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Abstract  

 

In this study, nitrogen doped and nitrogen/silver co-doped TiO2 photocatalsysts were 

fabricated using a sol-gel method at room temperature. The obtained gels were neutralised, 

washed with pure water, and calcined at 400 °C for 4 hours. The photocatalysts were 

characterised by scanning and transmission electron microscopy, X-ray diffraction, diffuse 

reflectance spectroscopy, X-ray photoelectron spectroscopy, and BET specific surface area. 
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The results showed that spherical particles with anatase structure were produced after 

annealing at 400 °C. N 1s (400 eV) and Ag 3d (367.3 eV) states indicated that nitrogen 

doping and silver co-doping were in the form of NO bonds and AgO, respectively. The 

photocatalytic activity of photocatalysts was investigated using a batch reactor system 

exposed to artificial solar irradiation. Both nitrogen and silver/nitrogen co-doped materials 

were effective in the photocatalytic degradation of hexamethyl pararosaniline chloride. 
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1. Introduction 

Recent advances in material synthesis have combined the development of interesting 

microstructures and nanoassemblies with environmental applications such as water 

purification. Investigations into photocatalytic reactions with doped TiO2 have shown 

enhanced reactivity under visible light irradiation compared with undoped TiO2 [1-3]. Sato et 

al. [1] were the first to describe the synthesis of nitrogen-doped TiO2 obtained by calcination 

of titanium hydroxide. The authors confirmed that nitrogen was acquired from NH4OH, 

which was used in the hydrolysis of TiCl4 to prepare titanium hydroxide. Asashi et al. [2] 

reported that substitutional doping using several non-metal elements promotes the visible 

light reactivity of TiO2. Moreover, they stated that nitrogen doping was the most effective 

because a band-gap narrowing was attained by mixing the p states of N with O 2p states. 

Consequently, many research groups [4-12] have reported theoretical and experimental 

studies on promising methods to produce visible-light sensitive TiO2 photocatalysts. Burda et 

al. [4] noticed that the direct amination of TiO2 changed the original whitish colour to yellow. 

The incorporation of N into the TiO2 cluster has been achieved by a number of methods. 

Ammonolysis, wet chemical route and modified peroxide sol-gel method have been reported 

by Michalow et al. [7], Bianchi et al. [13] and Jagadale et al. [6], respectively. Generally, the 

use of aqueous ammonia for the preparation of peroxotitanate complexes and TiO2 

nanomaterials is used [6, 14-17]. Nevertheless, previous work mainly focused on changes in 

morphology and crystal phase of TiO2 rather than on N doping. 

Metal co-dopants such as W, V and Ag can further enhance the photocatalytic reactivity of 

TiO2 nanopowders [18-20]. The preparation of nitrogen and silver co-doped nanomaterials 

using a peroxide method was achieved by soaking TiO2 in a solution of H2O2 and NH4OH 

[20]. The obtained nanopowders showed reactivity under visible light for the 

photodegradation of methylene blue. Multidimensional nanoassemblies and microstructures 
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have also been examined including high-performance Ag/TiO2 nanofiber membranes [23], 

nitrogen-doped flower-like ZnO materials [24] and the self-etching reconstruction of 

mesoporous F-TiO2 hollow microspheres [25]. 

Many dye wastewaters represent threat to the environment, by colouring natural water and 

destabilising the equilibrium of ecosystems. Several ways could be used to treat dye 

wastewaters, for instance, heterogeneous photocatalysis is an effective technology for 

decomposing cytotoxic and carcinogenic dyes into harmless inorganic compounds. Crystal 

violet (CV) has been previously used as a model organic pollutant to test the efficiency of 

photocatalytic systems [21-22]. The photodegradation pathways of CV were reported [22] 

and occur in several steps: at the beginning, the generation of many N-demethylated 

intermediates is predominant, then, pararosaniline is formed as a final dye, at the end, several 

mineralisation reactions of organic by-products (formic acid, oxalic and acetic acids) take 

place. 

Here, we report a novel peroxide method for the preparation of mesoporous photocatalysts 

doped with silver and nitrogen. The incorporation of dopants was achieved by the dissolution 

and precipitation of TiO2 nanopowder (Evonik P25) at room temperature. The doped 

products were characterised for morphological and chemical changes and their photocatalytic 

activity was tested for the photodegradation of crystal violet under solar light.  

 

2. Experimental 

2.1 Materials  

Aeroxide® TiO2 (Degussa Evonik P25), which is comprised of a mixture of anatase, rutile 

and amorphous structures, with a mean surface area (BET) of 50 m2/g, was used as received. 

Ammonium hydroxide (25% w/w) was purchased from Fluka (Sigma-Aldrich, Germany); 

silver nitrate (99.5%) was obtained from Fluka (Sigma-Aldrich, UK), and hydrogen peroxide 
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(50%, ACR laboratory reagent) from Australian Scientific. Nitric acid (69.5%, reagent grade, 

Scharlau chemie S.A) and hydrochloric acid (37%, reagent grade, Scharlau chemie S.A) were 

used for pH adjustment. CV (88% purity) was acquired from Chem-supply Pty Ltd (South 

Australia, Australia). Ultrapure (Milli-Q) water was used to prepare solutions. 

 

2.2 Synthesis of photocatalysts  

Nitrogen-doped TiO2 nanoparticles were prepared by dissolving 1 g of TiO2 powder in a 

mixture of 10 ml of ammonium hydroxide and 20 ml of hydrogen peroxide in a Teflon cell at 

room temperature (Figure 1). The mixture was neutralised with 1 N HCl, washed with Milli-

Q water and separated from the suspension by centrifugation (Centurion Sci., 2040) at 3000 

rpm for 5 min. Silver co-doping was accomplished by dissolving the desired amount of 

AgNO3 in solution C (Figure 1). However, HNO3 was used instead of HCl in the 

neutralisation step to avoid the precipitation of silver chloride. The obtained nanomaterials 

were dried in oven at 100 °C for 12 h and then calcined at 400 °C for 4 h. Nitrogen-doped 

and silver co-doped photocatalysts are expressed hereafter as TiN and TiNAg, respectively. 

 

2.3 Characterisation of photocatalysts 

The surface area and pore structure of photocatalysts were examined by means of nitrogen 

(N2) adsorption-desorption analyses using the BET and BJH methods. Nitrogen physical 

adsorption was performed using an automated surface area analyser (Micromeritics Gemini 

2360, USA). Scanning electron microscope (SEM) micrographs were obtained by a FEI 

XL30 ESEM operating at 25 kV. High magnification images were obtained from a Philips 

CM200 (Netherland) transmission electron microscope (TEM) operating at 200 kV. XRD powder 

diffraction patterns were generated on a MDI Jade 5.0 (MaterialsData Inc., USA) X-ray 

diffractometer with Cu Kα radiation source. The data were measured within the scattering 
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angle 2θ range of 5º-85º. Nitrogen and silver content and chemical states were measured 

using a Multilab2000 (VG, UK) X-ray photoelectron spectra (XPS) instrument with a non-

monochromatic Mg Kα radiation at a residual gas pressure of below 10-9 Pa. Diffuse 

reflectance spectra of powders were measured on a UV–vis scanning spectrophotometer 

(Cary 500 Scan, Varian, USA) by placing a thin film in the sample holder, which was 

inserted in the integrated sphere for reflectance measurements between 300 nm and 700 nm. 

 

2.4 Photocatalytic activity  

The photocatalytic activity of nanopowders was studied by decomposing CV under simulated 

solar light. Batch experiments were carried out in glass beakers containing 200 mL of 10 

mg/L CV solution (pH = 6.2). After the addition of the desired amount of photocatalyst (1 

g/L), the suspension was mixed with a magnetic stirrer at 360 rpm for 30 min (dark 

adsorption). After reaching the adsorption equilibrium, photocatalysis took place in a Solar 

simulator (SolSim v1.2, Luzchem Research Inc., Canada) equipped with a 300 W Xenon 

lamp, a temperature controller, a magnetic stirrer and an air sparger to provide dissolved 

oxygen. Photocatalysis was carried out at 50,000 lx of simulated solar light for 6 h at a stable 

temperature of 26 ºC. Slurry samples were collected at fixed time intervals, filtered through 

0.45 µm Teflon syringe filters (Whatman, UNIFLO) and analysed using a Shimadzu UV-Vis 

1700 spectrophotometer and a Multi N/C 3100 (Analytik Jena) dissolved organic carbon 

(DOC) analyser. The decrease in CV concentration was assessed by the decrease in the 

absorbance band at 590 nm over time.  

Standard CV solutions were prepared and their absorbance was measured to draw a 

mathematical relationship between the decrease in absorbance and CV concentration. The 

linear relationship generated had the following formula: 
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Abs (cm-1) = 0.018 + 0.166*[CV]  

R2 = 0.997 

 

where Abs is the absorbance at λ = 590 nm and [CV] is the concentration of dye in mg/L. 

 

3. Results and discussion 

 

Morphology and porosity  

Figure 2 shows SEM images of TiN and TiNAg powders. A mixed morphology of isotropic 

microspheres and aggregated nanoparticles is observed. The typical grain morphology of TiN 

and TiNAg is relatively similar with the majority of spheres in the size range of 1 to 2 µm. In 

TiNAg samples, silver could be detected by Ag flaring, revealing the scattered distribution of 

Ag on the TiO2 surface.  

High magnification TEM images (Figure 3) revealed that the microspheres were composed of 

a large number of nanoparticles aggregated in a spherical form. Both photocatalysts showed a 

disordered mesostructure with a wide pore size distribution. Mesopores (2-50 nm) were 

formed among large nanoparticles (20-70 nm in size) in TiNAg, and in between smaller 

nanoparticles (5-40 nm in size) in TiN.     

XRD analysis of diffraction patterns indicated that both TiN and TiNAg have the anatase 

crystal structure (Figure 4). Peaks at 2θ diffraction angles equal to 25.2°, 38°, 48.2°, 55° and 

62.5° were detected, which are attributed to different diffraction planes of anatase TiO2. 

Silver diffraction peaks were absent in the XRD patterns due to the low Ag concentration and 

scattered distribution on the surface of TiO2.  

Important physical parameters of the photocatalysts are summarised in Table 1. The as-

prepared powders (before calcination at 400 °C for 4 h) showed a large surface area, up to 



 Page 8 
 

383.4 m2/g and 399.38 m2/g for TiN and TiNAg, respectively, but were reduced significantly 

by the calcination process. BET surface areas of calcined samples were comparable being 

52.47 m2/g and 52.91 m2/g for TiN and TiNAg, respectively. Mean mesopore diameters (BJH 

desorption data) of TiN and TiNAg were 4.63 nm and 6.08 nm, respectively. Nitrogen 

adsorption/desorption isotherms are shown in Figure 5. The adsorption isotherms have 

hysteresis loops that started at low N2 relative pressure owing to mesoporous characteristics. 

The isotherm curves were of type IV with H3 hysteresis loop that is usually observed with 

aggregates of plate-like particles leading to slit-shaped pores [26].  

 

3.1 DRS analysis 

Figure 6 shows the DRS spectra of the prepared samples. The absorbance properties of TiN 

and TiNAg were significantly different to those of undoped TiO2. The absorbance spectrum 

of the N-doped sample calcined at 400 °C showed absorption at longer wavelengths than that 

of P25 [27]. Figure 6 also revealed an important band gap narrowing of the TiN photocatalyst 

compared to P25. The combination of N and Ag further shifted the absorbance to longer 

wavelengths but reduced the absorbance at all wavelengths. While TiN displayed the typical 

shoulder at ~450 nm associated with localised electronic states near the conduction band [28], 

TiNAg exhibited a continuous shift to 550 nm.   

 

3.2 XPS analysis 

Figure 7 shows the XPS spectra in the N 1s and Ag 3d regions for TiN and TiNAg. For TiN, 

O 1s peaks were recorded at 530.1 eV and 531.4 eV and were ascribed to O-Ti-O oxygen 

coordination and chemisorbed oxygen or hydroxyl oxygen atoms, respectively [6]. The N 1s 

peak at 400.1 eV indicated that N exists in the form of adsorbed NO [1, 5, 27, 28]. The 

assignment of the N 1s peak has been a source of debate for researchers in the past few years. 
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Peak assignment in nitrogen doped TiO2 has been reviewed and discussed in detail by 

Emeline and co-workers [28]. Sato et al. [1] reported the synthesis of N-doped TiO2 by a wet 

method and their XPS results showed an N 1s peak at 400 eV, which was assigned to 

adsorbed NOx species. In our case, nitrogen incorporation appeared in the form of Ti-O-N, 

based on the binding energies of O (≈ 530 eV and 531.4 eV) and N (≈ 400 eV). Before the 

calcination of TiN powder at 400 °C, two distinct N 1s peaks were detected at approx. 400 

eV and 405 eV, at 5 at.% N content and the samples had a strong yellow colour. After 

calcination, the peak at 405 eV disappeared from the spectrum, the nitrogen content was 

reduced to 1.38 at.% and the colour became pale yellow (Table 2). These changes indicated 

that most of the adsorbed nitrogen species (mainly NOx) were desorbed during annealing. 

In the TiNAg sample, similar nitrogen (≈ 399 eV) and oxygen (≈ 530 eV) peaks were 

recorded (O-Ti-O, N-O-Ti). The percentage of N was higher in co-doped samples, while the 

Ag content ranged from 0.15 at.% to 0.2 at.% (Table 2). Gu et al. [18] also found that the 

concentration of N in N-doped samples was lower than in N-V co-doped powders, ascribing 

this to the decrease in the energy barrier for nitridation caused by V atoms. Ag 3d peaks 

indicated that silver exists in Ag3+ or AgO forms [22, 29]. Since the ionic radius of Ag+ (129 

pm) is significantly bigger than that of Ti4+ (74.5 pm), physical substitution is unlikely to 

occur. However, Ag3+ (89 pm) and Ti3+ (81 pm) have relatively similar ionic radii, which 

increased the chance of substitution between the two. This was further substantiated by the 

binding energies of Ag 3d5 (365.8 eV) and Ti 2p3 (457.8 eV). The lattice distortion caused 

by the incorporation of Ag in TiO2 induced a decrease in the bond strength of O-Ti-O bonds 

[30]. In turn, this reduced the energy barrier and allowed for more N atoms to bind to O in the 

form of NO species.  

 

3.3 Photocatalytic activity 
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The photocatalytic degradation of Crystal Violet (CV) over time is shown in Figure 8. The 

decrease of absorbance at λ = 590 nm due to photolysis (in the absence of photocatalyst) was 

insignificant, about 10-15% in 6 h of simulated solar light irradiation. However, this 

discolouration (photo-bleaching) was not coupled with a decrease in dissolved organic carbon 

(DOC), which indicated the degradation of CV into several N-de-methylated reaction 

intermediates (organic by-products) [31].  

After the addition of photocatalyst, the suspension was left in dark for 30 min to reach 

adsorption equilibrium. Both photocatalysts showed low adsorption affinity to CV, 

decreasing the concentration of dye in solution by approx. 5%. The discolouration of CV 

solution was almost complete after 6 h of irradiation. Little difference was observed between 

TiN and TiNAg for the discolouration of CV under the experimental conditions described 

above. The limited increase in photocatalytic activity for the co-doped photocatalysts may be 

due to the relatively low concentration and scattered distribution of Ag. 

It should be noted that the decrease in colour only indicated the photo-bleaching of dyes but 

not their complete mineralisation in photocatalytic reactions. However, photocatalytic 

mineralisation can be verified by measuring the decrease of DOC during photocatalysis. 

DOC results shown in Figure 8 indicated that the photodegradation of organic by-products 

was not complete after 6 h of photocatalysis. DOC was decreased from 6.3 mg/L to 2.8 mg/L 

and 2.5 mg/L for TiN and TiNAg, respectively. The results showed that TiN and TiNAg had 

comparable performances in the photo-mineralisation of CV and its N-de-methylated by-

products. Furthermore, data on absorbance at λ = 540 nm (pararosaniline detection 

wavelength) indicated no residual colour at the end of the experiment (Figure 8). The 

photodegradation of pararosaniline was investigated by Martins et al. [32]. The analysis of 

formed by-products by the degradation process showed that formic acid is the main organic 

compound present in solution in addition to carboxylic acid, aldehydes and ketones. In our 
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case, the residual DOC revealed the persistence of organic by-products in solution which 

needed more time for complete mineralisation. These by-products would be a mixture of 

formic acid, carboxylic acids, aldehyde and ketones. Their total removal is possible by 

prolonging the photodegradation reaction time.         

 

4. Conclusions  

The synthesis of N doped and N/Ag co-doped photocatalysts was done using a simple sol-gel 

method at room temperature. TiN and TiNAg showed mixed morphology of aggregated 

nanoparticles and spherical microspheres. The obtained amorphous powders were crystallised 

to anatase forms after annealing at 400 °C for 4 h. Both materials revealed N 1s peak around 

400 eV which can be assigned to NO adsorbed species. The Ag doping state was identified in 

the form of Ag3+ or AgO. Both photocatalysts were able to decolourise and reduce the DOC 

of CV solutions under simulated solar light irradiation.  
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Tables 

Table 1 

Structural parameters of nitrogen doped and silver co-doped photocatalysts 

Photocatalyst S BET
a (m2/g) Vp

b (cm3 g-1) Dp
c (Å) 

TiN 52.47 0.23 46.30 

TiNAg 52.91 0.31 60.87 

a BET surface area 

b Total mesopore volume 

c Mean mesopore diameter as estimated from nitrogen desorption isotherms using the Barrett-

Joyner-Halenda (BJH) model 
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Table 2 

Chemical composition of photocatalysts obtained from XPS elemental analysis 

Sample Ti (at.%) O (at.%) N (at.%) Ag (at.%) 

TiN  36.69 55.24 1.38 - 

TiNAg 38.78 56.37 1.46 0.15-0.2 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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