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Energy management of a building cooling system
with thermal storage: an approximate dynamic

programming solution
R. Vignali1, F. Borghesan1, L. Piroddi1, M. Strelec2 and M. Prandini1

Abstract—The paper concerns the design of an energy manage-
ment system for a building cooling system, that includes a chiller
plant (with two or more chiller units), a thermal storage unit and
a cooling load. The latter is modeled in a probabilistic framework
to account for the uncertainty in the building occupancy. The
energy management task essentially consists in the minimization
of the energy consumption of the cooling system, while preserving
comfort in the building. This is achieved by a two-fold strategy.
The cooling power request is optimally distributed among the
chillers and the thermal storage unit. At the same time, a slight
modulation of the temperature set-point of the zone is allowed,
trading energy saving for comfort. The problem can be decoupled
into a static optimization problem (mainly addressing the chiller
plant optimization) and a dynamic programming (DP) problem
for a discrete time stochastic hybrid system (SHS), that takes care
of the overall energy minimization. The DP problem is solved by
abstracting the SHS to a (finite) controlled Markov chain, where
costs associated to state transitions are computed by simulating
the original model and determining the corresponding energy
consumption. A numerical example shows the efficacy of the
approach.

Note to Practitioners—Heating and cooling systems for build-
ings present difficult energy management problems due to the
interaction of complex devices, such as chillers and thermal stor-
ages, and the dependence on uncertain variables, such as building
occupancy and external temperature. This paper addresses the
minimization of the energy consumption in a building endowed
with a cooling system and exploiting a thermal storage unit
(essentially a tank storing cool water) to drive the cooling system
more efficiently. A further degree of freedom is introduced in
the optimization process, related to a limited relaxation of the
user comfort request. The methodology explained in the paper is
extendable to more complex micro-grids, including e.g. additional
electric appliances, renewable energy sources or co-generation
units.

Index Terms—Approximate dynamic programming, cooling
systems, energy management, stochastic hybrid systems, Markov
chain abstraction.

I. INTRODUCTION

In this paper, we focus on the energy management of a building
cooling system, consisting of a chiller plant, a small thermal storage
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unit, and a cooling load, as sketched in Fig. 1. The cooling load
represents the cooling energy needed to maintain some temperature
profile in a zone (which can be a room, several rooms or a partitioned
space in a room) subject to two main sources of heating power, i.e.
the outside ambient temperature and the internal heat gains due to
the presence of people, office equipment, lighting, etc. The second
heating source, synthetically attributed to people occupancy, is here
described using a probabilistic model. The chiller plant is composed
of n chillers that convert into cooling power the electric power
provided by the distribution grid through the Local Power Network
(LPN). The cooling power is conveyed to the cooling load through
the Chilled Water Circuit (CHWC). The chillers are generally char-
acterized by different efficiency curves, their performance depending
on the outside ambient temperature, the temperature of the cooling
medium, and the requested cooling power [1]. The thermal storage
unit can be used to accumulate cooling power and deliver it when
needed, and, hence, add some flexibility to the system.
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Fig. 1. Configuration of the building cooling system with thermal storage.

The considered building cooling system has no local generation
units and fully depends on the main distribution grid for the electric
energy supply. The energy management problem consists in the
minimization of the electric energy costs while guaranteeing at the
same time an adequate comfort level in the zone. This is achieved by
operating the chiller plant at optimal efficiency, suitably dispatching
the individual chillers, and exploiting the thermal storage unit to put
cooling energy aside for later usage. The presence of the storage
element releases the chiller plant from strict load following, thus
allowing it to operate at efficient regimes and in time slots where
the electrical energy prices are lower. The resulting cooling power
request mismatches are then compensated for by the storage unit.
Further flexibility is added to the control problem by allowing small
and time-limited modulations of the zone temperature set-point. This
results in a temporary decrease of the cooling power request, at an
affordable cost in terms of reduction of the comfort level.

The envisaged energy management problem can be formalized as
a constrained stochastic optimal control problem for a Stochastic
Hybrid System (SHS). In analogy with [2], it is also convenient to
hierarchically decouple the problem into two separate optimization
tasks, one related to the chiller plant operation and the other con-
cerning the energy management of the storage. The former amounts
to a static nonlinear optimization problem, aiming at optimally
distributing the given power request among the various chillers of the
plant. Then, a Dynamic Programming (DP) stochastic optimization
problem is formulated to optimally distribute the cooling power
request to the chiller plant and to the thermal storage unit. The
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possibility of modulating the cooling power request by acting on
the temperature set-point is also exploited in the latter optimization
problem.

An approximate solution to the stochastic DP problem is here
pursued, which is based on the abstraction of the underlying SHS to
a controlled Markov Chain (MC) with costs associated to transitions
computed through appropriately defined simulations of the original
hybrid system. The idea of adopting a finite approximate abstraction
of the system to address the DP solution is inspired by the hierarchical
approach in [3]. A key difference with that work is the use of SHSs,
for which only few results are available regarding the design of
approximate abstractions with provable approximation guarantees [4],
[5], [6], [7], [8].

It is worth mentioning that similar energy management problems
have been addressed in the literature mainly using Model Predic-
tive Control (MPC) techniques, [9], [10], or focusing on a one-
day horizon planning and solving the corresponding finite-horizon
optimization problem, [11], [12]. Deterministic approaches using
MPC and scheduling techniques have been explored, e.g., in [13],
[14], [15], [16], [17], [18], [19]. also in a distributed set-up, [20], [21].
Stochastic approaches based on stochastic MPC techniques resting on
sampling of possible scenarios are adopted in, e.g., [22], [23], [12].
The approach pursued herein is based instead on a DP formulation.
This allows to compute the control policy off-line and to account
for nonlinear stochastic dynamics comprising also discrete variables.
The availability of a pre-computed control policy greatly simplifies
the on-line implementation of the control strategy. In addition, a
side result of the policy computation is the expected value of the
achievable performance, which provides a convenient way to quantify
it in advance. The achieved results are indeed significant in gen-
eral, irrespectively of the considered application framework. Various
problems in control –as well as safety analysis and verification–
can be formally stated as stochastic DP problems, [24], [25]. DP
offers directly a feedback solution, without requiring the on-line
re-computation of the control input to counteract uncertainty as is
the case with MPC, where simplified linear models are typically
introduced to enable fast computations. Still, DP equations are rarely
solvable exactly when continuous state systems are involved and
Approximate DP (ADP) solutions are needed, [26]. ADP methods
have been extensively investigated in the literature, and here we are
able to find an efficient solution by exploiting a finite abstraction of
the system and the parallelizable structure of the problem.

This work is the final result of a long-term research project, of
which the conference papers [2], [27], and [28] represent various
development stages. Each of them deals with one specific aspect,
e.g., optimal energy management of a building with two chiller units,
presence of stochastic inputs and multiple chillers to orchestrate, and
availability of a thermal storage for operating the chillers at high
efficiency by shifting the load in time. The present paper extends
in a non trivial way the work in these papers by investigating a
comprehensive setting that includes all aspects together. This implies
a non-straightforward elaboration of the main methodology first
introduced in [2], which sets the control problem formulation and
its decomposition, but is restricted to a deterministic setting where
disturbances assume their nominal profiles and to a cooling system
without storage, which limits the DP challenge to setting a scalar
input. A stochastic framework is considered in [27] but still in the
simple configuration without thermal storage.
The contribution that is closest to this paper is [28], where the thermal
storage is present. The introduction of the storage unit has a relevant
impact on the control problem formulation, adding flexibility but
making the DP formulation more complex. Further state and input
variables are introduced, which makes the control policy definition
and the DP equations solution more challenging. With respect to the
preliminary work [28], a neater and more detailed formal setting is
provided here, theoretical results are not only sketched but formally
derived, including all mathematical derivations. Furthermore, the
chiller optimization problem is generalized to the case of more than
2 chillers, conceiving an iterative procedure that optimizes a single

parameter per iteration and ends in a number of steps equal to
the number of chillers minus one. Finally, the policy calculation is
performed efficiently using a parallel implementation of the ADP
solution on a Graphics Processor Unit (GPU). This is indeed a less
eye-catching aspect of the paper, but nonetheless decisive. Indeed,
the proposed methodology, while computationally intensive, lends
itself to this kind of heavy parallelization, which overall makes the
presented approach feasible.

An extensive simulation study has been carried out for this work,
using this efficient version of the code that exploits the parallelizable
structure of the method. A Monte Carlo analysis of the performance is
included, also comparing the presented method with a smart heuristic.

A simple –yet meaningful– model setting is employed in this
work, considering a simplified thermal model of the zone, without
modeling the energy accumulation properties of the walls. Indeed,
the main interest here is on how the control system can respond
to an aggregate load request. Adding the wall dynamics would only
complicate the technical derivation, without affecting the main control
design methodology. In some recent work [11], following [29], [30],
we introduced a detailed building model with multiple layers walls
subject to radiation, convection, and conduction heat transfer, and
show how the building can be exploited as a passive storage. The
resulting model is however high dimensional, with state variables that
are hardly measurable, and classical model reduction techniques are
applied to make it easier to handle and to integrate with further micro-
grid components for energy management purposes. In turn, low level
controllers are not explicitly modeled in [11] so as to obtain a linear-
in-the-control-variables (though high dimensional) model. Based on
this linear model, a compositional modeling framework oriented to
the energy management of a district network is presented in [31],
where multiple buildings are considered that share resources so as to
minimize operation and maintenance costs. The direct compensation
of disturbances according to a randomized strategy is studied in [12],
still based on the model in [11].

The rest of the paper is structured as follows. A detailed description
of the building cooling system under consideration is provided in
Section II, together with a model of the stochastic disturbances. Sec-
tion III formulates the constrained stochastic optimization problem,
briefly recalling the results in [2] on its decomposition into chiller
plant optimization and modulation of the cooling power request
to the chiller and of the zone temperature set-point. Section IV
addresses the chiller plant optimization problem, whereas Section
V deals with the DP approach to the zone temperature set-point
and chiller cooling power request modulation problems, as well as
the ADP solution based on the Markov chain abstraction. Section
VI discusses implementation aspects of the ADP solution and, in
particular, its parallel GPU implementation. Section VII presents
the results obtained in a numerical instance of the building cooling
system case study, and includes a comparative statistical analysis of
performance with respect to a smart heuristic. Finally, in Section VIII
we draw some conclusions and briefly discuss possible extensions of
this work.

II. SYSTEM DESCRIPTION

We shall next describe the components of the considered system,
which is schematically represented in Fig. 1.

A. Plant model
1) Grid and Local Power Network: The system of Fig. 1

does not include any electric generator unit, neither renewable nor
traditional, and we assume that the main grid, by way of the Local
Power Network (LPN), provides to the chillers the exact amount of
electric power required to satisfy the cooling load demand, i.e.:

Pg =
n

∑
i=1

Pe,i, (1)

where Pg is the grid power, and Pe,i is the electric power requested
by the ith chiller, i = 1, . . . ,n.
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2) The chilled water circuit: The chilled water circuit (CHWC)
is composed of three sections, associated to the cooling load, the
chiller plant and the thermal storage, respectively, and characterized
by the mass flows wpipe, wch, and wst (see Fig. 2). An identical mass
flow variable wst is assumed to characterize both the inlet and the
outlet of the thermal storage, which is operated at constant volume.
By construction,

wpipe = wch +wst .

Both the chiller plant and the thermal storage unit can provide cooling
energy to the load (when wst > 0). On the other hand, if wst < 0 the
thermal storage is absorbing part or all the cooling power produced by
the chillers. The other mass flow variables are assumed non-negative.
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Fig. 2. Scheme of the CHWC.

The temperature at the outlet of the chiller plant is denoted Tch,
while Tpipe is the temperature at the outlet of the cooling load.

3) The cooling load: The cooling load associated with the
thermal control of the zone is described through the evolution of
its temperature Tz:

Cz
dTz

dt
=−Qz +Qi + kout(Ta−Tz), (2)

where Ta (outside ambient temperature) and Qi (internal heat gain)
are disturbances affecting the system, while

Qz = Xzkcw(Tz−Tpipe)

is the heat power released to the CHWC, Xz ∈ [0,1] being the fraction
of available cooling power that is actually provided to the zone, as
determined by the thermostat controller (see Section II-B). In the
previous expressions kout and kcw are heat transfer coefficients, and
Cz is the thermal capacity of the zone.

Remark 1 Note that we consider a simplified thermal model of the
zone, that does not account for the energy accumulation properties
of the walls. Adding the wall dynamics would further complicate
the model, highly increasing its dimensionality by introducing not
directly measurable state variables associated with the temperature
of the wall layers, [11], [30], [29]. Some observer should then be put
in place to obtain an estimate of the state for implementing the policy.
Given that this would make the argumentation more involved without
adding interesting aspects to the problem, we adopt the simpler model
(2).

4) The chiller plant: The cooling power Qc requested to the
chiller plant is split between the n chillers according to

Qc,i = α
◦
i Qc, (3)

where α◦i , i = 1, . . . ,n, are parameters defining the individual chiller
commitment, that take values in [0,1] and add up to 1, i.e. ∑

n
i=1 α◦i =

1. Notice that the individual chillers have specific bounds on the
maximum suppliable cooling power, so that the cooling power Qc,i
requested to the ith chiller must satisfy 0≤ Qc,i ≤ Qmax

c,i .

In terms of electric power consumption, one must also consider the
activation status of the chillers. More precisely, if chiller i is off, then
Pe,i = 0. On the contrary, if the ith chiller is activated, then the electric
power Pe,i required to produce Qc,i can be computed according to the
nonlinear static Gordon-Ng model, [1], [32]:

Pe,i =
ai,1TaTpipe +ai,2(Ta−Tpipe)+ai,4TaQc,i

Tpipe−ai,3Qc,i
−Qc,i, (4)

ai,k, k = 1, . . . ,4, being suitable (empirically determined) coefficients.
Notice that Pe,i is not exactly 0 if Qc,i = 0, since a small amount
of power is still necessary to keep the chiller on. Here, the on/off
status of the chillers is modeled implicitly through the commitment
variables α◦i (when α◦i = 0, then, chiller i is off), i.e.

Pe,i =

{
ai,1TaTpipe+ai,2(Ta−Tpipe)+ai,4Taα◦i Qc

Tpipe−ai,3α◦i Qc
−α◦i Qc, α◦i 6= 0

0, α◦i = 0,
(5)

which is derived by combining (3) and (4).
The efficiency of the chiller plant can be characterized through the

Coefficient Of Performance

COP =
Qc

∑
n
i=1 Pe,i

, (6)

and the parameter vector α◦ = (α◦1 ,α
◦
2 , . . . ,α

◦
n ) ∈ [0,1]n defining the

individual chiller commitment via (3) must be properly designed to
ensure an optimal operation of the chiller plant for any given power
request Qc.

5) The thermal storage: A two-level stratified model is adopted
for the thermal storage [33], where the (cold) lower block is at
temperature Tc and the upper (warm) one at temperature Th. The
cooling energy accumulated in the storage depends on the height hc
of the cold block, since it is given by ρAsthccp(Th−Tc), where ρ

and cp are the water specific density and heat capacity, and Ast is the
cross-section area of the storage. Assuming that the total volume of
water in the storage is constant, hc satisfies ḣc =−wst/(ρAst), where
wst denotes the flow through the storage.

In the charging phase (wst < 0), the lower block at temperature Tc
is fed by a flow at temperature Tdown = Tch, and the outflow from
the upper block is at temperature Tup = Th. In the discharging phase
(wst > 0), the upper block at temperature Th is fed by a flow at
temperature Tup = Tpipe, and the outflow from the lower block is at
temperature Tdown = Tc.

Assuming that Tch is controlled to a constant set-point, and that the
heat exchange between the two blocks can be neglected, the lower
block stores and releases cold water at Tc = Tch, so that the left-hand-
side of the CHWC can be assumed to be at temperature Tch. Similarly,
provided that Tpipe is controlled to some constant set-point, the right-
hand-side of the CHWC can be assumed to be at temperature Tpipe.
This assumption, together with the condition wpipe = wch +wst on
the flows in the CHWC, leads to:

Cpipe
dTpipe

dt
= cpwpipe(Tch−Tpipe)+Qz,

Cch
dTch

dt
= cpwch(Tpipe−Tch)−Qc,

where Cpipe and Cch are thermal capacities, Qz is the heat power
absorbed from the zone, and Qc the cooling power provided by the
chiller plant.

B. Low-level control scheme
The control system is structured in a hierarchical two-level scheme,

where the lower level is in charge of various temperature control tasks
(concerning Tch, Tpipe, and Tz), while the higher level (supervisor)
addresses the optimal energy management problem. Fig. 3 represents
the low-level portion of the control scheme of the system under
consideration:
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Fig. 3. Detailed low-level control scheme of the building cooling system.

1) Water circuit temperature controller: Temperature Tpipe
is kept at the set-point T ◦pipe by means of a PI controller acting on
wpipe

1:

wpipe = kpipe
p (Tpipe−T ◦pipe)+ kpipe

i

∫
(Tpipe−T ◦pipe)dt.

Keeping Tpipe at some constant value T ◦pipe facilitates the stratification
in two blocks of the thermal storage and the efficient operation of
the chiller plant at some constant regime.

2) Zone temperature controller: Similarly, another PI con-
troller keeps temperature Tz at the set-point T ◦z acting on Xz. More
specifically, variable Xz is set to 0 when zone cooling is de-activated.
Otherwise, it is determined by the following equation:

Xz = kz
p(Tz−T ◦z )+ kz

i

∫
(Tz−T ◦z )dt,

To properly account for the saturation of variable Xz an anti-windup
implementation of the PI controller is actually adopted.

3) Chilled water temperature controller: Temperature Tch
is maintained at some constant set-point T ◦ch through the following
switching control scheme. If the storage is not available, then wst = 0
(and, hence, wch = wpipe) and Tch is kept at T ◦ch by a PI controller
with disturbance compensation acting on Qc:

Qc = kch
p (Tch−T ◦ch)+ kch

i

∫
(Tch−T ◦ch)dt +wchcp(Tpipe−T ◦ch).

Otherwise, the chiller plant is assigned some (constant) cooling power
request Q◦c ∈ [0,Qmax

c ], where Qmax
c = ∑

n
i=1 Qmax

c,i is the maximum
cooling power that the chiller plant can supply, and the storage
eventually compensates for the residual cooling power needed to keep
Tch equal to T ◦ch. In the latter case, the flow through the chiller plant
would be given by

wch = w◦ch = kwch
p (T ◦ch−Tch)+

Q◦c
cp
(
Tpipe−T ◦ch

),
thus requiring a flow wst = w◦st = wpipe−w◦ch through the storage. If
we denote by hst the height of the storage, then its availability can
be expressed by the binary variable ast = (0 < hc < hst)∨ (hc = hst ∧
w◦st ≥ 0)∨ (hc = 0∧w◦st ≤ 0), which is true if one of these conditions
is satisfied:

a) the storage is neither completely full nor completely empty,
b) it is full and a release of cold flow is requested,
c) it is empty and acceptance of cold inflow is requested.

Note that the adopted switching logic encompasses the constraint
0 ≤ hc ≤ hst , which can be therefore omitted in the optimal energy
management problem formulation.

1The error sign is defined so as to obtain positive controller gains.

C. Model of the disturbances
The building cooling system is subject to two disturbances, i.e.,

the internal heat gain and the outside ambient temperature. In this
work, the internal heat gain Qi is modeled as suggested in [11], that
is:

Qi =
[
a1T 2

z +a2Tz +a3

]
nP +Q+

i . (7)

The first term represents the contribution of the zone occupants to the
heat production and is given by the product of the heat generated by a
single person with the number nP of occupants of the zone according
to an empirical model documented in [34]. The second term accounts
for other types of heat sources that may affect the internal energy
of a building, e.g., lighting, electrical equipment, daylight radiation
through windows and can be modeled as

Q+
i = κnP +χ +ηQS.

The thermal energy contribution due to internal lightening and
electrical equipment is composed of two terms: a constant term χ ,
and an additional term κnP that represents the change in internal
lightening and electrical equipment when people are present and
is proportional to occupancy. The contribution of daylight radiation
through windows is proportional to the solar radiation QS through
some coefficient η that takes into account the mean absorbance
coefficient of the zone, the transmittance coefficients of the windows
and their areas, sun view and shading factors, and radiation incidence
angle. Accurate forecasts can be obtained for the solar radiation and
sensor measurements might be available for directly compensating it,
[12]. We here consider the solar radiation as a deterministic signal.

We instead model the occupancy as a stochastic variable. Occu-
pants constitute a significant source of heating in densely occupied
buildings, such as offices and shops, and, due to the improved build-
ing thermal insulation, they are becoming an even more important
factor. Parameter nP is modeled through a birth-death process with
time varying birth (arrivals) and death (departure) rates, λin(t) and
λout(t), respectively. Such rates are designed so that the resulting
average occupancy matches some reference profile.

This can be viewed as a generalization of the model in [35], where
a Markov chain is employed to model a single occupant.
It is assumed that the building is inhabited only during the day and
people start entering the building at a specified time tin. Accordingly,
we define nP as follows:

nP(t) = max
(

nin
P [tin, t]−nout

P [tin, t], 0
)
,

where nin
P [tin, t] and nout

P [tin, t] are independent Poisson processes
representing respectively the number of arrivals and departures within
[tin, t]. The time-varying rates λin(·) and λout(·) of nin

P [tin, t] and
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nout
P [tin, t] are defined based on a nominal occupancy profile n̄P which

is nonzero in a given time interval [tin, tout ]. Specifically, observing
that

E
[
nin

P [tin, t]−nout
P [tin, t]

]
=
∫ t

tin
λin(η)dη−

∫ t

tin
λout(η)dη ,

we define the rates within [tin, tout ] based on the time derivative ˙̄nP
of the nominal occupancy profile as follows:

λin =

{
˙̄nP, ˙̄nP > 0
0, ˙̄nP ≤ 0

λout =

{
− ˙̄nP, ˙̄nP < 0
0, ˙̄nP ≥ 0.

Further, after tout , the λout rate is set to a sufficiently high value so as
to guarantee with probability 0.99 that the building is empty within
one hour. Fig. 4 plots some realizations of nP given some nominal
profile n̄P.
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Fig. 4. Some realizations of the occupancy profiles. The nominal profile with
[tin, tout ] = [7,20] is represented as a dashed line. Different colors are used to
distinguish different realizations.

The outside temperature Ta is assumed to be given by some
accurate forecast and treated as a deterministic signal. Indeed if
the insulation level of the building is high, fluctuations around the
forecast value have a limited impact and the effect of the internal
heat gain is dominant.

D. Interpretation as a stochastic hybrid system
The described system is stochastic since it is affected by stochas-

tic disturbances (nin
P , nout

P ), and hybrid since it comprises both
continuous state variables and discrete state variables. More pre-
cisely, the continuous and discrete state components are given by
x = [Tz Tch Tpipe wpipe Xz Qc hc]

T and q = nP and take values in
X = R4 × [0,1]× [0,Qmax

c ]× [0,hst ] and Q = Z≥0, respectively.
The evolution in time of the hybrid state (x,q) is governed by the
equations described in the previous subsections, and is affected by the
disturbances nin

P , nout
P and Ta, and by the control inputs Q◦c , T ◦ch, T ◦pipe,

T ◦z , and α◦. Of the latter, the set-points T ◦ch and T ◦pipe are pre-assigned
and are not object of the subsequent control design for optimal energy
management. As for the zone temperature set-point T ◦z , it is given by
T ◦z = T̄z +∆◦z , where ∆◦z ∈ [0,∆max] represents the allowed variation
with respect to some reference set-point value T̄z and is used to save
energy. Energy saving comes at the price of causing some discomfort.
Given the control horizon [t0, t f ], we then introduce the state variable

d(t) =
∫ t

t0
∆
◦
z (t)dt, t ≥ t0,

to quantify the discomfort within [t0, t], and avoid that it exceeds
some maximum admissible value dmax

d(t)≤ dmax, t ∈ [t0, t f ].

Remark 2 The underlying implicit assumption here is that T ◦z is
representative of the actual behavior of Tz (i.e., the lower-level
controllers have been appropriately designed so as to guarantee a
satisfactory tracking performance) while T̄z is an ideal temperature as
for the occupants comfort. In this way, if dmax = 0, then, no discomfort
is introduced. 2

The hybrid state is hence enlarged so as to include the continuous
variable d, i.e. s = (d,x,q), and takes values in the hybrid state space
S = [0,dmax]×X ×Q. The control inputs for addressing the optimal
energy management problem are α◦ ∈ [0,1]n, ∆◦z ∈ [0,∆max], and Q◦c ∈
[0,Qmax

c ].

III. OPTIMAL ENERGY MANAGEMENT

The energy management supervisor of the building cooling system
with thermal storage should act on the control inputs α◦ ∈ [0,1]n,
∆◦z ∈ [0,∆max], and Q◦c ∈ [0,Qmax

c ] so as to minimize the average
electric energy cost spent over a given time horizon [t0, t f ], while not
exceeding the maximum discomfort level dmax caused by the zone
temperature set-point modulation. This can be formulated as a finite-
horizon stochastic optimal control problem, as explained hereafter.

Let
π : S × [t0, t f ]→ [0,1]n× [0,∆max]× [0,Qmax

c ]

be a state-feedback control policy that maps a state-time pair (s, t) into
some values for the commitment parameters α◦, and the set-points
∆◦z and Q◦c to be applied at time t when the state value is equal to
s. Then, the goal is to find a policy that is optimal by solving the
following constrained stochastic optimization problem:

min
π

Eπ
s0

[∫ t f

t0
cg(t)Pg(t)dt

]
(8)

subject to: d(t)≤ dmax,∀t ∈ [t0, t f ],

where Pg(t) = ∑
n
i=1 Pe,i(t) denotes the power requested to the main

distribution grid and cg(t) is the price per unitary power request, at
time t ∈ [t0, t f ].
Here, s0 is the state value at time t0 and Eπ

s0
denotes the expected

value when the initial state is s0 and the control policy π is applied.
Indeed, different initial state values and/or control policies induce
different probability distributions over the system trajectories and, as
a consequence, over the realizations of the stochastic process Pg(t).
Notice that, if the energy price cg(t) is taken to be constant, one is
actually minimizing the average electric energy consumption.

The problem of designing the control policy π can be decomposed
into two subsequent phases:

1) design πα◦ : S × [t0, t f ]→ [0,1]n for the chillers commitment,
and

2) based on the outcome of phase 1, design π∆◦z Q◦c : S × [t0, t f ]→
[0,∆max]× [0,Qmax

c ] for the modulation of the zone temperature
and chiller cooling power request set-points.

The policy π is then obtained by combining these two maps, i.e.
π = (πα◦ ,π∆◦z Q◦c ), and is actually optimal if πα◦ is designed so as to
minimize the electric power requested to provide a certain cooling
energy, and, in turn, policy π∆◦z Q◦c is designed so as to minimize
the average electric energy cost when the chillers commitment is
determined by the policy πα◦ obtained in the first phase.

Indeed, the rationale behind the decomposition of the policy
optimization is that, given a cooling power request Qc to the chiller
plant, its dispatching among the individual chillers affects only the
electric power demand Pg = ∑

n
i=1 Pe,i, whereas it has no influence on

the dynamics of the zone and chiller water circuit temperatures. Now,
Pg is a static function of α◦i , i = 1, . . . ,n, Qc, Tpipe, and Ta (see (5)).
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Therefore, since Qc, Tpipe, and Ta are independent of α◦i , one can
design the optimal commitment strategy as follows:

α
?
i (Qc,Ta,Tpipe) = argmin

α◦i
Pg.

This amounts to solving a (nonlinear) static optimization problem
(see Section IV). The resulting α?

i (Qc,Tpipe,Ta) implicitly defines
the optimal map π?

α◦ . Indeed, α?
i (Qc,Tpipe,Ta) can be viewed as a

time-varying function of the state s∈S , observing that Tpipe and Qc
are state variables, the time variability being induced by Ta.

The map π∆◦z Q◦c : S × [t0, t f ]→ [0,∆max]× [0,Qmax
c ] for the modu-

lation of the zone temperature and chiller cooling power request set-
points can then be designed by solving the constrained optimization
problem:

min
π∆◦z Q◦c

E
π

∆◦z Q◦c
s0

[∫ t f

t0
cg(t)P?

g (t)dt
]

(9)

subject to: d(t)≤ dmax, t ∈ [t0, t f ],

where P?
g (t) is the power demand when the optimal commitment

policy π?
α◦ obtained in phase 1 is used to define the individual chiller

commitment coefficients α◦. Problem (9) will be tackled via ADP in
Section V.

As a result of the problem decomposition, the energy management
system is composed of two blocks, i.e., the chiller plant optimizer,
which decides how the requested cooling power should be split
among the chillers, and the optimal set-point modulator, which
determines the actual cooling power requests to the chiller plant and
storage by acting on the zone temperature and the chiller power set-
points (see Fig. 5).

Note that the advantage of decomposing the problem into chiller
plant optimization and optimal set-point modulation is twofold: 1)
we obtain a computational procedure to find a solution to the
overall energy management optimization problem (8); and 2) we have
to solve two lower-dimensional optimization problems (one static
and the other dynamic) in place of a large (dynamic) optimization
problem.
A further practically relevant benefit of this decomposition is that
we can also address the case when the strategy adopted for the
chillers commitment is given, and only the set-point modulation is
possible. We just need to solve problem (9) with the electric power
consumption as determined by the assigned chillers commitment
strategy.

IV. CHILLER PLANT OPTIMIZER

Our objective is to design the chiller plant optimizer that splits the
cooling power request Qc between the n chillers so as to optimize
the overall performance of the chiller plant, measured in terms of
the electric power consumption Pg needed to satisfy a given cooling
power request. Recall now that Pg is given by equation (1), where Pe,i
is the energy power needed by the ith chiller to provide the cooling
power Qc,i = α◦i Qc.

Since each Pe,i is given by (5), then, the optimal commitment
π?

α◦ : S × [t0, t f ]→ [0,1]n can be obtained by solving for each triplet
(Qc, Ta, Tpipe) the following nonlinear static optimization problem
with n optimization variables:

min
α◦i , i=1,...,n

n

∑
i=1

Pe,i[α
◦
i Qc] (10)

subject to:

0≤ α
◦
i ≤

Qmax
c,i

Qc
, i = 1, . . . ,n

n

∑
i=1

α
◦
i = 1

where the notation Pe,i[α
◦
i Qc] is adopted to point out the dependence

of Pe,i on α◦i through Qc,i = α◦i Qc.

Note that the optimization problem (10) is difficult to solve when
n is large, since it is nonlinear and involves n optimization variables.
We next show how the solution to (10) can be found by solving
n−1 nonlinear optimization problems involving a single optimization
variable.

Let n > 2 and consider the following two optimization problems,
both to be solved for each triplet (Qc, Ta, Tpipe):

min
βi, i=1,...,n−1

n−1

∑
i=1

Pe,i[βiQc] (11)

subject to:

0≤ βi ≤
Qmax

c,i

Qc
, i = 1, . . . ,n−1

n−1

∑
i=1

βi = 1,

where 0≤ Qc ≤ ∑
n−1
i=1 Qmax

c,i , and

min
γ1

{
P?

e,[1,n−1][γ1Qc]+Pe,n[γ2Qc]
}

(12)

subject to:

0≤ γ1 ≤
n−1

∑
i=1

Qmax
c,i

Qc

0≤ γ2 ≤
Qmax

c,n

Qc
γ1 + γ2 = 1

where 0≤Qc ≤Qmax
c and P?

e,[1,n−1][Qc] represents the optimal value
of the cost function in problem (11) involving chillers 1, . . . ,n− 1,
which are treated as if they were a single chiller plant in (12).

Now, denote by β ?
i [Qc], i = 1, . . . ,n− 1, and γ?i [Qc], i = 1,2, the

solutions to (11) and (12), respectively. Let also α?
i [Qc] be the optimal

value of α◦i obtained by solving (10). Then, the following proposition
holds.

Proposition 1

α
?
n [Qc] = γ

?
2 [Qc] (13)

α
?
i [Qc] = γ

?
1 [Qc]β

?
i
[
γ
?
1 [Qc]Qc

]
, i = 1, . . . ,n−1. (14)

Proof 1 See the appendix.

Observe now that the decomposition of problem (10) into the two
optimization problems (11) and (12) corresponds to considering 2
chillers (chiller n and an equivalent chiller obtained by grouping
together the remaining n− 1 chillers) and optimally dividing the
load between them: fraction α?

n [Qc])Qc is assigned to chiller n and
(1−α?

n [Qc])Qc to the equivalent chiller. This same reasoning can
be applied to the purpose of optimally dividing the fraction of load
(1− α?

n [Qc])Qc assigned to the group of n− 1 chillers, i.e., the
n− 1 chillers can be viewed as two chillers: chiller n− 1 and an
equivalent chiller obtained by grouping together the remaining n−2
chillers. By applying iteratively this reasoning, the optimal commit-
ment parameters α?

i , i = 1, . . . ,n, are finally effectively computed by
solving n−1 optimization problems of the form (12), which can be
done efficiently through gridding since each one of them involves
a single optimization variable. Obviously, gridding introduces some
approximation error, which makes the solution to the overall energy
management problem sub-optimal. As the gridding gets finer and
finer, however, the approximation error decreases and the optimal
solution is recovered.
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Fig. 5. Structure of the energy management supervisor.

V. OPTIMAL SET-POINT MODULATOR

Given the optimal chiller commitment policy designed in the
previous section, our goal is to determine an optimal policy

π∆◦z Q◦c : S × [t0, t f ]→ [0,∆max]× [0,Qmax
c ] (15)

for the modulation of the set-points of the zone temperature and of the
chiller cooling power request, which entails solving the constrained
optimization problem (9). This is is a non-trivial task given the
stochastic and hybrid nature of the system described in Section II,
and is addressed here under the following assumption:

Assumption 1 The set-point signals ∆◦z and Q◦c take values in finite
sets, namely Uz and Uc, and are updated every τ time instants.

Assumption 1 is indeed a sensible one when aiming at a practical
implementation of the optimal modulation policy. It also allows to
rephrase the original problem as an analogous finite-horizon control
problem for a discrete time SHS (dtSHS) with a control input u =
(uz,uc) = (∆◦z ,Q

◦
c) taking values in the discrete control input set U =

Uz ×Uc. The executions of the dtSHS are obtained by sampling
the executions of the original continuous time SHS with the control
input ∆◦z and Q◦c held constant over each time frame [τk,τk+1), k =

0, . . . ,N−1, where τk = t0 + kτ and N =
⌈

t f−t0
τ

⌉
. The values for ∆◦z

and Q◦c are determined by the discrete time policy ν = (ν0, . . . ,νN−1)
with

νk : S →U , k ∈ {0, . . . ,N−1}, (16)

which is optimized by solving the following constrained optimization
problem:

min
ν

Eν
s0

[N−1

∑
k=0

Ck(s̄k,νk(s̄k), s̄k+1)
]

(17)

subject to: d̄k ≤ dmax, k ∈ {0, . . . ,N},

where we set

s̄k = s(τk) and d̄k = d(τk)

as the sampled versions of the hybrid state and the discomfort
variable, and

Ck(s,u,s
′) =

∫
τk+1

τk

cg(t)P?
g (t)dt

is the energy cost associated to the continuous time SHS evolution
in the time frame [τk,τk+1) from state s(τk) = s to state s(τk+1) = s′
when the inputs ∆◦z and Q◦c are held constant over [τk,τk+1) and set
equal to (∆◦z (t),Q

◦
c(t)) = u, t ∈ [τk,τk+1).

Note that the evolution of the discomfort variable is given by

d̄k+1 = d̄k +∆
◦
z (τk)τ, d̄0 = 0, (18)

where ∆◦z (τk) is the value of the component uz of the discrete input
u at time k. The state constraint in (17) can then be translated into a
constraint on the admissible input values of the form

νk(s̄k) ∈U(s̄k), k ∈ {0, . . . ,N−1},

where

U(s) =U(d,x,q) = {u = (uz,uc) ∈U : d +uzτ ≤ dmax}. (19)

The fact that the state constraint can be reformulated as a constraint
on the admissible values for the control input ∆◦z (based on the
residual discomfort), allows to tackle the problem of determining
the optimal policy ν? through DP techniques. In particular, ν? can
be computed from the so-called Q-functions Qk : S ×U → ℜ+,
k = 0, . . . ,N, according to

ν
?
k (s) ∈ arg min

u∈U(s)
Qk(s,u), k = 0, . . . ,N−1.

The Q-functions are computed via the following backward iterative
procedure

Qk(s,u) = E
[
Ck(s̄k,u, s̄k+1)+ min

u′∈U(s̄k+1)
Qk+1(s̄k+1,u

′)
∣∣∣s̄k = s

]
,

(s,u) ∈S ×U , k = 0, . . . ,N−1, (20)

initialized at k = N with QN(s,u) = 0, (s,u) ∈S ×U .
The numerical solution to the DP equations (20) is hampered by

the presence of continuous state components and of the expectation
operator. The idea developed next is to find an Approximate DP
(ADP) solution by abstracting the underlying SHS to a (finite
state) controlled MC, whose transition costs are computed through
appropriately defined simulations of the original SHS.

A. ADP solution based on MC abstraction
In this section, the dtSHS introduced above is abstracted to

an inhomogeneous controlled MC, which is defined by a triple
{X ,A , p} where X is the state set, A the control set, and
p : X ×A ×X ×{0, . . . ,N−1}→ [0,1] is the controlled transition
probability function. Specifically, p(ŝ,a, ŝ′,k) is the probability that
a transition to ŝ′ ∈X occurs at k ∈ {0, . . . ,N−1} when the control
input a ∈A is applied from ŝ ∈X .

1) Definition of the state and control sets: Given that the
control input to the MC is the same as in the original hybrid model,
we have that A = U . As for the state ŝ of the MC, it accounts
only for the state variables Tz, d, hc, nP of the dtSHS. The (discrete)
state space X of the Markov chain approximation is determined as
follows. We assume that, at each sample time τk, k = 1, . . . ,N, the
zone temperature Tz reaches the set-point value T ◦z chosen at the
previous sample time, so that Tz ranges in a finite set, which is the
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set of admissible values for T ◦z . The storage height hc is quantized
in the range [0,hst ] with a gridding parameter δhst , whereas d takes
values in some finite set as determined by the evolution in (18) of its
sampled version and by the upper bound dmax. The sampled number
of occupants nP(τk) of the dtSHS can take in principle arbitrarily high
values and is constrained in some range which is computed based on
an ε-coverage tube containing all possible occupancy profiles along
[t0, t f ] except for a set whose probability is smaller than a user-defined
value ε ∈ [0,1].

Computation of the ε-coverage tube: The problem of
determining the values taken by the component of the MC state ŝ
corresponding to nP is reformulated in terms of the following chance-
constrained problem:

min
h1,k≥0, h2,k≥0, k=1,...,N

N

∑
k=1

(h1,k +h2,k) subject to: (21)

P{−h1,k ≤ nP(τk)−E[nP(τk)]≤ h2,k,∀k} ≥ 1− ε,

which can be solved through the scenario approach, [36].
The scenario solution rests on the extraction of M profiles n(i)P (t),

t ∈ [t0, t f ], i = 1,2 . . . ,M, and on the solution of the following convex
optimization problem:

min
h1,k≥0, h2,k≥0, k=1,...,N

N

∑
k=1

(h1,k +h2,k) subject to: (22)

−h1,k ≤ n(i)P (τk)−E[nP(τk)]≤ h2,k,∀k, i = 1, . . . ,M,

where the constraint in probability is replaced by its sampled version.
If M satisfies

r−1

∑
i=0

(
N
i

)
ε

i(1− ε)N−i ≤ β ,

where r is the number of optimization variables and β ∈ (0,1), then,
the solution to (22) is feasible for the chance-constrained problem
(21) with confidence larger than 1−β .

2) Definition of the transition probability function: The
probability p(ŝ,u, ŝ′,k) that the MC evolves from ŝ = (d̂, T̂z, ĥc, n̂P)
at time k to ŝ′ = (d̂′, T̂ ′z , ĥ

′
c, n̂
′
P) at time k + 1 clearly depends on

the control action u ∈ U applied at time k, and is zero if ŝ′ is not
admissible as next state.

In particular, T̂ ′z must satisfy T̂ ′z = T̄z +∆◦z (since temperature Tz
is controlled to T ◦z = T̄z + ∆◦z ) and d̂′ = d̂ + ∆◦z τ (based on (18)).
As for the thermal storage height, ĥ′c must be the quantized value
of hc(τk+1) obtained when the SHS evolves within [τk,τk+1] from
Tz(τk) = T̂z, d(τk) = d̂, hc(τk) = ĥc, and nP(τk) = n̂P, with the other
state variables set at consistent equilibrium values, subject to the
constant control input uk = u and the disturbances, i.e. the outside
ambient temperature Ta forecast along [τk,τk+1] and the occupancy
profile obtained by linearly interpolating nP at τk with n′P at τk+1 as
suggested in [27].

If ŝ′ satisfies these conditions (i.e. it is admissible), then p(ŝ,u, ŝ′,k)
equals the probability of having n′P− nP arrivals/departures within
[τk,τk+1], otherwise it is set to zero. In order to have p(ŝ,u, ŝ′,k)
well defined as a probability, i.e., summing up to 1 when n̂′P ranges
within the ε-coverage tube, we assign to the extreme values for n̂′P the
probability associated to all arrivals/departures ∆P within [τk,τk+1]
that will make n̂P + ∆P either exceed E[nP(τk+1)] + h2,k+1 or go
below E[nP(τk+1)]−h1,k+1.

Problem (17) then reduces to determining policy ν̂ =
(ν̂0, . . . , ν̂N−1) : X × [0,N−1]→U by solving

min
ν̂

E ν̂
x0

[N−1

∑
k=0

ĉk(ŝk, ν̂k(ŝk), ŝk+1)
]

(23)

subject to: d̂k ≤ dmax, k ∈ {0, . . . ,N},

where ĉk(ŝ,u, ŝ′) is the cost associated to a transition from ŝ to ŝ′
when the control input u is applied at time k. This cost represents
the electric energy cost for that transition and can be determined by

simulating the original SHS within [τk,τk+1] as described above when
defining the admissible values for ĥ′c.

Again, the constraint in (23) can be translated into a constraint on
the admissible values for the control action

ν̂k(ŝk) ∈U(ŝk), k ∈ {0, . . . ,N−1},

where U(s) is defined in (19).
The optimal policy for the MC can then be computed as follows

ν̂
?
k (ŝ) ∈ arg min

u∈U(ŝ)
Q̂k(ŝ,u),

where Q̂k : X ×U →ℜ+, k = 0, . . . ,N, are the Q-functions, which
can be derived via the DP equations:

Q̂k(ŝ,u) = ∑
ŝ′∈X

pk(ŝ,u, ŝ
′)[ĉk(ŝ,u, ŝ

′)+ min
u′∈U(ŝ′)

Q̂k+1(ŝ
′,u′)],

(ŝ,u) ∈X ×U , k = 0, . . . ,N−1, (24)

initialized at k = N with QN(ŝ,u) = 0, (ŝ,u) ∈X ×U .
Note that the Q-functions for the MC abstraction can be stored in

a look-up table and their computation is easily performed based on
the MC transition costs and probabilities.

Finally, the (sub)-optimal control policy for the dtSHS can be
recovered as follows:

νk(s) = ν̂
?
k (ŝ)

where ŝ = (d̂, T̂z, ĥc, n̂P) ∈ X is obtained from s = (d,x,q) with
x = [Tz Tch Tpipe wpipe Xz Qc hc]

T by extracting the components
(d,Tz,hc,nP) and approximating them with the closest value in X .

VI. IMPLEMENTATION OF THE ADP SOLUTION

The computation of the Q-function at each k-th iteration step can
be summarized in the following three steps: a) computation of the
cost ĉk(ŝ,u, ŝ′), b) computation of the expected value over the next
states x′, and c) minimization with respect to the control action u.
All these tasks involve repeating a basic calculation for all possible
combinations of the arguments. For example, calculating the value of
the cost ĉk(ŝ,u, ŝ′) requires simulating the original SHS over the k-th
time interval [τk,τk+1] starting from the initial condition ŝ, applying
the control action u, and choosing ŝ′ as the final state value, and
this task has to be repeated for all possible triplets (ŝ,u, ŝ′), typically
resulting in a huge computational load.

Fortunately, the various repetitions of the basic calculation in-
volved in the mentioned tasks are all independent of each other, which
allows an efficient implementation with parallelized code. Actually,
this turns out to be essential to deal effectively with medium/large
scale problems as the one considered in this paper.

To exploit parallelization, we here employ GPU-accelerated com-
puting, that is able to deal with multiple tasks simultaneously by
exploiting the massively parallel architecture of a GPU. As a parallel
computing platform, we choose the NVIDIA CUDA. A sketch of
the CUDA architecture is given in Fig. 6: the atomic computation
units (threads) are organized in batches (blocks) that are collected in
a grid. The threads execute in parallel the same subroutine, called
kernel. In the case of the cost computation, for example, we choose
as a kernel the function that simulates the SHS and assign to each
thread a different initial condition, so that multiple executions of the
SHS are performed at the same time.

Overall, the solution of the DP equations is coded in a MATLAB
script, containing a MEX interface that runs the CUDA code on an
NVIDIA Tesla k20 GPU. To give an idea of the computational ad-
vantages that can be gained with this architecture, while a MATLAB
script takes approximately 0.01 seconds to run one of the simulations
required in the cost evaluation task, with reference to the numerical
example described in Section VII, the CUDA procedure can run more
than 80000 such simulations in half a second.
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Fig. 6. Sketch of the CUDA architecture.

VII. NUMERICAL EXAMPLE

The proposed ADP-based approach is applied to the energy
management of a building cooling system along a one-day time
horizon ([t0, t f ] = [0,24] hours). The zone is occupied from 7:00
to 21:00, according to the stochastic occupancy profile described
in Section II-C, and is cooled from 6:00 to 22:30 (the last control
decision being taken at 22:00).

In the simulation study, we consider only the ambient temperature
and occupancy as disturbance inputs, so as to ease the interpretation
of the strategy implemented by the optimal policy. More specifically,
in the internal heat gain (7) we consider only the contribution of the
zone occupants to the heat production and neglect the additional Q+

int
term that depends on the solar radiation.

The outside ambient temperature Ta is given by the forecast
in Fig. 7. Zone temperature set-point and cooling power request
to the chiller plant can be changed every τ = 30 minutes. We
assume that ∆◦z ∈ Uz = {0,∆max/2,∆max}, with ∆max = 1◦C and
Q◦c ∈Uc = {k δQC : k = 0, . . . ,12}, where δQc = 2 kW. The maxi-
mum discomfort level is dmax = 6◦C h corresponding to an increase
of 1◦C for 6 hours. The cost for the electrical energy is set to be
constant and unitary (cg(t) = 1, t ∈ [0,24]), so that we are actually
minimizing the energy consumption.

A list of the system parameter values is given in Table I.
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Fig. 7. Outside ambient temperature.

3) Chiller plant optimization: Fig. 8 shows the COP of the
chiller plant as a function of the requested cooling power QC and of
the outside ambient temperature Ta for Tpipe = T ◦pipe = 15◦C, when
the designed commitment parameters α?

i are adopted. Both chillers
provide a maximum cooling power supply Qmax

c,i of 30 kW, but with
quite different efficiency curves. In particular, chiller 1 performs
better for low power values, whereas chiller 2 prevails at higher
powers. This results in a complex optimal commitment policy.

4) ADP solution: The policy that modulates the zone temper-
ature set point and the chillers cooling power request is a look-up
table function of:

TABLE I
LIST OF SYSTEM PARAMETERS

Zone Cz 6092 kJ ◦C−1

kout 0.4625 kW ◦C−1

Tz kz
p 9.25 ◦C−1

controller ki,z 0.075 ◦C−1 s−1

T ◦z 20◦C
Thermal Cst 2.22 ·104 kJ ◦C−1

storage hst 3 m
δhst 0.03 m

CHWC Cch 1.31 ·103 kJ ◦C−1

Cpipe 1.31 ·103 kJ ◦C−1

kcw 5.29 kW ◦C−1

Tpipe kpipe
p 14.4 kgs−1 ◦C−1

controller kpipe
i 0.6 kgs−2 ◦C−1

T ◦pipe 15 ◦C
Tch kch

p 200 kW ◦C−1

controller kch
i 1 kW s−1 ◦C−1

kwch
p 14.4 kgs−1 ◦C−1

T ◦ch 10 ◦C
Chiller 1 a1,1 0.0056 kW K−1

a1,2 10.11 kW
a1,3 7 K kW−1

a1,4 0.9327
Qmax

c,1 30 kW
Chiller 2 a2,1 0.0109 kW K−1

a2,2 20.22 kW
a2,3 3.807 K kW−1

a2,4 0.9325
Qmax

c,2 30 kW
Internal a1 −0.2199 W ◦C−2

heat a2 5.0597 W ◦C−1

gain a3 84.9168 W
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Fig. 8. COP of the chiller plant obtained via the optimization procedure in
Section IV.

• The discrete time k at which the policy is applied, which
corresponds to the interval [τk,τk+1)

• The zone temperature T̂z at τk
• The number of occupants n̂P at τk
• The level of cold water in the storage ĥc at τk
• The value of the discomfort variable d̂ at τk

and is obtained with the designed commitment parameters for the
two chillers in place.

We now try to get some insight into the strategy implemented
by the computed policy by looking at its behavior on the nominal
occupancy profile. Relevant quantities are drawn in Fig. 9 with
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Fig. 9. Performance of the designed energy management system in the nominal occupancy case. From top to bottom: Zone temperature (blue solid line) and
set-point modulation (red dashed line); Cooling power absorbed by the zone (blue solid line) and requested to the chiller plant (red dashed line); Actual (blue
solid line) and maximum chiller plant COP; Cooling power request to the thermal storage (blue solid line, left axis) and level of the cold water in the storage
tank (red dashed line, right axis).

reference to the whole 24 hours horizon.
In the top plot of Fig. 9, the zone temperature set-point is reported

together with the actual temperature behavior. Given that the zone is
cooled only from 6:00 to 22:30, its temperature tracks well the set
point within that time interval, whereas it is uncontrolled outside.
Notice that most of the temperature set-point modulation occurs
between 10:30 and 15:30, where the occupancy profile displays its
peaks, in order to reduce the cooling power demand. A further
set-point modulation appears to be convenient when the storage is
exhausted (at 22:00). Indeed, compared to previous time steps, the
outside temperature is lower, leading to a slower transient of the zone
temperature, which in turn keeps the chiller plant inactive for a longer
period.

The chiller power request profile is shown in the second plot from
the top of Fig. 9, together with the cooling power absorbed by the
zone. Notice that the chiller power request follows the cooling load
demand when the storage is not available because it is either full or
empty (see the bottom plot of Fig. 9 where the level of cold water
in the storage tank is shown). On the other hand, when the storage
is available, the chiller power request does not have to supply the
whole load demand, and it can be set equal to a value that makes it
operate at the highest efficiency. This is actually shown in the third
plot from the top in the same figure, where the COP of the chiller
plant is very close to the maximal achievable COP for most of the
time. In those time slots when the COP is not maximal, like at the
start of the day till 3:00, the cooling power request to the chiller is
lower so that the electric power consumption is still small.

The possibility of operating the chiller plant at its highest efficiency
level is granted by the thermal storage. The bottom plot in Fig. 9
refers to the thermal storage usage by the computed policy. Charging
takes place essentially in the early hours of the day, when the building
is empty, but, interestingly enough, after a brief discharge transient
coincident with the activation of the cooling phase, the storage unit is
further charged to its maximum level to be used afterwards. Indeed,
the thermal storage compensates for power mismatches, given that
the chiller plant is driven on purpose at a constant power level for
better efficiency, and is effective in this task for most of the day

and especially in the peak hours. When the storage is exhausted the
power request to the chiller plant cannot be kept constant anymore
and follows the actual request.

To better understand the dynamics enforced by the energy manage-
ment system, a detail of Fig. 9 is shown in Fig. 10. The temperature
set-point modulation triggers a nearly instantaneous variation in the
power absorbed by the zone, which is essentially provided by the
thermal storage. This action is very rapid since it is enacted by
regulating the cold water flow. Nevertheless it takes some time to
reach the new temperature set-point, due to the thermal inertia of the
zone. When this occurs the water flow is returned to the original level,
and after a short and negligible transient, the temperature reaches a
steady state.

For comparative purposes, we consider also the case when there is
no thermal storage and no temperature set-point modulation. In this
configuration, the cooling power requested to the chiller cannot be
set constant to operate it at the best efficiency level since the chiller
is the only source of cooling power and has to supply the cooling
power requested by the zone. As a consequence it follows the profile
in Fig. 11, characterized by a large amount of cooling power request
at the onset of the cooling period to bring the zone temperature at
its set-point.

Plots of the electrical power and energy consumption of the chillers
for the two mentioned cases are reported in Fig. 12. In the absence of
storage and temperature set-point modulation the chillers are forced to
follow the load request, thus often operating at non-optimal efficiency.
This results in an overall increased electrical energy consumption, as
expected.

The value function associated to the DP equations is a good
indicator of the control system performance in terms of energy saving,
in that it provides (an estimate of) the expected value of the energy
consumption with respect to the stochasticity in the occupancy profile.
The obtained values are reported in Table II. A 21% gain is achieved
with respect to a reference policy where only the chiller commitment
is optimized, while the temperature set-point is set constant to 20◦C
and the thermal storage is not available (so that the chillers must
always supply the exact amount of requested cooling power). The
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Fig. 10. Detail of Fig. 9. From top to bottom: Cooling power absorbed by
the zone; Zone temperature (blue solid line) and optimal set-point modulation
(red dashed line).
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Fig. 11. Power flows in the system in the absence of thermal storage and
set-point modulation: the cooling power requested to the chiller plant has to
match that absorbed by the zone.
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Fig. 12. Electrical power (top) and energy (bottom) consumption: designed
policy (solid blue) and results in the absence of storage and temperature set-
point modulation (dashed red).

thermal storage is mostly to be credited for the obtained benefit, since
the temperature modulation alone can only save 2.5 kWh. Indeed,
thanks to the storage the chiller plant can be employed at highly
efficient operation regimes.

TABLE II
VALUE FUNCTION FOR THE OPTIMAL POLICY IN DIFFERENT CONDITIONS.

Thermal Set-point Value
storage modulation function

no no 107.83 kWh
no yes 105.43 kWh
yes no 87.86 kWh
yes yes 85.19 kWh

A. Comparative analysis
In this section, we compare the optimal policy performance against

that obtained with a “smart” heuristic policy. In the heuristic policy,
all the allowed zone temperature set-point modulation is used in the
range of consecutive hours where the occupancy is larger (i.e., from
10:30 to 16:30). As for the chillers cooling power request, it is set
constant and equal to 8 kW (which approximately corresponds to the
highest COP value) from 00:00 to 17:00, while from 17:00 to 24:00
it is set to zero so as to empty the storage at the very end of the
day when the minimum occupancy profile occurs. With this choice,
at the end of the day the storage will be empty for every occupancy
profile, as it is the case for the optimal policy which minimizes the
electrical energy consumption over the one-day finite horizon.

In order to provide statistical evidence of the efficacy of our
approach, we run M = 5128 Monte Carlo simulations of the electric
energy consumption where both the optimal policy and the heuristic
policy are applied to the same occupancy profiles, extracted inde-
pendently according to the probabilistic model in Section II-C. The
number M of simulations is set according to Hoeffding’s inequality
so as to obtain an accuracy ε = 1 kWh with confidence larger than of
equal to 1−δ = 0.99 in the estimation of the average electric energy
consumption.

Fig. 13. Histograms of the electric energy consumption obtained with M =
5128 simulations: optimal policy (red) and heuristic policy (green).

The resulting histograms are plotted in Fig. 13 and clearly show
that the optimal policy has a better performance since its histogram
is shifted to lower values than that of the heuristic policy. This is
further witnessed by the empirical mean value, which is equal to
86.57 kWh for the optimal policy and 91.04 kWh for the heuristic
policy. As a side remark, note also that the empirical mean obtained
for the optimal policy is very close to the value 85.19 kWh reported
in Table II for the same configuration, although it differs more than
the value set for the accuracy ε = 1 kWh. This is not surprising since
the value function is computed based on an approximate quantized
model with the state re-initialized to a quantized value on the grid
every τ minutes, and, as such it is only an estimate of the mean.

Fig. 14 represents the same plots of Fig. 9 for the heuristic
policy applied to the nominal occupancy profile. The electric energy
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Fig. 14. Performance of the heuristic policy in the nominal occupancy case. From top to bottom: Zone temperature (blue solid line) and set-point modulation
(red dashed line); Cooling power absorbed by the zone (blue solid line) and requested to the chiller plant (red dashed line); Actual (blue solid line) and
maximum chiller plant COP; Cooling power request to the thermal storage (blue solid line, left axis) and level of the cold water in the storage tank (red
dashed line, right axis).

consumption in this case is 90.32 kWh while it is 85.55 kWh when
the optimal policy is applied.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered the optimal energy management
of a building cooling system with thermal storage and addressed
its solution through a procedure that was suggested in [2] with
reference to a deterministic simpler setting with no storage unit. The
procedure is based on the integration of nonlinear static optimiza-
tion into dynamic programming and requires the abstraction of the
stochastic hybrid system under consideration to a controlled Markov
chain for the actual computation of the policy in a tabular, easy
to implement, form. A parallel implementation of the approximate
dynamic programming solution through GPU-accelerated computing
has been adopted to speed up the policy calculation.

The proposed framework is currently extended to the case of a
micro-grid that includes further components, such as local electric
power consumption due to electric appliances and generation from
renewable energy sources or via co-generation units. The presence
of these additional elements offers additional flexibility to the energy
management system, but also makes the energy management task
more difficult to solve because of the growth of the state space
dimension and the further stochastic elements.
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APPENDIX: PROOF OF PROPOSITION 1
Note that α?

i [Qc] can be expressed as:

α
?
i [Qc] = (1−α

?
n [Qc])θi[Qc] (25)

where 0 ≤ θi[Qc] ≤ min{Qmax
c,i /Qc,1}, i = 1, . . . ,n − 1, and

∑
n−1
i=1 θi[Qc] = 1. We next show that

θi[Qc] = β
?
i [(1−α

?
n [Qc])Qc], i = 1, . . . ,n−1. (26)

Indeed, by the definition of β ?
i (Qc) as the optimizer for problem (11),

and denoting by P?
e,i[Qc] the optimal value of Pe,i obtained by solving

(10), we have that

n−1

∑
i=1

Pe,i[β
?
i [(1−α

?
n [Qc])Qc] · (1−α

?
n [Qc])Qc]

≤
n−1

∑
i=1

Pe,i[θi[Qc] · (1−α
?
n [Qc])Qc]

=
n−1

∑
i=1

Pe,i[α
?
i [Qc]Qc] =

n−1

∑
i=1

P?
e,i[Qc],

which entails that
n−1

∑
i=1

Pe,i[β
?
i [(1−α

?
n [Qc])Qc] · (1−α

?
n [Qc])Qc]

+P?
e,n[Qc]≤

n

∑
i=1

P?
e,i[Qc],

and proves (26).
Now we only need to prove (13), which implies (14) given that

equations (26) and γ?2 [Qc] = 1− γ?1 [Qc] hold.
Since γ?1 and γ?2 are the solution to (12), we have that

P?
e,[1,n−1][γ

?
1 [Qc]Qc]+Pe,n[γ

?
2 [Qc]Qc]

= P?
e,[1,n−1][(1− γ

?
2 [Qc])Qc]+Pe,n[γ

?
2 [Qc]Qc]

≤ P?
e,[1,n−1][(1−α

?
n [Qc])Qc]+Pe,n[α

?
n [Qc]Qc].

Observe now that

P?
e,[1,n−1][(1−α

?
n [Qc])Qc]

=
n−1

∑
i=1

Pe,i[β
?
i [(1−α

?
n [Qc])Qc] · (1−α

?
n [Qc])Qc]

=
n−1

∑
i=1

P?
e,i[Qc]

where the first equality follows from the definition of β ?
i and the

second one from equation (25) combined with (26). Plugging this
result into the previous equation, we obtain

P?
e,[1,n−1][(1− γ

?
2 [Qc])Qc]+Pe,n[γ

?
2 [Qc]Qc]

≤
n−1

∑
i=1

P?
e,i[Qc]+Pe,n[α

?
n [Qc]Qc]

=
n

∑
i=1

P?
e,i[Qc],

which show that the optimal fraction of Qc to be assigned to chiller
n is α?

n [Qc] = γ?2 [Qc]. This concludes the proof.


