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Abstract	16	
It	is	a	great	honour	to	be	awarded	the	Fell	Muir	Prize	for	2016	by	the	British	Society	of	17	
Matrix	Biology.		As	recipient	of	the	prize	I	am	taking	the	opportunity	to	write	a	mini-review	18	
on	collagen	fibrillogenesis,	which	has	been	the	focus	of	my	research	for	33	years.		This	is	the	19	
process	by	which	triple	helical	collagen	molecules	assemble	into	centimetre-long	fibrils	in	20	
the	extracellular	matrix	of	animals.	The	fibrils	appeared	a	billion	years	ago	at	the	dawn	of	21	
multicellular	animal	life	as	the	primary	scaffold	for	tissue	morphogenesis.		The	fibrils	occur	in	22	
exquisite	three-dimensional	architectures	that	match	the	physical	demands	of	tissues;	for	23	
example	orthogonal	lattices	in	cornea,	basket-weaves	in	skin	and	blood	vessels,	and	parallel	24	
bundles	in	tendon,	ligament,	and	nerves.	The	question	of	how	collagen	fibrils	are	formed	25	
was	posed	at	the	end	of	the	nineteenth	century.		Since	then	we	have	learned	about	the	26	
structure	of	DNA	and	the	peptide	bond,	understood	how	plants	capture	the	sun’s	energy,	27	
cloned	animals,	discovered	antibiotics,	and	found	ways	of	editing	our	genome	in	the	pursuit	28	
of	new	cures	for	diseases.		However,	how	cells	generate	tissues	from	collagen	fibrils	remains	29	
one	of	the	big	unsolved	mysteries	in	biology.	In	this	review	I	will	give	a	personal	account	of	30	
the	topic	and	highlight	some	of	the	approaches	that	my	research	group	are	taking	to	find	31	
new	insights.		32	
	33	
A	brief	introduction	to	collagen	34	
There	are	several	excellent	reviews	on	the	collagen	family	and	collagen	structure	(two	such	35	
examples	are	(Bella,	2016,	Mienaltowski	and	Birk,	2014))	and	therefore	only	a	brief	account	36	
will	be	given	here.			37	

Collagens	are	a	large	family	of	proteins	that	have	three	left-handed	polyproline	II-38	
like	helices	wound	into	a	right-handed	supercoiled	triple	helix.		The	chains	have	a	repeating	39	
Gly-X-Y	triplet	in	which	glycine	is	located	at	every	third	residue	position	and	X	and	Y	are	40	
frequently	occupied	by	the	imino	acids	proline	and	hydroxyproline	(see	(Bella,	et	al.,	1994,	41	
Brodsky	and	Persikov,	2005,	Brodsky	and	Ramshaw,	1997)	and	reviewed	by	(Bella,	2016)).	42	
The	first	20-or-so	collagens	were	identified	in	animal	tissues	at	the	protein	level	and	were	43	
assigned	Roman	numerals	(reviewed	by	(Myllyharju	and	Kivirikko,	2004)).		However,	with	44	
the	advent	of	genome	sequencing	it	became	apparent	that	many	more	collagens	exist.	We	45	
now	know	that	there	are	28	distinct	collagens	in	vertebrates	((Huxley-Jones,	et	al.,	2007)	and	46	
reviewed	by	(Kadler,	et	al.,	2007,	Mienaltowski	and	Birk,	2014)),	almost	200	in	C.	elegans	47	
(reviewed	by	(Johnstone,	2000)),	and	further	collagens	in	marine	invertebrates	(Exposito,	et	48	
al.,	2010,	Thurmond	and	Trotter,	1994,	Trotter	and	Koob,	1989),	bacteria	(see	(Ghosh,	et	al.,	49	
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2012)	and	references	therein)	and	viruses	(e.g.	see	(Legendre,	et	al.,	2011,	Rasmussen,	et	al.,	50	
2003)).		It	has	become	clear	that	the	triple	helix	is	an	important	motif	that	is	not	restricted	to	51	
collagens	(Brodsky	and	Shah,	1995)	but	which	occurs	in	a	wide	range	of	proteins	including	52	
asymmetric	acetylcholinesterase	(Johnson,	et	al.,	1977),	macrophage	scavenging	receptors	53	
(Kodama,	et	al.,	1990),	complement	component	C1q	(Reid	and	Day,	1990),	ectodysplasin	54	
(Ezer,	et	al.,	1999),	and	the	mannose-binding	lectin,	collectins,	and	ficolins	in	the	lectin	55	
pathway	(Garred,	et	al.,	2016)	that	are	involved	in	mediating	host-pathogen	interactions	56	
(Berisio	and	Vitagliano,	2012).	57	

The	polypeptide	chains	in	collagens	are	termed	α-chains.		Because	there	are	numerous	58	
collagen	genes	and	their	protein	products	trimerise	in	a	specific	combination	to	produce	a	59	
collagen	‘type’,	a	nomenclature	has	evolved	to	specify	a	particular	α-chain	based	on	the	60	
collagen	type	in	which	it	is	found.		The	nomenclature	involves	the	α	symbol	followed	by	an	61	
Arabic	number	followed	by	a	Roman	numeral,	in	brackets	(parentheses).		The	α symbol,	62	
Arabic	number	and	Roman	numeral	are	read	together	to	indicate	the	gene	that	encodes	that	63	
particular	α-chain.		Thus,	α1(I)	and	α2(I)	denotes	that	these	chains	are	found	in	type	I	64	
collagen,	and	are	encoded	by	the	genes	COL1A1	and	COL1A2.			65	

Collagens	can	be	homotrimers	and	heterotrimers.		Moreover,	some	collagens	of	the	66	
same	type	can	be	homotrimeric	or	heterotrimer	(e.g.	type	I	collagen	can	exist	as	a	67	
homotrimer	of	three	α1(I)	chains	(i.e.	[α1(I)]3)	chains	or	a	heterotrimer	of	two	α1(I)	chains	68	
and	a	single	α2(I)	chain	(i.e.	[α1(I)]2,α2(I)).		Furthermore,	heterotrimeric	collagens	can	have	69	
3	different	α-chains	(e.g.	α1(IX),	α2(IX),	α3(IX))	that	are	encoded	by	three	different	genes	70	
(i.e.	COL9A1,	COL9A2	and	COL9A3,	respectively),	and	some	collagen	types	contain	specific	71	
combinations	of	a	family	of	6	chains	(e.g.	α1(IV)]2,α2(IV)	and	α3(IV),α4(IV),α5(IV)	and	72	
α5(IV),α5(IV),α6(IV)	(see	(Hudson,	et	al.,	2003)	for	review)).		There	is	chain	selection	73	
specificity	such	that	of	the	45	different	collagen	α-chains	in	vertebrates,	only	28	different	74	
types	occur	(see	Table	1).		For	fibrillar	collagens	(Figure	1)	the	chain	selection	mechanism	75	
resides	in	the	non-collagenous	sequences	at	the	C-terminal	end	of	each	pro-α-chain	76	
(Bourhis,	et	al.,	2012,	Lees,	et	al.,	1997).		The	chain	selection	mechanism	in	other	collagens	is	77	
less	well	understood.		78	
	79	
Fibrillar	collagens	80	

The	28	collagen	types	that	occur	in	vertebrates	can	be	classified	according	to	domain	81	
structure,	function,	and	supramolecular	assembly	(for	review	see	(Mienaltowski	and	Birk,	82	
2014)).		The	most	abundant	are	the	fibrillar	collagens	that	form	the	basis	of	the	fibrils	in	83	



	 4	

bony,	cartilaginous,	fibrous,	and	tubular	structures,	and	will	be	the	focus	of	the	remainder	of	84	
this	review.		The	fibril-forming	collagens	are	types	I,	II,	III,	V,	XI,	XXIV	and	XXVII.	They	have	85	
uninterrupted	triple	helices	of	~300	nm	in	length	and	have	globular	domains	(propeptides)	86	
at	each	terminus	of	each	α-chain.		Types	XXIV	and	XXVII	were	identified	by	genome	87	
sequencing	and	were	added	to	this	group	on	the	basis	of	protein	domain	structure	(Koch,	et	88	
al.,	2003)	and	the	presence	of	type	XXVII	collagen	in	thin	fibrils	(Plumb,	et	al.,	2007).		89	

Collagen	fibrils	are	complex	macromolecular	assemblies	that	comprise	different	fibrillar	90	
collagen	types	(Hansen	and	Bruckner,	2003).	The	fibrils	are	either	‘predominately	type	I	91	
collagen’	or	‘predominately	type	II	collagen’.		Predominately	type	I	collagen	fibrils	occur	in	92	
bony,	tubular,	and	fibrous	tissues	whereas	cartilaginous	tissues	contain	predominately	type	93	
II	collagen	fibrils.	Collagen	fibrils	range	in	length	from	a	few	microns	to	centimetres	(Craig,	et	94	
al.,	1989)	and	therefore	have	molecular	weights	in	the	tera	Dalton	range	(based	on	95	
calculations	described	by	(Chapman,	1989)).		The	fibrils	provide	attachment	sites	for	a	broad	96	
range	of	macromolecules	including	fibronectin,	proteoglycans,	and	cell	surface	receptors	97	
such	as	integrins,	discoidin	domain-containing	receptors	(DDRs)	and	mannose	receptors	(Di	98	
Lullo,	et	al.,	2002,	Jokinen,	et	al.,	2004,	Orgel,	et	al.,	2011,	Sweeney,	et	al.,	2008).	99	
Furthermore,	the	fibrils	vary	in	diameter	depending	on	species,	tissue,	stage	of	100	
development,	(Craig,	Birtles,	Conway	and	Parry,	1989,	Parry,	et	al.,	1978)	and	in	response	to	101	
injury	and	repair	(Pingel,	et	al.,	2014).		Collagen	fibrils	are	arranged	in	exquisite	three-102	
dimensional	architectures	in	vivo	including	parallel	bundles	in	tendon	and	ligament,	103	
orthogonal	lattices	in	cornea,	concentric	weaves	in	bone	and	blood	vessels,	and	basket-104	
weaves	in	skin.		How	the	fibrils	assemble,	how	length	and	diameter	are	regulated,	how	105	
molecules	attach	to	fibril	surfaces,	and	how	the	multi-scale	organisation	is	achieved	are	106	
questions	for	which	answers	are	either	sketchy	or	not	available.	The	extreme	size	and	107	
compositional	heterogeneity	of	collagen	fibrils	mean	that	they	are	extremely	difficult	to	108	
study	by	conventional	molecular,	genetic	and	biochemical	approaches.		Collagen	molecules	109	
are	also	hydroxylated	at	specific	prolyl	residues	(by	prolyl	hydroxylases),	lysyl	residues	(by	110	
lysyl	hydroxylases	or	PLODs,	procollagen-lysine	5-dioxygenases)	and	are	non-reducibly	cross-111	
linked	(by	lysyl	oxidase	(LOX)	enzymes),	(Eyre,	et	al.,	1984,	Gistelinck,	et	al.,	2016),	which	112	
adds	to	the	difficulty	of	studying	the	fibrils.			113	

Collagen	fibrils	in	tendon	(Heinemeier,	et	al.,	2013)	and	cartilage	(Heinemeier,	et	al.,	114	
2016)	are	extremely	long	lived	with	estimates	exceeding	hundreds	of	years.		Therefore	the	115	
collagen	in	the	fibrils	is	particularly	prone	to	modification	by	advanced	glycation	end	116	
products	(Thorpe,	et	al.,	2010,	Verzijl,	et	al.,	2000).		Thus,	the	two	major	experimental	117	
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approaches	used	in	the	study	of	collagen	fibril	assembly	have	been	electron	microscopy	of	118	
tissues	to	describe	the	organisation	of	the	fibrils	in	vivo	(explained	below)	and	reconstitution	119	
of	fibrils	in	vitro	using	collagen	extracted	from	tissues	(explained	below)	or	recombinant	120	
collagens	(e.g.	(Fertala,	et	al.,	1996)).		121	

	122	
Collagen	fibril	assembly	in	vitro	123	

Studies	by	Gross	(Gross	and	Kirk,	1958),	Wood	&	Keech	(Wood	and	Keech,	1960),	Hodge	124	
&	Petruska	(Hodge,	1989),	Silver	(Silver	and	Trelstad,	1980),	and	Chapman	(Bard	and	125	
Chapman,	1968),	to	name	a	few,	showed	that	exposure	of	animal	tissues	(typically	skin	and	126	
tendon)	to	weak	acidic	solutions	(typically	acetic	acid)	or	neutral	salt	buffers	yielded	a	127	
solution	of	collagen	molecules	that	when	neutralised	and	warmed	to	~30°C,	produced	128	
elongated	fibrils	that	had	the	same	alternating	light	and	dark	transmission	electron	129	
microscope	banding	appearance	as	fibrils	occurring	in	vivo	(Holmes	and	Chapman,	1979)	130	
(Figure	2).		The	characteristic	banding	pattern	of	the	fibrils	arises	from	D-staggering	of	triple	131	
helical	collagen	molecules	that	are	4.4	x	D	in	length	(where	D	is	67	nm,	to	a	close	132	
approximation).		The	electron-dense	stain	used	at	neutral	pH	penetrates	more	readily	into	133	
regions	of	least	protein	packing	(the	‘gaps’)	between	the	N-	and	C-termini	of	collagen	134	
molecules	that	are	aligned	head-to-tail	along	the	long	axis	of	the	fibril.		The	fact	that	fibrils	135	
with	D-periodic	banding	could	be	formed	in	vitro	from	purified	collagen	showed	that	all	the	136	
information	required	to	form	a	collagen	fibril	was	contained	within	the	amino	acid	sequence	137	
and	triple	helical	structure	of	the	collagen	molecule	(Hulmes,	et	al.,	1973).		138	

Subsequent	studies	showed	that	collagen	fibrils	from	embryonic	tendon	(which	are	139	
predominantly	type	I	collagen)	exist	in	two	isoforms:	unipolar	and	bipolar	(Holmes,	et	al.,	140	
1994)	(Figure	3).		Unipolar	fibrils	have	all	collagen	molecules	in	the	fibril	oriented	in	one	141	
direction,	which	gives	the	fibril	a	carboxyl	and	an	amino	tip.		Bipolar	fibrils	(more	precisely,	142	
N,	N-bipolar	fibrils)	have	two	amino	terminal	ends	and	a	molecular	polarity	switch	region	(or	143	
transition	zone)	in	which	the	orientation	of	collagen	molecules	switches	e.g.	from	N-to-C	to	144	
C-to-N	(Holmes,	Lowe	and	Chapman,	1994).		The	switch	in	orientation	occurs	over	an	8	D-145	
period	range	in	chick	tendon	collagen	fibrils	(Holmes,	Lowe	and	Chapman,	1994).		Notably,	146	
sea	cucumbers	(Actinopyga	echinites)	lack	unipolar	fibrils	and	all	their	bipolar	fibrils	have	the	147	
molecular	switch	region	located	precisely	mid-way	from	each	fibril	tip;	also,	the	switch	varies	148	
in	extent	from	14	to	41	D-periods	in	invertebrate	fibrils	(Trotter,	et	al.,	1998,	Trotter,	et	al.,	149	
2000).		Earlier	studies	had	shown	that	collagen	fibrils	formed	by	cleavage	of	procollagen	to	150	
collagen	(explained	below)	grow	from	pointed	tips	(i.e.	the	pointed	ends	of	fibrils)	and	the	151	
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collagen	molecules	were	oriented	in	one	direction	along	the	long	axis	of	the	fibril	(Kadler,	et	152	
al.,	1990).	Moreover,	the	C-tip	of	a	unipolar	fibril	is	required	for	end-to-end	fusion	of	either	153	
two	unipolar	fibrils	(to	generate	a	new	N,	N-bipolar	fibril)	or	to	one	end	of	an	N,	N-bipolar	to	154	
generate	a	longer	N,	N-bipolar	fibril	(Graham,	et	al.,	2000,	Kadler,	et	al.,	2000).		Notably,	C,	155	
C-bipolar	collagen	fibrils	have	not	been	described.	Presumably,	the	structure	of	C-tips	156	
exposes	binding	sites	to	promote	carboxyl-to-amino	fusion	of	fibril	tips.		157	

Two	schools	of	thought	developed	about	how	collagen	molecules	assemble	into	fibrils:	158	
(1)	precipitation	from	a	solution	of	‘bulk’	collagen	by	liquid	crystalline	ordering	of	molecules	159	
(e.g.	see	(Martin,	et	al.,	2000)),	or	(2)	‘nucleation	and	propagation’	in	which	a	finite	number	160	
of	collagen	molecules	form	a	nucleus	that	then	grows	in	length	and	diameter	to	become	the	161	
mature	fibril	(Gross,	et	al.,	1954).		This	latter	mechanism	is	analogous	to	the	formation	of	162	
inorganic	crystals.		The	existence	of	fibrils	of	different	lengths	supports	the	notion	that	the	163	
fibrils	grow	in	size	(which	supports	the	nucleation	and	propagation	model)	but	collagen	and	164	
procollagen	(see	below)	molecules	can	form	a	liquid-like	structure	when	packed	in	high	165	
concentration	(which	supports	the	liquid	crystalline	model).		In	reality,	these	two	hypotheses	166	
might	not	be	mutually	exclusive;	work	by	Hulmes	and	Bruns	showed	that	procollagen	167	
molecules	can	align	in	zero-D	register	in	secretory	vacuoles	of	fibroblasts	(analogous	to	168	
liquid	crystalline	packing)	(Bruns,	et	al.,	1979,	Hulmes,	et	al.,	1983),	which	might	increase	the	169	
rate	of	conversion	of	procollagen	to	collagen	to	nucleate	fibrils.	Therefore	it	is	possible	that	170	
elements	of	both	assembly	mechanisms	exist	in	vivo.		171	

	172	
A	system	for	generating	collagen	fibrils	in	vitro	starting	with	procollagen	173	

In	1984	I	joined	Darwin	Prockop’s	laboratory	at	UMDNJ,	Piscataway,	NJ,	USA	to	develop	a	174	
system	of	studying	collagen	fibril	formation	by	cleavage	of	procollagen	with	its	physiological	175	
convertases,	the	procollagen	N-	and	C-proteinases	(Figure	4).		Procollagen	had	previously	176	
been	shown	to	be	the	biosynthetic	precursor	of	collagen	(Bellamy	and	Bornstein,	1971))	and	177	
there	had	been	initial	success	in	purifying	the	N-	and	C-proteinases	that	convert	procollagen	178	
to	collagen	(Njieha,	et	al.,	1982,	Tuderman	and	Prockop,	1982).		With	the	collaboration	of	179	
Yoshio	Hojima	who	purified	the	procollagen	N-	and	C-proteinases	from	chick	tendon	180	
(Hojima,	et	al.,	1989,	Hojima,	et	al.,	1985),	we	developed	a	method	of	purifying	type	I	181	
procollagen	and	cleaving	it	with	N-proteinase	to	generate	pCcollagen,	and	then	cleaving	the	182	
re-purified	pCcollagen	with	the	C-proteinase	in	a	bicarbonate	buffer.		pCcollagen	is	a	183	
cleavage	intermediate	of	procollagen	that	retains	the	C-propeptide	but	lacks	the	N-184	
propeptide.	This	system	allowed	us	to	study	collagen	fibril	formation	in	the	absence	of	lysyl	185	
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oxidase	and	crosslink	precursors	(Eyre,	et	al.,	2008).	The	presence	of	crosslink	precursors	in	186	
extracted	collagen	can	affect	collagen	fibril	formation	in	vitro	(Herchenhan,	et	al.,	2015).		187	
Using	this	new	system	of	forming	fibrils	by	cleavage	of	procollagen,	we	defined	the	188	
thermodynamic	parameters	of	the	assembly	process	(Kadler,	et	al.,	1987),	the	temperature	189	
dependence	of	collagen	fibril	assembly	(Kadler,	et	al.,	1988),	and	showed	that	the	fibrils	190	
form	as	a	nucleus	that	grows	at	its	pointed	tips	(Kadler,	Hojima	and	Prockop,	1990).		These	191	
observations	indicated	that	collagen	fibrils	(in	the	absence	of	lysyl	oxidase-derived	192	
crosslinks)	exhibit	a	critical	concentration	of	assembly,	analogous	to	the	self-formation	of	193	
inorganic	crystals.		Our	ability	to	purify	procollagen	from	cells	paved	the	way	to	study	how	194	
mutations	in	collagen	genes	that	cause	osteogenesis	imperfecta	affect	procollagen	structure	195	
and	fibril	assembly.		These	studies	showed	that	mutations	in	type	I	collagen	genes	can	196	
produce	procollagen	molecules	that	are	‘kinked’	(Vogel,	et	al.,	1988),	slow	the	rate	of	197	
conversion	of	procollagen	to	collagen	(Lightfoot,	et	al.,	1992),	lead	to	the	formation	of	198	
abnormal	collagen	fibrils	(Kadler,	et	al.,	1991),	and	impair	the	ability	of	collagen	fibrils	to	be	199	
mineralised	during	the	formation	of	bone	(Culbert,	et	al.,	1995).		These	studies	led	to	a	200	
better	understanding	of	how	mutations	in	collagen	genes	can	change	the	structure	and	201	
processing	of	collagen	molecules	and	how	the	resultant	collagen	fibrils	are	poorer	scaffolds	202	
for	mineralisation,	as	occurs	in	osteogenesis	imperfecta	in	vivo	(Culbert,	et	al.,	1996).	In	203	
parallel	studies	we	also	showed	that	the	tips	are	the	sites	of	diameter	regulation	(Holmes,	et	204	
al.,	1998),	that	fibrils	formed	at	low	C-proteinase/pCollagen	ratios	bore	the	closest	205	
resemblance	to	fibrils	in	vivo	(Holmes,	et	al.,	1996),	and	that	the	tips	of	fibrils	are	206	
paraboloidal	in	shape	(Holmes,	et	al.,	1992).			207	

	208	
Collagen	fibril	formation	in	vivo	209	
Although	collagen	molecules	can	spontaneously	self	assemble	into	fibrils	in	vitro,	additional	210	
factors	must	exist	in	vivo	to	explain	the	exquisite	three-dimensional	supramolecular	211	
organisation	of	fibrils,	as	well	as	the	regulation	of	diameter,	length	and	composition,	that	212	
depend	on	tissue,	stage	of	development,	state	of	tissue	ageing	and	repair,	and	which	vary	in	213	
disease.		The	in	vivo	regulation	of	collagen	fibril	formation	has	been	studied	for	over	a	214	
century,	and	although	enormous	progress	has	been	made,	the	cellular	mechanisms	of	fibril	215	
assembly	and	organisation	in	vivo	remain	elusive.		216	

Some	of	the	earliest	reports	on	the	existence	of	collagen	fibrils	date	back	to	the	end	217	
of	the	19

th
	century	and	beginning	of	the	20

th
	century.		For	example,	Mallory	described	a	218	

‘fibrillar	substance’	produced	by	connective	tissue	cells	(i.e.	fibroblasts)	(Mallory,	1903).		219	
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Studies	of	collagen	fibrils	continued	during	the	1920s	and	1930s	during	which	time	several	220	
groups	attempted	to	develop	methods	to	observe	the	assembly	of	the	fibrils	in	vivo.		A	221	
breakthrough	came	in	1940	when	Mary	Stearns	published	her	first	observations	of	222	
fibroblasts	secreting	and	assembling	collagen	fibres	(Stearns,	1940).		Her	paper	is	a	‘must	223	
read’	for	students	of	collagen	fibril	formation;	the	46	hand-drawn	plates	are	exquisite.		224	
Stearns	used	the	camera	lucida	to	visualise	and	draw	details	of	cytoplasmic	connections	225	
between	cells,	striations	within	cells,	‘vacuoles	de	secretion’,	and	fibres	growing	at	the	cell	226	
surface.		In	so	doing,	she	produced	the	first	evidence	that	fibroblasts	are	instrumental	in	227	
assembling	collagen	fibrils	in	tissues.		Almost	40	years	later,	Trelstad	and	Hayashi	used	228	
transmission	electron	microscopy	(TEM)	to	show	that	collagen	fibrils	occurred	in	229	
invaginations	of	the	plasma	membrane	of	embryonic	fibroblasts	(Trelstad	and	Hayashi,	230	
1979).		A	decade	later	this	observation	was	extended	using	high-voltage	TEM	to	study	231	
collagen	fibrillogenesis	in	cornea	as	well	as	embryonic	chick	tendon	(Birk	and	Trelstad,	1984,	232	
Birk	and	Trelstad,	1985,	Birk	and	Trelstad,	1986,	Trelstad	and	Birk,	1985).		In	2006,	we	used	233	
serial	section	TEM	and	immunoEM	of	embryonic	tendon	to	describe	a	variety	of	structures	234	
at	the	plasma	membrane	that	contained	collagen	fibrils,	and	which	we	collectively	called	235	
‘fibripositors’	(Canty,	et	al.,	2004).	Collectively,	these	studies	demonstrate	the	exquisite	236	
control	the	cell	exerts	over	the	self	assembly	of	collagen	fibrils	to	generate	tissues	with	237	
highly	organised	collagen	matrices.		238	
	239	
Fibripositors	240	

In	1989	I	returned	to	the	UK	as	a	Wellcome	Trust	Senior	Research	Fellow	in	Basic	241	
Biomedical	Science,	and	joined	Michael	Grant’s	Department	of	Medical	Biochemistry.	During	242	
the	next	10	years	we	extended	our	knowledge	of	how	mutations	in	collagen	genes	affect	243	
procollagen	structure	and	fibril	formation.		In	collaboration	with	Peter	Byers	and	Gillian	244	
Wallis,	these	studies	focussed	on	the	Ehlers-Danlos	syndrome	(type	VII)	that	is	caused	by	245	
mutations	in	COL1A1	and	COL1A2	genes	that	encode	the	chains	of	type	I	procollagen.	PhD	246	
students	Rod	Watson,	Samantha	Lightfoot	and	Ainsley	Culbert,	and	a	postdoc	David	Holmes,	247	
joined	my	lab	and	together	we	showed	how	mutations	in	COL1A1	and	COL1A2	that	cause	248	
EDS	VII	disrupt	the	structure	of	procollagen,	slow	the	cleavage	of	procollagen	by	N-249	
proteinase,	and	lead	to	the	‘cauliflower’	appearance	of	collagen	fibrils	in	affected	individuals	250	
(Culbert,	Wallis	and	Kadler,	1996,	Holmes,	et	al.,	1993,	Wallis,	et	al.,	1992,	Watson,	et	al.,	251	
1998,	Watson,	et	al.,	1992).	We	also	studied	the	function	of	the	CUB	domains	in	bone	252	
morphogenetic	protein-1,	which	is	a	potent	procollagen	C-proteinase	(Canty,	et	al.,	2006,	253	
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Garrigue-Antar,	et	al.,	2001,	Garrigue-Antar,	et	al.,	2004,	Garrigue-Antar,	et	al.,	2002,	254	
Hartigan,	et	al.,	2003,	Petropoulou,	et	al.,	2005).	Here,	CUB	is	an	evolutionary	conserved	255	
protein	domain	named	after	its	discovery	in	complement	components	(C1r/C1s),	the	sea	256	
urchin	protein	Uegf,	and	in	BMP-1	(for	review	see	(Bork	and	Beckmann,	1993)).		257	

However,	it	was	during	a	staff	meeting	in	2002	that	I	heard	good	advice	that	scientists	258	
should	change	their	experimental	approach	every	10	years.		Up	until	this	time,	I	had	used	259	
cells	as	a	factory	for	procollagen	production	and	had	overlooked	the	importance	of	the	cell	260	
in	fibril	assembly.		A	new	postdoc	in	the	lab,	Elizabeth	Canty,	took	up	the	challenge	of	taking	261	
our	lab	into	new,	in	vivo,	directions.		We	were	inspired	by	the	work	of	Hayashi,	Trelstad	and	262	
Birk,	and	decided	to	ask	questions	about	how	cells	regulate	fibril	assembly	and	fibril	number.		263	
With	the	assistance	of	David	Holmes,	Tobias	Starborg	and	Yinhui	Lu	in	the	lab,	Liz	Canty	264	
embarked	on	studying	collagen	fibril	formation	in	embryonic	chick	tendon	using	serial	265	
section	electron	microscopy	and	3D	reconstruction.	Our	first	paper,	in	2004,	showed	3D	266	
reconstructions	from	50	x	100	nm	serial	sections	of	embryonic	chick	tendon,	cut	267	
perpendicular	to	the	tissue	long	axis.		These	were	the	deepest	and	most	detailed	3D	268	
reconstructions	at	the	time	and	showed	finger-like	projections	of	the	plasma	membrane	269	
containing	thin	collagen	fibrils	(Figure	5).		The	3D	reconstructions	showed	that	the	270	
projections	were	part	of	an	invagination	of	the	plasma	membrane,	and,	that	the	fibril	within	271	
the	invagination	and	the	projection	were	co-aligned	to	the	long	axis	of	the	tendon	(Canty,	272	
Lu,	Meadows,	Shaw,	Holmes	and	Kadler,	2004)	(Figure	6).		We	called	these	structures	273	
‘fibripositors’	(a	portmanteau	of	‘fibril’	and	‘depositors’).		We	also	showed	that	fibripositors	274	
are	actin-dependent	structures	(Canty,	et	al.,	2006)	that	projected	into	intercellular	channels	275	
stabilised	by	cadherin-11	containing	junctions	(Richardson,	et	al.,	2007).			276	

	277	
Serial	block	face-scanning	electron	microscopy	278	

The	fact	that	fibripositors	are	too	thin	to	be	seen	by	light	microscopy,	and	that	no	marker	279	
has	been	identified	that	can	aid	in	their	visualisation	by	fluorescence	light	microscopy,	has	280	
been	a	severe	hurdle	to	studies	of	fibripositor	structure,	function	and	formation.		Also,	the	281	
effort	and	time	involved	in	producing	serial	sections	for	electron	microscopy	is	a	significant	282	
hurdle	to	further	progress;	sections	can	be	lost	or	distorted	during	processing,	and	the	283	
process	requires	exceptional	skills	in	ultrathin	sectioning	and	handling.		A	major	284	
breakthrough	came	with	the	commercialisation	of	serial	block	face-scanning	electron	285	
microscopy	(SBF-SEM)	(Denk	and	Horstmann,	2004).	Here,	images	of	a	block	face	are	286	
recorded	using	a	scanning	electron	microscope	prior	to	the	removal	of	a	section	by	an	in-287	



	 10	

microscope	ultramicrotome.		The	ability	to	produce	serial	images	without	manual	sectioning	288	
opened	up	new	opportunities	to	explore	fibripositor	function.		After	optimisation	of	sample	289	
preparation	and	staining,	image	acquisition	and	data	analysis,	Toby	Starborg,	Nick	Kalson	290	
and	Yinhui	Lu	showed	that	we	could	use	SBF-SEM	as	a	semi-high	throughput	system	to	291	
examine	fibripositor	structure	and	function	at	the	cell-matrix	interface	(Starborg,	et	al.,	292	
2013)	(Figure	7	and	Movie).		With	this	new	approach	we	were	able	to	show	that	fibripositors	293	
are	the	site	of	fibril	assembly	in	tendon	and	that	non-muscle	myosin	II	is	required	for	fibril	294	
transport	and	formation	(Kalson,	et	al.,	2013).		We	also	showed	that	fibripositor-like	295	
structures	called	keratopodia	exist	in	corneal	keratocytes	(Young,	et	al.,	2014).		SBF-SEM	also	296	
gave	us	the	opportunity	to	explore	how	collagen	fibril	formation	contributes	to	tendon	297	
development.		In	a	tour	de	force	of	SBF-SEM,	Nick	Kalson,	Yinhui	Lu	and	Susan	Taylor	298	
outlined	a	new	hypothesis	for	tendon	development	in	which	the	number	of	collagen	fibrils	is	299	
determined	by	embryonic	tendon	fibroblasts,	and	that	the	growth	in	lateral	size	of	the	300	
tendon	is	driven	by	matrix	expansion	caused	by	the	increase	in	girth	and	length	of	collagen	301	
fibrils	(Kalson,	et	al.,	2015).	SBF-SEM	studies	have	also	revealed	a	new	function	for	302	
membrane	type	I-matrix	metalloproteinase	(MT1-MMP	or	MMP14)	in	being	essential	for	303	
tendon	development	(Taylor,	et	al.,	2015).		Taylor	and	colleagues	showed	that	release	of	304	
collagen	fibrils	from	fibripositors	at	birth	requires	MT1-MMP,	and	that	the	process	does	not	305	
rely	on	the	cleavage	of	collagen	at	the	¾-¼	vertebrate	collagenase	cleavage	site	in	the	306	
molecule.		307	

	308	
Negative	regulation	of	collagen	fibril	formation	during	intracellular	protein	trafficking		309	

Canty	and	co-workers	also	made	the	observation	that	procollagen	can	be	cleaved	to	310	
collagen	prior	to	secretion	by	tendon	fibroblasts	in	vivo.		Evidence	that	procollagen	can	be	311	
cleaved	to	collagen	within	the	cell	without	forming	fibrils	demonstrates	active	negative	312	
control	of	the	self-assembly	properties	of	collagen	fibrillogenesis	in	vivo	(Humphries,	et	al.,	313	
2008).		These	observations	are	in	contrast	to	what	happens	in	conventional	cell	culture,	in	314	
which	procollagen	is	readily	purified	from	the	cell	culture	medium.		Presumably	the	315	
environment	of	the	cell	and	matrix	influence	the	trafficking	of	procollagen.		A	half-way	316	
house	between	in	vivo	and	in	vitro	is	the	use	of	3D	cell	culture	systems;	Kapacee	and	317	
colleagues	showed	that	fibroblasts	incubated	in	fibrin	gels	under	linear	tension	replace	the	318	
fibrin	with	collagen	fibrils	that	are	aligned	parallel	to	the	lines	of	stress	and	exhibit	features	319	
of	embryonic	fibroblasts	in	vivo,	including	fibripositors	(Bayer,	et	al.,	2010,	Kalson,	et	al.,	320	
2011,	Kalson,	et	al.,	2010,	Kapacee,	et	al.,	2008,	Kapacee,	et	al.,	2010).		This	approach	321	
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facilitates	studies	of	the	role	of	cells,	in	a	near-physiological	environment	with	tissue-derived	322	
mechanical	forces,	in	assembling	collagen	fibrils.		323	
	324	
Regulators	of	collagen	fibril	assembly	in	vivo	325	

The	fact	that	collagen	fibrils	are	comprised	of	different	collagens,	that	they	occur	in	326	
different	numbers	and	with	different	diameters	and	packing	densities	in	different	tissues,	327	
that	the	supramolecular	organisation	of	fibrils	is	different	in	different	tissues,	and	that	328	
collagen	molecules	provide	interaction	sites	for	receptors	and	a	wide	range	of	extracellular	329	
matrix	molecules,	suggests	that	there	are	multiple	steps	in	the	assembly	and	organisation	of	330	
fibrils,	and	that	each	step	can	be	error	prone.		Defective	collagen	fibrillogenesis	can	arise	331	
from	mutations	in	genes	encoding	fibrillar	collagens	(see	Table	2),	fibril	associated	collagens	332	
with	interrupted	triple	helices	that	bind	to	the	surfaces	of	collagens	fibrils	e.g.	type	XII	and	333	
type	XIV	collagen	(Young,	et	al.,	2002),	proteoglycans	that	interact	with	fibrils	e.g.	decorin	334	
(Danielson,	et	al.,	1997),	lumican	(Chakravarti,	et	al.,	1998)	fibromodulin	(Hedlund,	et	al.,	335	
1994,	Svensson,	et	al.,	1999),	osteoglycin	(Tasheva,	et	al.,	2002),	keratocan	(Liu,	et	al.,	2003),	336	
and	biglycan	(Heegaard,	et	al.,	2007)	(for	review	see	(Kalamajski	and	Oldberg,	2010)),	337	
enzymes	required	for	posttranslational	modification	of	collagen	α-chains	e.g.	prolyl	4-338	
hydroxylase	(Mussini,	et	al.,	1967),	lysyl	hydroxylases	(Takaluoma,	et	al.,	2007),	lysyl	339	
oxidases	(Maki,	et	al.,	2002),	proteins	involved	in	transporting	collagens	through	the	340	
secretory	pathway	e.g.	HSP47	(Satoh,	et	al.,	1996),	sedlin	(Venditti,	et	al.,	2012),	and	341	
TANGO1	(Saito,	et	al.,	2009,	Wilson,	et	al.,	2011),	and	proteinases	involved	in	collagen	342	
turnover	e.g.	MMP14	(Taylor,	Yeung,	Kalson,	Lu,	Zigrino,	Starborg,	Warwood,	Holmes,	Canty-343	
Laird,	Mauch	and	Kadler,	2015).		Loss	of	the	collagen	network	in	cartilage	occurs	in	end	stage	344	
osteoarthritis	(Ehrlich,	et	al.,	1977).	Conversely	ectopic	or	excessive	accumulation	of	345	
collagen	occurs	in	fibrosis,	which	can	be	stimulated	by	TGF-β	(Roberts,	et	al.,	1986),	and	can	346	
affect	any	organ	often	resulting	in	death.	Thus,	collagen	fibrillogenesis	is	a	precisely	347	
regulated	process	in	which	the	mechanisms	that	maintain	the	appropriate	number,	size,	and	348	
organisation	of	collagen	fibrils	in	adult	tissues	appear	to	be	sensitive	to	a	wide	range	of	349	
genetic	mutations	and	environmental	stimuli.		350	

	351	
A	personal	perspective	on	some	of	the	most	important	unanswered	questions	in	the	field	352	
of	collagen	fibril	homeostasis	353	

We	do	not	have	clear	line	of	sight	of	how	the	three-dimensional	organisation	of	collagen	354	
fibrils	is	established	in	tissues.		Collagen	fibrils	first	appear	part	way	though	vertebrate	355	
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embryonic	development	when	the	mass	of	matrix	begins	to	exceed	the	mass	of	cells.		At	this	356	
pivotal	stage	of	development,	the	patterning	of	tissue	progenitor	cells	has,	to	a	close	357	
approximation,	been	established	and	might	be	expected	to	dictate	the	patterning	of	the	358	
matrix.		Perhaps	novel	insights	into	organogenesis	will	come	from	a	better	understanding	of	359	
the	interplay	between	cell	positioning,	cell-cell	communication,	cell-matrix	interactions,	cell	360	
polarity,	the	role	of	the	secretory	pathway	in	directing	matrix	assembly,	and	mechanical	361	
forces.			362	

A	further	exciting	area	of	research	is	matrix	homeostasis;	it	will	be	fascinating	to	learn	363	
how	changes	in	this	process	lead	to	diseases	such	as	osteoarthritis,	tendinopathies,	fibrosis	364	
and	cell	migration	through	the	matrix.	The	realisation	that	the	bulk	of	the	collagen	in	tendon	365	
and	cartilage	is	synthesised	during	adolescence	and	remains	unchanged	during	the	lifetime	366	
of	a	person	raises	intriguing	questions	about	how	the	collagen	network	is	maintained	during	367	
life	despite	countless	cycles	of	mechanical	loading.	Advances	in	genome	editing	and	super-368	
resolution	light	microscopy	are	all	likely	to	be	brought	to	bear	on	this	question.		These	369	
approaches	are	expected	to	lead	to	a	better	understanding	of	how	matrix	homeostasis	goes	370	
wrong	in	diseases	such	as	fibrosis,	where	ectopic	and	excessive	deposition	of	collagen	fibrils	371	
can	cause	death.		Recent	discoveries	show	that	matrix-rich	tissues	are	peripheral	circadian	372	
clock	tissues	and	that	defects	in	the	rhythm	in	these	tissues	lead	to	pathologies	such	as	373	
calcific	tendinopathy	(Yeung,	et	al.,	2014),	osteoarthritis	(Dudek,	et	al.,	2016,	Guo,	et	al.,	374	
2015)	and	intervertebral	disc	disease	(Dudek,	et	al.,	2016).		Thus,	the	mechanical	375	
environment	of	the	cell,	the	role	of	the	matrix	in	modulating	cell	behaviour,	and	peripheral	376	
circadian	clocks	are	all	likely	to	contribute	to	matrix	homeostasis.		377	
	378	
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Table	1.	Collagen	types	and	their	chain	compositions	393	
	394	
Type	 Gene α -chain	 Molecules	
I	 COL1A1 α1(I)	 [α1(I)]3	

[α1(I)]2α2(I)		 COL1A2 α2(I)	
II	 COL2A1 α1(II)	 [α1(II)]3	
III	 COL3A1 α1(III)	 [α1(III)]3	
IV	 COL4A1 α1(IV)	

[α1(IV)]2α2(IV)	
α3(IV), α4(IV),	α5(IV)	
α5(IV), α5(IV), α6(IV)	

	 COL4A2 α2(IV)	
	 COL4A3 α3(IV)	
	 COL4A4 α4(IV)	
	 COL4A5 α5(IV)	
	 COL4A6 α6(IV)	
V	 COL5A1 α1(V)	 [α1(V)]2α2(V)	

α1(V), α2(V), α3(V)]3	
[α3(V)]3		

	 COL5A2 α2(V)	
	 COL5A3 α3(V)	
VI	 COL6A1 α1(VI)	

α1(VI),	α2(VI)	and	any	of	
α3(VI),	α4(VI), α5(VI),	and	

α6(VI)	
(see	(Maass,	et	al.,	2016))	

	 COL6A1 α2(VI)	
	 COL6A1 α3(VI)	
	 COL6A1 α4(VI)	
	 COL6A1 α5(VI)	
	 COL6A1 α6(VI)	

VII	 COL7A1 α1(VII)	 [α1(VII)]3	
VIII	 COL8A1 α1(VIII)	 [α1(VIII)]3	

[α2(VIII)]3		 COL8A2 α2(VIII)	
IX	 COL9A1 α1(IX)	

α1(IX),	α2(IX),	α3(IX)		 COL9A2 α2(IX)	
	 COL9A3 α3(IX)	
X	 COL10A1 α1(X)	 [α1(X)]3	
XI	 COL11A1 α1(XI)	 [α1(XI)]2α2(XI);	

α1(XI),	α2(XI),	α3(XI)*	
[α2(XI)]3	

	 COL11A2 α2(XI)	

XII	 COL12A1 α1(XII)	 [α1(XII)]3	
XIII	 COL13A1 α1(XIII)	 [α1(XIII)]3	
XIV	 COL14A1 α1(XIV)	 [α1(XIV)]3	
XV	 COL15A1 α1(XV)	 [α1(V)]3	
XVI	 COL16A1 α1(XVI)	 	

XVII	 COL17A1 α1(XVII)	 	

XVIII	 COL18A1 α1(XVIII)	 	

XIX	 COL19A1 α1(XIX)	 	

XX	 COL20A1 α1(XX)	 	

XXI	 COL21A1 α1(XXI)	 	

XXII	 COL22A1 α1(XXII)	 	

XXIII	 COL23A1 α1(XXIII)	 	

XXIV	 COL24A1 α1(XXIV)	 	

XXV	 COL25A1 α1(XXV)	 	

XXVI	 COL26A1 α1(XXVI)	 	

XXVII	 COL27A1 α1(XXVII)	 [α1(XXVII)]3	
XXVIII	 COL28A1 α1(XXVIII)	 [α1(XXVIII)]3	

*	the	α3(XI	chain	is	encoded	by	the	COL2A1	gene	395	
	396	
Table	2.		Diseases	caused	by	mutations	in	genes	encoding	fibrillar	collagens	397	
Collagen	
type	

Gene	 OMIM	 Disease	 Mouse	models	

I	 COL1A1	 120150	 Osteogenesis	imperfecta	

(OI);	

Mov13	

(Bonadio,	et	al.,	
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Ehlers	Danlos	syndrome	type	

VII	

1990);	

Col1a1(Jrt/+)	

OI/EDS	mouse	

(Chen,	et	al.,	
2014)	

	 COL1A2	 120160	 Osteogenesis	imperfecta	

(OI);	

Ehlers-Danlos	syndrome	

type	VII	

	

OIM	(Chipman,	
et	al.,	1993);	
Col1a2(+/G610C)	

OI	(Amish)	

mouse	(Daley,	et	
al.,	2010)	

II	 COL2A1	 120140	 Stickler	syndrome;	

Achondrogenesis;	

Familial	avascular	necrosis	of	

the	femoral	head;	

Legg-Calves-Perthes	disease	

Kniest	dysplasia;	

Spondyloepiphyseal	

dysplasia	congenitial	(SEDC);	

Czech	dysplasia;	

Myopia	2;	

Marshall	syndrome;	

Epiphyseal	dysplasia;	

Platyspondylic	lethal	skeletal	

dysplasia	

(Donahue,	et	al.,	
2003,	Gaiser,	et	
al.,	2002,	
Garofalo,	et	al.,	
1991,	Li,	et	al.,	
1995,	

Vandenberg,	et	
al.,	1991);		

III	 COL3A1	 120180	 Ehlers	Danlos	syndrome	type	

IV;	

Intracranial	berry	aneurysm	

(Liu,	et	al.,	
1997);	

Tsk2	mouse	

(Long,	et	al.,	
2015)	

V	 COL5A1	 120215	 Nail	patella	syndrome;	

Ehlers	Danlos	syndrome	

classic	type	

(Wenstrup,	et	
al.,	2004)	

	 COL5A2	 120190	 Ehlers	Danlos	syndrome	type	

I	or	type	II	

(Andrikopoulos,	
et	al.,	1995)	

	 COL5A3	 120216	 	 (Huang,	et	al.,	
2011)	

XI	 COL11A1	 120280	 Stickler	syndrome;	

Otospondylomegaepiphyseal	

dysplasia	(OSMED);	

Marshall	syndrome	

Cho/cho	mouse	

(Li,	et	al.,	1995)	

	 COL11A2	 120290	 Stickler	syndrome;	

Otospondylomegaepiphyseal	

dysplasia	

(McGuirt,	et	al.,	
1999);	(Li,	et	al.,	
2001)	

XXIV	 COL24A1	 610025	 	 	

XXVII	 COL27A1	 608461	 Steel	syndrome	(Gonzaga-

Jauregui,	et	al.,	2015)	
(Plumb,	et	al.,	
2011)	

	398	
	 	399	
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	400	
	401	
	402	
Figure	legends	403	
	404	
Figure	1:	Schematic	diagram	of	the	chain	composition	of	the	fibril-forming	collagens		405	
	406	
Figure	2:	Transmission	electron	microscopy	of	individual	collagen	fibrils	407	

A. Single	collagen	fibril	from	18-day	chick	embryonic	metatarsal	tendon.		The	fibril	is	408	
negatively	stained	with	2%	uranyl	acetate	to	show	the	characteristic	light	and	dark	409	
banding	pattern.		410	

B. Schematic	representation	of	the	axial	arrangement	of	collagen	molecules	in	a	411	
collagen	fibril.	Each	collagen	molecule	is	represented	with	three	coiled	chains	with	412	
amino	and	carboxy	termini	indicated.	Each	molecule	is	4.4	x	D	in	length,	where	D	~	413	
67	nm.	The	D-stagger	of	molecules	that	are	4.4D	long	leads	to	the	formation	of	a	gap	414	
zone	in	the	axial	structure.		415	

C. The	characteristic	negative	staining	pattern	of	collagen	fibrils,	as	shown	by	1%	416	
sodium	phosphotungstate	staining	at	neutral	pH.			417	

	418	
Figure	3:	Unipolar	and	bipolar	collagen	fibrils	419	

A. Negatively-stained	unipolar	collagen	fibril	isolated	from	embryonic	chick	420	
metatarsal	tendon.	Analysis	of	the	staining	pattern	shows	that	the	collagen	421	
molecules	are	oriented	with	their	amino	terminal	to	the	right	hand	side	(as	422	
shown)	and	the	carboxy	termini	to	the	left.		423	

B. Negatively-stained	N,	N-bipolar	collagen	fibril	from	embryonic	chick	tendon	424	
showing	the	molecular	polarity	switch	region	(box).	425	

C. Enlargement	of	the	box	in	B.		426	
	427	
Figure	4:	Schematic	representation	of	collagen	fibril	formation	by	cleavage	of	procollagen	428	
Sequential	cleavage	of	the	N-propeptides	(by	procollagen	N-proteinase,	which	are	ADAM	2,	429	
3,	14)	and	the	C-propeptides	(by	procollagen	C-proteinase,	which	are	the	BMP-1/Tolloid	430	
family)	of	procollagen	generates	collagen	that	self-assembles	into	unipolar	collagen	fibrils	431	
(Kadler,	Hojima	and	Prockop,	1987).		432	
	433	
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Figure	5.	Transmission	electron	microscopy	of	embryonic	tendon	434	
Embryonic	tendon	contains	bundles	of	collagen	fibrils	between	adjacent	fibroblasts.		The	435	
image	shows	profiles	of	fibripositors.		436	
	437	
Figure	6:	A	fibripositor	at	the	plasma	membrane	of	an	embryonic	fibroblast	438	
Transmission	electron	microscope	image	of	a	collagen	fibril	contained	within	a	fibripositor	at	439	
the	surface	of	an	embryonic	mouse	tail-tendon	fibroblast.		440	
	441	
Figure	7:	Serial	block	face-scanning	electron	microscopy	for	studies	of	the	cell-matrix	442	
interface	443	
Three	images	from	the	downloadable	Movie	generated	by	serial	block	face-scanning	444	
electron	microscopy.		The	coloured	circles	show	fibripositors.	Numbers	refer	to	the	image	445	
sequence.		446	
	447	
Movie:	Step-through	movie	of	consecutive	images	of	embryonic	mouse	tendon	generated	448	
by	serial	block	face-scanning	electron	microscopy	449	
E17.5	mouse-tail	tendon	was	prepared	for	serial	block	face-scanning	electron	microscopy	as	450	
described	previously	(Starborg,	Kalson,	Lu,	Mironov,	Cootes,	Holmes	and	Kadler,	2013).		451	
Images	were	recorded	prior	to	100	nm-thick	sections	being	removed	sequentially	from	the	452	
block	face.	The	movie	shows	60	consecutive	images	covering	a	z-depth	of	6	µm.	Fibripositors	453	
are	highlighted	with	coloured	circles.		454	
	455	
	 	456	
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