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Abstract—A novel OCC method for human action recognition
namely the Laplacian One Class Extreme Learning Machines
is presented. The proposed method exploits local geometric data
information within the OC-ELM optimization process. It is shown
that emphasizing on preserving the local geometry of the data
leads to a regularized solution, which models the target class more
efficiently than the standard OC-ELM algorithm. The proposed
method is extended to operate in feature spaces determined by
the network hidden layer outputs, as well as in ELM spaces
of arbitrary dimensions. Its superior performance against other
OCC options is consistent among five publicly available human
action recognition datasets.

I. INTRODUCTION

Human action recognition is a widely studied classification
problem, due to its importance in media industry applications,
such as semantic video annotation, human-computer interac-
tion, movie (post-)production. As a classification problem,
human action recognition presents challenges related to large
within-class variance, due to the fact that the one action can be
executed in a different manner by all subjects. Furthermore, the
same action can be depicted by consecutive dissimilar frames,
or captured from diverse viewing angles. Up-to-date, state of
the art performance can be obtained by employing information
extracted by multiple local video descriptors, classified with
strong multi-class classification machines [1]–[6], or learned
via deep neural network architectures [7], [8]. However,
in specific industrial application scenarios (e.g., recognizing
walking crowd scenes, hand-waving, lead-actor running), the
discrimination of multiple actions with a complicated machine
may not be as important as recognizing a single action. In
order to determine whether the action of interest is present
in the scene or not, binary classification machines can be
considered as well. This scenario can be addressed as a One
Class Classification (OCC) problem.

Perhaps the most widely adopted OCC method is the One-
Class Support Vector Machines (OC-SVM) [9], which gener-
ates a hyperplane that separates the target class from the origin
with the maximum possible margin. Another approach is the
Support Vector Data Description (SVDD) [10], which encloses
the target class with a the smallest possible hypersphere. Both
OC-SVM and SVDD perform optimally by employing data
mappings inherently obtained by using a kernel function, e.g.,
the Radial Basis Function (RBF) kernel. When the RBF kernel
is employed, it has been found that both OC-SVM and SVDD
provide equivalent solutions [10]. Additionally, OCC methods

based on the Kernel Principal Component Analysis (KPCA)
have also been proposed [11], [12], by calculating a proximity
measure relative to the reconstruction error of a test sample.
Recently, a single-hidden layer neural network-based method
trained by using a variant of Extreme Learning Machines
has been recently proposed [13], namely the One Class
Extreme Learning Machines (OC-ELM), having comparable
performance to other state of the art OCC methods.

As have been shown in the multi-class classification case,
increased performance can be obtained when manifold regu-
larization practices are employed in a classifier optimization
process [14]–[16]. In the OCC case, the corresponding ideas
have been employed in order to extend the OC-SVM and
SVDD in the context of semi-supervised learning, by em-
ploying local geometric data relationships encoded in Near-
est Neighbourhood (kNN) type graphs in the OC-SVM and
SVDD optimization processes, have been proposed in [17]
and [18], respectively. Since we emphasize in human action
recognition applications, we consider employing the principles
of manifold regularization in the context of OC-ELM, in view
of the fact that Extreme Learning Machines have been found
to provide superior performance against other approaches [4].

In this paper, a novel OCC method for human action
recognition namely the Laplacian One Class Extreme Learning
Machines is presented. The proposed method exploits local
geometric data information within the OC-ELM optimization
process. It is shown that emphasizing on preserving the local
geometry of the data leads to a regularized solution, which
models the target class more efficiently than the standard OC-
ELM algorithm. The proposed method is extended to operate
in feature spaces determined by the network hidden layer
outputs, as well as in ELM spaces of arbitrary dimensions.
The performance of the proposed method is evaluated against
other OCC options in five publicly available human action
recognition datasets. Experimental results confirm the superi-
ority of the proposed method.

The remainder of the paper is structured as follows. In
Section II, we briefly overview the standard OC-ELM. In
Section III, we describe in detail the proposed Laplacian
One Class Extreme Learning Machines classifier, where its
kernel extension is described in Section IV. The conducted
experiments are described in Section V. Finally, conclusions
are drawn in Section VI.



II. ONE CLASS EXTREME LEARNING MACHINES

Let a set of D-dimensional vectors xi ∈ RD, i = 1, . . . , N
be the training set, formed by N training samples belonging
to the target class. We employ them in order in order to train a
Single-hidden Layer Feed-forward Neural network, consisting
of D input, L hidden and 1 output neuron, using the OC-ELM
algorithm [13]. That is, the network input weights and bias
values are randomly assigned, and the network output weights
are analytically calculated. The training data are mapped from
the input space to the ELM-space by an activation function
Φ : RD 7→ RL. The network output weight vectorw ∈ RL can
be obtained by solving the following soft-margin optimization
problem:

min
w,ξ

1

2
‖w‖22 +

c

2

N∑
i=1

ξ2i , (1)

s. t. wTφi = 1− ξi, i = 1, ..., N, (2)

where 1 is the network target value for the training class (e.g.,
ti = 1), φi ∈ RL is the i-th training sample representation in
the ELM space, corresponding to each training sample xi, ξi
are the slack variables and c > 0 is a parameter allowing some
training error in order to avoid overfitting. This optimization
problem can be solved by obtaining the saddle points of the
equivalent Lagrangian function:

L =
1

2
‖w‖2 +

c

2

N∑
i=1

ξ2i −
N∑
i=1

αi(w
Tφi − 1 + ξi), (3)

where αi are the Lagrange multipliers corresponding to the
constraints in (2). By setting the partial derivatives of the
Lagrangian with respect to w, ξi and λi equal to zero, two
solutions for determining the network output weights can be
obtained:

w =

(
ΦΦT +

1

c
IL

)−1
Φ1, (4)

and

w = Φ

(
ΦTΦ +

1

c
IN

)−1
1 = Φ

(
K +

1

c
IN

)−1
1, (5)

where IL and IN are identity matrices of sizes L × L and
N × N , respectively, 1 is a vector of ones corresponding
to the training data labels, Φ ∈ RL×N is the matrix that
contains the training data representations in the ELM space,
and K ∈ RN×N is the so-called ELM kernel matrix, which
expresses data similarity in the ELM space. In the case where
the training data representations are calculated explicitly, both
solutions can be adopted. The solution in (4) is preferred when
L < N , or otherwise, (5) can be adopted. It has been shown
that almost any non-linear piecewise continuous activation
function Φ(·) can be used for the calculation of the network
hidden layer outputs, e.g., the sigmoid, polynomial, Radial
Basis Function (RBF), RBF-χ2, Fourier series, etc [19]–[21].
After the calculation of the network output weight w, the
network response for a given test sample xt ∈ RD is given
by:

ot = wTφt. (6)

and xt is classified to the target class if it satisfies the
following proximity measure:

(ot − 1)2 ≤ ε, (7)

where ε ≥ 0 is a threshold that can be determined by using
the network responses for the training data (i.e., a value of
ε = 0.05ō was used in all our experiments, where ō is the mean
network response for the training data). When L is of infinite
dimensions (e.g., RBF was employed as network activation
function), we can employ the implicit representation of w,
i.e., w = Φα, which can be found by setting the derivative
of the Lagrangian function with respect to w equal to zero,
ϑL
ϑw = 0. Thus (6) takes the following form:

ot = wTφt = αTkt, (8)

where kt = ΦTφt, is a RN vector containing the similarities
of the test sample xt with the training data.

III. LAPLACIAN ONE CLASS EXTREME LEARNING
MACHINES

In this Section, we describe in detail the proposed Lapla-
cian One-Class Extreme Learning Machines (L-OC-ELM)
algorithm. The data relationships can be encoded with an
undirected weighted graph, such that G = {V, E ,A}, where
the vertex set V = {xi}N1 can be formed either from the
training data in the input space, or V = {φi}N1 can be
formed from the training data representations in the ELM
space, with the latter having the advantage of describing non-
linear relationships between the training data, E contains the
connections between the graph vertices and A ∈ RN×N is the
graph weigh matrix. In order to employ the graph weights for
manifold regularization [14], the following function needs to
be minimized:

1

2

∑
i,j

‖φi − φj‖2Aij = Φ(D −A)ΦT = ΦLΦT , (9)

where D ∈ RN×N is the degree matrix, having its diagonal
elements Dii =

∑N
j Aij, i = 1, . . . , N or zeros otherwise,

and L = D −A is the graph Laplacian matrix.
We would like to initiate the graph weights so that they

express local geometric data relationships, by employing the
following function:

Aij =

{
exp

(
− ||φi−φj ||22

2σ2

)
, if φj ∈ Ni

0, otherwise.

}
, (10)

where Ni denotes whether φj belongs to the neighborhood of
φi. In our experiments, we constructed k−Nearest Neighbor-
hood graphs using k = 5, 10, 15 neighbors.

In order to minimize training error and respect local ge-
ometric data relationships at the same time, we propose the
following optimization problem:

min
w,ξ

1

2
wTΦLΦTw +

c

2

N∑
i=1

ξ2i , (11)

s. t. wTφi = 1− ξi, i = 1, ..., N. (12)



The proposed optimization problem can be solved by finding
the saddle points of the Lagrangian:

L =
1

2
wTΦLΦTw+

c

2

N∑
i=1

ξ2i −
N∑
i=1

αi(w
Tφi−1+ξi), (13)

By setting the partial derivatives of L with respect to w, ξ
and αi, equal to zero, we obtain:

ϑL
ϑw

= 0⇒ ΦLΦTw = Φα, (14)

ϑL
ϑξi

= 0⇒ ξ =
1

c
α, (15)

ϑL
ϑαi

= 0⇒ ΦTw = 1− ξ, (16)

where 1 is a vector of ones, corresponding to the training data
labels. By substituting (15) in (16), and multiplying both sides
with Φ, we obtain:

ΦΦTw +
1

c
Φa = Φ1. (17)

Afterwards, by replacing (14) in (17), we obtain the following
solution for the network output weights:

w =

(
ΦΦT +

1

c
ΦLΦT

)−1
Φ1. (18)

In the case where L > N , we might address singularity issues.
Thus, we adopt a regularized solution, adding a small value
to the diagonal elements of the expression to be inverted as
follows:

w =

(
ΦΦT +

1

c
ΦLΦT +

r

c
IL

)−1
Φ1, (19)

where IL is an identity matrix of appropriate dimensions and
the parameter r > 0 can be set to a small value (e.g., r =
10−3), increasing the rank of the expression. Finally, we can
decide whether a test sample xi belongs to the target class or
not by employing the same proximity measure as defined in
equations (7).

IV. KERNEL LAPLACIAN ONE CLASS EXTREME
LEARNING MACHINES

In the previous section, we described the proposed L-
OC-ELM classifier, when the explicit data representations
in the ELM space RL are available. However, in multiclass
classification problems, ELM exploiting kernel formulations
have been found to outperform ELM networks exploiting
random hidden layer parameters [20], [21]. For example, in
the RBF kernel case, the network output weights would be of
infinite dimensions, thus needs to be implicitly expressed by
exploiting the Representer Theorem, as a linear combination
of the training data representations in the ELM space and a
reconstruction vector i.e.:

w = Φβ, (20)

where β is a RN vector containing the reconstruction weights
of w with respect to Φ. Since L � N in the kernel space,

we adopt a regularized version of the proposed optimization
problem defined in (11), i.e., using ΦLΦT + rIN instead of
ΦLΦT , where r > 0 is a parameter set to a small value and
IN is a N ×N identity matrix. By replacing (20) in proposed
optimization problem (11), the Lagrangian function defined in
(13) takes the following form:

L =
1

2
βT (KLK + rK)β+

c

2

N∑
i=1

ξ2i−
N∑
i=1

αi(β
Tki−1+ξi),

(21)
where ki = ΦTφi contains the similarities of the i−th training
sample with the rest of the training data and K ∈ RN×N is
the ELM kernel matrix. By setting the partial derivatives of L
equal to zero, with respect to β, ξi and ai, we obtain:

ϑL
ϑβ

= 0⇒ (LK + rIN )β = α, (22)

ϑL
ϑξi

= 0⇒ ξ =
1

c
α, (23)

ϑL
ϑαi

= 0⇒Kβ = 1− ξ. (24)

By replacing (23) in (24), and (24) in (22), we obtain the
following solution for the reconstruction vector β:

β =
(
K +LK +

r

c
IN

)−1
1. (25)

In the test phase, the network output for a test vector xt, is
given by:

ot = βTkt, (26)

where kt contains the similarities of the test sample xt with
the training data in the ELM space. Finally, xt is classified to
the target class, using (7).

V. EXPERIMENTS

In this section, we present the experiments conducted in
order to evaluate the performance of the proposed L-OC-
ELM classifier in Human Action Recognition problems. Along
with the proposed method, we have also trained the OC-ELM
[13] algorithm, as well as the OC-SVM algorithm [9], the
Kernel PCA for novelty detection [11] (KPCS) and Kernel
Null Space Methods for Novelty Detection [12] (KNFST). For
the proposed method and OC-ELM, we examined different
values of c = 10n, n = −6, . . . , 6. For OC-SVM, we have
employed a ν−SVM implementation, where have set ν equal
to ν = {0.01, 0.1, . . . , 0.9}. For KPCS and KNFST, we have
set the corresponding reconstruction error parameters equal to
ν, keeping an energy of p = {0.90, 0.95, 0.98}. The optimal
parameter settings for each method were determined with a
5−fold cross validation procedure.

For our experiments, we have employed the the IMPART
Multi-modal/Multi-view Dataset [22], the i3DPost multi-view
action database [23], the Olympic Sports dataset [24], the
Hollywood2 [25] and the Hollywood3D [26] publicly available
datasets. Example frames of the employed datasets can be
seen in Figures 1, 2, 3, 4 and 5. In the IMPART and
i3DPost datasets, we have employed a 3-fold cross validation



TABLE I
AVERAGE G-MEANS RATES IN HUMAN ACTION RECOGNITION DATASETS

IMPART i3DPost Olympic Sports Hollywood2 Hollywood3D
OC-SVM [9] 61.45 74.53 60.72 58.54 55.90
KPCS [11] 43.97 78.30 51.98 55.99 28.98
KNFST [12] 69.61 77.47 57.71 53.87 55.28
OC-ELM [13] 67.23 83.77 62.04 55.74 56.74
L-OC-ELM 70.52 86.31 65.01 57.42 58.02

procedure, where we have split the datasets in 3 sets, mutually
exclusive. In the Olympic Sports, Hollywood2 and Hollywood
3D datasets, we employed the standard train and test videos,
as given by the dataset providers.

Fig. 1. Example frames from the IMPART dataset

Fig. 2. Example frames from the i3DPost dataset

Fig. 3. Example frames for the Olympic Sports dataset

In order to obtain vectorial video representations for each
video segment depicting one activity, we have employed
the dense trajectory-based video description [1]. This video
description calculates five descriptor types, namely the His-
togram of Oriented Gradients (HOG), Histogram of Optical

Fig. 4. Example frames for the Hollywood2 dataset

Fig. 5. Example frames for the Hollywood3D dataset

Flow (HOF), Motion Boundary Histogram along direction
x (MBHx), Motion Boundary Histogram along direction y
(MBHy) and the normalized trajectory coordinates (Traj), on
the trajectories of densely-sampled video frame interest points
that are tracked for a number of consecutive video frames
(7 frames are used in our experiments). The five descriptors
are calculated on the trajectory of each video frame interest
point. We haved employed these video segment descriptions
in order to obtain five video segment representations by
using the Bag-of-Words model [2]. Thus, by following this
process, each video segment was represented by 5 vectors, i.e.
xdi , d = 1, . . . , 5. In order to fuse the information described in
different video representations, we have combined the video
segment representations with kernel methods, as in [1]. That
is, we have employed the RBF kernel function, combining
different descriptor types using a multi-channel approach [27]:

k(Xi,Xj) = exp

(
−1

d

∑
d

‖xdi − xdj‖22
2σ2

d

)
, (27)

where σd is a parameter scaling the Euclidean distance be-
tween xdi and xdj . In our experiments, we set the value
of σd proportional to the mean Euclidean distance between
the xdi , i = 1, . . . , N (i.e., γ = aσd, where a =
0.01, 0.1, 1, 10, 100), which is the natural scaling factor for the



Euclidean distances for each descriptor type on each dataset.
After calculating the kernel matrices for the training and test
samples, we employed them in each classification problem.

In order to rate the performance of each method, we
have employed the g−mean metric, which is the geometric
mean of the precision and recall, which is suitable for binary
classification settings. For each class, we have determined the
best g-mean metric for each trained class. Finally, for each
dataset, we report the average g-mean metrics obtained for all
classes in each dataset. The performance of each method is
depicted in Table I.

As can be seen, the proposed method outperformed the
OC-ELM in all cases. That is, the Laplacian graph settings
provided additional information in the classifier, allowing to
determine more precise output weights. Moreover, the pro-
posed method outperformed other OCC options in most of
the cases.

VI. CONCLUSION

A novel OCC method for human action recognition namely
the Laplacian One Class Extreme Learning Machines was
presented. Improved performance over other OCC options was
obtained by exploiting information regarding the local geomet-
ric data relationships, encoded in graph structures. Exploiting
graph settings in the OC-ELM optimization problem leads to
a regularized solution, which models the target class more
efficiently than the standard OC-ELM. Since Laplacian type
graphs have been exploited for semi-supervised classification,
the proposed method could be extended to work in semi-
supervised classification settings.
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