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Abstract 
 
In Locusta migratoria, activation of phenoloxidase in the haemolymph in response to 
injection of laminarin is age-dependent: being absent in fifth instar nymphs and newly 
emerged adults, and only becoming evident four days after the final moult. This 
pattern of change in phenoloxidase activation correlates with the pattern of change in 
the concentration of apolipophorin-III (apoLp-III) in the haemolymph. Injection of a 
conspecific adipokinetic hormone (Lom-AKH-I) has no effect on the phenoloxidase 
response in nymphs or newly emerged adults but, in adults older than four days, co-
injection of the hormone with laminarin prolongs the activation of phenoloxidase in 
the haemolymph: a similar enhancement of the response to laminarin is observed in 
locusts that have been starved for 48 h but not injected with AKH-I. During most of 
the fifth stadium, injection of laminarin results in a decrease in the level of 
prophenoloxidase in the haemolymph; an effect that is not observed in adults of any 
age. Marked changes in the concentration of apoLp-III, and the formation of LDLp in 
the haemolymph, are observed after injection of laminarin (or LPS) and these are 
remarkably similar, at least qualitatively, to those that occur after injection of AKH-I. 
The involvement of apoLp-III in the activation of locust prophenoloxidase in response 
to immunogens is discussed.  
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1. Introduction 
 

Insects lack specific immunoglobulins, instead relying upon binding proteins present 

in the plasma or haemocytes to recognise non-self material (Ratcliffe et. al., 1985). 

This recognition leads to activation of the immune system, involving cellular events 

such as phagocytosis and nodulation, and humoral events such as activation of a 

prophenoloxidase cascade in the haemolymph that produces effector molecules such 

as cytotoxic quinones (Ashida & Brey, 1998). Hormones such as corticosteroids 

regulate certain aspects of the mammalian immune response, and there is evidence 

that ecdysteroids, opiate peptides and biogenic amines exert effects on insect immune 

responses (Gillespie et al., 1997). All of this suggests that there may be considerable 

interaction between the insect endocrine and immune systems.  

 

The lipophorins that carry lipids in the haemolymph are components of the clot that 

forms in response to wounding, and they also inhibit haemocyte adhesion in 

Periplaneta (Coodin and Caveney, 1992) and Galleria (Mandato et al., 1996). A 

further component of the lipid transport system, the exchangeable apolipophorin III 

(apoLp-III) has immune-stimulating ability in Galleria (Weisner et al., 1997; Halwani 

et al., 1999; Dettloff et al., 2001a). Two bacterial lipopolysaccharide (LPS) binding 

proteins were isolated from Galleria haemolymph, one of which may correspond to 

apoLp-III, based on its molecular weight (Dunphy & Halwani, 1997). The lipid 

transport system in locusts involves exchangeable apolipophorins, which associate 

with the lipophorins (see Goldsworthy, 1983; Wheeler & Goldsworthy, 1983ab; 

Goldsworthy et al., 1985) under endocrine control from adipokinetic hormones 
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(AKHs) released from the corpora cardiaca (see Goldsworthy et al., 1972a). AKH 

causes mobilisation of lipid from the fat body by stimulating the conversion of 

triacylglcerols to diacylglycerols. Thus, if components of lipid metabolism are 

intimately involved in certain immune reactions, it seems likely that an investigation 

of the interactions between those endocrine mechanisms controlling lipid metabolism 

and the immune system could be appropriate. 

 

Goldsworthy et al. (2002) demonstrated in the African migratory locust, Locusta 

migratoria, that co-injection of AKH with laminarin, (mainly a β,1-3 glucan similar 

to that found in fungal cell walls) or preparations of LPS from a number of gram-

negative bacteria prolongs the activation of prophenoloxidase in the haemolymph in 

vivo in a dose-dependent manner.  The effectiveness of AKH in bringing about a lipid 

mobilisation response is age-dependent in Locusta, with markedly poorer lipid 

mobilisation in response to AKH in fifth instars and newly emerged adults (Mwangi 

and Goldsworthy, 1977a).  This may be due in part to the lower concentration of 

apoLp-III present in the haemolymph of fifth instar nymphs and young adults 

(Mwangi & Goldsworthy, 1977b; De Winther et al., 1996). The aim of this study was 

therefore to investigate if there are age-related changes in the activation of the 

prophenoloxidase cascade brought about by injection of immunogens, and to test 

whether these correlate with changes in the lipophorins and apolipophorins in the 

haemolymph.  
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2. Materials and Methods 

 

2.1 Insects 

A laboratory colony of Locusta migratoria migratorioides (R. & F.) was reared under 

crowded conditions at 30°C in a LD 12:12h photocycle, and fed daily with fresh grass 

and wheat seedlings supplemented with bran. Under these conditions the fifth stadium 

lasts 8 days. Male and female insects were separated after adult emergence. Male and 

female fifth instars, and male adults were used in this study. For starvation 

experiments, locusts were deprived of food for 48h prior to experiments and given 

access to water ad libitum.  

 

2.2 Chemicals 

Laminarin was purchased from Sigma Chemical Co. and 5mg/ml stock solutions were 

dissolved in insect saline (7.5g NaCl, 0.375g KCl /L). Lipopolysaccharide from 

Pseudomonas aeroginosa (phenolic extraction) was purchased from Sigma Chemical 

Co. (catalogue no. L-9143) and dissolved in insect saline at a concentration of 

4 mg/ml. Lom-AKH-I was purchased from Novabiochem and stock solutions were 

made up in 80% methanol at a concentration of 20 pmol/ul. This stock solution gave a 

single peak on a reversed phase C18 HPLC column with the expected retention time of 

Lom-AKH-I, and was quantified by measuring the tryptophan fluorescence in an 

LS50B Fluorimeter (Ex 280 nm, Em 348 nm), and calibrating against a standard 

solution of tryptophan. Dopamine was purchased from Sigma Chemical Co. and was 

dissolved in 10mM phosphate buffer, pH 5.9 (3mg/ml) just before use.  
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2.3 Injections and samples of haemolymph  

Injections of test materials were performed using plastic pipette tips with a stainless 

steel needle held in the bore by friction. Using these, 10μl volumes of laminarin or 

LPS, with or without AKH-I, were taken up accurately and injected into the 

haemocoel by inserting the needle between two abdominal terga and expelling the 

sample using an automatic pipettor. The abdomen was palpated gently after injection 

to mix the contents of the haemocoel. Samples of haemolymph were taken from fifth 

instar and adult locusts without cooling or anaesthesia, from a small puncture in the 

arthrodial membrane at the base of a hind leg. A calibrated capillary tube was used to 

take up 5μl of haemolymph immediately prior to injection, and either 90 min or 3 h 

after injection. 

 

2.4 Measurement of phenoloxidase and prophenoloxidase activity 

Phenoloxidase activity was measured by blowing 5μl of fresh haemolymph 

immediately into 95μl of 10mM sodium phosphate buffer, pH 5.9. After 

centrifugation (10,000 x g, at 4°C for 5 min), 40μl of this haemolymph/buffer 

supernatant were pipetted into a well of a microtitre plate. Phenoloxidase activity was 

assessed by determining the initial linear increase in absorbance at 492 nm over 40 

min after addition of 160 μl of dopamine (3 mg/ml sodium phosphate buffer). 

Absorbances were read in a Labsystems Multiskan Bichromatic plate reader. 

Goldsworthy et al. (2002) demonstrated that the protein levels in the 

buffer/haemolymph supernatant remained unchanged after injection of laminarin 

whether or not locusts were co-injected with AKH-I, and so enzyme activity is 

expressed here in absorbance units (au) at 492 nm per minute per microlitre of 
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haemolymph.  Prophenoloxidase activity was determined after activation in vitro by 

treatment with methanol: 40μl of the haemolymph/buffer supernatant was mixed with 

40μl of absolute methanol and 10μl of the resulting solution was mixed with 190μl of 

dopamine in a microtitre plate well and enzyme activity recorded as before. 

 

2.5 Isolation of apolipophorin-III (apoLp-III) 

ApoLp-III was purified using a combination of the methods of Van der Horst et al. 

(1991) and Weisner et al. (1997). Haemolymph was taken from virgin female locusts 

> 15 days old and was immediately pooled in liquid nitrogen to prevent coagulation 

and melanisation. The frozen pellets of haemolymph were then transferred to 

microcentrifuge tubes and heated immediately at 96 °C for 20 min, after which 

centrifugation at 10,000 x g for 5 min yielded a clear yellow supernatant containing 

predominantly apoLp-III. The pellet was agitated and centrifuged a second and third 

time to maximise the yield of apoLp-III. The pooled supernatant was applied to a PD-

10 (Pharmacia Biotech) desalting column, and the proteins eluted according to the 

manufacturer’s instructions in 3.5 ml of deionised water and then centrifuged under 

vacuum to dryness overnight. The dried material was dissolved in 500μl of 20mM 

ammonium acetate and applied to a DEAE Sepharose column, equilibrated in 20mM 

ammonium acetate (pH 6.5), and eluted with 120mM ammonium acetate (pH 6.5) at a 

flow rate of 1 ml/min. Fractions containing apoLp-III were identified by native PAGE 

(see below), pooled and lyophilised.  

 

2.6 Electrophoresis of haemolymph proteins  

Vertical polyacrylamide gel electrophoresis (PAGE) was carried out on a LKB 

Midget Electrophoresis unit, according to the manufacturer’s instructions. Native 
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PAGE was performed on 5% total solids content (%T), and 2% ratio of cross-linker to 

acrylamide monomer (%C) acrylamide gels, with a 3% T, 2% C stacking gel, using a 

continuous Tris-Glycine buffer system, pH 9.5, 500 V, 15mA at 10°C (Wheeler & 

Goldsworthy, 1983a). Protein bands were stained with Coomassie Blue R-250.  

 

2.7 Isolation of high density lipophorin (HDLp), low density lipophorin (LDLp) and 

apoLp-III by selective precipitation 

High and low density lipophorins and ApoLp-III in the haemolymph were selectively 

precipitated using the method of Goldsworthy et al. (1985). A 5μl sample of fresh 

haemolymph was blown into 200μl of heparin solution (0.375% heparin sodium salt 

in 25mM CaCl2, 3.8mM NaCl). After mixing, and centrifugation (13,000 x g, for 4 

min) the pellet formed contained HDLp. The decanted supernatant was transferred to 

a separate tube and 100μl of 5% EDTA were added and mixed. After centrifugation 

(13,000 x g, for 4 min) of the EDTA/supernatant mixture, the pellet obtained 

contained LDLp. The decanted supernatant was then mixed with 600μl of acetone to 

precipitate the apoLp-III. After centrifugation (13,000 x g, for 4 min) the pellet was 

washed to remove EDTA and acetone (which interfere with the protein determination) 

before re-centrifugation. The final protein pellet was solubilised in either 

electrophoresis buffer or 0.5M NaOH. 

 

2.8 Measurement of lipid concentration in HDLp and LDLp pellets 

Total lipid (measured as vanillin-positive material) was measured as described 

previously (Goldsworthy et al., 1972b). Centrifuge pellets (from 5μl of haemolymph) 

were solubilised in 1 ml of concentrated sulphuric acid and transferred to glass tubes, 

in which the solution was heated for 10 min at 100°C. After cooling to room 
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temperature, 200μl of this solution were added to a fresh tube and 1 ml of vanillin 

reagent (1.98g vanillin, 668ml concentrated orthophosphoric acid, 332 ml water /L) 

was added, mixed immediately and left for 15 min. Lipid concentration was 

determined by reading the absorbance of each sample at 540 nm in a Labsystems 

Multiskan Bichromatic plate reader against a standard solution of cholesterol.  

 

2.9 Measurement of protein concentration 

The protein concentration in the acetone-precipitated pellet (apoLp-III) was measured 

using a modification of the method described by Schacterle and Pollack (1973). 

Precipitated protein was dissolved in 200μl of 0.5M NaOH, and 200μl of copper 

reagent (10% NaHCO3, 0.1% (CHOH.COOK)2.½H2O), 0.05% CuSO4) were added, 

mixed, and left for 10 min. A volume of 900μl of Folin-Ciocalteu phenol reagent (1M 

diluted x 9 with distilled water) was added and the resulting mixture heated for 5 min 

at 55°C. After cooling, sample colour development was determined at 620 nm, using 

a Labsystems Multiskan Bichromatic plate reader. ApoLp-III, purified as described 

above using DEAE Sepharose, was used to construct a calibration curve. 

2.10 Statistical analysis 

Data are expressed as means ± S.E. Pearson’s sample correlation coefficients were 

calculated to examine the relationships throughout the fifth and adult stadia between: 

concentration of apoLp-III in the haemolymph; lipid mobilisation in response to 

injection of AKH-I; and the increase in phenoloxidase in the haemolymph in response 

to injection of laminarin with AKH-I. Data for LDLp and apoLp-III were analysed 

using paired t-tests or one-way ANOVA as appropriate. Nodule data were subjected 

to √p- transformation prior to analyses using one-way ANOVA. The level of 

significance was taken as P ≤ 0.05 and all tests were undertaken using Minitab. 
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3. Results 

 

3.1 Developmental changes in activation of phenoloxidase in the haemolymph in 

response to injection of laminarin  

Fifth instar nymphs and adult male locusts were injected with 20μg of laminarin or 

with 20μg of laminarin plus 20 pmol of AKH-I. Figure 1 shows that injection of 

laminarin alone into adult locusts > 5 days after emergence resulted in activation of 

haemolymph prophenoloxidase, which remained elevated 3 h after injection. Co-

injection of 20 pmol AKH-I resulted in the maintenance of even higher levels of 

phenoloxidase activity 3 h after injection. This response was not present in fifth instar 

nymphs and newly emerged adults, nor was there any phenoloxidase activation in 

such locusts earlier than 3 h after injection (data not shown). A response was present 

on day 4 of adult life and remained up to day 45 (Fig. 1). Figure 2 illustrates how the 

pattern of appearance of the phenoloxidase response to laminarin and AKH, correlates 

significantly (r = 0.653, P = 0.016) with the lipid mobilisation response to AKH in 

Locusta shown by Mwangi & Goldsworthy (1977a).  

 
3.2 Changes in the concentration of apoLp-III in the haemolymph during development 

The concentration of ApoLp-III in the haemolymph was measured throughout the 

fifth and adult stadia using heparin-EDTA-acetone precipitation. Native PAGE of the 

proteins in the pellet obtained from this precipitation showed the presence of two 

bands of apoLp-III, identical to those purified from haemolymph as described 

previously (data not shown). There was a low concentration (c. 2.5mg/ml) of these 

proteins present in the haemolymph at the beginning of the fifth stadium, but the 

concentration rose slowly during the course of the stadium (Fig. 2). The concentration 
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remained relatively low after the moult, but then increased steadily to reach a 

maximum of c. 25mg/ml at day 14, which was maintained for some days but declined 

slowly as the locusts aged further (Fig. 2).  This pattern of change of the concentration 

of apoLp-III in the haemolymph is correlated with the lipid mobilisation response to 

AKH (r = 0.804, P< 0.001), and with the activation of prophenoloxidase in the 

haemolymph in response to injection of laminarin and AKH-I (r = 0.643, P = 0.007) 

 
3.3 Changes in prophenoloxidase in the haemolymph during development and in 

response to injection of laminarin with and without AKH-I 

Prophenoloxidase activity in the haemolymph was measured, after activation with 

methanol in vitro, alongside that of phenoloxidase prior to, and 3 h after injection. 

The levels of prophenoloxidase were generally an order of magnitude higher than 

those of phenoloxidase. There was no significant change in the resting level of 

prophenoloxidase in the haemolymph throughout the adult stadium, nor did injection 

of laminarin with or without AKH-I significantly change its activity. Resting levels of 

prophenoloxidase showed some variability throughout the fifth stadium, with no 

consistent trend (Fig. 3). Injection of laminarin (with or without AKH-I) in the first 

two days of the fifth stadium had little effect on prophenoloxidase activity but from 

day 3 onwards, a decrease in prophenoloxidase was measured after laminarin 

injection regardless of whether AKH-I was co-injected or not, and by day 6 onwards 

very little activity remained in the haemolymph after injection with laminarin.  

3.4 The effect of starvation on the phenoloxidase activity in the haemolymph in 

response to injection of laminarin 

Figure 4 shows that in adult locusts, starvation for 48h resulted in significantly greater 

increases in the phenoloxidase activity in the haemolymph (P<0.001, one-way 

ANOVA) in response to injection of laminarin, compared with the response to 
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injection of laminarin into fed animals. Phenoloxidase activation in starved adults in 

response to laminarin was of the same magnitude as that measured in response to 

injection of laminarin and AKH-I in fed adults (Fig. 4).  Starvation did not 

significantly affect the phenoloxidase response to co-injection of laminarin and 

AKH-I in adults. Starvation had no significant effect on phenoloxidase activation in 

fifth instar nymphs in response to laminarin with or without co-injection of AKH- I 

(Fig. 4).  

 

 3.5 Electrophoresis of whole haemolymph before and after injection of laminarin or 

LPS  

The purified apoLp-III used as a standard in these experiments comprised two protein 

bands, and this was consistent with the apoLp-III present in the haemolymph (see also 

Wheeler & Goldsworthy, 1983a). Native PAGE of whole haemolymph from adult 

males indicated a decrease in apoLp-III levels after injection with AKH-I as expected 

but, surprisingly, also after injection with laminarin or LPS (Fig. 5). Increased 

staining in a slowly-moving band that hardly entered the running gel was also 

observed after injection of AKH-I, laminarin or LPS. These gels were not stained for 

lipid, but the changes in this material are consistent with that of LDLp formation (see 

Wheeler & Goldsworthy, 1983ab). No such changes were observed after injection of 

saline.   

 

3.6 Direct measurement of the changes in concentration of apoLp-III  

The amounts of HDLp, LDLp and apoLp-III in haemolymph from locusts were 

determined by selective precipitation immediately prior to injection and 90 min after 

injection of 10μl saline (control), 20 pmol of AKH-I, 100 μg of laminarin or 100μg of 
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LPS. No changes in apoLp-III occurred after injection of saline. Injection of AKH-I 

caused a dramatic decrease in the level of apoLp-III in the haemolymph from 14μg/μl 

to 2.5μg/μl in 18 day-old male locusts (Fig. 6). Adult locusts injected with laminarin 

or LPS also showed significant decreases (P = 0.001, P < 0.001 respectively, paired t-

tests) in the haemolymph concentration of apoLp-III, but these were less than those 

seen in those injected with AKH-I. Qualitatively similar changes (but smaller than 

those observed in adults) in the concentration of apoLp-III were seen in fifth instars in 

response to injection of AKH-I (P < 0.001, paired t-test) and laminarin (P = 0.001, 

paired t-test), but there was no significant change in response to injection of LPS (Fig. 

6).  

 

3.7 Changes in the lipid content of lipophorins in the haemolymph after injection of 

test materials   

Precipitation with heparin of lipophorins in whole haemolymph from resting mature 

male locusts yielded a pellet representing the haemolymph HDLp fraction, and the 

decanted supernatant produced a second pellet representing the LDLp fraction when 

EDTA was added. The lipid content in both pellets was measured before and after 

injection of test materials. Figure 7 shows that in adults, saline injection produced no 

significant changes in the lipid content of either pellet, whereas injection of AKH-I 

resulted in a characteristic decrease (P<0.05, paired t-test) in the lipid associated with 

HDLp and a dramatic increase in the lipid associated with LDLp (P<0.001, paired t-

test).  Injections of laminarin (P<0.001, paired t-test) or LPS (P=0.005, paired t-test) 

resulted in similar, but less dramatic, changes in the levels of lipid associated with 

LDLp, but there were no significant changes (paired t-test) in the lipid content of 

HDLp. Qualitatively similar changes in LDLp were measured in fifth instars in 
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response to injections of AKH-I (P<0.001, paired t-test), laminarin (P<0.001, paired 

t-test) or LPS (P=0.031, paired t-test), but the amount of lipid associated with LDLp 

was always substantially lower than that in adults. The concentration of lipid 

associated with HDLp in fifth instars decreased significantly (paired t-tests) in 

response to injection of saline (P<0.001), AKH-I (P<0.001), laminarin (P=0.006), or 

LPS (P=0.013).  
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4. Discussion 

In adult locusts, AKH-I prolongs the phenoloxidase response in vivo to injected 

laminarin, while injections of LPS on their own fail to activate prophenoloxidase 

activity unless combined with AKH-I (Goldsworthy et al., 2002). The present study 

shows that the effects of injected laminarin are enhanced in locusts starved for 48h; 

starvation can thus substitute at least partly for the effects of injected AKH. Starvation 

for that period doubles the concentration of lipid in the haemolymph of adults but, 

although diglycerides are the major constituents of this elevated lipid, there is no 

evidence that this is as a result of increased titres of AKH in Locusta (Cheeseman et 

al., 1976) or in Schistocerca (Candy, 2002).  

 

The pattern of change of the phenoloxidase response to laminarin injection in the 

haemolymph of adult locusts correlates moderately well with that for  lipid 

mobilisation in response to AKH shown by Mwangi and Goldsworthy (1977a), and 

with that for changes in the concentration of apoLp-III in the haemolymph. As shown 

in this study, the levels of apoLp-III in the haemolymph are greater in adults (12 -25 

mg/ml in adults over 5 days old) than in nymphs and newly emerged adults (4-

7mg/ml). Such changes in the concentration of the apolipophorin (see also De 

Winther et al., 1996) may, in part, explain the age-related changes in both lipid 

mobilisation (Mwangi and Goldsworthy, 1977a) and may relate to the phenoloxidase 

responses to injection of laminarin seen here. Although the strongest correlation exists 

between the pattern of change in the concentration of apoLp-III and that of lipid 

mobilisation in response to AKH-I, it is significant that all three parameters increase 

2-3 days after adult emergence. 
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There is no effect of co-injection of AKH-I on the phenoloxidase response to 

laminarin in fifth instar nymphs or young adults, in the way that Goldsworthy et al., 

(2002) have shown in mature adults and which is also a feature of this study. 

Although a detailed developmental study during the fifth stadium and onwards 

comparable with that described here has not been undertaken with LPS, results with 

that immunogen are broadly similar to those with laminarin seen here, except that 

injection of LPS never activates prophenoloxidase at any age. Thus, co-injection of 

AKH with LPS brings about a full phenoloxidase response in mature adults, but not in 

fifth instars or newly emerged adults (Goldsworthy et al., 2003b). The data presented 

here suggest that the lipid mobilisation that occurs due to injection of AKH-I, or as a 

result of starvation, may influence the activation of phenoloxidase.  

 

What could be the relationship between levels of haemolymph lipid, apoLp-III and 

the phenoloxidase response? ApoLp-III is the name given to proteins that are major 

components of haemolymph protein in many insects. Although named CL-proteins at 

the time, two haemolymph proteins were discovered by Mwangi and Goldsworthy 

(1977b) to play an important role in lipid transport in locusts: changes in their titre in 

the haemolymph of nymphs and adults were correlated with variations in the 

responsiveness of the lipid mobilising system to adipokinetic hormones (Mwangi and 

Goldsworthy, 1977a), and they were shown to be exchangeable apolipophorins 

(Wheeler and Goldsworthy, 1983ab; Goldsworthy et al., 1985). Similar exchangeable 

apolipophorins are present in a number of Lepidoptera, in which they have been 

studied extensively (see Narayanaswami and Ryan, 2000).  
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Molecules of apoLp-III comprise five elongated amphipathic helices connected by 

short loops in a cylindrical arrangement, with hydrophobic residues pointing inward, 

and the hydrophilic residues directed outward (see Kanost et al., 1995; 

Narayanaswami and Ryan, 2000). In the lipid-free state, they behave as globular 

proteins with a loosely folded structure. However, when apoLp-III is lipid-associated, 

a major conformational change occurs; unfolding takes place around a putative hinge 

region (Niere et al., 2001) to expose a large surface area of hydrophobic residues that 

can interact with lipids. ApoLp-III is thought to increase the capacity of lipophorin to 

incorporate diacylglycerol by stabilizing the lipid-water interface (Kawooga et al., 

1986). Increased lipid transport in the haemolymph during locust flight is triggered by 

the release of adipokinetic hormones that activate fat body triacylglycerol lipase, 

converting triacylglycerol to mono- and then diacylglycerol (see Goldsworthy, 1983).  

 

Another function for apoLp-III in insect immunity, in addition to its role in lipid 

metabolism, has been postulated. Injected lipid-associated apoLp-III stimulates anti-

microbial activity in the haemolymph of the wax moth Galleria mellonella (Wiesner 

et al., 1997; Dettloff et al., 2001a). The fact that only the lipid-associated form of the 

protein exerts this effect has led to the hypothesis that disturbances of the insect’s 

homeostasis, evidenced by rearrangement of haemolymph lipophorins, could be 

recognised by a particular population of haemocytes, which would then be stimulated 

to activate the synthesis of anti-microbial peptides by the fat body (Dettloff et al., 

2001a). This hypothesis is not entirely consistent with the observation that injection of 

AKH alone (even with the rearrangement of haemolymph lipophorins and resultant 

lipid association of apoLp-III) does not increase phenoloxidase activity (Goldsworthy 

et al., 2002).  
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Crude plasma from fifth instar locust nymphs precipitates two proteins when 

incubated with laminarin in vitro (Duvic & Brehélin, 1998). On the basis of their 

molecular weights, these proteins could correspond with locust lipophorins. However, 

no changes in the concentration of haemolymph total protein are observed after 

injections of laminarin or LPS in adults (Goldsworthy et al., 2002), or in nymphs  

(unpublished observations), which would be the case if lipophorins were precipitating. 

Furthermore, electrophoresis of haemolymph proteins from adults shows conversion 

of HDLp to LDLp after injection of laminarin or LPS, rather than any decrease in 

total lipophorins. The high concentration of two larval-specific storage proteins in 

haemolymph from nymphs (Ancsin & Wyatt, 1996), makes it difficult to identify the 

lipophorin bands by PAGE, but the small decreases in apoLp-III after injection of 

laminarin or LPS can be seen in the electrophoretograms (unpublished observations). 

Further, the quantitative analysis showis that the laminarin-induced changes in 

lipophorins and proteins  in nymphs are qualitatively similar to those in adults. 

Furthermore, the changes in the lipid content of LDLp in response to laminarin or 

LPS injection parallel those observed after injection of AKH-I in both fifth instars and 

adult locusts. The changes in the lipid content of HDLp in both adults and fifth instars 

are inconsistent, but it should be noted that they result from two dynamic processes: 

conversion of HDLp to LDLp and the lipid loading initially of the HDLp and then of 

LDLp 

 

It is tempting to suggest that these changes in lipophorins are indicative of the release 

of endogenous AKH-I as part of the locust immune response. However, such a 

hypothesis is not consistent with the fact that injection of LPS does not activate 
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prophenoloxidase in the haemolymph of adult locusts unless AKH-I is co-injected 

(Goldsworthy et al., 2002). Endogenous release of AKH-I also seems unlikely as no 

change in AKH-I titre has been detected in the haemolymph after injection of LPS, 

using either an enzyme-linked immunosorbant assay (G.J. Goldsworthy and M.E. 

Lightfoot, unpublished observations) or a radioimmunoassay (D.J. Candy and G.J. 

Goldsworthy, unpublished observations). The lipid-loading of haemolymph 

lipophorins in response to injection of laminarin or of LPS into locusts is consistent 

with the findings of Dettloff et al. (2001b) who demonstrated not only the formation 

of LDLp in Galleria larvae in response to injection of heat-killed bacteria, but also 

LDLp-induced superoxide radical production in isolated haemocytes. Significantly, 

apoLp-III-deficient HDLp did not enhance this superoxide radical formation (Dettloff 

et al., 2001b). The precise mechanism for these changes remains to be elucidated. 

 

Lipophorin has been implicated in reducing the toxicity of LPS in both mammals 

(Feingold et al., 1995, Kato et al., 1994b) and invertebrates (Kato et al., 1994a; 

Kitchens et al., 1999). Injection of LPS does not result in the activation of 

phenoloxidase in the haemolymph of resting locusts (Goldsworthy et al., 2002), when 

HDLp is the predominant lipophorin, perhaps because the circulating HDLp can 

accommodate/detoxify LPS thereby preventing prophenoloxidase activation. When 

LDLp becomes the predominant lipophorin under the influence of injected AKH-I 

this may no longer happen, possibly by the association of apoLp-III with LDLp 

preventing LPS from accessing the lipid interior of LDLp. ApoLp-III may also 

provide protection against LPS toxicity in Galleria. Two LPS-binding proteins have 

been identified in Galleria by Dunphy & Halwani (1997), one of which, according to 

its molecular weight, may correspond to apoLp-III. In Galleria larvae, this protein 
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removed the inhibition of prophenoloxidase activation by LPS. If apoLp-III functions 

in a similar way in Locusta, it is difficult to explain the absence of a phenoloxidase 

response to LPS injection alone (Goldsworthy et al., 2002), especially because the 

results presented here demonstrate clearly that lipid-loading of lipophorin in the 

haemolymph occurs in a manner similar to that after injection of laminarin (which 

does activate prophenoloxidase), with associated decreases in the concentration of 

free apoLp-III.  

 

The conventional responses shown by insects to immune challenge comprise changes 

in cell activity: initially, phagocytosis, nodule formation, and activation of the 

prophenoloxidase cascade; and the eventual synthesis of antimicrobial compounds in 

the fat body. From this study it is clear that there are other, earlier, metabolic 

responses in the fat body that cause lipid-loading and rearrangement of the 

lipophorins in the haemolymph. This conversion of HDLp to LDLp, and the decrease 

in the concentration of free apoLp-III are the same changes that occur after injection 

of AKH-I or during starvation. Intriguingly, these latter experimental procedures, 

while not activating the immune system on their own, enhance the responses to 

immunogens: presumably by augmenting some of the naturally-occurring metabolic 

changes that are part of the immune response. The mechanisms by which the 

formation of LDLp or lipid-associated apoLp-III is stimulated by immunogens, or by 

which these molecules interact with the immune system remain to be investigated. 
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Figure 1 -  Phenoloxidase activity in the haemolymph of Locusta adults and fifth instar nymphs before 

(open symbols) and 3 h after injection (solid symbols) of laminarin (A) and laminarin and AKH-I 

(B). Data points and vertical lines represent means ± S.E. (n = 10). 
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Figure 2 – Comparison of the changes in the concentration of apoLp-III in the haemolymph 

throughout development from the fifth stadium to day 45 of adult life with the lipid mobilisation 

response to AKH (open symbols, data redrawn from Mwangi and Goldsworthy, 1977a), and the 

changes in phenoloxidase activity in the haemolymph (between 0 and 3h) after co-injection with 

laminarin and AKH (broken line, data redrawn from Fig. 1). Solid symbols and vertical lines 

represent the means ± S.E.  (n=10) for apoLp-III concentration in the haemolymph. 
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Figure 3 - Prophenoloxidase activity in the haemolymph of Locusta adults and fifth  instar nymphs 

before (open symbols) and 3 h after injection (solid symbols) of laminarin (A), and laminarin and 

AKH-I (B).  Data points and vertical lines represent means ± S.E. (n = 10) 
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Figure 4 – The effect of starvation for 48h on the activation of phenoloxidase in the haemolymph  in 

response to injection of laminarin (open bars), and  laminarin and AKH-I  (shaded bars) in fifth 

instar nymphs and adult locusts (age 15 - 18 days). Data from fifth instars and adults were 

analysed using a one-way ANOVA. The phenoloxidase response to laminarin in fed locusts is 

significantly different from all other adult data shown.  There is no significant activation of 

phenoloxidase in the haemolymph of fed or starved fifth instars in response to injection of 

laminarin or of laminarin and AKH-I. Bars and vertical lines represent the means ± S.E. (n=10). 
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Figure 5 – Gel A - native PAGE of whole haemolymph from adult locusts injected with 10μl saline, 20 

pmol AKH-I, 50μg laminarin or 40μg LPS  Samples of haemolymph were taken immediately 

before and 90 min after injection. Gel B – native PAGE of whole haemolymph from adult locusts 

immediately before and 90 min after injection with 20 pmol AKH-I (first two lanes) and purified 

apoLp-III isolated from haemolymph (second two lanes).  Arrowheads indicate bands of LDLp. 
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Figure 6 – Changes in the concentration of apoLp-III in the haemolymph before (open bars) and 90 

min after (shaded bars) injection of test materials into fifth instar (age 5 days) and adult male 

locusts (age 18 days).  Bars and vertical lines represent means ± S.E. (n=10). Asterisks denote 

statistically significant differences (using paired t-tests) between 0 and 90 min values (see text for 

P values) 
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Figure 7 – Changes in the amount of lipid associated with HDLp (heparin precipitated material) and 

LDLp (EDTA precipitated material) in the haemolymph before (open bars) and 90 min after 

(solid bars) injection of test materials into fifth instars (age 5 days) and adult male locusts (age 18 

days). Bars and vertical lines represent means ± S.E. (n=10). Asterisks denote statistically 

significant differences (using paired t-tests) between 0 and 90 min values (see text for P  values).  
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Legends to figures 

Figure 1 -  Phenoloxidase activity in the haemolymph of Locusta adults and fifth 

instar nymphs before (open symbols) and 3 h after injection (solid symbols) 

of laminarin (A) and laminarin and AKH-I (B). Data points and vertical 

lines represent means ± S.E. (n = 10). 

Figure 2 – Comparison of the changes in the concentration of apoLp-III in the 

haemolymph throughout development from the fifth stadium to 45 day old 

adult locusts with the lipid mobilisation response to AKH (open symbols, 

data redrawn from Mwangi & Goldsworthy, 1977a) and the changes in 

phenoloxidase activity in the haemolymph (between 0 and 3h) after co-

injection with laminarin and AKH (broken line, data redrawn from Fig.1). 

Solid symbols and vertical lines represent the means ± S.E.  (n=10) for 

apoLp-III concentration in the haemolymph. 

Figure 3 - Prophenoloxidase activity in the haemolymph of Locusta adults and 

fifth instar nymphs before (open symbols) and 3 h after injection (solid 

symbols) of laminarin (A), and laminarin and AKH-I (B).  Data points and 

vertical lines represent means ± S.E. (n = 10) 

Figure 4 – The effect of starvation for 48h on the activation of phenoloxidase in 

the haemolymph in response to injection of laminarin (open bars), and  

laminarin and AKH-I  (shaded bars) in fifth instar nymphs and adult 

locusts. Fifth instar and adult data were analysed using a one-way ANOVA. 

The phenoloxidase response to laminarin in fed locusts is significantly 

different from all other adult data shown.  There is no significant activation 

of phenoloxidase in the haemolymph of fed or starved fifth instars in 

response to injection of laminarin or of laminarin and AKH-I. Bars and 

vertical lines represent the means ± S.E. (n=10). 

Figure 5 – Gel A - native PAGE of whole haemolymph from adult locusts injected 

with 10μl saline, 20 pmol AKH-I, 50μg laminarin or 40μg LPS.  Samples of 

haemolymph were taken immediately before and 90 min after injection. Gel B – 

native PAGE of whole haemolymph from adult locusts immediately before and 

90 min after injection with 20 pmol AKH-I (first two lanes) and purified apoLp-
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III isolated from haemolymph (second two lanes). Arrowheads indicate bands of 

LDLp. 

Figure 6 – Changes in the concentration of apoLp-III in the haemolymph before 

(open bars) and 90 min after (shaded bars) injection of test materials into 

fifth instar (age 5 days) and adult male locusts (age 18 days).  Bars and 

vertical lines represent means ± S.E. (n=10). Asterisks denote statistically 

significant differences (using paired t-tests) between 0 and 90 min values (see 

text for P values) 

Figure 7 – Changes in the amount of lipid associated with HDLp (heparin 

precipitated material) and LDLp (EDTA precipitated material) in the 

haemolymph before (open bars) and 90 min after (solid bars) injection of test 

materials into fifth instars (age 5 days) and adult male locusts (age 18 days). 

Bars and vertical lines represent means ± S.E. (n=10). Asterisks denote 

statistically significant differences (using paired t-tests) between 0 and 90 

min values (see text for P values).  
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