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Abstract 17 

Tidal notches are a generally accepted sea-level marker and maintain particular interest for 18 

palaeoseismic studies since coastal seismic activity potentially displaces them from their genetic 19 

position. The result of subsequent seismic events is a notch sequence reflecting the cumulative coastal 20 

uplift. In order to evaluate preserved notch sequences, an innovative and interdisciplinary workflow is 21 

presented that accurately highlights evidence for palaeo-sea-level markers. The workflow uses data 22 

from terrestrial laser scanning and iteratively combines high-resolution curvature analysis, high 23 

performance edge detection, and feature extraction. Based on the assumptions that remnants, such 24 

as the roof of tidal notches, form convex patterns, edge detection is performed on principal curvature 25 

images. In addition, a standard algorithm is compared to edge detection results from a custom Fuzzy 26 

logic approach. The results pass through a Hough transform in order to extract continuous line features 27 

of an almost horizontal orientation. The workflow was initially developed on a single, distinct, and 28 

sheltered exposure in southern Crete and afterwards successfully tested on laser scans of different 29 

coastal cliffs from the Perachora Peninsula. This approach allows a detailed examination of otherwise 30 

inaccessible locations and the evaluation of lateral and 3D geometries, thus evidence for previously 31 

unrecognised sea-level markers can be identified even when poorly developed. High resolution laser 32 

scans of entire cliff exposures allow local variations to be quantified. Edge detection aims to reduce 33 

information on the surface curvature and Hough transform limits the results towards orientation and 34 

continuity. Thus, the presented objective methodology enhances the recognition of tidal notches and 35 

supports palaeoseismic studies by contributing spatial information and accurate measurements of 36 

horizontal movements, beyond that recognized during traditional surveys. This is especially useful for 37 

the identification of palaeo-shorelines in extensional tectonic environments where coseismic footwall 38 

uplift (only 1/2 to 1/4 of net slip per event) is unlikely to raise an entire notch above the tidal range. 39 
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 42 

1. Introduction  43 

In microtidal seas, such as the Mediterranean, tidal notches can be used to derive and quantify relative 44 

coastal movements during the Holocene (Pirazzoli, 1991). To develop these prominent strandlines, 45 

ranging from a few centimetres to several metres deep, the sustained action of physical, chemical, and 46 

biological erosion within the tidal range is necessary. Therefore, exposure to wave action, lithologic 47 

resistance to quarrying, and the strength of the rock able to support the weight of the overburden are 48 

key parameters effecting the shape of resultant notches (Trenhaile, 2015). In tectonically active 49 

regions, these distinct ecological and morphological features define the modern shoreline, and when 50 

equivalent older features are different from the present-day sea-level coseismic activity can be 51 

inferred (Fig. 1) (i.e., Boulton and Stewart, 2015). However, a direct correlation of individual sea-level 52 

markers to palaeoearthquake parameters is an outstanding challenge especially in extensional tectonic 53 

settings. For example, the shoreline of western Crete was uplifted by up to 9 m during the 54 

compressional M 8.5 Hellenic earthquake in 365 A.D., forming a classic example for a lifted prominent 55 

strandline as a consequence of rapid emergence (Shaw et al., 2008). This distinct palaeoshoreline is 56 

well-preserved and has not been affected by wave attack or midlittoral erosion. By contrast, shorelines 57 

that experienced rapid emergence due to extensional tectonic movements, such as those from 58 

Perachora Peninsula in the Gulf of Corinth, are not likely to preserve fully developed tidal notches. In 59 

these settings, the amount of coseismic displacement is usually up to an order of magnitude lower 60 

than in megathrust events, and moreover the uplift component is estimated to be only 1/4 to 1/2 of 61 

the net slip per earthquake (e.g. Armijo et al., 1996; McNeill et al., 2005; Papanikolaou et al., 2010) 62 

and thus not likely to exceed the tidal range of ~0.4 m in the Mediterranean Sea (Evelpidou et al., 63 

2012). Therefore, it is suggested that apparent notches reflect the cumulative effect of multiple seismic 64 

events and individual notch levels cannot usually be attributed to specific earthquakes in regions of 65 

tectonic extension (e.g. Stewart and Vita-Finzi, 1996; Cooper et al., 2007; Boulton and Stewart, 2015). 66 

The identification of a palaeoshoreline is, among bioerosional remnants or consolidated beach 67 

deposits, based on the recognition of distinct erosional marks of former midlittoral zones (Pirazzoli et 68 

al., 1994). Typically, the notch position is mapped on a 1:5000-scale map (Cooper et al., 2007) and 69 

measurements are made to create morphometric profiles. Profiles are usually collected by tape 70 

measure (e.g. Kershaw and Guo, 2001) and include the average vertical extent of a notch and the 71 

maximum indentation (e.g. Antonioli et al., 2015). Vertical sheltered coasts are preferred for precise 72 
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notch measurements (Pirazzoli, 1986), yet often these cliffs are inaccessible, and for that reason mid-73 

range profiling using a handheld laser distance meter allowing evaluation of inaccessible and 74 

dangerous cliffs has also been employed (Kázmér and Taboroši, 2012). To address morphometric 75 

variations, a structure-from-motion (SfM) approach is also presented by Bini et al. (2014), which 76 

produces high resolution 3D models from a surface using a series of overlapping photographs. 77 

The problem of lateral profile heterogeneity is extensively discussed by Kershaw and Guo (2001), 78 

demonstrating that active fault segments crossing cliffs, local variations of different wave and surf 79 

regime, and/or bedrock heterogeneity result in different notch profiles even in nearby sites (see also 80 

Evelpidou et al., 2012). Furthermore, collecting multiple profiles manually is time consuming and 81 

contains potential error sources. For instance, the correlation of different extracted levels from 82 

morphometric profiles is challenging and requires a constant reference datum over the time period of 83 

profile collection. We suggest that terrestrial laser scanning (TLS) provides all requirements for 84 

palaeoseismological studies on emerging coasts. The data are of high precision and resolution, and 85 

enables the analysis of the surface curvature of a whole cliff in a reasonable amount of time.  86 

This paper aims to present an interdisciplinary study of computer vision and palaeoseismology. High 87 

resolution data from TLS is investigated utilising multiscale image analysis and semi-automatic edge 88 

detection. Conventional gradient analysis is compared to modern modelling from Fuzzy logic 89 

methodology. Afterwards, feature extraction by Hough transformation gives spatial evidence for the 90 

existence of tidal notches within an entire sequence of palaeo-strandlines on a cliff.  91 

In their comprehensive analysis of tidal notches in the Mediterranean, Antonioli et al. (2015) concluded 92 

that notch formation processes have not changed during the last 125 kyrs. Similar widths of both last 93 

interglacial and modern notches suggest equivalent tidal ranges as zones of notch formation. Hence, 94 

the retreat zone of a tidal notch representing mean sea-level can be inferred by knowing the local tidal 95 

amplitude and the position of either roof or floor. Particularly in the Mediterranean, the use of tidal 96 

notches as palaeo-sea-level markers to determine rates of tectonic activity is widespread, since 97 

potential errors are limited by low tidal ranges and the lack of strong waves (Pirazzoli and Evelpidou, 98 

2013). Therefore, the coastline at Perachora Peninsula in the eastern Gulf of Corinth provides suitable 99 

conditions to apply an innovative method improving tidal notch identification and comparison on local 100 

and regional scales. In order to verify and calibrate the method, which focusses on changing curvature 101 

at the roof or bottom of a notch, a distinct tidal notch in southwestern Crete ~1 m above recent sea-102 

level uplifted by the 365 A.D. earthquake (Shaw et al., 2008) is investigated as reference model.  103 

 104 
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 105 

Fig. 1. Collage of raised shorelines on Crete and Central Greece and associated notch profiles extracted 106 

from TLS data. The tidal notch at Agios Pavlos (a) was raised by the 365 A.D. earthquake and forms the 107 

reference for notch detection (* Shaw et al., 2008). Exposures at the coast of Perachora Peninsula (Gulf 108 

of Corinth) are known from literature (** Kershaw and Guo, 2001; *** Pirazzoli et al., 1994) and pose 109 

testing targets in this study: b) Mylokopy Bay; c) Heraion Harbour, and d) Heraion Lighthouse.  110 

 111 

 112 

2. Study sites 113 

2.1. Agios Pavlos, SW Crete 114 

The island of Crete is directly adjacent to the Hellenic subduction zone between Europe and Africa (Fig. 115 

2) and comprises a complex geological and tectonic structure that results from successive thrusting of 116 

alpine geotectonic units and the activity of major detachment faults. Crustal extension orientated both 117 

arc-parallel and arc-perpendicular has led to the development of Quaternary carbonate bedrock fault 118 

scarps throughout the island (Caputo et al., 2010). These normal faults mainly juxtapose Mesozoic 119 

carbonates of the Pindos unit in their footwall against hanging-wall flysch and /or post-alpine 120 

sediments. Vertical tectonic movements along the western part of the island are associated with both 121 

fault populations, causing earthquakes along the nearby Hellenic trench and on normal faults onshore. 122 

As a result, clearly visible emerged shorelines are developed on the limestone cliffs. The 365 A.D. 123 

earthquake rapidly uplifted the well indented strandline by ~1 m at Agios Pavlos, located 124 

approximately 70 km eastwards from the activated structure and evidences the recent regional uplift 125 

phase (Stiros, 2010). Crete has experienced ~2.5 km of uplift since the Early Tortonian (Miocene) in 126 

several different phases (Meulenkamp et al., 1994). The most recent phase of uplift, as evidenced by 127 

uplifted Messinian deposits (Krijgsman, 1996), began at around 6 Ma and continues to the present day. 128 

The study location is located inside a 200 m wide bay and is protected from rough seas in accordance 129 

with official nautical cartographies and data from oceanographic buoys 130 

(http://utmea.enea.it/energiadalmare/). 131 

http://utmea.enea.it/energiadalmare/
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 132 

2.2. Perachora Peninsula, eastern Gulf of Corinth 133 

North-South directed extension with rates of 10–15 mm yr−1 makes the Gulf of Corinth one of the most 134 

rapidly extending areas on Earth. Along the southern shore of the graben are active north-dipping 135 

normal faults uplifting coastal regions in the footwall. Rates of fault motion lie in the range of 1–10 136 

mm yr−1 and are evidenced by Quaternary and Holocene palaeoshorelines (Armijo et al., 1996; 137 

Morewood and Roberts, 1999; Cowie and Roberts, 2001; McNeill and Collier, 2004; Leeder et al., 2003; 138 

Cooper et al., 2007; Roberts et al., 2009). Leeder et al. (2005) estimate slip rates of ~2.5 mm yr−1 for 139 

normal faulting structures in the Alkyonides Gulf and the Perachora Peninsula over a period of 0.6 Myrs 140 

(Fig. 2). However, the authors also postulate that onshore faults (Schinos and Pisia) are more active 141 

than parallel offshore structures. 142 

The coastline of the Perachora Peninsula is predominantly comprised of Mesozoic and Pleistocene 143 

carbonates. In some parts of the southwestern part of the peninsula, a thin composite 144 

volcanosedimentary series of basic rocks occurs. Occasionally, marine deposits of Tyrrhenian age 145 

comprising conglomerates crop out along northern coastlines (Bornovas et al., 1984).  146 

The Heraion archaeological site is located at the northwestern tip of the Perachora Peninsula (Fig. 2b). 147 

The tidal notches at this site are described by several authors. Pirazzoli et al. (1994) identified four 148 

raised notches at the lighthouse between +1.1 and +3.2 m and dated them to 4.4–4.3 kyrs BP (+3.2 m), 149 

2.4–2.2 kyrs BP (+2.6 m), and 0.4–0.2 kyrs BP (+1.1 m) (see Fig. 1). Kershaw and Guo (2001) tried to 150 

correlate these notches to exposures at the harbour of Heraion only a few hundreds of metres to the 151 

east (+0.75 and +2.05 m). The authors conclude that differential uplift on cross-cutting faults causes 152 

dislocations of former strandlines and prevents a correlation between the two sites.  153 

Another site mentioned by both studies is located along the northern shore of the peninsula. The 154 

Mylokopy beach actually consists of two small bays, separated by a tombolo. At the tip of the tombolo 155 

a massive limestone block contains up to five notch generations, which vary in height from the 156 

surrounding cliffs because of fault activity. In addition, three different notch morphometric profiles 157 

(identified notches at +0.4, +1.2, +2.0, and +2.6 m) can be extracted due to varying exposure to the sea 158 

and abrasional components (Kershaw and Guo, 2001). 159 

 160 
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 161 

Fig. 2. Overview map of studied sites. a) Map of Greece showing simplified large-scale tectonic 162 

structures (CG, Corinthian Gulf; CF, Cephalonia Fault; NAF, North Anatolian Fault; NAT, North Aegean 163 

Trough; black lines with barbs show active thrusts; black lines with marks show active faults) (after 164 

Papanikolaou and Royden, 2007; Shaw et al., 2008). Red boxes highlight study areas. b) DEM (from 165 

10m contour lines) of the Perachora Peninsula. Red lines with marks indicate normal faults that have 166 

been activated during the 1981 earthquake sequence (Bornovas et al., 1984). LV, Lake Vouliagmeni. c) 167 

DEM (SRTM-1) of the southwestern coast of Crete. The morphology indicates tectonic structures (black 168 

line with marks) that potentially down-throw coastal areas (Bonneau, 1985).  169 

 170 

3. Methodology 171 

The methods presented include data acquisition from TLS and processing for semi-automated edge 172 

detection based on the surface curvature of a cliff. One scan from the distinct shoreline at Agios Pavlos 173 

operates as a reference for a unique tidal notch at this particular cliff, since the 365 A.D. thrust event 174 

raised the strandline > 1 m from the erosional zone. Thus, we assume this exposure is not affected by 175 

ongoing erosion. Consequently, the method is developed from this exposure and then tested on sites 176 

from the Perachora Peninsula. 177 

3.1 Theoretical assumptions 178 

The term tidal notch refers to a horizontal erosion feature formed at sea-level due to coeval action 179 

(Antonioli et al., 2015) of chemical, physical, and biological factors (Pirazzoli, 1986). However, the 180 

predominant agent is commonly assumed to be bioerosion (Evelpidou et al., 2012), which is restricted 181 

to carbonate rocks. Well-defined vegetational belts are the result of different grazing or boring 182 

organisms each living in individual horizontal galleries. Therefore, Pirazzoli (1986) suggested a vertical 183 

zonation (Fig. 3a) for notches, which also indicates maximum erosional potential at mean sea-level 184 

(Fig. 3b). Moreover, the classical symmetrical notch profile (e.g. Laborel et al., 1999; Trenhaile, 2015) 185 
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is formed of three main sections (Fig. 3): I) A floor or base which extends to the limit of permanent 186 

immersion at tidal low stand; II) a retreat zone of maximum concavity exhibiting the inflection point 187 

near mean sea-level, and III) a roof near high tide level.  188 

In an area of extensional tectonics, such as the Gulf of Corinth, the ratio of footwall uplift to hanging-189 

wall subsidence is estimated to 1/4 to 1/2 where the total net slip is not likely to exceed ~2 m, since 190 

normal faulting structures usually do not produce earthquakes > M 7.0 (e.g. Jackson et al., 1982; 191 

Stewart and Vita-Finzi, 1996; Papanikolaou et al., 2010). Offshore, but close to the coast, normal 192 

faulting seismic activity causes rapid emergence of coastal cliffs; however, coseismic uplift exceeding 193 

the tidal range of ~0.4 m is unlikely since it would require minimum mean displacements of 1.6±0.4 m 194 

(based on Wells and Coppersmith, 1994; for M 6.5–7.0 empirical maximum displacements range from 195 

0.8 to 2.1 m) which are unrealistic values of surface faulting for the vast majority of normal faulting 196 

earthquakes. Thus, the former and new erosional zone along the cliff would overlap, overprinting the 197 

earlier notch (Fig. 3b). Pirazzoli (1986) labels features of this origin as ‘ripple notches’. However, 198 

depending on the time and vertical displacement, the resulting shape is tantamount to a widened 199 

single notch; due to the tidal range variation. Only at close range minor variations will be detectable 200 

on the surface curvature and normal to the orientation of the roof (Fig. 3c).  201 

 202 

 203 

Fig. 3. Theoretic assumptions. a) Zonation of a simplified tidal notch (R, roof; F, floor; IP, inflection 204 

Point) following suggestions of Pirazzoli (1986). b) Evenly distributed erosional potential pointing at 205 

mean sea-level causes a symmetrical shape of a tidal notch (I). When the erosional zone gets offset by 206 

an earthquake (II–IV), the level-based erosional potential attacks the prior to this created cliff 207 

morphology (III). The resulting shape comprising two notch generations (1 and 2) exhibits patterns of 208 

convex or concave curvature (c). d) Visualisation of the estimate of the normal vector (N) at any point 209 

(P) along a normal section from principal curvatures k1 and k2.     210 

 211 

3.2 TLS 212 
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Terrestrial laser scanning (TLS) is a commonly used remote sensing technique with a high spatial and 213 

temporal resolution and is highly effective for reconstructing morphology (Wilkinson et al., 2015), 214 

interpreting trenches and outcrops (Schneiderwind et al., 2016), monitoring movements (Rosser et al., 215 

2013), extracting slip vectors (Jones et al., 2009), and recording smoothness along fault planes (Wiatr 216 

et al., 2015).  217 

The fundamental principle underlying TLS is rapid measurement of one-dimensional distances using a 218 

model-specific wavelength within the electromagnetic spectrum. A coherent laser beam with little 219 

divergence propagates dominantly in a well-defined direction and is reflected off surfaces, forming a 220 

non-contact and non-penetrative active and stationary recording system. Most common are systems 221 

that make use of the time-of-flight principle, where the instrument measures the time delay between 222 

emission, reflection and receiving the laser pulse. Phase-based TLS bypass the requirement of a high-223 

precision clock by modulating the power of the laser beam and measuring the phase difference 224 

between the emitted and received waveforms (Smith, 2015). The result is an irregular but dense point 225 

cloud (x,y,z coordinates) representing a highly detailed digital 3D surface model. In both systems, the 226 

data quality is controlled by the range between sensor and target, surface properties (e.g. moisture, 227 

roughness), and also the angle of incidence.  228 

In this study we used a time-of-flight mode operating Optech ILRIS 3D system for scans collected on 229 

Crete and a Faro Focus 3D system (phase-based mode) during the survey in central Greece due to 230 

logistical constraints. All scans were undertaken during calm sea conditions and from close-range to 231 

mid-range (max. 100 m). In order to correlate the data from multiple sites at the Perachora Peninsula, 232 

hourly tide gauge data from the Posidonia station (Hellenic Navy Hydrographic Service) was applied to 233 

the individual point clouds referenced to mean sea-level (Fig. 4). 234 

 235 

 236 

Fig. 4. Data acquisition and processing. a) Close- to mid-range laser scanning. b) Tide gauge data 237 

provided by the Hellenic Navy Hydrographic Service (x = mean sea-level, σ = standard deviation, r = 238 
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tidal range) from the moment of scanning (red dots). c) High resolution point cloud data adjusted to 239 

mean sea-level using the tide gauge data as a reference datum. d) Segments prepared for surface 240 

curvature analysis (d). Extraction of two-dimensional information about the surface curvature reduces 241 

error sources from interpreting 3D surfaces.   242 

 243 

Once the point clouds are corrected for their individual spatial information, principal curvature analysis 244 

is performed. In general, curvature is the second derivative of a function f(x) and describes the amount 245 

by which a geometric object differs from being flat. Depending on the sign, the object is either convex 246 

or concave at any point P, and the surface normal 𝑁⃗⃗  is oriented perpendicular to the surface towards 247 

maximum curvature. The magnitude k of difference from a flat object is quantitatively described by: 248 

𝑘 =
𝑓′′(𝑥)

[1+(𝑓′(𝑥))2]
3
2

       (1) 249 

The mean curvature at a point on a third dimension uses both the maximum and minimum normal 250 

curvatures. These principal curvatures are orientated mutually perpendicular with k1 > k2 (Fig. 3d). 251 

However, since tidal notches are a horizontal sea-level marker, only the vertical principal curvature is 252 

respected for the analysis. Moreover, the minimum curvature k2 highlights exclusively convex patterns 253 

corresponding to features such as the roof of a tidal notch. This automatically excludes sources of 254 

misinterpretation (e.g. joints or cracks) and focuses on horizontal differences (Fig. 4d). 255 

To calculate the surface curvature, TLS data provides surface information with x, y, z coordinates, 256 

where the z-coordinate describes the lateral indentation value. To sharpen the principal curvature 257 

information, standard averaging and 2D median filtering are applied.       258 

 259 

3.3 Edge detection  260 

The curvature defines a parameter essential for curve sketching. However, this value does not have a 261 

primary link to neighbourhood relationships. Indeed, the curvature at any point is calculated from the 262 

adjacent points but it does not quantify geometric alignments, such as straight edges, and the 263 

curvature of neighbouring pixels is not compared. Therefore, methods of edge detection are applied 264 

which aim to identify points where abrupt changes and discontinuities in the surface curvature occur. 265 

Furthermore, the process reduces the curvature plot to its significant details that appear as convex 266 

objects. 267 

 268 

3.3.1 Canny method 269 

Edge detection is an integral part of many computer vision systems and multiscale image analysis. The 270 

method results in a dramatic reduction of processed data, while preserving structural information 271 

about object boundaries (Canny, 1986). In general, an image contains edges where the gradients along 272 

the x- or y-axis show rapid changes in image intensity. For instance, the transition from black to white 273 

(which equals the values of 0 and 255 in an 8-bit array) within just two pixel cells depicts a sharp edge 274 

with the highest possible gradient. Ideally, the result is a binary image that only contains information 275 
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about edges within the initial intensity image. To decide whether an edge is located at a certain part 276 

of the image, one of the following criteria has to be fulfilled: 277 

a) The first derivative of the intensity is larger in magnitude than a given threshold; or 278 

b) The second derivative of the intensity has a zero-crossing (i.e. where the intensity of the image 279 

changes rapidly or the first derivative changes sign).  280 

The built-in MatlabTM edge function provides several estimators that implement these rules. 281 

Furthermore, sensitivity for horizontal over vertical edges can be applied. The Canny edge detector 282 

has become standard in edge detection by defining two thresholds for strong and weak edges, 283 

respectively. Technically, the algorithm applies a Gaussian noise reduction and a non-maximum 284 

suppression to eliminate multiple responses. Edges classified as weak only persist in the resulting 285 

binary image when these are connected to strong edges. Therefore, the three criteria of edge 286 

detection (good detection, good localization, and low spurious response) are addressed (Canny, 1986; 287 

Bao et al., 2005). 288 

 289 

3.3.2 Fuzzy logic 290 

Zadeh (1965) described a fuzzy set as a class of objects without a precisely defined criterion of 291 

membership. Within a fuzzy set each object is assigned to a grade of membership ranging between 292 

zero and one. Hence, approaches for decision-making (Bellman and Zadeh, 1970) and cluster analysis 293 

(Bezdek and Harris, 1978) were developed. Translated to edge detection from surface curvature the 294 

Fuzzy logic approach allows the use of membership functions to define the degree at which a pixel 295 

belongs to a convex edge or a different region. This is also the essential statement defining the 296 

membership function. Therefrom, other than from the Canny edge detector, the result is an intensity 297 

image and not a binary type. Consequently, edge detection and recognition still belongs to the user 298 

and is not the result of any blackbox approach securing transparency in the process.  299 

Edge detection using Fuzzy logic comprises three steps. Firstly, directional gradients (Gx, Gy) and 300 

gradient magnitudes (Magx, Magy) serve as input information for a fuzzy set and have to be obtained 301 

from the curvature plot using the Prewitt gradient operator (Fig. 5). The Prewitt operator is a standard 302 

edge detection algorithm that accurately highlights vertical or horizontal alignments (Zhang et al., 303 

2013) (Fig. 5b). Secondly, a fuzzy inference system (FIS) specifies a zero-mean Gaussian membership 304 

function for each input where the range of directional magnitudes depicts the limiting range values 305 

(Fig. 5c). If the gradient value is zero the pixel belongs to the zero membership function of grade 1. The 306 

grade along function quantifies the degree of membership of a certain element to the fuzzy set. In 307 

order to adjust the sensitivity of edge detection, multiples of standard deviation (sx, sy) of both zero 308 

membership inputs control the edge detector performance. Because of the high resolution of TLS data 309 

and dense point cloud, those values should be >1 to decrease sensitivity for areas of minor interest 310 

(e.g. small cracks or joints). Furthermore, defining sx >> 1 encompasses the majority of plan curvature 311 

within the zero-membership function and thus excludes those from analysis. Therefore, a triangular 312 

membership function is specified for the output intensity image. Start, peak, and end of the triangles 313 

influence the intensity of the detected edges and can be adjusted as required to improve edge 314 

detection performance.     315 

 316 
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 317 

Fig. 5. Fuzzy set edge detection. Edge detection is performed on principal curvature images (a). Two-318 

dimensional gradients (b) are individually addressed in defined membership functions (c). The intensity 319 

map (d) shows subsets of different memberships. White pixels belong to a uniform region; only very 320 

dark pixels represent detected edges (Fig. 6c). 321 

The third step of edge detection from Fuzzy logic includes rule specification and evaluation of the FIS. 322 

For classification of the intensity map, two rules are necessary which access three simple principles of 323 

set theory (If-then, AND, OR): 324 

- If Magx is zero and Magy is zero then intensity is white 325 

- If Magx is not zero or Magy is not zero then intensity is black 326 

By this formulation a pixel of gradient different from zero depicts black and belongs to an edge (Fig. 327 

6). Furthermore, the gradient is defined to be zero by Gaussian membership functions and forms the 328 

input for the applied FIS. 329 

 330 
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 331 

Fig. 6. Comparison of applied analyses. a) Principal curvature depicting a high resolution image of the 332 

cliff morphology. b) Edge detection after Canny. It is successful in notch detection but also highlights 333 

small edges of minor interest. c) Edge detection from Fuzzy logic, highlighting rapidly changing 334 

gradients in a horizontal manner.  335 

 336 

3.4 Hough transform 337 

The Hough transform is a popular tool for feature detection due to its robustness to noise (Fernandes 338 

and Oliveira, 2008). The technique aims to find imperfect instances of objects representing line 339 

features by a voting procedure. For this procedure image objects are compared to the parametric term 340 

of a straight line. For some technical reasons, it is proposed to use its Hesse normal form since vertical 341 

lines would give rise to unbounded values of the slope (Duda and Hart, 1972): 342 

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃       (2) 343 

where the variable ρ is the distance from the origin (0,0) to the line along a vector perpendicular to 344 

the line, and θ is the angle between the x-axis and this vector with a range of -90° < θ < 90°. Thus, the 345 

gradient of a line feature is the tangent of 90 − θ. The result of the Hough transformation is a parameter 346 

space matrix comprising ρ and θ vectors for each pixel (x, y), where the algorithm determines evidence 347 
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of a straight line with respect to neighbouring pixels. Furthermore, it depicts a voting map [0 1] 348 

representing the discretised parameter space of detected objects (Fernandes and Oliveira, 2008). Local 349 

maxima (peaks) in this map represent parameters (ρ, θ) of the most likely lines that can be extracted.    350 

Since the MatlabTM
 Hough function requires a binary image input, the intensity map from Fuzzy Logic 351 

edge detection is converted using a global image threshold (Otsu, 1979). Beside that, line segment 352 

extraction from the Hough transform follows the same workflow for both data sets from edge 353 

detection (Canny Method and Fuzzy Logic) (Fig. 7). After the Hough transform is computed, peak values 354 

in the voting map are identified, where the user specifies the number of peaks to identify and thus, 355 

controls the influence of minor objects.   356 

 357 

 358 

Fig. 7. Hough transform from detected edges. Dashed areas indicate potential line features with 359 

absolute θ > 80°. Due to its sensitivity, extracted line segments from Canny edge detector (a) are more 360 

spread and randomly orientated than from Fuzzy Logic edge detection (b). Peaks in the normalised 361 

voting map (squares) represent parameters for most likely lines. Zoom indicates to peak cluster of 362 

almost horizontal oriented line features corresponding to elevations of the notch’s roof and floor, 363 

respectively.  364 

 365 

4. Results 366 

4.1. Developing methods, Agios Pavlos, Crete 367 

The workflow was developed utilising curvature analysis, edge detection using a Canny algorithm, a 368 

Fuzzy logic approach, and Hough line extraction on laser scan data from Agios Pavlos. The principal 369 

curvature analysis clearly highlights convex patterns (Fig. 6a) as expected from theoretical assumptions 370 
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(Fig. 3). The prominent strandline is obviously defined by an evenly convex roof and floor. However, 371 

not only horizontal asperities resulting from erosion at sea-level are registered. In order to reduce the 372 

image information and to focus on almost horizontal and continuous features, two individual edge 373 

detection approaches were applied. The conventional Canny edge detector predicts sharp changes in 374 

surface curvature suitable for the roof and the floor of the notch. Furthermore, minor morphological 375 

irregularities are ignored and not interpreted as a discontinuity. However, the algorithm does not 376 

sufficiently exclude information from plan curvature and consequently omits edges from features of 377 

minor interest, such as joints, cracks or weathering aspects (Fig. 6b). The Canny edge detector returns 378 

a bivalent set of uniform areas and edges and thus, does not differ for gradual irregularities within the 379 

subset “edge”. Consequently, only the predominant horizontal orientation of edges detected at the 380 

extents of the notch is evidence for its existence. The membership functions of the Fuzzy logic 381 

approach allow outputs of quasi-probabilistic edge occurrence (Fig. 6c). This means detected edges, 382 

which are almost the same as from the Canny detector, are ranked towards the grade of conformance 383 

with formulated rules. Furthermore, focus is complied with horizontal features reducing image 384 

information once more towards the recognition of sea-level marker. 385 

The Hough transform returns a matrix of a discretised parameter space displayed as a graph of line 386 

feature distance from the origin (ρ) against line feature deviation from vertical (θ). Fig. 7 contrasts the 387 

resulting matrices from Canny edges with edges determined from Fuzzy logic. It is obvious that peaks 388 

and hot spots representing accumulations of ρ, θ-pairs are wider spread when Canny edges determine 389 

the input for Hough transform. Especially from θ-values distributed edge orientations are confirmed 390 

(see also Fig. 6b). However, for almost horizontal line features the corresponding absolute θ-value 391 

should be > 80°, since it represents the normal vector orientation. When edges determined from the 392 

Fuzzy logic approach are input for the Hough transform the resulting peaks are clustered at highest θ-393 

values. Furthermore, hot spots are clearly separated from each other and enable correlation to 394 

corresponding heights in the laser scan (Fig. 7b). Peaks located at minimum or maximum ρ-values 395 

correspond to the upper or lower image extent. The laser scan at Agios Pavlos shows some minor wave 396 

action resulting in a lack of data in the lower part of the cliff section and causing detected edges and 397 

determined line features in this region (Fig. 8).   398 

When comparing the results of line feature determination from different inputs, it is conspicuous how 399 

spread peaks in the parameter space influence the focus on distinct morphological features. Line 400 

structures extracted from Canny edges do not represent the roof and floor of the notch exclusively. 401 

Lines following edges from generic irregularities, such as those from weathering in the lower parts, are 402 

also extracted. Indeed, features with θ-values <80° can be suppressed in the plot (see Fig. 8b) but this 403 

still does not provide a threshold for distinct features. Due to the membership functions of the Fuzzy 404 

logic approach gradual distinction of edge detection enables adjustment of such thresholds. As a result, 405 

only the notch at ~1.2 m is highlighted (Fig. 8c). Therefore, it seems the identification of tidal notch 406 

morphologies on coastal cliffs is possible.   407 

 408 
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 409 

Fig. 8. Feature extraction from scan of the cliff at Agios Pavlos. a) Overall result. b) Extracted line objects 410 

from Canny edges. c) Objects from Fuzzy logic edge detection representing the sea-level marker more 411 

concentrated along the notch extent line.  412 

 413 

4.2. Testing methods, Perachora Peninsula, eastern Gulf of Corinth 414 

The entire workflow was tested at different sites along the coast of the Perachora Peninsula. This 415 

setting has been extensively studied due to the 1981 earthquake sequence that attracted several 416 

research groups, and Holocene tidal notches have been described. Kershaw and Guo (2001) recognised 417 

five different notch generations (~2.7, ~2, ~1.2, ~0.4, and 0 m) at Mylokopy Bay (see Fig. 1b). Laser 418 

scan data, covering an area of almost 6.5 x 3.8 m of the cliff, was processed for curvature analysis. Line 419 

feature extraction from Hough transformation confirmed evidence for all five levels (Fig. 9a). 420 

Obviously, edges from the Canny detector result in many more line features across the scan than from 421 

the Fuzzy logic approach. Canny edges produce line structures almost evenly spread from ~+1 m up to 422 

the top of the scan window. Only insignificant line features are determined for the lower most part of 423 

the scan data. A confirmation of published indentations is only possible because of their known 424 

extents. Furthermore, the recently developing notch is only evidenced by Fuzzy logic edges. Thus, 425 

Canny edges indicate remnants of tidal notches but are accompanied by noise which is the result of 426 

morphological structures of minor significance. Due to the significant number of extracted lines from 427 

Canny edges it is hard to identify distinct levels. Also, line orientation is predominantly not horizontal 428 

but showing slight inclined trends although only features of θ > 80° are considered. Structures from 429 

Fuzzy logic edges appear much more horizontal. It is noticeable that even Fuzzy logic edge detection 430 

method produces line features of considerable length that do not belong to any of the published notch 431 

morphologies, yet are located between two published notch levels (+2.4 m).   432 
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Similar results can be noticed for both sites at Heraion. Kershaw and Gou (2001) identified two notches 433 

at the southern part of the Harbour and correlated them to four notches determined by Pirazzoli et al. 434 

(1994). The output for both sites supports the potential of tidal notch detection from Fuzzy logic edges. 435 

Lower parts at the Heraion harbour site are significantly rougher than from the rest of the scan and 436 

produce line structures without significant cluster levels. A horizontal and convex morphology ~2 m 437 

a.s.l. evidences the remnant of a notch roof (Fig. 9b). Its remains are poorly preserved and only a few 438 

line features are extracted from Fuzzy logic edges. However, a conventional 2D profile supports its 439 

existence. A notch at +1.8 m in between both published notches might represent a so far unrecognised 440 

earthquake event.  441 

At the cliff beneath the lighthouse, Canny edges only produce poor results (Fig. 9c). There is only one 442 

evidence for a notch provided as a line feature at ~1 m. This feature matches to a convex edge that 443 

might represent the roof of a so far unpublished notch just below the lowermost notch identified by 444 

Pirazzoli et al. (1994) at +1.1 m (see also Fig. 1d). It is worth noting that the roof corresponding to the 445 

notch at +1.1 m was missed by the Canny algorithm. Contrastingly, Fuzzy logic edges provide evidence 446 

for the roofs (+3.5, +3.0, +2.0, and +1.3 m) of all four published notches at corresponding heights 447 

(inferred mean sea-levels at ~3.2, ~2.6, ~1.7, and ~1.1 m). However, there is also evidence for a further 448 

notch roof at ~2.4 m in between two recognised notch horizons. This evidence is supported by both 449 

edge inputs following same parameters in the Hough transform and the 2D profile (Fig. 9c).   450 

 451 
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Fig. 9. Results of testing methods along coast of the Perachora Peninsula. The locations of investigated 453 

data in each scan are indicated colourising the height levels. Published notches are provided and 454 

correlated to the results of line extraction at Mylokopy bay (a), Heraion harbour site (b), and Heraion 455 

Lighthouse site (c). Red arrows indicate the position of the roof of known notches. Black arrows point 456 

at morphological characteristics that could correspond to new notches.   457 

 458 

5. Discussion and concluding remarks 459 

TLS is a commonly used technique for morphological purposes (e.g. Rosser et al., 2014; Wilkinson et 460 

al., 2015). Due to its flexibility, quality, and accuracy, the resulting data highlights even minor evidence 461 

of spatial peculiarities. In this study, the detailed examination of tidal notches preserved owing to 462 

tectonic activity and coastal uplift has been undertaken. Thereby, uplift values in the order of a few 463 

decimetres are expected in extensional settings (Papanikolaou et al., 2010) and therefore, a high 464 

spatial resolution is required and this is offered by the TLS. Furthermore, a mesoscale downward 465 

widening of pre-existing tidal notches is likely. The former notch floor as well as biological markers, 466 

such as Lithophaga agents, could be overprinted by the newer tidal notch generation. Thus minor but 467 

horizontally consistent changes in the surfaces’ curvature might be evidence for sea-level indicators 468 

that were eroded along their lower extent over time, or did not have enough time to develop because 469 

of short recurrence intervals between uplift events. Thereby, the local tidal amplitude (here:  0.2 m) 470 

forms the resolution limit. Traditional profiling with tape measures or laser distance meter (Kázmér 471 

and Taboroši, 2012) aims to identify tidal notches from a digital copy of the vertical cliff topography. 472 

When corrected for sea-level datum, information about elevation and notch dimensions can be 473 

inferred. This includes both horizontal and vertical extent per feature (Pirazzoli, 1986). Multiple profiles 474 

can only be correlated when referring to the same datum. However, spatial variations in cliff 475 

topography of closely positioned sites are hard to verify from horizontally stacked 2D profiles, as a 476 

consequence of bedrock heterogeneity, local variations of wave action, and/or fault movements 477 

(Kershaw and Guo, 2001). Utilising TLS measurements in notch studies presents the opportunity to 478 

collect high resolution spatial data from exposures (even from distance) in a rectified manner, which 479 

is not possible using conventional tape measurement or photogrammetry and SfM approaches (Bini et 480 

al., 2014). Even submerged notches down to 0.8 m are not excluded from TSL surveys when using 481 

systems operating at the green-wavelength (Smith, 2015).  482 

The presented workflow aims to detect the roof and/or floor of raised tidal notches by reducing spatial 483 

information and focussing on horizontal continuities. Convex patterns, pointing towards the sea, pose 484 

evidence for remnants of tidal notches (see Fig. 3). The principal curvature analysis highlights such 485 

patterns but does not link those to the attributes of two-dimensional orientation or continuity. 486 

However, the magnitude of curvature can be utilised to describe significant morphological changes. 487 

Such information is input data for edge detection analysis. Herein, two methods of edge detection 488 

were tested in order to reduce spatial information towards its varying significance. In computer vision 489 

and image processing, the Canny edge detector algorithm depicts a standard operator (Bao et al., 490 

2005) for tracking ridges in gradient magnitude images (Canny, 1986). A disadvantage of this method 491 

is that all extracted edges appear to have the same significance (see Fig. 6b). Thus, edges in areas of 492 

minor interest and oriented both vertically and horizontally, appear the same as those of relevance for 493 

tidal notch detection. Therefore, a Fuzzy logic sequence was constructed comprising of membership 494 

functions that enable exclusive focus on significant horizontal changes in surface curvature. Even if the 495 
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input information is incomplete or imprecise, the approach outputs predominantly continuous and 496 

horizontally oriented structures. Instead of crisp boundaries between two classes (e.g. edge or 497 

uniform), the membership functions are defined to give probabilistic information on edge existence 498 

(see Fig. 6c). However, resulting edge information from both algorithms were individually used as input 499 

data for the final Hough transform, which intends to extract continuous line features. Missing points 500 

on the desired curves as well as spatial variations between the ideal line and the noise edge points are 501 

the result of imperfections in either the image data or the applied edge detection algorithm. The Hough 502 

transform produces discrete parameter space matrices of the spatial data in which voting peaks 503 

indicate a continuous line object. Furthermore, minor restrictions to the objects orientation yield in 504 

spatial matching of identified lines and tidal notch extents (see Fig. 8). The ability to adjust the edge 505 

detection algorithm for individual requirements, using a Fuzzy logic approach appears to be more 506 

reliable for highlighting notch morphologies than the Canny edge detection. Due to the possibility of 507 

excluding plan changing curvature and defining membership grades, the line objects extracted from 508 

Fuzzy logic edge detection is most suitable.  509 

As mentioned above edge detection and line object extraction target remnants of raised notches, such 510 

as their roof and/or floor. This should not be confused with the aims of traditional cliff profiling. Here, 511 

the depth of a notch is not analysed and thus the outcome does not allow any conclusion on the 512 

developing period as a function of the erosion rate. Only the vertical extent is measurable if the notch 513 

is completely preserved. In Agios Pavlos, it is possible to obtain estimates of the tidal range (~ 0.35 ± 514 

0.05 m) which are consistent with estimates from Evelpidou et al. (2012). However, assuming a 515 

constant local tidal range throughout the Holocene allows the projection of the historic mean sea-516 

levels with half the erosive zone beneath the detected roof and half above the detected floor, 517 

respectively. Hence, historic sea-levels can be reconstructed although the majority of their 518 

morphological footprints in a coastal cliff are no longer existent. Furthermore, data collection via TLS 519 

enables the extraction of multiple traditional profiles easily for conventional analyses as well (see 520 

profiles in Fig. 1) and adds coherent information on the third dimension to address local 521 

heterogeneities. Therefore, traditional and presented approaches validate and complete each other 522 

from the same data base.  523 

Palaeoseismological studies are frequently assisted by tidal notch investigations in areas of coastal 524 

tectonic activity (e.g. Kershaw and Guo, 2001). In particular, in extensional tectonic settings the 525 

footwall coastal uplift is not likely to exceed several decimetres (e.g. Papanikolaou et al., 2010). 526 

However, Pirazzoli et al. (1994) identified a series of four tidal notches of Holocene age at Heraion (Fig. 527 

1d), each displaced by repeated uplifts of about 0.8 ± 0.3 m. Assuming a ratio of 1/4 net slip per event, 528 

this would equate to 4 m total offset in an area where Jackson et al. (1982) reported just minor 529 

coseismic uplift of 0.2 during the Alkyonides earthquake sequence (M 6.4–6.7) in February and March 530 

1981. If evidence for remnants of tidal notches in between more distinct features are detected by using 531 

high resolution data in high performance algorithms, palaeomagnitude estimates get more realistic. 532 

For instance, both Canny and Fuzzy logic edges provided evidence for notch roofs at +1.0 and +2.4 m 533 

at the cliff beneath the lighthouse, respectively. These positions fit in the idea of regular displacements 534 

during earthquakes and reduce mean notch offset yielding reliable values of coseismic uplift (0.5±0.2 535 

m per event). A second example is obtained at Mylokopy. Including additional notch roofs (~0.6, ~1.3, 536 

and ~2.25 m) would result in repeated uplifts of about 0.4 ± 0.18 m corresponding to magnitudes of M 537 

6.7 ± 0.1 in accordance with Wells and Coppersmith (1994). The results help to reconcile the 538 

discrepancy between the palaeoseismic record and the direct observations of co-seismic 539 
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displacements provided by Jackson et al. (1982). Minor but horizontally continuous remnants revealed 540 

by dense point cloud data are usually not validated in single 2D profiles. However, the identification of 541 

new notch levels would (partially) solve the paradox between large tectonic uplift values and plausible 542 

palaeomagnitudes.     543 

The results show the possibility of tidal notch detection by curvature analysis and subsequent edge 544 

detection and line feature extraction. It is shown that morphologies accepted as tidal notches can be 545 

detected by reducing high resolution point cloud data towards the principal curvature pointing at the 546 

roof or the floor of a notch, respectively (see Figs. 8c and 9b). Even evidence for previously unidentified 547 

structures are extracted from the data. As a consequence more realistic uplift values would result if 548 

these features get proven as remnants of tidal notches. The workflow enables the objective validation 549 

of observations along coastline by evaluating coastal cliffs in three dimensions. Therefore, reliable 550 

statements on coast uplifting earthquake events are possible. The variability of conventionally 551 

collected tidal notch profiles (Kershaw and Guo, 2001) is circumvented by instant 3D data collection in 552 

high resolution and applied spatial analytics. Furthermore, the semi-automated workflow provides fast 553 

results once adjusted for individual needs. The benefits are as follows: 554 

- Enhanced objectivity in recognising tidal notch morphologies on cliff faces. 555 

- More insights from high-resolution 3D TLS by recognising undiscovered notches or features 556 

corresponding to multiple notches. 557 

- Valuable information on morphological characteristics even of only minor distinction and their 558 

spatial distribution especially in extensional tectonic settings, where coseismic uplift is much 559 

less than in compressional environments. 560 

However, data quality and thus the reliability of the outcome remain dependent on the preservation 561 

of individual tidal notches on a coastal cliff. Sheltered sites in microtidal seas provide perfect conditions 562 

for tidal notch preservation after emergence whereas inhomogeneous and disturbed cliffs exposed to 563 

the open sea (Pirazzoli, 1986) are not likely to be good archives of Holocene earthquake events. 564 

Furthermore, varying bedrock consistency or the presence of bedding planes may yield in the 565 

formation of minor structural notches. Especially when the bedding is horizontally oriented, 566 

misinterpretation by remote morphological analysis cannot be neglected (Kershaw and Guo, 2001). 567 

This implies that along coast a natural variance of tidal notches masked by surf processes and 568 

inhomogeneities yields different results of tidal notch identification. Therefore, careful site selection 569 

for palaeo-shoreline identification should consider constraints of marine attacks, tectonic influences 570 

on- and offshore and coastal geology. In order to consider such local lateral variations, 3D data 571 

acquisition helps to reduce sources of misinterpretation. Therefore, we show that TLS combined with 572 

up to date post-processing edge analyses can form a rigorous and useful approach to the interpretation 573 

of palaeoseismic records from Holocene tidal notches.  574 
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