the other hand, the elements with 

20-node (C3D20R and C3D20) overestimate the stresses comparing to the SSA. From this quantitative 

comparison, the best FE element type that gives more consistent results with the SSA with a minimum relative 

error is C3D20. On the basis of this observation, the numerical model with this element type would be adopted 

accordingly in the following numerical calculations to compare with the SSA results. 
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− Mesh size 

Mesh sensitivity test was taken to check which mesh size from three different sizes would be more appropriate 

for particular cases. The three mesh sizes are 0.25, 0.125 and 0.0625 respectively. Due to anti-symmetric half 

single sine distributed out -of- plane loading, the numerical results for the out -of- plane stress σz should be equal 

to -q/2 or q/2 on the top and bottom surfaces of the plate. These values can be used to confirm the accuracy of 

the numerical results from FEM. As shown in Table II and Figure 2, for the out -of- plane stress σz results, when 

the mesh sizes of the elements decrease, its relative error with respect to the exact solution will be smaller and 

the results will be more accurate. For this reason, the finest mesh (Mesh 3) will be used in the current FEM 

analysis.  

 

 

Table I. Relative errors for solid elements at z =h for h/a = 0.2. 

   

SSA 

C3D8R C3D8 C3D20R C3D20  

  

 
Values  

Relative 

Error (%) 
Values  

Relative 

Error (%) 
Values  

Relative 

Error (%) 
Values  

Relative 

Error (%) 

u.E3/qh at x=0 and y=b/2 -1.74625 -1.87304 -7.3 -1.86204 -6.6 -1.68498 3.5 -1.79068 -2.5 
  

 
                  

v.E3/qh at x=a/2 and y=0 -2.42681 -2.71048 -11.7 -2.55635 -5.3 -2.07370 14.6 -2.27685 6.2 
  

 
                  

w.E3/qh 
a
t 

x
=
 a
/2
 a
n
d
 y
=

b
/2

 8.82332 9.31376 -5.6 9.30444 -5.5 9.29750 -5.4 9.29749 -5.4 
                    

σx/q 11.58183 11.11267 4.1 11.43132 1.3 12.15463 -4.9 12.17926 -5.2 
                    

σy/q 1.93935 1.86762 3.7 1.89783 2.1 2.00208 -3.2 2.00374 -3.3 
          

σz/q 0.50000 0.49385 1.2 0.48491 3.0 0.50197 -0.4 0.50299 -0.6 
          

τxz/q 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 
                    

τyz/q 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 
  

 
                  

τxy/q at x=0 and y=0 -1.57320 -1.11226 29.3 -1.22090 22.4 -1.21522 22.8 -1.21764 22.6 

Table II. Relative errors for different mesh sizes at z =h for h/a = 0.2. 

   

SSA 
Mesh 1 (0.25 × 0.25) Mesh 2 (0.125 × 0.125) Mesh 3 (0.0625×0.0625) 

  
 

Values  
Relative 

Error (%) 
Values  

Relative 

Error (%) 
Values  

Relative 

Error (%) 

u.E3/qh at x=0 and y=b/2 -1.74625 -2.50486 -43.4 -1.82231 -4.4 -1.79068 -2.5 
  

 
       

v.E3/qh at x=a/2 and y=0  -2.42681 -2.44249 -0.6 -2.52479 -4.0 -2.27685 6.2 
  

 
              

w.E3/qh 

a
t 

x
=
 a
/2
 a
n
d
 y
=

b
/2

 8.82332 9.27588 -5.1 9.29360 -5.3 9.29749 -5.4 
  

       

σx/q 11.58183 12.18015 -5.2 12.18095 -5.2 12.17926 -5.2 
  

       

σy/q 1.93935 2.01082 -3.7 2.00564 -3.4 2.00374 -3.3 
        

σz/q 0.50000 0.53529 -7.1 0.51084 -2.2 0.50299 -0.6 
        

τxz/q 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 
                

τyz/q 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 
  

 
              

τxy/q at x=0 and y=0 -1.57320 -1.23111 21.7 -1.21621 22.7 -1.21764 22.6 

 

Fig.2. Different mesh sizes results for σz/q at z = h for h/a = 0.2. 
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− Thickness to width ratio 

Since the loading in the structure of Case 1 is anti-symmetric, one of the advantages by using the SSA is that the 

capability of this approach to get an exact solution is demonstrated. Because all boundary conditions of the six 

edge surfaces (four sides, together with top and bottom surfaces), each surface has been described by three 

mixture stresses and/or displacements, are satisfied exactly. All equilibrium equations, kinematic equations and 

Hooke’s law in 3D elasticity are fully covered and considered without any assumption and omission under the 

frame of the SSA. It is hence safely to say that solution sought under this case is exact and the effect of the 

thickness to width ratios (h/a) on the plate structural behaviour can be determined quantitatively. Figure 3 shows 

the effect of h/a on the in-plane stress σx. The nonlinear behaviour of the stress across the thickness can be 

observed clearly as h/a increases. Since the SSA describes the exact response of the plate, this figure shows that 

the linear stress distribution assumption through the thickness direction in CPT assumption is inappropriate. 

From the same figure, it is seen that for all h/a ratios, FEM gives non-conservative larger values for the stress 

through the thickness in comparison with those from the SSA. 
 

 

 
 

3.3. Case 2 

In this case, the geometry, material properties and the boundary conditions of the plate are the same as Case 1. 

The only difference with Case 1 is that the loading on top surface of the plate is uniformly distributed q(x,y) = q 

and the loading on the bottom surface of the plate is nill. 

For the same reason with the selection of the element type, as stated in Case 1, the precision comparison in this 

case study would be the element type C3D20 with the mesh size (0.0625 × 0.6025). Details for the precision of 

the FE results comparing to the SSA as an exact solution can be referred to Kamis (2012) in which different 

finite element types with different mesh sizes have been discussed. Table III shows the SSA and FEM results for 

the displacements and stresses of the composite plate. The results show that the FE results are overestimated the 

values of the displacements and the in-plane normal stresses. On the other hand, it gives more conservative 

values for all of the shear stresses. 

To give the variation of the results between the SSA and the FEM, Figure 4 shows the distribution of w through 

the thickness. Obviously, the FE gives larger values comparing to the exact solution. In contrast, the FE results 

present more conservative solutions for the transverse shear stress τxz and the peak value is not at the same 

    

Fig.3. The effect of different h/a on the in-plane stress (σx/q) through the thickness. 
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on the direction of the load. For different locations along x and y-axes, the precise in-plane stresses through the 

thickness are drawn in Figures 7 & 8 and the N.A. for each location is identified. Naturally, the neutral plane 

(N.P.) can be extended from the N.A. through the thickness direction of the plate in x-y plane as shown in Figure 

9.  

The unsymmetrical shape of the N.P. in x-y plane caused by the different values of the material properties in x 

and y directions as the material that used in this case is orthotropic with different Young modulus E in x and y 

directions. In addition, the different values of the in-plane stresses σx and σy will effect on the location of the N.P. 

Through the thickness direction, the location of the N.P. is ranged from 0.46 to 0.51 when σx is equal to zero and 

from 0.48 to 0.55 when σy is equal to zero as shown in Figure 9. All of these results are shifted downward or 

upward from the middle plane of the plate. 

  

  

 (a) y = 0.5b (b) y = 0.3b 

  

 

 

 

 

 

 

 

(c) y = 0.1b 

Fig.7. In-plane stress (σx/q) distributions through the thickness (h/a = 0.2) for different locations along x and y. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-20 -16 -12 -8 -4 0 4 8 12 16 20

z/
h

σx/q

x=0
x=0.1a
x=0.2a
x=0.3a
x=0.4a
x=0.5a

 

 

 

 

Fig.6. In-plane stress (σx/q) distribution through the thickness for x/a, y/b = 0.5 and h/a = 0.2. 

N.A.@0.501 
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in comparison with those of the SSA. More caution is required when using numerical results from the FEM are 

applied for real structural design and behaviour evaluation.  
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STATE SPACE APPROACH WITH FEM FOR THE DETERMINATION OF STRUCTURAL 

BEHAVIOUR OF COMPOSITE PLATES 

Abstract  

In this paper, state space approach (SSA) and finite element method (FEM) are used for the determination of structural behaviour of 

simply supported orthotropic composite plates under different types of loading. The results obtained by using SSA are compared with 

the numerical results from ABAQUS. The effect of the plate thickness on displacements and stresses is described quantitatively. The 

neutral plane of the plate, identified according to the values of the in-plane strains through the thickness direction, is shifted away from 

the middle plane. 

Keywords: State space approach, Finite element method, Neutral plane, Composite plates. 

1. Introduction 

The increasing demand on the structures made of the composite materials in the various high performance 

applications led to the development of new methods that are suitable for the analysis and study of the structural 

and mechanical behaviour of the structures (Ye et al., 2004).  

According to Reddy (2004) and Ghugal and Shimpi (2002), there are many approaches that were used for the 

analysis of the composite plates including classical plate theory (CPT) and various 2D shear deformation plate 

theories. These 2D plate theories have many assumptions and inconsistencies such as neglecting the normal 

strain through the thickness direction of a plate, plane stress constitutive relations are used with plane strain 

assumption, etc.  

Although the researches in 2D theories provide a good predication of some global responses in thin plates 

and an initial understanding of the behaviour of the plates, these theories can give only a rough estimation for the 

interlaminar stresses through the thickness of a plate. The accuracy of the results decreases as the thickness of 

plate increases.  

To overcome the limitations to the 2D solutions for plates, the 3D solutions that take into account the 

constitutive equations, the kinematic equations, and the stress equilibrium equations in 3D linear elasticity are 

prevailed. 3D solutions can detail  the global and local responses of plates with accurate prediction on the 

structural behaviour (Han, 2014). Obviously, the accurate prediction for the behaviour of the composite material 

should be based on 3D rather than 2D approaches. One of the 3D plate theories is called state space approach 

(Wu et al, 2015). It provides accurate three-dimensional solutions that guarantee continuous transverse stress 

distributions across the thickness of the plates. The boundary conditions and the continuity at the interfaces are 

satisfied. Besides that, the state space method can give reasonable estimation to a full range of structural 

behaviour for various thicknesses from thin to very thick plates (Sheng and Ye, 2003). 

The state space approach considers all displacement and transverse stress components as the primary state 

variables simultaneously. The boundary conditions on the top and the bottom surfaces are directly related to 

them. Bahar (1975) considered a state space setting for homogeneous and isotropic plates.  

As a pioneering researcher in 3D elastic theory, Wu (1987) introduced SSA to a 3D thick plate analysis. Fan 

and Ye (1990) presented an exact solution based on the space state method for statics and dynamics of 

orthotropic thick plates with simply supported edges. All fundamental equations of three-dimensional elasticity 

can be exactly satisfied and the nine elastic constants for orthotropic materials can be considered. Besides that 

the approach extended by Fan and Ye can be applied to the buckling of a thick orthotropic plate. Likewise, Wu 

and Wardenier (1998) achieved an exact 3D elasticity solution for simply supported thick, orthotropic and 

rectangular plates subjected to arbitrary loading. In fact, they obtained a sixth-order differential equation 

governing the transverse displacement for the first time in comparison with the fourth-order differential equation 

that is used in CPT. 

In the following investigation of this paper, the space state method as a powerful 3D analytical approach is 

still adopted based on the literature review above. Then, a finite element analysis, as a numerical method, will be 

adopted and its results will be assessed and compared with the analytical solutions. A few new more findings and 

results will be reported. 
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2. Governing Equations 

Consider an elastic homogenous orthotropic rectangular plate of length a, width b and uniform thickness h, 

the stress-strain relation becomes: 

 

��
��
��
�σx

σy

σz

τyz

τxz

τxy��
��
��
�
=

	








�
C11 C12 C13 0 0 0

C21 C22 C23 0 0 0
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0 0 0 0 0 C66
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���
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���
� ∂u ∂x⁄
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In equation (1)  
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Where E1, E2 and E3 are the Young’s moduli of the plate among the material coordinates. The subscripts 1, 2 

and 3 indicate fibre direction, transverse and perpendicular to the plate respectively. G12, G23 and G13 are shear 

moduli with respect to 1-2, 2-3 and 1-3 planes respectively. v
12

, v
23
 and v

13
 are the Poisson’s ratios 

correspondingly. The three in-plane stresses σx, σy and τxy are eliminated and solved from the expression of state 

variables, as shown in equation (6). Three displacements in x-y-z directions are labelled with u, v and w. The 

transverse stresses σz, τxz and τyz are solved with respect to the z coordinate directly from the state equation which 

can be written as follows (Ye, 2003): 

 �	�� {Fmn (z)} = �Gmn�{Fmn (z)} (3) 

 

Herein, {Fmn(z)} = �u v σz τxz τyz w]
T
 is the state vector of the plate. By solving the equation (3): 

 {Fmn (z)} = �Dmn�{Fmn (0)} 

   

and [Dmn] = exp {[Gmn]z},  the system state matrix 

(4) 
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�Gmn� = 	
	








�

0 0 0 C8 0 -ζ

0 0 0 0 C9 -�
0 0 0 ζ � 0

C8ζ 
2
+C6�2

(C3+C6)ζ� C1ζ 0 0 0

(C3+C6)ζ� C6ζ
2
+C4�2

C5� 0 0 0

-C1ζ -C5� C7 0 0 0 �








�
 

(5) 

 

Once the state vector containing the three displacements and the three transverse stresses has been found the 

three in-plane stresses in the x-y plane can be calculated from equation (6). 

 

�σx

σy

τxy

� = �-C2ζ -C3� -C1 0 0 0

-C3ζ -C4� -C5 0 0 0

C6� C6ζ 0 0 0 0

�
��
��
��
� u

v

σz

τxz

τyz

w��
��
��
�

 

 

 

 

 

 

 

(6) 

In equations (5) and (6) 

 

C1 = −C12

C33

 C2 = C11 − C12
2

C33

 

(7) 

C3 = C12 − C13C23

C33

 C4 = C22 − C23
2

C33

 

C5 = −C23

C33

 C6 = C66 

C7 = 
1

C33

 C7 = 
1

C55

 

C9 = 
1

C44

    

					ζ = 
mπ

a
 � = 

nπ

b
 

 

The boundaries conditions for the four sides of the plate are simply supported (Figure 1), then the following 

boundary condition should be satisfied: 

 

σx = v = w = 0 at x = 0, a 

σy = u = w = 0 at y = 0, b (8) 

 

In order to satisfy the boundary conditions specified in equation (8), the following six state variables of the 

state vector can be expressed by: 

u(x,y,z) = ��Umn�z� cos�mπx a⁄ � sin�nπy b⁄ �
n=1m=1

 

 

 

 

 

 

 

 

 

 

 

v(x,y,z) = ��Vmn�z� sin�mπx a⁄ � cos�nπy b⁄ �
n=1m=1

 

w(x,y,z) = ��Wmn�z� sin�mπx a⁄ � sin�nπy b⁄ �
n=1m=1
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τxz (x,y,z) = ��Xmn�z� cos�mπx a⁄ � sin�nπy b⁄ �
n=1m=1

 

 

 

 

 

 

 

 

 

(9) 

τyz (x,y,z) = �� Ymn�z� sin�mπx a⁄ � cos�nπy b⁄ �
n=1m=1

 

σz (x,y,z) = �� Zmn�z� sin�mπx a⁄ � sin�nπy b⁄ �
n=1m=1

 

 

To satisfy the load conditions on the top and bottom surfaces of the plate, the external loads can be expanded 

into Fourier series. For example, if the top surface of the plate is subjected to an arbitrarily distributed pressure 

q(x,y), and the state vectors on the top and bottom surfaces of the plate are respectively: 

 {Fmn�h�!T = �Umn(h)  Vmn(h)  0  0  0  Wmn(h)] 
 

 

 

 

 

 

 

 

 

 

(10) 

    and   

{Fmn(0)! =
���
��
���
� Umn(0)

Vmn(0)

4

ab
"" q(x,y) sin�mπx a⁄ � sin�nπy b⁄ �#$#%b

0

a

0

0

0

Wmn(0) ���
��
���
�

 

Further formulation simplification can be used if  q(x,y)=q is a constant, and 

 

4

ab
& & q(x,y) sin�mπx a⁄ � sin�nπy b⁄ �b

0

a

0
#$#% = '0    			(m,	n	=	2,	4,	6,…..)

-16q

mnπ2   (m,	n	=	1,	3,	5,…..)
    

  

 

 

 

 

(11) 

3. Analysis and Results 

Two examples are analysed by using SSA and FEM and the results are compared. 

3.1. Example 1 

In this example, the geometry of the composite plate is a = b and h/a = 0.1, 0.2, 0.3, 0.4 and 0.5. Where a is 

the length of the plate along x-axis, b is the dimension of the plate along y-axis and h is the thickness of the plate 

(z-axis) as shown in Figure 1. 

 

Fig.1. Geometry of a plate. 

The following material properties are used in this example: 

E1 = 10 E2 = 10 E3  

G12 = G13 = 0.6 E3  

G23 = 0.5 E3  

v12 = v13 = v23 = 0.25  

 

The plate is simply-supported for all sides and the loading is an anti-symmetrical half single sine distributed 

out- of- plane load 	() sin *πx+ , sin *πy-,. Hence, Zmn(z)  at the top (z = 0) and the bottom (z = h) surfaces of the plate 

are equal to -q/2 and q/2 respectively. The numerical results are analysed by using ABAQUS and the results are 
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compared with the analytical solution. As shown in Table I the results for the top and the bottom surfaces of the 

plate are the same with different sign because the loading condition is anti-symmetric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Parametric Studies 

In the example 1, the effects of BC sensitivity and thickness to width ratios of the plate on the analytical 

results are systematically discussed, together with numerical precision considerations under different element 

types and mesh sizes in FEM comparison. 

 

• Element types 

According to Tables II and III, the solid elements have a better agreement with the analytical values than that 

of the shell elements especially for the displacements values. In solid elements, the most suitable element that 

gives minimum relative errors in comparison with the analytical solution is C3D20. 

  

Table I. SSA results for h/a = 0.2. 

u.E3/qh at x= a/2 and y=b/2 
Top 1.74625 

Bottom -1.74625 
 

  

v.E3/qh at x= a/2 and y=b/2 
Top 2.42681 

Bottom -2.42681 
   

σz/q at x= a/2 and y=b/2 
Top -0.50000 

Bottom 0.50000 
   

τxz/q at x= a/2 and y=b/2 
Top 0.00000 

Bottom 0.00000 
   

τyz/q at x= a/2 and y=b/2 
Top 0.00000 

Bottom 0.00000 
 

  

w.E3/qh at x= a/2 and y=b/2 
Top 8.82332 

Bottom 8.82332 
   

σx/q at x= a/2 and y=b/2 
Top -11.58183 

Bottom 11.58183 
   

σy/q at x= a/2 and y=b/2 
Top -1.93935 

Bottom 1.93935 
   

τxy/q near the edge 
Top 1.57320 

Bottom -1.57320 
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• Mesh sizes 

Three mesh sizes are used for the modelling in this paper. The first one is 0.25×0.25, the second is 

0.125×0.125 and the last one is 0.0625×0.0625. Mesh sensitivity test was taken to check which mesh size would 

be more appropriate for particular cases. As shown in Table IV and Figure 2, when the mesh sizes of the 

elements decrease, its relative error with respect to the exact solution will be smaller and the results will be more 

accurate. For this reason, the mesh 3 will be used in the current FEM analysis. Due to anti-symmetric half single 

sine distributed out -of- plane loading, the numerical results for the out-of- plane stresses σz from ABAQUS 

should be equal to -q/2 or  q/2  on the top and bottom surfaces of the plate. These values can be used to confirm 

if the numerical results are true or not. 

  

Table II. Relative errors for solid elements at z =h for h/a = 0.2. 

  

SSA 

FEM – Solid Elements 

  C3D8R C3D8 C3D20R C3D20  

  Simpson 

  3 Points 

  
Values  

Relative 

Error 

(%) 

Values  

Relative 

Error 

(%) 

Values  

Relative 

Error 

(%) 

Values  

Relative 

Error 

(%) 

u.E3/qh at x= a/2 and y=b/2 -1.74625 -1.87304 -7.3 -1.86204 -6.6 -1.68498 3.5 -1.79068 -2.5 
                    

v.E3/qh at x= a/2 and y=b/2 -2.42681 -2.71048 -11.7 -2.55635 -5.3 -2.07370 14.6 -2.27685 6.2 
                    

σz/q at x= a/2 and y=b/2 0.50000 0.49385 1.2 0.48491 3.0 0.50197 -0.4 0.50299 -0.6 
                    

τxz/q at x= a/2 and y=b/2 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 
                    

τyz/q at x= a/2 and y=b/2 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 
                    

w.E3/qh at x= a/2 and y=b/2 8.82332 9.31376 -5.6 9.30444 -5.5 9.29750 -5.4 9.29749 -5.4 
                    

σx/q at x= a/2 and y=b/2 11.58183 11.11267 4.1 11.43132 1.3 12.15463 -4.9 12.17926 -5.2 
                    

σy/q at x= a/2 and y=b/2 1.93935 1.86762 3.7 1.89783 2.1 2.00208 -3.2 2.00374 -3.3 
                    

τxy/q near the edge -1.57320 -1.11226 29.3 -1.22090 22.4 -1.21522 22.8 -1.21764 22.6 

Table III.  Relative errors for shell elements at z =h for h/a = 0.2. 

  

SSA 

FEM – Shell Elements 

  S8R S4 S4R5 

  Gauss Simpson Simpson 

  4 Points 5 Points 3,5 Points 3 Points 

  

Values  

Relative 

Error 

(%) 

Values  

Relative 

Error 

(%) 

Values  

Relative 

Error 

(%) 

Values  

Relative 

Error 

(%) 

Values  
Relative 

Error (%) 

u.E3/qh at x= a/2 and y=b/2 -1.74625  -  -  -  -  -  -  -  -  -  - 
                        

v.E3/qh at x= a/2 and y=b/2 -2.42681  -  -  -  -  -  -  -  -  -  - 
                        

σz/q at x= a/2 and y=b/2 0.50000  -  -  -  -  -  -  -  -  -  - 
                        

τxz/q at x= a/2 and y=b/2 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 
                        

τyz/q at x= a/2 and y=b/2 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 
                        

w.E3/qh at x= a/2 and y=b/2 8.82332 9.47645 -7.4 9.47645 -7.4 9.47613 -7.4 9.47546 -7.4 9.47645 -7.4 
                        

σx/q at x= a/2 and y=b/2 11.58183 9.47251 18.2 9.96799 13.9 11.00879 4.9 11.00304 5.0 11.00001 5.0 
                        

σy/q at x= a/2 and y=b/2 1.93935 1.58869 18.1 1.67179 13.8 1.84623 4.8 1.84544 4.8 1.84488 4.9 
                        

τxy/q near the edge -1.57320 -0.95922 39.0 -1.00940 35.8 -1.11613 29.1 -1.11382 29.2 -1.11391 29.2 
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• BC sensitivity 

The boundary conditions play a very important role in getting an accurate FE results. For simply supported 

edges, the ABAQUS gives different options to select an appropriate BC. To make sure which option should be 

used, Table V shows the different types of options in the simply supported edges. From the table the values of 

the displacements and the stresses are nearly equal to the exact solutions in case of U3 is equal to zero only. 

Because of this, U3 boundary condition is chosen for the following analysis. Figure 3 shows that the BC(3) is the 

most accurate option comparing to the other options, and the results get closer to the exact solution. 

  

Table IV. Relative errors for different mesh sizes at z =h for h/a = 0.2. 

 

SSA 

FEM 

 
Mesh 1 Mesh 2 Mesh 3 

 

0.25 X 0.25 0.125 X 0.125 0.0625X0.0625 

Values 
Relative 

Error (%) 
Values 

Relative 

Error (%) 
Values 

Relative 

Error (%) 

u.E3/qh at x= a/2 and y=b/2 -1.74625 -2.50486 -43.4 -1.82231 -4.4 -1.79068 -2.5 
        

v.E3/qh at x= a/2 and y=b/2 -2.42681 -2.44249 -0.6 -2.52479 -4.0 -2.27685 6.2 
        

σz/q at x= a/2 and y=b/2 0.50000 0.53529 -7.1 0.51084 -2.2 0.50299 -0.6 
 

 

      

τxz/q at x= a/2 and y=b/2 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 
 

       

τyz/q at x= a/2 and y=b/2 0.00000 0.00000 0.0 0.00000 0.0 0.00000 0.0 
        

w.E3/qh at x= a/2 and y=b/2 8.82332 9.27588 -5.1 9.29360 -5.3 9.29749 -5.4 
        

σx/q at x= a/2 and y=b/2 11.58183 12.18015 -5.2 12.18095 -5.2 12.17926 -5.2 
        

σy/q at x= a/2 and y=b/2 1.93935 2.01082 -3.7 2.00564 -3.4 2.00374 -3.3 
        

τxy/q near the edge -1.57320 -1.23111 21.7 -1.21621 22.7 -1.21764 22.6 

 

 

Fig.2. Different mesh sizes results for σz/q at z = h for h/a = 0.2. 

 

Table V. The effect of BC sensitivity on the displacements and stresses at z = h for h/a = 0.2. 

 
SSA 

FEM 

BC (1) BC (2) BC (3) 

U2 = U3 = 0 (X)    

U1 = U3 = 0 (Y)  
U1 = U2 = U3 = 0  U3 = 0  

u.E3/qh at x= a/2 and y=b/2 -1.74625 -0.50408 -0.50079 -1.79068 
 

     

v.E3/qh at x= a/2 and y=b/2 -2.42681 -1.09923 -1.09289 -2.27685 
      

σz/q at x= a/2 and y=b/2 0.50000 0.89458 0.89805 0.50299 
     

τxz/q at x= a/2 and y=b/2 0.00000 0.00000 0.00000 0.00000 
     

τyz/q at x= a/2 and y=b/2 0.00000 0.00000 0.00000 0.00000 
 

     

w.E3/qh at x= a/2 and y=b/2 8.82332 5.03543 5.00869 9.29749 
      

σx/q at x= a/2 and y=b/2 11.58183 16.23791 15.97628 12.17926 
      

σy/q at x= a/2 and y=b/2 1.93935 3.91500 3.87508 2.00374 
      

τxy/q near the edge -1.57320 0.48985 0.51068 -1.21764 
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Fig.3. The effect of BC sensitivity on the in-plane (σx/q) through the thickness for h/a = 0.2. 

 
 

• Thickness to width ratios 

One of the advantages for using the state space approach is the capability of this approach to get an exact 

solution. Figure 4 shows the effect of the thickness to width ratios (h/a) on the in-plane stress σx. The behaviour 

of the stresses through the thickness is nonlinear as h/a increases. 

The non-linear behaviour of the stress distribution through the thickness is observed in Figure 5. Since the 

SSA describes the exact behaviour of the plate, this figure shows that the linear strain distribution assumption 

through the thickness direction in CPT is inappropriate. 
 

 

Fig.4. The effect of different h/a on the in-plane (σx/q) through the thickness. 

 

 

Fig.5. In-plane stress (σx/q) distribution through the thickness for h/a = 0.2. 
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